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Abstract We construct some Hecke-type algebras, and most notably the quotient algebra H2,n(q) of the
group-algebra Z [q±1]B2,n of the mixed braid group B2,n with two identity strands and n moving ones, over
the quadratic relations of the classical Hecke algebra for the braiding generators. The groups B2,n are known
to be related to the knot theory of certain families of 3-manifolds, and the algebras H2,n(q) are aimed for
the construction of invariants of oriented knot and links in these manifolds. To this end, one needs a suitable
basis of H2,n(q), and we have singled out a subset Λn of this algebra for which we proved it is a spanning
set, whereas ongoing research aims at proving it to be a basis.

Key words: mixed braid group on two fixed strands, mixed Hecke algebra, quadratic relation, Hecke-type
algebras.

Introduction

It is established that knots and links in arbitrary knot complements, in compact, connected, oriented (c.c.o.)
3-manifolds and in handlebodies may be represented by mixed links and mixed braids in S3 [4, 9, 13].
The braid structures related to knots and links in the above spaces are the mixed braid groups Bm,n and
appropriate cosets of theirs [15]. An element in Bm,n is a classical braid in S3 on m + n strands with the
first m strands forming the identity braid. The mixed braid groups enable the algebraic formulation of the
geometric braid equivalences in the above spaces [9, 16].

In this paper we focus on the mixed braid groups B2,n, which are related to knots and links in certain
families of 3- manifolds like, for example, the handlebody of genus two, the complement of the 2-unlink in
S3 and the connected sums of two lens spaces, which are of interest also to some biological applications
[3]. We define the quotient algebras H2,n(q), H2,n(q, u1, v1) and H2,n(q, u1, . . . , ud1 , v1, . . . , vd2) of B2,n over
the quadratic relations of the classical Iwahori-Hecke algebra for the braiding generators, and polynomial
relations for the looping generators. We then focus on H2,n(q) and present a subset Λn of it, indicating the
reason it has to be a spanning set for its additive structure. The set Λn potentially constitutes a linear basis
of H2,n(q), a fact whose proof is the object of ongoing research.
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The sets Λn for n ∈ N are destined to provide an appropriate inductive basis for the sequence of algebras
H2,n(q), n ∈ N, in order to construct Homflypt-type invariants for oriented links in 3-manifolds whose braid
structure is encoded by the groups B2,n. It is known that the mixed braid groups B1,n have been utilized
for constructing Homflypt-type invariants for oriented links the solid torus ([12],[8],[14]) and the lens spaces
L(p, 1) ([6]), following the original Jones construction of the classical Homflypt polynomial for oriented links
in S3 using the Iwahori Hecke algebra of type A and the Ocneanu trace [10]. For our purposes we first need
to construct appropriate algebras related to the mixed braid groups B2,n, and then to chose an appropriate
inductive bases on them, so that the construction of Oceanu-type Markov traces on these algebras would be
possible, which subsequently can be used for the construction of link invariants.

The paper is organized as follows: in §1.1 we recall the definition and a presentation of the mixed braid
group B2,n and we define some important elements of it which we call loopings. In §1.2 we define our quotient
algebras H2,n(q), H2,n(q, u1, v1) and H2,n(q, u1, . . . , ud1 , v1, . . . , vd2). In §2 we provide a potential basis Λn

for the algebra H2,n(q), and we give the necessary lemmata for proving it to be spanning set of the algebra.

1 The mixed braid groups B2,n and related Hecke-type algebras

1.1 The mixed braid group B2,n on two mixed strands and other related
groups

For each n ∈ N, the elements of the mixed braid group B2,n on two fixed strands are defined to be the braids
with n + 2 strands where the first two of them are straight, and the group operation is by definition the
usual braid concatenation. A description of B2,n in terms of generators and relations is the following ([15]):

B2,n =

〈
τ, T ,
σ1, . . . , σn−1

∣∣∣∣∣∣∣∣
σkσj = σjσk (|k − j| > 1) , σkσk+1σk = σk+1σkσk+1 (1 ≤ k ≤ n− 1)
T σk = σk T (k ≥ 2), T σ1 T σ1 = σ1 T σ1 T
τ σk = σk τ (k ≥ 2), τ σ1 τ σ1 = σ1 τ σ1 τ,
τ(σ1T σ1) = (σ1T σ1)τ

〉

where σi, τ, T are shown in Figure 1; I, II indicate the two fixed strands as they are called, whereas 1, 2, . . . , n
indicate the moving strands. The braids τ, T and their inverses are called the looping generators, whereas σi

and its inverse are called the i-th braiding generators for i = 1, 2, . . . , n− 1, whereas i is called the index of
the i-th braiding generators.

