p-ADIC FRAMED BRAIDS

J. JUYUMAYA AND S. LAMBROPOULOU

ABSTRACT. In this paper we define the p-adic framed braid group Feo n,
arising as the inverse limit of the modular framed braids. An element
in Foon can be interpreted geometrically as an infinite framed cabling.
Foo,n contains the classical framed braid group as a dense subgroup. This
leads to a set of topological generators for F , and to approximations for
the p-adic framed braids. We further construct a p-adic Yokonuma-Hecke
algebra Yo (1) as the inverse limit of a family of classical Yokonuma-Hecke
algebras. These are quotients of the modular framed braid groups over a
quadratic relation. Finally, we give topological generators for Yoo n(u).
Paper presented at the 1017 AMS meeting.

INTRODUCTION

0.1. Framed knots and links are like classical knots and links but with an
integer, the ‘framing’, attached to each component. It is well-known that
framed links can be used for constructing 3-manifolds using a topological tech-
nique called surgery. Then two manifolds are homeomorphic if and only if any
two framed links in S? representing them are related through isotopy moves
and the Kirby moves or the equivalent Fenn-Rourke moves [2]. In [6] Ko and
Smolinsky give a Markov-type equivalence for framed braids corresponding to
homeomorphism classes of 3-manifolds. It would be certainly very interest-
ing if one could construct 3-manifold invariants by constructing Markov traces
on quotient algebras of the framed braid group and using the framed braid
equivalence of [6].

In this paper we introduce the concept of p-adic framed braids and we also
construct p-adic quotient algebras. The p-adic framed braids can be seen as
natural infinite cablings of framed braids. Cablings of framed braids have been
used for constructing 3-manifold invariants (e.g. by Wenzl [11]). The paper is
organized as follows: In Subsection 2.1 we recall the structure of the framed
braid group F,, = Z" x B,,, where B,, is the classical braid group on n strands.
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By construction, a framed braid splits into the ‘framing part” and the ‘braiding
part’. Moreover, F,, is generated by the elementary braids o4, ...,0,_1 and by
the elementary framings f,..., f,. We further introduce the modular framed
braid group Fy, = (Z/dZ)" x B,,, which has the same presentation as F,,, but
with the additional relations:
fi=1

In [13] the Yokonuma-Hecke algebras (abbreviated to Y-H algebras), Y, (u),
were introduced by Yokonuma, where v is a fixed non-zero complex number.
They appeared originally in the representation theory of finite Chevalley groups
and they are natural generalizations of the classical Iwahori-Hecke algebras,
see also [10]. In Section 3 we define the Y-H algebra as a finite dimensional
quotient of the group algebra CFg,, of the modular framed braid group Fg,
over the quadratic relations:

9i =1+ (1 —u)eqi(1 - gi),
where g; is the generator associated to the elementary braid o; and ey, are
certain idempotents in CFy,, (see Subsections 3.1 to 3.3). In Y,,(u) the
relations f? = 1 still hold, and they are essential for the existence of the
idempotents eq;, because e4; is by definition a sum involving all powers of

fi and f;11. In Subsection 3.4 we give diagrammatic interpretations for the
elements ey, as well as for the quadratic relation (see Figures 10, 11 and 12).

For relating to framed links and 3-manifolds we would rather not have the
restrictions f¢ = 1 on the framings. An obvious idea would be to consider
the quotient of the classical framed braid group algebra, CF,,, over the above
quadratic relations. But then, the elements e,4; are not well-defined. Yet, we
achieve this aim by employing the construction of inverse limits.

In Subsections 1.1 and 1.3 we give some preliminaries on inverse systems and
inverse limits and we introduce the concept of topological generators. This is a
set, whose span is dense in the inverse limit (see Definition 1). In Subsections
1.2, 1.4 and 2.2 we focus on the construction of the p-adic integers Z, and their
approximations. Let p be a prime number and let C, be the cyclic group of
p" elements: C, = Z/p"Z. Then lim €, = Z,, where the inverse system maps
07« Z/p"Z — Z/p*Z (r > s) are the natural epimorphisms. Z, contains
Z = (t) as a dense subgroup. The element t is a topological generator for
Zy, and a p-adic integer will be denoted t<, where a =: (a1,as,...) with
a, = as (mod p®) whenever r > s.

We shall now explain briefly our constructions. Section 2 deals with the
construction of the p-adic framed braids. More precisely, in Subsection 2.3
we consider the inverse system (C7,77) indexed by N, where the map 7} :
Cr — C? (r > s) acts componentwise as the natural epimorphism 7. Then



p-ADIC FRAMED BRAIDS 3

lim G = Z (see Proposition 3) and Z; contains Z" = (ti,...,t,) as a dense
subgroup (see Lemma 2). We then consider the inverse system (Fpr ,, 77 - id)
indexed by N, where the map 77 - id acts on the framing part of a modular
framed braid as described above, and trivially on the braiding part (Subsection
2.4). So, we define the p-adic framed braid group Fo, (Definition 3) as

fOO,'I’L = liin fpw-’n,

Geometrically, a p-adic framed braid is an infinite sequence of modular
framed braids with the same braiding part and such that the framings of
the ith strands in each element of the sequence give rise to a p-adic integer.
See Subsection 2.5 and left-hand side of Figure 1 for an illustration, where
(a1, as,...),(b1,bse,...) € Z,. In Theorem 1 the natural identification

Foom = ZZ X B,

is established. This is used in Subsection 2.5, where we give geometric inter-
pretations of the p-adic framed braids as classical braids with framings p-adic
integers. See Figure 4. We can then say that a p-adic framed braid splits into
the ‘p-adic framing part’ and the ‘braiding part’. So, a p-adic framed braid
can be also interpreted as an infinite framed cabling of a braid in B,,, such that
the framings of each infinite cable form a p-adic integer. See right-hand side
of Figure 1. Of course, the closure of a p-adic framed braid defines an oriented
p-adic framed link. Figure 2 illustrates an example.

a, b, a. b ag b3 (ay ay ag,..) (by, by, by,

/ H ///
FIGURE 1. A p-adic framed braid as an infinite framed cabling
The identification in Theorem 1 implies also that there are no modular rela-
tions for the framing in F.,,. Moreover, that the classical framed braid group
Fo sits in Fuo,, as a dense subset. Hence, the set A = {t1,01,...,0,_1} C F,
is a set of topological generators for F, ,,. So, by Theorem 1, a p-adic framed
braid is a word of the form:

a; ag an
toty .ty o
where aq,...,a, are the p-adic framings and ¢ € B,. In Subsection 2.6 we
«— —

give approximations of p-adic framed braids by sequences of classical framed
braids. See Figures 8 and 9 for examples.
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FI1GURE 2. A p-adic framed braid and a p-adic framed link

Section 3 deals with the construction of the p-adic Yokonuma-Hecke alge-
bras. More precisely, in Subsection 3.5 we define the p-adic Yokonuma-Hecke
algebra Yo n(u) as the inverse limit of the inverse system (Y,r,(u), %) of
classical Y-H algebras, indexed by N (Definition 5):

Ym7n(u> = h£1 Yp’",n ('LL) .

The above inverse system is induced by the inverse system (CF,r ,,, ¢%), where
@7 is the ‘linear span’ of 7l - id at the level of the group algebra, using also
our definition of the Y-H algebras as finite dimensional quotients of the group
algebras CFy,. Yoon(u) is an infinite dimensional algebra, in which the fram-
ing restrictions f? = 1 do not hold. Finally, in Subsection 3.6, Theorem 3, we
give the set of topological generators {t1,¢1,...,gn—1} for Yoo ,(u), satisfying
the quadratic relations:

g =1+ (1 —wei(l —g5),

where the element e; is also an idempotent and its approximation involves the
‘framing’ generators t;, tj,1.

