Selected Publications## Selected Publications

### Framizations of knot algebras

**M. Flores, J. Juyumaya, S. Lambropoulou,** *A Framization of the Hecke algebra of Type B*. Journal of Pure and Applied Algebra (2017), DOI: 10.1016/j.jpaa.2017.05.006. (pdf file)

**D. Goundaroulis, S. Lambropoulou,** *A new two-variable generalization of the Jones polynomial*. See arXiv:1608.01812. (pdf file)

** M. Chlouveraki, J. Juyumaya, K. Karvounis, S. Lambropoulou, ** *Identifying the invariants for classical knots and links from the Yokonuma-Hecke algebras. *
(pdf file)

** S. Chmutov, S. Jablan, K. Karvounis, S. Lambropoulou,** *On the knot invariants from the Yokonuma-Hecke algebras. * J. Knot Theory Ramifications 26 (2016), 1641004.
(pdf file)

**D. Goundaroulis, J. Juyumaya, A. Kontogeorgis, S. Lambropoulou,** *
Framization of the Temperley-Lieb algebra.*
Mathematical Research Letters 24, no. 2 (2017), 299-345.
(pdf file)

**D. Goundaroulis, J. Juyumaya, A. Kontogeorgis, S. Lambropoulou,** * The Yokonuma-Temperley-Lieb algebra.*
Banach Center Pub. 103, Dec. 2014. See also arxiv: 1012.1557.
(pdf file)

**J. Juyumaya, S. Lambropoulou,** *On the framization of knot algebras.* New Ideas in Low-Dimensional Topology, Volume of invited papers, L.H. Kaufffman, V. Manturov Eds, Ser. Knots Everything, World Scientific Press, 2014.(pdf file)

**J. Juyumaya, S. Lambropoulou,** *p-Adic framed braids II. * Advances in Mathematics **234** (2013), 149-191.
(pdf file)

**J. Juyumaya, S. Lambropoulou,** *An adelic extension of the Jones polynomial.* The mathematics of knots, Contributions in the Mathematical and Computational Sciences, M. Banagl, D. Vogel, Eds.; Contributions in Mathematical and Computational Sciences, Vol. 1, Springer, 2010; pp. 125-142.
(pdf file)

**J. Juyumaya, S. Lambropoulou**, *An invariant for singular knots.* J. Knot Theory Ramifications **18** no. 6, (2009), 825-840.
(pdf file)

**J. Juyumaya, S. Lambropoulou**, *p-adic framed braids.* Topology and its Applications **154**, no. 8 (2007), 1804-1826.
(pdf file)

### Knots and braids in 3-manifolds

**S. Lambropoulou, D. Kodokostas,** *Hecke-type quotients of the mixed braid group with two fixed identity strands*, in "Algebraic Modeling of Topological and Computational Structures and Applications", Springer Proceedings in Mathematics & Statistics (PROMS), S. Lambropoulou, P. Stefaneas, D. Theodorou, L. Kauffman (Eds). (pdf file)

**I. Diamantis, S. Lambropoulou, J. Przytycki,** *Topological steps toward the HOMFLYPT skein module of the lens spaces L(p,1) via braids*, J. Knot Theory Ramifications 25, No. 14 (2016), 1650084 (26 pages). See arXiv:1604.06163. (pdf file)

**I. Diamantis, S. Lambropoulou,** *Braid equivalences in 3-manifolds with rational surgery description.* Topology and its Applications **194** (2015) pp. 269-295.
(pdf file)

**I. Diamantis, S. Lambropoulou,** * A new basis for the Homflypt skein module of the solid torus.* Journal of Pure and Applied Algebra (2015) pp. 269-295. (pdf file)

**S. Lambropoulou,** *Braid equivalences and the L-moves*, Introductory Lectures on Knot Theory; Selected Lectures presented at the Advanced School and Conference on Knot Theory and its Applications to Physics and Biology, ICTP, Trieste, Italy, 11 - 29 May 2009, Series on Knots and Everything, World Scientific Press, November 2011.
(pdf file)

**S. Lambropoulou, C.P. Rourke,** *Algebraic Markov equivalence for links in 3-manifolds.* Compositio Mathematica ** 142** (2006), 1039-1062.
(pdf file)

** R. Haering-Oldenburg, S. Lambropoulou,** *Knot theory in handlebodies.* J. Knot Theory and its Ramifications **11** no. 6 (2002), 921-943.
(pdf file)

** S. Lambropoulou,** *Braid structures in knot complements, handlebodies and 3-manifolds.* Knots in Hellas '98, C.McA. Gordon, V.F.R. Jones, L.H. Kauffman, S. Lambropoulou, J.H. Przytycki, Eds.; Series of Knots and Everything **24** World Scientific Press, 2000; pp. 274-289.
(pdf file)