I II 1 ni i+ 1 I II I II1 1n n2 2

σi T τ

� � � �� � �� � �� �

Fig. 1 The generators of B2,n.

Below we define the elements Ti, τi, i = 1, . . . , n of B2,n which will be of central importance to us in what
follows.

Definition 1 The looping elements or just loopings Ti, τi of B2,n are those braids in which all strands
are straight except for the i-th moving strand that loops once around the first or the second fixed strand
respectively, first going over and then (after the looping) under the rest of the strands to its left (see Figure
2). We use the name looping for the inverses of these elements as well, and we say that each one of the
loopings T ±1

i , τ±1
i has index i. Formally:
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T1 := T , τ1 := τ and Ti := σi−1 . . . σ1T σ1 . . . σi−1, τi := σi−1 . . . σ1τσ1 . . . σi−1 for i > 1.

I II 1 2 i n I II 1 2 ni

Ti τi

�� � �� �

�� � �� �

Fig. 2 The looping elements Ti, τi.

As is shown in Figure 3, the defining relation τσ1T σ1 = σ1T σ1τ ofB2,n which is now written as τ1σ1T1σ1 =
σ1T1σ1τ1, holds in general for all i = 1, 2 . . . , n− 1 (just slide the τi looping to pass through the Ti looping):

τiσiTiσi = σiTiσiτi.

nI II i i+ 1I II ii+ 1 n

τiσiTiσi σiTiσiτi

1 1

�� � �� �

�� � ���

Fig. 3 The relation τiσiTiσi = σiTiσiτi in B2,n.

Clearly, B2,n is generated by the set {Ti, τi, σi|i = 1, . . . , n} as well. Also, clearly, the group B2,n is
a subgroup of the usual braid group B2+n in 2 + n strands [14]. In turn, B2,n contains some important
subgroups. One of them is the pure mixed braid group on two fixed strands P2,n that consists of all pure braids
in B2,n. For a further study of the structure of the groups B2,n, P2,n and their generalizations Bm,n, Pm,n as
well as the underling Coxeter-type groups see [2].

Others important subgroups of B2,n are those generated by T , σ1, . . . , σn−1 and by τ, σ1, . . . , σn−1, which
are isomorphic to the mixed braid group on one fixed strand B1,n defined in terms of generators and relations
in an analogous manner as B2,n and which, in fact, is the Artin braid group of type B. Indeed, the defining
relations T σ1T σ1 = σ1T σ1T and τσ1τσ1 = σ1τσ1τ of B2,n are of the same type as the four-term defining
relations of the Artin braid group of type B.
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1.2 The algebra H2,n(q) and other related algebras

We define the algebra H2,n(q) for each n ∈ N as a quotient of an appropriate group-algebra of B2n over
appropriate quadratic relations. Namely:

Definition 2 The mixed Hecke algebra on two fixed strands H2,n(q) is defined as the unital associative
algebra:

H2,n(q) :=
Z [q±1]B2,n

〈σi
2 − (q − 1)σi − q · 1, i = 1, 2, . . . , n− 1〉 ,

where q is a variable.
In general we use the same notation for the elements of B2,n when considered as elements of H2,n(q),

except for σi which we denote gi, i = 1, . . . , n. H2,n(q) has equivalently a presentation with generators
τ, T , g1, . . . , gn−1 and relations:

(b1) gkgk+1gk = gk+1gkgk+1 for 1 ≤ k ≤ n− 1
(b2) gkgj = gjgk for |k − j| > 1
(T1) T gk = gk T for k ≥ 2
(T2) T g1 T g1 = g1 T g1 T
(τ1) τ gk = gk τ for k ≥ 2
(τ2) τ g1 τ g1 = g1 τ g1 τ
(m) τ(g1T g1) = (g1T g1)τ
(q) g2i = (q − 1) gi + q · 1 for i=1,2,. . . ,n-1

(1)

(here (b) stands for “braid”, (m) for “mixed” and (q) for “quadratic”). The elements τ, T and their inverses
will be called the looping generators of the algebra. The elements g1, . . . , gn−1 and their inverses will be
called the braiding generators of the algebra, whereas i will be the index of gi, g

−1
i .

Since the classical Artin braid group Bn embeds naturally in B2,n, we have that the classical Iwahori-
Hecke Algebra Hn(q) is a subalgebra of H2,n(q) in a natural way as well. Furthermore, note that the relations
(T2) and (τ2) are of the same type as the well-known four-term defining relation of the Artin braid group of
type B which is realized here by the mixed braid group B1,n with one fixed strand, hence it embeds naturally
in B2,n. So, the algebra H2,n(q) extends naturally the mixed Hecke algebra H1,n(q) introduced in [14] as
“generalized Hecke algebra” of type B. The algebra H2,n(q) clearly contains two subalgebras isomorphic to
H1,n(q).

We can define a lot of other interesting related algebras, a few of which as follows:

Definition 3 The algebra H2,n(q, u1, v1) is defined as:

H2,n(q, u1, v1) :=
Z [q±1, u±1

1 , v±1
1 ]B2,n

〈(q), T 2 = (u1 − 1)T + u1 · 1, τ2 = (v1 − 1)τ + v1 · 1〉
,

where distinct variables u1, v1 are associated to T , τ .

Note that the relations (T2) and (τ2) are of the same type as the defining relations of the Hecke algebra
of type B [7]. Furthermore, it is clear from the quadratic relations for the looping generators in Definition 3
that the algebra H2,n(q, u1, v1) extends the classical Hecke algebra of type B. In fact H2,n(q, u1, v1) contains
two subalgebras isomorphic to the Hecke algebra of type B.

Definition 4 The cyclotomic algebra H2,n(q, u1, . . . , ud1, v1, . . . , vd2) is defined as:

H2,n(q, u1, . . . , ud1 , v1, . . . , vd2) :=
Z[q±1, u±1

1 , . . . , u±1
d1

, v±1
1 , . . . , v±1

d2
]B2,n

〈(q), (T − u1) . . . (T − ud1) = 0, (τ − v1) . . . (τ − vd1) = 0〉 ,

where q, u1, . . . , ud1 , v1, . . . , vd2 are variables and the last two relations are called cyclotomic relations for T
and τ respectively (see Figure 4).
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Fig. 4 The mixed braids involved in the cyclotomic relation of the loop generator τ

Analogously to the algebras defined above, by relations for (T2) and (τ2) and the defining relation for T , τ
in Definition 4 it follows that the algebra H2,n(q, u1, . . . , ud1, v1, . . . , vd2) extends naturally the Ariki-Koike
algebra of type B [1], and in fact it contains two subalgebras isomorphic to the Ariki-Koike algebra.

The mixed Hecke algebra H1,n(q), the Iwahori-Hecke algebra of type B, and the Ariki-Koike algebra of
type B are all related to the knot theory of the solid torus and the lens spaces ([12],[8],[14],[5],[6]). Note that
each one of the three types of algebras that we define here surjects naturally onto its corresponging B-type
algebra, for example via the following mappings respectively:

• T �→ 1, τ �→ τ, gi �→ gi surjects H2,n(q) onto H1,n(q).
• T �→ 1, τ �→ τ, gi �→ gi and specializing u1 to 1, surjects H2,n(q, u1, v1) onto the Hecke algebra of type B.
• T �→ 1, τ �→ τ, gi �→ gi and specializing ui to 1 for i = 1, . . . , d1, surjects H2,n(q, u1, . . . , ud1, v1, . . . , vd2)

onto the Ariki-Koike algebra of type B.