It is, perhaps, worth stressing that the quadratic relations satisfied in the
classical as well as in the p-adic Y-H algebras involve the framing, by definition
of the elements e;. One could also define ‘framed’ Iwahori-Hecke algebras (see
Subsection 3.7) by taking quotients of the group algebras CF,,, or CF, over
the well-known Hecke algebra quadratic relations:

9! =(¢-1)gi +q.
The structure of these algebras is clearly not as rich as that of the Y-H algebras.

In [4] linear Markov traces have been constructed by the first author for the
classical Y-H algebras of any index. In a sequel paper we use these traces to
extend the construction to a p-adic linear Markov trace on the p-adic Y-H alge-
bras. We then normalize all these traces according to the Markov equivalence
for classical framed and p-adic framed braids to construct isotopy invariants
of classical and p-adic framed links. We also adapt the Markov traces con-
structed in [7] by the second author for obtaining a simpler family of framed
link invariants.
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We hope that this new concept of p-adic framed braids and p-adic framed
links that we propose, as well as our framed link invariants will be useful for
constructing new 3-manifold invariants.

0.2. As usual we denote by C, Z and N = {1,2,...} the set of complex
numbers, the integers and the natural numbers respectively. We also denote
7,/dZ the additive group of integers modulo d. Throughout the paper we fix
a prime number p and a u € C\{0,1}. Finally, whenever two objects a,b are
identified we shall write a = b.

0.3. Let H be a group and let H® = H X .-+ x H (n—times). The sym-
metric group S, of the permutations of the set {1,2,...,n} acts on H" by
permutation, that is:

0-(h1,...,hn):(hg(l),...,hg(n)) VoesS,.
We define on the set H" x S, the operation:
(h,o)- (W, 7) = (ho(W),07).

Then, the set H" x S,, with the above operation is a group, the semidirect
product H™ X S,,.

1. INVERSE LIMITS AND P-ADIC INTEGERS

1.1.  An inverse system (X, gb;) of topological spaces (groups, rings, algebras,
et cetera) indexed by a directed set I, consists of a family (X; ; i € I) of
topological spaces (groups, rings, algebras, et cetera) and a family (¢; X, —
X; ;4,5 €1, i>j) of continuous homomorphisms, such that

qﬁ =idyx, and ﬁbi; o gzﬁj. = qb}; whenever ¢ > 7 > k.

If no other topology is specified on the sets X;, they are regarded as topolog-
ical spaces with the discrete topology. In particular, finite sets are compact
Hausdorff spaces.

The inverse limit lim X; of the inverse system (X;, ¢%) is defined as:
% j
lim X; = {z € HXi; (gb; ow;)(2) =w;(z) whenever ¢>j},

where the map w; denotes the natural projection of the cartesian product [[ X;
onto X;. It turns out that lim X; is uniquely defined, and it is non-empty if
each X; is a non-empty compact Hausdorff space. @1 X, is a topological group
(ring, algebra, et cetera) with operation induced in [ X; componentwise by
the group (ring, algebra, et cetera) operations. Moreover, in this case, @Xi
is always non-empty.
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As a topological space, [ | X; is endowed with the product topology, so l&n X;
inherits the induced topology. A basis of open sets in lim X; contains elements
of the form

%
where U; open in X;. Then, any open set in lim X; is a union of sets of the
form
(1.1) @, (U) NNy H(U,) N lim X,
where 41,...,%, € I and U, open in X, for each r.
A morphism between two inverse systems (X, %) and (Y;, ¥}), both indexed
by the same directed set I, is a collection of continuous homomorphisms
(pi: Xs — Y i€l
such that ¢} o p; = p; o ¢, for all i € I. A morphism (p; ; i@ € I) from
the inverse system (X, (b;) to the inverse system (Y}, w;) induces a morphism
between the inverse limits:
lim p; : lim X; — lim Y}
P p— P
by setting
lim p; ((2;)) == (pi(:)).
If we have embeddings ¢; from X; into Y;, these induce a natural embedding
@ Ly anXi — m Y;. Moreover, if the following sequence

0 Xi —— Y 2 7 0
is exact for any ¢, then the sequence
lim ¢ lim ¢,
(1.2) 0 — limX, — limY; —— lim Z
— pa— —

is also exact.

Let now J be a subset of the index set I, such that for every ¢ € I there
isaj € J with j > 4. Then J gives rise to the same inverse limit. This is
used in the following: Let X and Y be the inverse limits of the inverse systems
(Xi, 0% ;5 i€ 1) and (Y;,97, ; j € 1), respectively. Then we have

(1.3) XxY 2lm(X; xY;) 2 lim (X; xY)).
— —
(i,3) (4,)eIxI

The isomorphism between X x Y and lim i) (X; x Y;) identifies pairs of se-
quences ((x;),(y;)) € X x Y with the sequence (x;,y;) € @(i i)(Xi x Y;).
Clearly, the above generalize to any finite cartesian product of inverse limits.

Finally, let X; = X for all 7 and gb; the identity for all ¢, j. Then lim X can

be identified naturally with X (identifying a constant sequence (z, x,...) with
reX).
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1.2, Our working example for the notion of inverse limit will be the con-
struction of the p-adic integers. Let p be a prime number, which will be fixed
throughout the paper, and let Z/p"Z be the additive group of integers modulo
p". An element a, € Z/p"Z can be written uniquely in the form

ar =ko+kip+kop® + -+ ky1p" L+ 9" Z,

where ko, ..., k._1 € {0,1,...,p—1}. For any r, s € N with r > s we consider
the following natural epimorphisms:

(1.4) o

s *

Z/p"7. — Z]p°Z

9§(k0+k1p+k2p2+' R Y +p'Z) = ko+kip+kop® +- - +ks_1p" ' +p°Z

(“cutting out” r — s terms). We obtain, thus, the inverse system (Z/p"Z, 0%)
of topological groups, indexed by N. Its inverse limit, @Z/ p"7Z, is the group
of p-adic integers, denoted Z,. Z, is a non-cyclic subgroup of [[(Z/p"Z) and
it contains no elements of finite order. Z, can be identified with the set of
sequences:

(1.5) Z,=A{(a,) ; a, € Z, a, = as (modp®) whenever r > s}.

Clearly, for the (n + 1)st entry of an element (a,) € Z, there are p choices,
namely:

(1.6) ary1 € {a,+2p"; A=0,1,...,p—1}.

On the contrary, there is no choice for the entries before, as a; = a,(mod p*)
for all s=1,...,r — 1. Elements in Z, shall be usually denoted as

(1.7) a = (a1,a2,a3,...) €Z

1.3. Contrary to embeddings between inverse systems, if each component
pi + X; — Y; of a morphism between two inverse systems is onto, the induced
map lim p; between the inverse limits is not necessarily onto.

For example, consider the inverse systems (Z,id) and (Z/p"Z, %), both in-
dexed by N, and for each s € N define the canonical epimorphism

(1.8) ps: L — ZL/p°Z

Then (ps ; s € N) is a morphism between the two inverse systems. The first
inverse limit is isomorphic to Z, while the second is the set of p-adic integers Z,,.
Note that the image of @1 Z in Z; under lim p, consists in all constant tuples
of integers. On the other hand, the tuple (b,), where b, = 1+p+---+p"'is
in Z, but is not constant.
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Yet, we have the following very important result.