** S. Lambropoulou, C.P. Rourke,** *Markov's theorem in 3-manifolds.* Topology and its Applications **78** (1997), 95-122.
(pdf file)

** S. Lambropoulou,** *Knot theory related to generalized and cyclotomic Hecke algebras of type B.* J. Knot Theory and its Ramifications **8** no. 5 (1999), 621-658.
(pdf file)

** M. Geck, S. Lambropoulou**, *Markov traces and knot invariants related to Iwahori-Hecke algebras of type B.* J. reine und angew. Mathematik **482** (1997), 191-213.
(pdf file)

** S. Lambropoulou,** *Solid torus links and Hecke algebras of B-type.* Quantum Topology, D.N. Yetter Ed.; World Scientific Press, 1994; pp. 225-245.
(pdf file)

### Virtual knots and virtual braids

**L.H. Kauffman, S. Lambropoulou,** *A categorical structure for the virtual braid group. *LAGB Communications in Algebra, volume in honour of Miriam Cohen; L. Rowen, H.J. Schneider, Eds.; Taylor & Francis, 2011; Manuscript ID: 617280.
(pdf file)

**L.H. Kauffman, S. Lambropoulou,** *Virtual braids and the L-move. *J. Knot Theory and its Ramifications **15** no.6 (2006), 1-39.
(pdf file)

**L.H. Kauffman, S. Lambropoulou,** *Virtual braids. *Fundamenta Mathematicae ** 184** (2005) , 159-186
(pdf file)

### Applications of knot theory to DNA and polymers

**L. H. Kauffman, S. Lambropoulou,** *Skein invariants of links and their state sum models*. To appear in Symmetry, (2017).
(pdf file)

**D. Goundaroulis, N. Gugumcu, S. Lambropoulou, J. Dorier, A. Stasiak, L. H. Kauffman,** *Topological models for open-knotted protein chains using the concepts of knotoids and bonded knotoids*. Polymers, Special issue on Knotted and Catenated Polymers, Dusan Racko and Andrzej Stasiak Eds. (2017), 9(9), 444, DOI;10.3390/polym9090444.
(pdf file)

**E. Panagiotou, S. Lambropoulou, K. Millett, C. Tzoumanekas, D.N. Theodorou,** *A study of the entanglement in systems with periodic boundary conditions*. Progress of Theoretical Physics Supplement, (2011).
(pdf file)

**E. Panagiotou, K.C. Millett, S. Lambropoulou,** *The linking number and the writhe of uniform random walks and polygons in confined space.* J. Phys. A: Math. Theor **43** no. 6 (2010), 045208.
(pdf file)

**L.H. Kauffman, S. Lambropoulou,** *Hard Unknots and Collapsing Tangles.* Introductory Lectures on Knot Theory; Selected Lectures presented at the Advanced School and Conference on Knot Theory and its Applications to Physics and Biology, ICTP, Trieste, Italy, 11 - 29 May 2009, Series on Knots and Everything, World Scientific Press, November 2011.
(pdf file)

**L.H. Kauffman, S. Lambropoulou,** *On the classification of rational knots.* L` Enseignement Mathematique **49** (2003), 357-410.
(pdf file)

**L.H. Kauffman, S. Lambropoulou,** *On the classification of rational tangles.* Advances in Applied Mathematics **33** no. 2 (2004), 199-237.
(pdf file)

**L.H. Kauffman, S. Lambropoulou,** *Classifying and applying rational knots and rational tangles. * Physical Knots: Knotting, Linking and Folding Geometric Objects, J.A. Calvo, K.C. Millett, E.J. Rawdon, Eds.; Contemporary Mathematics AMS Series **304**, 2002; pp. 223-258.
(pdf file)

### Other applications of knot theory and low-dimensional topology

**S. Antoniou, S. Lambropoulou,** *Extending topological surgery to natural processes and dynamical systems*. PLoS ONE (2017), 12(9): e0183993. https://doi.org/10.1371/journal.pone.0183993.
(pdf file)

** S. Lambropoulou, S. Antoniou,** *Topological Surgery, Dynamics and Applications to Natural Processes*, to appear in J. Knot Theory Ramifications. See arXiv: 1604.04192. (pdf file)

**E. Androulaki, S. Lambropoulou, I. Economou, J. Przytycki,** *Inductive construction of 2-connected graphs for analyzing the virial coefficients in thermodynamics.* J. Phys. A: Math. Theor. **43** (2010) 315004.
(pdf file)

**E. Karali, S. Lambropoulou, D. Koutsouris,** *Elastic models: a comparative study applied to retinal images*. Technology and Health Care, vol. 19, 1-13, IOS Press, 2011.
(pdf file)

**E. Karali, S. Pavlopoulos, S. Lambropoulou, D. Koutsouris,** *A new algorithm for image reconstruction in PET.* IEEE Transactions on Information Technology in BioMedicine, **15** (2011), no. 13, 381-386.
(pdf file)