Finally, let us note that the algebras H2,n(q, u1, v1) and H2,n(q, u1, . . . , ud1 , v1, . . . , vd2) can be viewed as
quotient algebras of H2,n(q), if in Definitions 2–4 we use Z[q±1, u±1

1 , . . . , u±1
d1

, v±1
1 , . . . , v±1

d2
] as a common ring

of coefficients for all three algebras.

2 A spanning set and potential basis for the algebra H2,n(q).

We still call Ti, τi and their inverses as looping elements or loopings when we cosider them as elements of
H2,n(q), and similarly we call i as their index. For Ti, τi as elements of the algebra we have

Ti = gi−1 . . . g1T g1 . . . gi−1 and τi = gi−1 . . . g1τg1 . . . gi−1.

Our aim is to provide a “nice” form for any element w of H2,n(q) using these looping elements and the
gi’s, so that a possible spanning set of the algebra reveals itself. Since w is a Z[q±1]-linear combination of
images in the algebra H2,n(q) of braids in B2,n, one has to think about only the case of putting an image of
a braid w in a “nice” form.

Now let us recall that the set {Ti, τi, σi|i = 1, . . . , n} generates B2,n, thus an arbitrary braid w of B2,n is
written as a finite product of elements of this set and their inverses; as a matter of fact, it can be written
so in many ways. Previous work done on specific subsets of B2,n, shows that considering their elements
as belonging to appropriate related algebras similar to H2,n(q), we can put them in canonical forms useful
for constructing Markov traces over these algebras. For example whenever w is a product of only the gi’s
(considered as an element of the algebra) then w actually belongs to Hn(q) and as such it is subjected to the
canonical form of the classical Hecke algebra Hn(q) of type A, given by V.F.R. Jones [10]. Also, whenever
w is a product of only τi, gi’s (thus containing no Ti’s), it actually belongs to H1,n(q) (as mentioned in
the previous section, this is the generalized Hecke algebra of type B), and therefore it is subjected to the
canonical form given in [14]. Such a w is written as a finite Z[q±1]-linear combination of products of τi’s and
gi’s with the τi’s appearing first, and moreover with the indices of the τi’s in increasing order from left to
right.
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Theorem 1 below tells us how to bring any w of B2,n to a similar “nice” form when considered as an
element of the algebra H2,n(q). At the same time we get a spanning set Λn for the additive structure of
H2,n(q) as a Z[q±1]-module. What the Theorem actually says is that every element of the algebra H2,n(q) is
written as a finite Z[q±1]-linear combination of products of Ti, τi’s and gi’s with the Ti, τi’s appearing first,
and moreover with the indices of the τi’s in increasing order from left to right. To achieve this for the image
of a braid given in a product form we can try first to push all gi’s (i.e. the images of the σi’s) at the end
using braid isotopies (at the braid level) together with the quadratic relations in the algebra H2,n(q) (see
Lemma 1). And then we can similarly try to push all loopings with big indices after those with smaller ones
(see Lemma 2). Working out specific examples one soon realizes that pushing the gi’s is always possible, and
that pushing the loopings with big indices after those with small ones can be almost always achieved, except
that in the process some new gi’s might be created, and pushing them anew to the end might increase the
indices of the loopings from which it passes, leaving quite open the question of whether the indices of the
loopings can indeed be ordered. We deal with this issue in Lemma 3.

Theorem 1 Any element in H2,n(q) can be written as a finite Z[q±1]-linear combination of the form (sup-
pressing the coefficient in Z[q±1] of each term):∑

(Π1Π2 · · ·Πn)G

where G is a finite product of braiding generators, and Πi is a finite product of only the loopings Ti, τi, T −1
i , τ−1

i

for all i. Thus the following is a spanning set of the algebra H2,n(q):
Λn := {Π1Π2 · · ·ΠnG | G = finite product of braiding generators, and Πi = finite product of only the
loopings Ti, τi, T −1

i , τ−1
i , ∀i }.