Lemma 1. (8], Lemma 1.1.7.) Let (X;,¢}) be an inverse system of topolog-
ical spaces indexed by a directed set I and let p; : X — X, be compatible
surjections from a topological space X onto the spaces X; (i € I). Then, either
lim X; = 0 or the induced mapping p = lim p; : lim X — lim X; maps lim X
P— p— — — p—
onto a dense subset of lim X;.

Proof. For the proof of Lemma 1 consider a non-empty open set V' in lim X; of
the form (1.1). We have to show that p(X)NV # 0. Indeed, let ig > iy, ..., 0,
and let y = (y;) € V. Choose x € X so that p; () = y;,- Then p(z) € V. O

For example, let p; denote the restriction on a subset A C lim X; of the
canonical projection of lim X; onto X;. Recall that hmA can be identified
with A. Then we have the following.

Corollary 1. If for a subset A C lim X; we have p;(A) = X; for alli € I,
then p(lim A) is dense in lim X;, where p = lim p;.

Since Z projects onto each factor Z/p"Z via the canonical epimorphism (1.8),
we obtain the following, as an application of Corollary 1.

Corollary 2. Z is dense in Z,.

This means that every p-adic integer can be approximated by a sequence of
constant sequences. In 1.4 we study further this approximation.

Definition 1. (cf. [8] § 2.4) Let G; be a group (ring, algebra, et cetera) for
all i € I. A subset S C limG; is a set of topological generators of lim G if
the span (S) is dense in lim G;. If, moreover, S is finite, lim G; is said to be
finitely generated.

For example, the element (1,1,...) is a topological generator of Z,, since,
by Corollary 2, the cyclic subgroup ((1,1,...)) = Z is dense in Z,,.

1.4. As a topological space, Z, is endowed with the induced topology of
[[(Z/p"Z), which builds up from the discrete topology of each factor Z/p"Z.
Thus, a basic open set in Z, is of the form {w; ' (U;) ; U; C Z/p'Z}, where w;
is the restriction of the natural projection of Z, onto Z/p'Z. So, for any given
element a = (ay,as,...) € Z, we have that a € w; '({a;}) for all i. Moreover,

@, ({ar}) = {(a1, 22,23, 24, ...) ; 22 = ay (modp), 2, = T, (modp™), n > m}

wz_l({%}) = {(ah az, Y3, Y4, - - ) 7 Yz = ag (modpQ), Yn = Ym (modpm), n > m}

As we can see, w; ({a1}) 2 @, ' ({az}) 2
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This implies, in particular, that for a; € Z the constant sequence (a;, a;, . ..) €
Z,, is contained in infinitely many open sets, each set being a refinement of the
previous one. Recall now, from Corollary 2, that the set of constant sequences
is dense in Z;,. Thus, every element a = (a1,as,as,...) € Z, can be appprox-
imated by a sequence of constant sequences, the following:

(a1, a1,aq,...) € o ({a1})

(a1, a9, a9, az,...) = (az,as,as,...) €@y ({as})
(1.9) )
(ay,a9,as3,as,...) = (as,as,as,...) € ws; ({az})

since a, = a;(mod p), for r > 1, a, = as(mod p?), for r > 2, and so on.
Indeed, (ay,as,as,...) and (a;, a;, a;, . ..) = (a1, a9, ..., a;_1, G, a;, . ..) are both
in @; '({a;}) for all 4. Finally, @, '({a1}) 2 @, ({az}) 2 ..., justifying the
approximation claim. We shall write:

(1.10) a = lilgn(ak).

For more details and further reading on inverse limits and the p-adic integers
see, for example, [8, 9, 12].

2. p-ADIC FRAMED BRAIDS

The aim of this section is to introduce the notion of p-adic framed braids.
These are similar to the classical framed braids but, instead of integral framing,
each strand may be coloured with a p-adic integer.

2.1.  Before starting with our construction we need to digress briefly and recall
the definition and the structure of the classical framed braid group (see for
example [6]) and the modular framed braid group.

We consider the group Z™ with the usual operation:
(2.1) (ay,...,an)(b1y... by) := (a1 + b1, ..., an + by).
7" is generated by the ‘elementary framings’:
fi=1(0,...,0,1,0,...,0)

with 1 in the ith position. Then, an element a = (ay,...,a,) € Z" can be
expressed as:

aj ras an
a = 1 2 .- fn .
Let also B, be the classical braid group on n strands. B, is generated by the
elementary braids oy,...,0,_1, where o; is the positive crossing between the

ith and the (i + 1)st strand. The o;’s satisfy the well-known braid relations:
o,0; = 0,0, if |i — j| > 1 and 0,0;410;, = 04410,0;11. Recall the symmetric
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group S,, generated by the n — 1 elementary transpositions s; := (i,7 + 1),
and let further 7 be the natural projection of B,, on S,. We let o(j) denote
m(o)(j) for any j = 1,2,...,n. In particular, o;(j) = s;(j). Using m we define
the framed braid group F, as:

Fn=7" X By,
where the action of B, on a = (ay,...,a,) € Z" is given by permutation of
the indices:
(2.2) o(a) = (agys - - -+ Ao(n)) (0 € By).

In the above notation, the action of B, on Z" is given by the multiplicative
formula:

OfIfi L o) = FlO0 o e (g € By).

Any word in F,, splits, by construction, into the ‘framing’ part and the
‘braiding’” part. That is, it can be written in the form

(2.3) fifee  fkno where k; €Z, 0 € B,.
The multiplication in F,, is defined using the action of B, on Z" as follows:
(24) (Ff57 o for o) (PSR o) e 00 0o e o

Geometrically, an element of F, is a classical braid on n strands, with each
strand decorated on the top by an integer, its framing. An element of Z",
when this is seen as a subgroup of F,, is identified with the identity braid
on n strands, each strand being decorated by the corresponding integer of the
element. For example, the element f; is the identity braid with framing 1 on
the ith strand and 0 elsewhere, while f;" f3*... f? is the identity braid with
framings ay, as, . . ., a,. On the other hand, a braid in B,,, when this is seen as a
subgroup of F,,, is meant as a framed braid with all framings 0. Geometrically,
the multiplication in the group F,, is the usual concatenation in B,, together
with collecting the total framing of each strand to the top of the final braid.
See Figure 3 for an illustration.

az* by

\

ag+ b3 ag+ b2

a1a2a bbb

FiGUurEe 3. Multiplication of framed braids
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Definition 2. The d-modular (or simply modular) framed braid group on n
strands is defined as Fy,, := (Z/dZ)" x B,,.

The group F;, can be considered as the quotient of F,, by imposing the rela-
tions

=1, (i=1,...,n).
Clearly, Fg4,, has the same geometric interpretation as F,,, only that the fram-
ings of the n strands are taken from the cyclic group Z/dZ. Note now that in
F, orin Fy, the f;’s can be deduced from f;, setting for example:

fi = Uz‘—l--~01f1<71_1-~-0i_,11

Then we have the following.

Proposition 1. F, has a presentation with generators fi,01,...,0,_1 and
relations:
flaj = O'jfl fO’f’ j > 1
f101f101_1 = 01]:101_1f1 X )
oi(oi1...ofioyt o )ort = o7 oiy .. .onfiot oo )oy forall i

together with the usual braid relations among the o;’s.

Proposition 2. F;, has the same presentation as F,, but with the extra
relation fi = 1.

2.2. In order to define the p-adic framed braids we would rather pass to
multiplicative notation for Z/p"Z. Let C, denote the multiplicative cyclic
group of order p", generated by the element ¢,. That is,

Cpi=(t,; t=1).

Then Z/p"Z = C.,. The maps (1.4) of the inverse system (C,,07) are now
defined by:

.. C, — C

t, +— i

(2.5)

whenever r > s. In this notation: @7 (tkotkpttkp™™") — phothiptthe1p™™
We have:
Z, =lim C,
%
and we can write:
Ly = {(t],t5%,...) € HC’i ; ar € Z, a, = as (mod p®) whenever r > s}.
The element
(26) t .= (thtg,...) S anC'T
corresponds to (1,1,...) in the additive notation, so, following the notation
of (1.7), we shall write: t& := (#{",#5%,...) for elements in lim C, = Z,. The



12 J. JUYUMAYA AND S. LAMBROPOULOU

element t generates in lgn C, the constant sequences. So, we shall write Z =
(t). By Corollary 2, Z is dense in lim C, and t is a topological generator of
lim €', so an element (11,152, ...) € Z, can be approximated by the sequence
(t°) of elements in Z. So, we shall write:

(2.7) 68 = (7,152, ) = lim (¢™).

For example, for b = (1,1+p, 1+p+p? ...) in the additive notation we write

t& in the multiplicative notation, and we have that it can be approximated
by the sequence (t, t'12, t1+242° ) That is:

(2.8) 6% = (11, 65", 5777, L) = (£,

With the above notation and according to Subsection 1.2, if t& = (£, 4%, .. )
is another element in Z,, the multiplication in Z, is defined as follows:

(2.9) tLtl = ¢ 2TE = (et gt )
and we have the approximation:
(2.10) t&td = lillgn(t“”b’“).

2.3.  Consider now the direct product C' := C, x -+ x C}.  (n-times). This
is an abelian group with the usual product operation defined componentwise,
generated by the n elements

(2.11) trii=(1,...,1,¢t.,1,...,1)
where t, is in the ith position and where 1 is the unit element in C,. In this

notation:

(2.12) (Em m2, ) =T T in O

r 2¥r

Moreover, C' has the presentation:
(213)  Cr=(tu1,..ityn s tpitej =t ity and 0, =(1,...,1)).

Using the maps (2.5) of the inverse system (C,, 6%) and (2.12) we define com-
ponentwise the maps:
. C) — CF
tr,i — ts,i
whenever r > s. Then:

(2.14) AT(E gy = g medpt) mamed2®) - (modp)

The maps 7, are obviously group epimorphisms, so (C, 7%) is an inverse sys-

tem of topological groups, indexed by N, and so the inverse limit llr_n C7' exists.
Proposition 3. lim C = (im C,)" = Z.
— T — p

Proof. It follows immediately from (1.3). O
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Notice now that an element w € lim C7' can be written as:

W= (), (0 482 ) )

(
(e g gemgg g ) (by (2.12))
(

1n> 2n>

tL R, ) - (1,195, ) - (# t55r, .. .)  (by product operation)

= ()
An explicit isomorphism between @1 C}' and Z, is then given by the map:
w— (B 19200, (8972, 522, 0 0), ., (B0, 192, .))

Thus, we have the identification:

(2.15)
(g 605 ot ) = (0, 857, (6992, 657, ), (8, 157, 00)

In particular, the following elements get identified, for ¢ = 1,..., n:
lim ;' 3 (tri)r = (1, 1,..0), .., (t1, t2y .o ), .o, (L, 1,.00)) € (li&nC’ﬁ”,

where the sequence (ti, ta,...) is in the ith position. Set now 1 := (1,1,...)
and t = (t1, t,...) (recall (2.6)) in lim C, and denote:

(2.16) ti:=(1,...,1,t,1,....1) € (lim C,)"
where t is in the ¢th position. Then we have the identifications:
(2.17) ImC > (t)r = ¢ € Z

Thus, with the above notation and with the notation of (2.7) we can rewrite
the identification (2.15) as follows, for ai = (@)

(2.18)
lm G 5w = (27 1 .. t0), = (62,62, 62) = 67ty ..t € 2]
— T —\r1 Y2 - pn)r — s Yooy =1, 6y ... Ty D

Lemma 2. The identification in im C7* of the set X = {t1,...,t,} C Zy is
a set of topological generators of lim Cy'. Equivalently, the identification in
im C7 of the subgroup Z" = (X) of Zy is dense in lim Cy'.

Proof. By Corollary 2 and by Definition 1, (t;) is clearly dense in the ith factor
({1} x ... x {1} x Zp x {1} x ... x {1}) of Zp. The result now follows from
Corollary 2 and the identification (2.18). O

For example, by (2.16) and (2.17), and by the approximation (2.7), we have
the approximation of (¢77), € lim C7:

(2.19) (t22), =t = lim(6:%) = lim(£2%), .
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In general, for an element in Zj we have, by (2.18), (2.7) and (2.19), the
following approximation, where ai = (@)

(220) ZZ =) t?‘ltg-2 L. tj‘b‘n = ]jin(tfllkltgm o tzzm) — hiﬂ(takl ’ tak27 o ’tdkn).

Consequently, for the product of two elements in Z7 we have by (2.10) the
following approximation, where <b_Z = (bys)r:

a an b bn
(2.21) (65 .t (67 .. t0) = )
Hence, for an element w € im CF, w = (4 4775 ... t), = t?“lt;‘_z Lt we
obtain, by (2.18), (2.19) and (2.20), the approximation:
(222)  lmCp s (Rt = {5 1)

and for the product of two elements in lim C7" we have the approximation:

r,1

(2.23) (ot ), () ), = liin[(tffflﬁb’“ N ARG

2.4. p-adic framed braids. In order to introduce the inverse limits in the con-
struction of framed braids we start the construction from the beginning. Con-
sider the cartesian product C* x B,. Using the maps (2.14), define for any
r,s € N with r > s the surjective maps:

(2.24) X id : C" x B, — C! x B,
Gty ot o) = (TSt o)

for any o € B,, and for any exponents satisfying a,; = ag; (mod p®). Then we
have the following.

Proposition 4. (C" x B,,, 7% x id) is an inverse system of topological spaces,
indezed by N and we have:

Iim(C! x B,) Z1limC!' x B, 2 Z) X B,.
e \Mr o ~'r D

Moreover, the identification in im(Cy' X B,,) of Z" x B, is dense in im(C}' x By,)
and Z™ X B,, is dense in ZZ x B,,.

Proof. Since the maps nl are maps of the inverse system (C”, x?), it follows

immediately that (C” x B, 7 x id) is an inverse system of topological spaces.
An element in lim(C* x B,) is a sequence of the form ((w1,0), (w2,0), ...),
where ¢ € B,, and where w; € C7,w, € C¥, ..., such that 7! (w,) = w, when-
ever r > s. Identifying it with the pair of sequences ((wy, ws,...), (0,0,...)) €
@Cf’ X @Bn, where liLan arises as the inverse limit of the trivial inverse
system (B,,id), induces the bijection between @(Cﬁ x B,,) and lim G} x By:
(2.25)
Um(CY x By) 3 ((wi,0), (w2,0), ...) = (wi,w2,...), o) € im O} x By,
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where the natural identification between @Bn and B, is induced by the
identification (o,0,...) = 0. So the assertion lim(C}' x B,) = lim C}" x B, is
proved. Moreover, by (2.15), lim C7' x B, = Zj x B,

By Lemma 2, and by Corollary 2, the identification of Z™ = (t1,ts, ..., t,) in
lim G} projects surjectively on each factor C7 of the inverse system (C7', 7).
Extending the projection by the identity map on B,, implies that the identifi-
cation of Z" x B,, projects surjectively on each factor C]' x B,, of the inverse
system (C"" x By, 7% x id). Hence, by Corollary 1, the identification of Z" x B,
is dense in lim(C' x By). O

Consider now the action of the group B,, on the group C]' by permutation,
as defined in (2.2). For the case d = p" and with the above notation, we have
that C' x B,, = F,r,, the modular framed braid group with the operation
(2.4) (in additive notation).