The definition of the looping elements and braiding generators can be repeated for the other algebras
which we defined in §1.2, and the proof of Theorem 1 can be repeated unaltered step by step to get:

Theorem 2 Let A = H2,n(q, u1, v1), R = Z[q±1, u±1
1 , v±1

1 ] or A = H2,n(q, u1, . . . , ud1 , v1, . . . , vd2), R =
Z[q±1, u±1

1 , . . . , u±1
d1

, v±1
1 , . . . , v±1

d2
]. Then any element in A can be written as a finite R-linear combination of

the form (suppressing the coefficient in R of each term):∑
(Π1Π2 · · ·Πn)G

where G is a finite product of braiding generators, and Πi is a finite product of only the loopings Ti, τi, T −1
i , τ−1

i

for all i. Thus the following is a spanning set of the algebra R:
Λn := {Π1Π2 · · ·ΠnG | G = finite product of braiding generators, and Πi = finite product of only the
loopings Ti, τi, T −1

i , τ−1
i , ∀i }.

Below we list the necessary lemmata for the proof of Theorem 1 which is quite technical since it has to
deal carefully with the indices appearing in a given product of loopings as well as with the possible recursion
phenomena that might arise during the process. We provide the actual proof in [11]. The lemmata equip
us with specific formulas for pushing braiding generators to the right of a product of loopings, and also for
pushing loopings with high indices to the right of loopings with lower indices in a product of loopings. The
lemmata also explain how we can deal with recursion phenomena.

Lemma 1. Let us call A = q−1 − 1, B = q− 1. And let us denote the identity element of H2,n(q) by 1. Then
the following hold in H2,n(q):
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(1) g−1
i = q−1gi +A · 1

(2) giT ±1
j = T ±1

j gi giτ
±1
j = τ±1

j gi whenever j 
= i, i+ 1

(3) giTi = q−1Ti+1gi +ATi+1 giτi = q−1τi+1gi +Aτi+1

(4) giT −1
i = T −1

i+1 −AT −1
i+1 +AT −1

i giτ
−1
i = τ−1

i+1 −Aτ−1
i+1 +Aτ−1

i

(5) giTi+1 = qTigi +BTi+1 giτi+1 = qτigi +Bτi+1

(6) giT −1
i+1 = q−1T −1

i gi + AT −1
i giτ

−1
i+1 = q−1τ−1

i gi +Aτ−1
i .

(7) (The passage property) Any product gεkt
ζ
l (ε, ζ ∈ {1,−1}, tl a looping) can be written as a finite linear

combination of the form (suppressing the coefficient in Z[q±1] of each term on the right-hand side):

gεi t
ζ
l =

∑
tζl g

ε
i +

∑
tζi +

∑
tζi g

ε
i +

∑
tζi+1.

(where possibly some of the terms are missing).

(8) (The big passage property) Let Π be a finite product of k in number loopings with indices in the
interval [m,M ], and let i ∈ [m,M − 1]. Then g±1

i Π can be written as a finite linear combination of the form
(suppressing the coefficient in Z[q±1] of each term on the right-hand side):

g±1
i Π =

∑
Π1g

±1
i +

∑
Π2

(where possibly some terms are missing) with each Π1, Π2 a product of k in number loopings with indices in
[m,M ].

Part (2) of the lemma can be seen in the braid level via trivial braid isotopies, and parts (2)-(6) can also
be seen pictorially after at most two applications of the quadratic relation to the braids of the left-hand side.
These are summarized in part (7). Since on both sides of parts (2)-(6) each term contains a single looping
and in part (7) the index of the looping either does not change at all or if it does, it decreases by 1 but then
never below the index i of the braiding generator, or else it increases by 1 but then never by 1 above the
index i of the braiding generator, we get part (8) at once.

The following lemma describes how we can push a looping with high index to the right of a looping with
smaller index.