Remark 1. The generator f; of F,-, (Proposition 2) in the additive notation
corresponds to the generator t,; of C'. The generators of C)' x B,, = Fpr,,
are the n elementary framings ¢,,,...,t,, and the n — 1 elementary braids
01y.--,0p—1-

Further, use the maps (2.24) of the inverse system (C"' x B,, 7l x id) to
define:

ﬂ-; . ld : prJL — fps,n
(226) (tr,i; Zd) — (ts,iy Zd),
(1,....1),00) — ((1,...,1), 03),

whenever r > s.

Lemma 3. (F,r,, 7]
by N.

Proof. On the level of the sets C' X B,,, the map 7, -id is ] xid. We shall show
that «7 -id is a group homomorphism. Indeed, let (z,0), (y,7) € C x B,.
Then we have:

-id) is an inverse system of topological groups, indexed

() i), 0), (1.7)] = (L -id)(waly),om) = (xl(wo(y)),om) "=
= (wl(@) 7o) o) =T (7 @) o (x(y)), o)
= (mi(x),0) - (mi(y)7) = (7] - id)(z, 0) - (7 - id)(y, 7).
Hence, (Fpr ,, 75 - 1d) is an inverse system of topological groups. U

Definition 3. The p-adic framed braid group on n strands Fu, , is defined to

be the inverse limit of the inverse system (F,r,, 7 -id), that is:

Foo =1m Fpr,, = Im(C)' x B,,).
g — : —

Elements of F ,, shall be denoted 3.
(_
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Remark 2. F, , could have alternatively been defined as the semidirect prod-
uct Zy X By, In fact, the two groups are isomorphic, as the following theorem
states. Our definition, though, leads naturally to the construction of the p-adic
Yokonuma—Hecke algebras, since the classical Yokonuma—Hecke algebras are
quotients of the modular framed braid groups (see Section 3).

Theorem 1. There are group isomorphisms:
Foom £ 2Ly ¥ By = @Cf X B,.

Moreover, F,, is dense in ZZ X B, and the identification in Fu, of F, =
Z" X By, is dense in Fu . Finally, the identification in Fu,, of the set A =
{t1,01,...,0n_1} C Fy is a set of topological generators of Foo .

Proof. The second isomorphism is clear from Proposition 3. We will prove the
first one. On the right hand side B,, acts on Z; by permutation, that is, a
o € B, permutes accordingly the positions of an n-tuple of p-adic integers.
We consider the bijection:

a:foo,n—>Z;}xBn
defined by combining (2.25) and (2.15). More precisely:

(wy,0), (wa,0), ...) ¥ ([(wir, war, . ..), (Wig, waz, .. ), ..., (Win, Wop, . . .)], )
where w, = (Wp1, W2, ..., W) € CT.
Claim: « is a group homomorphism. Indeed, let x = ((wy, 0), (wq,0), ...) and
y = ((u1,7), (p2,7), ...) € Foon, Where pi, = (fir1, flr2, - - - s forn) € Cy. Then:
vy = ((wi,0), (wa,0),...) - ((p1,7), (p2,7), -..)

(w1, 0) (1, 7), (w2, 0)(p2, 7)), - - )
= ((wio(m),07), (w2 0(p2),07),...)

([(wit1o(1ys - - - s Winttiom)), 0T, [(Wai o), - - - Wanliao(n)), OT); - - ).
Hence,

oz(xy) = ([(wll,ula(l); W21 20(1)5 - - ~), ceey (wln,ula(n), Wan 20 (n); - - )]7 UT)-
On the other hand:

a(z) a(y) Doy (Winy )] 0) - ([(agy )y ooy (pany -2 2], 7)

Wity )y ooy (Winy - )] o([(p11,-2),s -+ oy (Ban, - - )], 07)
Dseeos (Wi, ) (10a)s -+ ), - (Bo(m), - - )], 0T)

wll,...) (ulo(l),...),...,(wln,...) (,ulg(n),...)],(ﬂ')

(Wit tho(1ys - )5 - o (Winthiomy, - - )], 0T) = a(zy).

Further, Z™ x B,, is identical as set to Z" x B,,. By Proposition 4, Z" x B,, is
dense in Z; x By, which in turn is identical as set to Z; x B,. With similar
reasoning the identification in F,, of F,, = Z" x B,, is dense in F, .
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For the last statement of the theorem, we only need to observe that the
generators (2.16) of Z™ are the multiplicative versions of the generators f;
of F, given in Subsection 2.1. Therefore, the span (A) is isomorphic to the
classical framed braid group F,,. So, the identification of A in F,,, is a set of
topological generators for Fo . O

In the sequel we will not distinguish between Ly X By, and Fo .

Remark 3. The fact that Z, and B,, contain no elements of finite order imply
that Fo,, = Z, X B, contains neither element of finite order. In particular,
the modular relations for the framing are not valid in Fo .

2.5. Geometric interpretations. By Definition 3 a p-adic framed braid is an
infinite sequence of the same braid ¢ € B,, such that the rth braid of the
sequence gets framed in the modular framed braid group F,-, (recall Defini-
tion 2) with the framings (a,1, a2, - .., am) € (Z/Zy)", where ai = (av)r. By
the isomorphism in Theorem 1, a p-adic framed braid can be identified with

the element:
ayl

(2.27) £t .ty o0 €70 % By,

that is, the braid ¢ € B, with each strand decorated with a p-adic integer.
This in turn can be interpreted as an infinite framed cabling of a braid o € B,,.
See Figure 4.

a a a 3 (a;,a,,a3,) (b ,b2 ,b3 ,

5 A

FIGURE 4. A p-adic framed braid

a1 a an
In particular, the element t‘l_l’GQ‘_2 ...ty € Z, can be viewed as the identity
braid in B,,, having the p-adic framing a; on the ¢th strand, see Figure 5.

H

[

a, a
J 2 o

FIGURE 5. A p-adic identity framed braid
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Remark 4. By (2.3) for classical framed braids, by Theorem 1 and by (2.27)
a p-adic framed braid splits into the ‘p-adic framing’ part and the ‘braiding’
part.

The operation in F , corresponds geometrically to concatenating in each
position of the infinite sequence the two corresponding modular framed braids
and collecting the total modular framings to the top (recall Subsection 2.1,
(2.1) and Figure 3). See Figure 6 for an illustration.

ayq 8yp 843 Apy App Apg byy byp byg by byy Dyg
// / . (\\ ’ (\\ y e
+b gy +byy
S, ayp " 81+ by, 8yg 4 Doy

Q r}’

FIGURE 6. Multiplication of p-adic framed braids in F ,

On the other hand, by (2.9), the multiplication between two elements in LiyX By,
is defined as follows:
bn, a1+bo(1) an+bo(n)

a an b1

(2.28) (ty ... tn co)- (b7 ...ty -T)=t] T ...tn, T o7

where ai = (a;), and ﬁ = (by;),. This corresponds geometrically to concate-

nating the two braids o and 7 with p-adic framings (a1, ..., a,) and (by,..., b,)

«— «— «— —

respectively, and collecting the total p-adic framings to the top. The result-

ing braid will then have the p-adic framings (a; + b,q), - - -, @n + bo(n)), Where
— —

a; + by(i) = (ari + byo(i))r, according to (2.9). See Figure 7.

—

As we said, we consider F, = Zy x B,. So, the expression (2.27) and its
corresponding geometric interpretation is what we will have in mind from now
on. In this context, if b € Zj X B, such that all framings of b are constant
sequences (k1),...,(k,) € Zy for (ki € Z), then b € Z" x B, and it is a
classical framed braid with framings k1, ..., k,. Of course, a classical braid in
B,, is meant as a p-adic framed braid with all framings 0.
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b, 22%%1 4 4p
a,+ a~+
3 < 372

(o2
— Tmm

7 (f
[ [N

FIGURE 7. Multiplication of p-adic framed braids in Z; x B,

2.6. Approzimations. By Theorem 1, any element w = (77 t75 ... tomn - o),
in Fon can be approximated as follows:

(2.29) w = h’?l(wk)

where wy, is the constant sequence (74 7% .. . ¢34 - o), € Fion. The product
of two elements is approximated according to (2.29) and (2.23). Further, the
fact that F,, is dense in Ly X By, = Foon, means that any p-adic framed braid
can be approximated by a sequence of classical framed braids. More precisely,

let 8 = t?‘_ltg‘_2 Lty o e Zy % By, where a; = (a,i),. Then, by (2.20), we
— —

have:
(2.30) B =tim(G),

where G = t{*'t3*? ... t%n~.0 € F,, and where a; = (ag;, ki, - - -), the constant
sequence in Z C Z,. For example, the p-adic braid t< for a = (ay,ay,...), can
be approximated as shown in Figure 8, where ay = (ay, ax,...) € Z C Z,. See
Figure 9 for a generic example. Of course, the product of two p-adic framed
braids is approximated accordingly, by (2.30) and (2.21).

a
a k

F1GURE 8. The approximation of an one-strand p-adic framed braid

3. QUOTIENT ALGEBRAS FROM p-ADIC FRAMED BRAIDS

In this section we define the main algebra studied in the paper. This algebra
arises as the inverse limit of an inverse system of so-called Yokonuma-Hecke
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a, a, a a
4233 a1 2 %3

o)
\ = lim \ ;A =@ A
) )

FIGURE 9. The approximation of a p-adic framed braid

algebras. In the sequel we fix an element u in C\{0,1} and we shall denote
C|[G] (or simply CG) the group algebra of a group G.

3.1. Let H = (h) be a finite cyclic group of order d. As in (2.11) we define
the element h; in H" := H x --- x H (n copies) as the element having h on
the ith component and 1 elsewhere. So, for any element (h®,... h%) € H"
we can write

(h*, ... h%) = h{" ... ho".
For any 4,7 with ¢ # j, we define the subgroups H; ; of H" as follows:

Clearly, H,; is isomorphic to the group H. In C[H"] = CH" we define the
following elements:

1
€dij = pi Z xre CH"

or, equivalently:
1 _
s =5 3w
1<m<d

Lemma 4. For any i,j with i # j the elements eq;; are idempotents.

Proof. It is enough to observe that eq; ; is the average on the elements of the
group H; ;. Indeed,

d
(edyi,j)Qzé Z y% Z x:% Z Z yr = Z ' =eq;;.
yEHZ-,j SCEH»;J‘ yEHi,j ﬁEHZ‘,j :D,GHi,j
U

Remark 5. Notice that H; ; = H;;. In the case j = ¢+ 1 we denote H; ;1 by
H; and €d,i i+1 by €d,i-
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3.2.  Consider now the modular framed braid group F,, (Definition 2). The
C-algebra CH™ is a subalgebra of the group algebra CF,,, and the elements
eq,; are still idempotents in CF,,. The main commutation relations among
them and the elementary braids o; are given in the proposition below.

Proposition 5. For anyi,j € {1,...,n— 1} we have:
(1) of'eq; = eqjoit, forallj#i—1,i+1

(2) o7 eq; = eqigoi forli—jl=1

(3) eq;oft = 0leqij, for|i—jl =1

(4)

al an __ al a;—1 ai+11.a4 a;42 a

Proof. (1) If j # 4,7 & 1, the claim follows from the fact that o; commutes
with h;. Let now that j = i. We have o,eq; = 0;d™* Y hih;’,. Note now that
oihihiy = hipoihily = hiy,hi®o;. Then

1
S —S8
0i€d; = 8(5 hiihi ®)oi = eqioi.
S

(2) Let j = i +1. We have that o;hf_h. 5 = hioh; 5, = hif, 50, So, we
deduce: oieqi1 =d ! Yo hihi >0;. Claim 3 follows similarly as Claim 2.
(4) Setting ¢ := hi* ... h%" we have:

S7.—S _ a1 a;—171a0;+857ai+1—S7 Ai42 a
hihifie = B RITRETh R T

i+1 i+2
= h¥. .. h?i_ll h§5+ai_ai+1)+ai+1 h;r(i?-*-ai—aiﬂ)-&-ai h?f; L b
— htlll o h;lial hgs+a¢*ai+1)h?i+1 h;—(i@JraifaiH)h?ilh?iEQ o hZ”
T L R e v

Therefore,

1 s1,—S8
€4q;iC = 8 Z hih“_lC

0<s<d—1

. 1 h(5+ai*ai+1)h*(3+ai*ai+l)
- d i i+1
S
a1 ai—1 (1Git1] a4 ait2 a
B RO (RS ) B
o a1 i1 (1Git17a; aiq2 an
= eqih{ .. R (RETREL) RES L RG

g

Remark 6. The elements h; correspond to the elementary framings f; in the
additive notation of Subsection 2.1 and, for d = p", to the elements ¢, ; defined
in (2.11).
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3.3.  The Yokonuma-Hecke (Y-H) algebras were introduced by Yokonuma [13]
in the context of Chevalley groups, as generalizations of the Iwahori-Hecke alge-
bras. More precisely, the Iwahori-Hecke algebra associated to a finite Chevalley
group G is the centralizer algebra associated to the permutation representation
of G with respect to a Borel subgroup of G. The Y-H algebra is the central-
izer algebra associated to the permutation representation of GG with respect
to a unipotent subgroup of G. So, the Y-H algebra can be also regarded as a
particular case of a unipotent algebra. See [10] for the general definition of
unipotent algebras.