Lemma 2. For j < i and ε, ζ ∈ {1,−1} each one of the words T ε
i T

ζ
j , T ε

i τ
ζ
j , τ

ε
i T

ζ
j , τ

ε
i τ

ζ
j can be written as a

linear combination of the form (suppressing the coefficient in Z[q±1] of each term on the right-hand side):

1. T ε
i T

ζ
j = T ζ

j T ε
i , τ εi τ

ζ
j = τζj τ

ε
i , T ε

i τ
ζ
j = τζj T ε

i

2. τ εi T ε
j = T ε

j τ
ε
i + T ε

j τ
ε
iG

ε + τ εj T ε
i G

ε, where G = gjgj+1 . . . gi−2g
−1
i−1g

−1
i−2 . . . g

−1
j+1g

−1
j .

3. τ εi T −ε
j = T −ε

j τ εi + T −ε
j τ εjG

ε + τ εi T −ε

i Gε, where G = gjgj+1 . . . gi−2gi−1gi−2 . . . gj+1gj .

The proof of this lemma is easy, as part (1) can be seen at the braid level via braid isotopies, and the last
two parts can also be seen at the braid level as a double application of the quadratic relation at the obvious
crossings so that the i-looping can be moved above the j-looping.

The lemma that follows is the last one that we need for the proof of Theorem 1, and it says that a
certain class of words actually satisfies the theorem. These words have the odd property that whenever we
apply all the previous formulas in order to write them as sums of monomials in the way demanded by the
theorem, they are written so except from the fact that one of the monomials is the word itself. Fortunately,
the coefficients appearing in these equalities are well behaved and we can solve for the given word so that
it is indeed expressed in way described in the theorem. This recursion phenomenon is possible only because
one of the monomials on the right-hand side in case (3) of Lemma 2 still starts with an i-looping instead of
a j -looping.
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In the statement of the lemma it is convenient to write [i, j] in the bottom of a product of looping or
braiding generators to indicate that their indices lie in the interval [i, j], and to write < i, j > to indicate
that these indices are also in increasing order (from left to right).

Lemma 3. Let us denote elements in {T ±1
i , τ±1

i } indiscreetly by ti. Then each one of the words τ εMT −ε
M t ζ

m

with m < M and ε, ζ ∈ {−1, 1} can be written as a finite linear combination of the form (suppressing the
coefficient in Z[q±1] of each term on the right-hand side):

τ εMT −ε
M t ζ

m =
∑(

tmtm1tm2

<m,M>

)
G

[m,M−1]

where each G is a finite product of g±1
i ’s (notice the crucial fact that every term of the last sum starts with

an m-looping).

The proof of this lemma is not as immediate as the proofs in the previous lemmata. We have to examine
all possible cases separately, applying the quadratic relations appropriately and using isotopies at the braid
level. The reader is referred to [11] for full details of the proof, as well as for the proof of Theorem 1 which
is a consequences of Lemmata 1–3.

Remark : In [11], we also conjecture that the set Λn is a linear basis for the algebra H2,n(q). This is
not straightforward to prove, as the algebra H2,n(q) is infinite dimensional. Nevertheless we can get
some insight of how Λn behaves, by examining its counterparts in the other algebras H2,n(q, u1, v1) and
H2,n(q, u1, . . . , ud1, v1, . . . , vd2), defined in this paper, and for which these counterparts also constitute span-
ning sets (Theorem 2). Although these algebras are infinite dimensional too, the exponents of the loopings
in the elements of the above spanning sets are bounded, a fact that makes these algebras easier to study.

3 Conclusion and further research

In this paper we have defined some Hecke-type algebras related to the mixed braid group B2,n on two fixed
strands, and we have focused on one of them, namely on the mixed Hecke algebra H2,n(q) which is defined as
the quotient of the group-algebra Z[q±1]B2,n over the quadratic relations of the usual Hecke algebra. These
algebras are related to the knot theory of various 3-manifolds whose knot structure is encoded by the mixed
braid groups B2,n, such as handelebodies of genus two, and connected sums of lens spaces. We have given
here a subset Λn of H2,n(q) and provided the necessary lemmata along with hints for their truth, for proving
that Λn is a spanning set for the additive structure of the algebra [11]. We conjecture that Λn is actually
a basis for H2,n(q) and this the subject of current research. Then, based on previous work done on similar
Hecke-type algebras, we expect that we can use Λn for the construction of knot invariants in the above
3-manifolds.
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