Definition 4. We define the Yokonuma-Hecke algebra of type A, Yqn,(u), as
the quotient of the group algebra of the modular framed braid group Fy,
under the quadratic relations:

(3.2) @ =1+ w—1)eq;(1—g) (i=1,...,n—1).
More precisely, Yq,(u) is defined as follows:
CFun
Y (u) = &

(07 =1 —(u—1eq;(1—03), i=1,....,n—1)

Corresponding now o; € CFy,, to g; € Yan(u) and f; € Fup to hi € Ygnu(u),
we obtain from the above and from Proposition 2 a presentation of Y, (u),
by setting:

(3.3) hi=gi--.gihigy ' .. g; .
Indeed, we have:

Theorem 2. The algebra Y ,,(u) can be presented with the generators hy, g1,
..y gn_1 and the following relations:

higi = gihy, fori>2
hlglhlgl_l = glhlgl_lhl

)
)
) hi =1
)
)

(t=1,...,n—1).
In this above notation, we may rewrite the elements eq; € Yq,(u) as:

1 _ 1lim o _
6d,i=3 Z (Qi_11-~911h1 91---92‘-1)(9z’-~91h1 911---91' 1)-

1<m<d

Remark 7. The Y-H algebra Y, (u) can be also thought of as a u—-deformation
of the group algebra C[H" x S,,] in the following sense: The algebra C[H™ x
Sp] = C[H™ x S, contains CH™ as a subalgebra, so the elements e4; are also
in C[H™ % S,,]. We correspond now the generator s; € C[H" x.S,] to the gener-
ator g; € Ya,(u), the generator hy € C[H™ x S,] to the generator hy € Y4, (u)
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and eq; € C[H" X S,] to eq; € Yan(u) (we keep the same notation). Then,
the canonical presentation of C[H™ x S,,] gives rise to a presentation of Y, (u)
(the same as in Theorem 2) by imposing the quadratic relations (3.2) instead
of the relations s? = 1.

Remark 8. The fact that the element ey, is an idempotent makes it possible
to define in Y, ,(u) the inverse of g;. Indeed, multiplying relation (3.2) by
gi gives g8 = g; + (u — 1)eq;9; — (u — 1)eq; g7. Replacing now g? by its
expression (3.2) and using the fact that ey; is an idempotent, we obtain that
g = gi— (¥ —u)eq; + (u* —u)eq;g;. Using again (3.2) we substitute e4;g; by
(w—1)"Y1 + (u—1)eq; — g?), so we have g3 = u + g; — ug?. Multiplying the
latter by g; ' we deduce g; ' = u~!(g? + ug; — 1) and, using (3.2) once more,
we finally obtain:

(3.4) g =gi— (T —1)eq;+ (u ' —1)eq; gi-

3.4. In this part we give a diagrammatic interpretation of the elements eq;
and of the quadratic relations in Y4, (u). The elements e, seen as elements of
CFan can be interpreted geometrically as the average of the sum of d identity
framed braids with framings as shown in Figure 10.

0 0 s ds O 0

1
e, =1
di~d 0zs2d-1 < >

\

ith strand

i+15 strand

FIGURE 10. The elements eg;

Similarly, the quadratic relations g2 = 1+ (u — 1) eq; — (u — 1)eq;9; can be
also considered as relations in CFy,,. In Figure 11 we illustrate the relation
for g7 in CFas. Note that the effect of e;; on the identity element or on g;
is to produce d copies and frame appropriately the ith and (i + 1)st strand.
Similar is the effect of e4; on any braid. In Figure 12 we illustrate the quadratic
relation in a compact form. Finally, in Figure 13 we illustrate the equation for

97 Lin CFas.

Remark 9. Note the resemblance of relation (3.4) to the skein relations used
for defining classical quantum link invariants. For d = 1 the relation becomes
the skein relation of the 2-variable Jones polynomial (HOMFLYPT), that arises
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from the quadratic relation of the Hecke algebra of type A, see [3].

J. JUYUMAYA AND S. LAMBROPOULOU

FIGURE 12. ¢? =1+ (u—1)eq; (1 — g;)

MRCIRNRIE)

FIGURE 13. Geometric interpretation of g;*

In fact,

Y1, (u) coincides with the Hecke algebra of type A.

3.5. The p-adic Yokonuma-Hecke algebra. We shall now explain our construc-
tion of the p-adic Yokonuma-Hecke algebra Y ,(u). The C-algebra Yo, (u)
will be defined as the inverse limit of an inverse system of the Y-H algebras
Y, n(u), 7 € N, where p is a fixed prime number. On this family of Y-H
algebras we consider epimorphisms

Py YpT,n(u) - Yp‘iﬂ(“) (r>s),
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induced from the group homomorphisms 77 - id defined in (2.26). More pre-
cisely, extending 7 -id linearly, yields a natural algebra epimorphism

¢y CFpry — CFpe (r>s).
It is a routine to check the following lemma.
Lemma 5. (CF,r,, ¢%) is an inverse system of rings, indexed by N.

Note that the natural embedding ¢, : Fpr,, — CF,r, induces a natural
embedding @1 bt Foon = @C]—"pr’n. So, up to identifications, we have the
inclusions:

fn gfoo,n gliLanpr,n

Recall now that t; := (t,1,...,1) and 0; := (0;,0;,...) in lim CFr ., we have
the following result:

Proposition 6. The set X = {ty,01,...,0,_1} is a set of topological gener-
ators of the algebra im CFpr ;. In particular, the subalgebra CF, is dense in
liLnC}_pr,n-

Proof. By Proposition 1, the set X is a set of generators for the group F,,
hence X spans the algebra CF,. Now, the mapping o; — 0, t; — t,; defines
an epimorphism 7, : CF, — CZF,r,, for any » € N. Notice now that 7, is
surjective and that we have the following commutative diagram:

1 — CF, —— limCF,,
— )

ml &l
CFpp =—— CFp,

where &, is the natural projection. Then the proof follows from Corollary 1. [

Recall now the subgroups H; ; defined in (3.1). With the notations of Sec-
tion 2 for H = C, we denote these subgroups by H, ;; and we have:

-1
H?",i7j = <tr,itr,i+1>‘
Hence e,r; ; € CCY'. Recalling also that Fpr ,, = C1'x B,,, we have the following.

Proposition 7. For any i,j with i # j and for s < r, we have:

(1) The homomorphism ¢7, maps H,;; onto Hy; ;.

(2) The kernel of the restriction of ¢% on H,;; has order p".

(3) ¢g(€pr,i,j) = eps,i,j~
Proof. Since ¢y(t,t,. ]1) = tsﬁit;; Claim 1 follows. Claim 2 is clear by the
fundamental theorem of homomorphisms for groups. Finally, Claim 3 follows
directly from Claims 1 and 2. O
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Defining now in CF,-,, the elements:
6ri =07 —1—(u—1)eyi(1—0;) € CFprop (t=1,...,n—1),
and the ideal
Ly =(ei;1=1,...,n—1).
We have that CF
Y, n(u) = 7 P

prn

Using (3) of Proposition 7 we obtain the following lemma.
Lemma 6. For all i and for s <r, we have: ¢%(Lyr ) = Lps .

According to Lemma 6 we obtain the following commutative diagram of
rings:

&5
CFPT,TL —_— CFPSJL

| |

Yo (1) =2 Yoo (w)

where p, and ps are the canonical epimorphisms and ¢!, is defined via ¢’ as:
(3.5) o+ Ly ) = o(x) + Lps .

Recall that Ker(p,) = L, ,. Thus, the inverse system (CF,r ,,, ¢%) induces the
inverse system

(Ypr n(u), ¢5)
indexed by N.

Definition 5. The p-adic Yokonuma-Hecke algebra Y o n(u) is defined as the
wnverse limit of this last inverse system.

Yoon(u) :=lm Ypr »(u).
The algebra Yo, »(u) is equipped with canonical epimorphisms:
Ert Yoon(u) — Yprn(u),
such that ¢, o=, = =;.
3.6.  We shall now try to understand better the structure of Yo ,(u). By

Lemma 6 the restriction of ¢ to I,r, yields the inverse system (I,r ., ).
Furthermore, for any r we have the following exact sequence:

0 Lin —2— CFppn —2= Ypn(u) — 0

Then, by (1.2), we obtain the exact sequence:

0 —— limI,, —— lmCFy, —2— Yo,(u)
— ’ — ’ ’
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where ¢ := lim¢, and p := limp,. Hence, and since lim /-, is an ideal in
. — — — J
lim CF,r ,,, we have:
% K
I CFprn lim C.F.
— = p(lim )
lim 1, p(lim CFpr )
% b
At this writing it is not clear whether the map p is a surjection or not. Yet,
we have the following result.

Proposition 8. p(lim CFr ) is dense in Yoo n(u).

Proof. The proof is again an application of Corollary 1. Indeed, define the
map 0 : p(z) — (pr0&)(x), for v = (z,) € im CFr ,. Clearly 0 is a surjective

—_

map. Also, we have: (p, 0 &,)(z) = p.(&(2)) = pr(xy) = 20 + Lpry = E0((2 +

Ly n)ren) = Ev(pr(2r)) = (E; 0 lim p,)(x). Hence the proposition follows. [

Proposition 8 tells us that, although Y ,(u) may not arise as a quotient of
lim CFpr 5, yet it does contain a dense quotient. This means that, if we find a
set of topological generators for p(lin CF,r,n) we will have a set of topological
generators for Yo, ,(u). In order to do that, we define first certain idempotents
e;j in lim CFr , that play analogous role to the idempontent e, ; ;. According
to (3) in Proposition 7 we can define the following elements:

(36) €ij = (epyi,j, €p2ijs - - ) € @CC}? - liﬁl@fpr’n
where i,7 € {1,...n — 1} and i # j. For j =i+ 1 we shall denote:
€i = Cii+1-
Notice that e; ; = e;;. According to Remark 6 and Definition 4, e, ; ; is also

an element in Y,r,(u). So (3.6) defines an element in Y, ,(u) (with same
notation) and we have from the diagram below:

lim CC? —— mCF,r,, —2— Yoo (u)
— P : ;

| | = |

CC,Z? — Cfpr,n L) YpT7n(U) E— ]_

(ET © p)(ei,j) = (pr © £T)<€i7j) = Cpriigo (fOI all T)'

Lemma 7. For any i, j with i # j, the elements e;; € im CFyr ,, are idempo-
tents.

Proof. The multiplication in lim CF,r ,, is defined componentwise, so the proof
follows directly from Lemma 4. 0

Lemma 8. In lim CF,-,,, we have:
% K

07 =1+ (u—1)e;(1—0;) mod (lim Zyr ).
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Proof. We must prove that o7 — (1 + (u — 1)e;(1 — 03)) € lim I ,.  Recall
that o; is the constant sequence (o, 0y, .. .), hence o2 is the constant sequence
(02,0%,...). Also, the rth component of the element 1 + (u — 1)e;(1 — 0;) €
Um CFpr iy is 1+ (u — L)y (1 — 0;) € CFpr . Therefore, the element o? —
(14 (u—1)e;(1 —0;)) is the sequence (€1, €2y, ..), and €, € I, ,,. Hence the
lemma follows. O

Proposition 9. Setting €, ;=02 —1— (u—1)e; + (u—1)e;o; € lim CFpr , we
have:
lim Iy, = (;;1=1,...,n—1).

Proof. Recall that €, = (€,;)ren. Now, for any ¢ and for any z = (z,), y =
(yr) € lim CFr,, we have that re;y = (.6, y,). Furthermore ¢f(z,€.y,) =
oL (2 )€s i 05 (yr) € Lps . Thus, ze€;y belongs to lim I, , for all i. Hence, the ideal
generated by the €;’s is contained in lim I,- ,,. Let now w = (w; ) ey € Im Iy ,,

P =
Then w, =Y, yri€rizri, where y,.;, 2.; € CF,r,,. Thus, we can write:

w = Z(yr,i)r<er,i)r(zr,i)r S liLnlp’",n-

)

As (Yri)r, (2ri)r € lim CFyr,, we obtain w € (€;;1=1,...,n—1). d

Recall that, according to our inverse system, the element o; € B, cor-
responds to the constant sequence (g;,¢;,...) in Yoo n(u). We denote this
sequence by g;. Similarly, the braid ;' € B, corresponds to the constant
sequence (g; ', g;",...) in Yoon(u) and it shall be denoted by g;'. Thus, in
p(im CFyr ) € Yoo n(u) the following quadratic relations holds:

We define now t; := p(t;) and e; := p(e;). Then, from Theorem 2 and Propo-
sition 8, we deduce the following theorem.

Theorem 3. {1,t1,01,...,9,-1} is a set of topological generators of Y o »(u).
Moreover, these elements satisfy the following relations:

(1) Braid relations among the g;’s

(2) t1g; = git1, fori>2

(3) trgitigr ' = gitigy 't

(4) gigi1 - gitagr 09 =97 (G gitigr G

5)@Z=1+w—-1e(l—g), G=1,...,n—1).

Moreover, as in Proposition 5, we can prove analogous commutation rela-

tions for e;. More precisely we have:

Proposition 10. In Y ,(u) we have :
(1) g ej = eg. " Jor j #i—1i41
(2) 9" ej = eijg;, forli—jl =1
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(3) ;97" = g eiy, for i = j| =1,
Proof. The proofs follow directly from Lemma 7 and Proposition 5. O

Remark 10. It is worth observing that Y. ,(u) can be regarded as a topo-
logical deformation of a quotient of the group algebra CF,,, recall Theorem 3.
Roughly, the algebra Y ,(u) can be described in terms of topological genera-
tors, in the sense of Definition 1, and the same relations as the algebra Y, ()
but where the relations h¢ = 1 do not hold. Consequently, Y, ,(u) has a set of
topological generators which look like the canonical generators of the framed
braid group F,, (recall Proposition 1), but with the addition of the quadratic
relation.

3.7.  As already noted in the introduction, the advantage of the classical and
the p-adic Y-H algebras is that, by definition of the elements e;, their quadratic
relations involve the framing. Using the well-known Iwahori-Hecke quadratic
relations we define the modular and classical framed Hecke algebras:

Hun(q) = C]:dm/(a? —(¢q—1Do;—q;i=1,...,n—1)

and
Hoon(q) :=CF,/{0} —(q— Doy —q;i=1,...,n—1).

The structure of these algebras is simpler than that of the Y-H algebras. Yet,
the framed Hecke algebras are related to the cyclotomic and ‘generalized’ Hecke
algebras of type B (see [7] and references therein) in a similar manner that
the modular and classical framed braid groups are related to the B-type Artin
braid group. So, the Markov traces and the link invariants for the solid torus
constructed in [7] by the second author can be adapted here for obtaining
invariants of framed links.

In a sequel paper we construct a p-adic linear Markov trace using the linear
Markov traces in [4]. More precisely, we can prove the following result.
Theorem 4. There exists a unique p-adic linear Markov trace defined as

Ti=1lm 7 Yoo nt1(u) — lim C[X, ]
where 7, is the trace try of [4] for k = p" and where lim C[X,] is constructed

via appropriate connecting epimorphisms: 07 : C[X,| — C[Xy] (see [5]).
Furthermore

7(ab) = 7(ba)
7(1) 1
T(agnb) = (2),7(ab)
T(atilyb) = (@m),7(ab)

for any a,b € Yoo n(u) and m € Z.

Normalizing all these traces according to the Markov equivalence for classical
framed and p-adic framed braids, we construct invariants of classical and p-adic
oriented framed links.
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We hope that this new concept of p-adic framed braids and p-adic framed
links that we propose, as well as the use of the Yokonuma-Hecke algebras and
our framed and p-adic framed link invariants, will lead to the construction of
new 3-manifold invariants.
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