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Abstract. In this paper we define the p-adic framed braid group F∞,n,
arising as the inverse limit of the modular framed braids. An element
in F∞,n can be interpreted geometrically as an infinite framed cabling.
F∞,n contains the classical framed braid group as a dense subgroup. This
leads to a set of topological generators for F∞,n and to approximations for
the p-adic framed braids. We further construct a p-adic Yokonuma-Hecke
algebra Y∞,n(u) as the inverse limit of a family of classical Yokonuma-Hecke
algebras. These are quotients of the modular framed braid groups over a
quadratic relation. Finally, we give topological generators for Y∞,n(u).
Paper presented at the 1017 AMS meeting.

Introduction

0.1. Framed knots and links are like classical knots and links but with an
integer, the ‘framing’, attached to each component. It is well-known that
framed links can be used for constructing 3-manifolds using a topological tech-
nique called surgery. Then two manifolds are homeomorphic if and only if any
two framed links in S3 representing them are related through isotopy moves
and the Kirby moves or the equivalent Fenn-Rourke moves [2]. In [6] Ko and
Smolinsky give a Markov-type equivalence for framed braids corresponding to
homeomorphism classes of 3-manifolds. It would be certainly very interest-
ing if one could construct 3-manifold invariants by constructing Markov traces
on quotient algebras of the framed braid group and using the framed braid
equivalence of [6].

In this paper we introduce the concept of p-adic framed braids and we also
construct p-adic quotient algebras. The p-adic framed braids can be seen as
natural infinite cablings of framed braids. Cablings of framed braids have been
used for constructing 3-manifold invariants (e.g. by Wenzl [11]). The paper is
organized as follows: In Subsection 2.1 we recall the structure of the framed
braid group Fn = Zn oBn, where Bn is the classical braid group on n strands.
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By construction, a framed braid splits into the ‘framing part’ and the ‘braiding
part’. Moreover, Fn is generated by the elementary braids σ1, . . . , σn−1 and by
the elementary framings f1, . . . , fn. We further introduce the modular framed
braid group Fd,n = (Z/dZ)n oBn, which has the same presentation as Fn, but
with the additional relations:

fdi = 1.

In [13] the Yokonuma-Hecke algebras (abbreviated to Y-H algebras), Yd,n(u),
were introduced by Yokonuma, where u is a fixed non-zero complex number.
They appeared originally in the representation theory of finite Chevalley groups
and they are natural generalizations of the classical Iwahori-Hecke algebras,
see also [10]. In Section 3 we define the Y-H algebra as a finite dimensional
quotient of the group algebra CFd,n of the modular framed braid group Fd,n
over the quadratic relations:

g2i = 1 + (1− u)ed,i(1− gi),

where gi is the generator associated to the elementary braid σi and ed,i are
certain idempotents in CFd,n (see Subsections 3.1 to 3.3). In Yd,n(u) the
relations f di = 1 still hold, and they are essential for the existence of the
idempotents ed,i, because ed,i is by definition a sum involving all powers of
fi and fi+1. In Subsection 3.4 we give diagrammatic interpretations for the
elements ed,i as well as for the quadratic relation (see Figures 10, 11 and 12).

For relating to framed links and 3-manifolds we would rather not have the
restrictions f di = 1 on the framings. An obvious idea would be to consider
the quotient of the classical framed braid group algebra, CFn, over the above
quadratic relations. But then, the elements ed,i are not well-defined. Yet, we
achieve this aim by employing the construction of inverse limits.

In Subsections 1.1 and 1.3 we give some preliminaries on inverse systems and
inverse limits and we introduce the concept of topological generators. This is a
set, whose span is dense in the inverse limit (see Definition 1). In Subsections
1.2, 1.4 and 2.2 we focus on the construction of the p-adic integers Zp and their
approximations. Let p be a prime number and let Cr be the cyclic group of
pr elements: Cr

∼= Z/prZ. Then lim←−Cr = Zp, where the inverse system maps
θrs : Z/prZ −→ Z/psZ (r ≥ s) are the natural epimorphisms. Zp contains
Z = 〈t〉 as a dense subgroup. The element t is a topological generator for
Zp, and a p-adic integer will be denoted t

a
←−, where a←− =: (a1, a2, . . .) with

ar ≡ as (mod p
s) whenever r ≥ s.

We shall now explain briefly our constructions. Section 2 deals with the
construction of the p-adic framed braids. More precisely, in Subsection 2.3
we consider the inverse system (Cn

r , π
r
s) indexed by N, where the map πsr :

Cn
r −→ Cn

s (r ≥ s) acts componentwise as the natural epimorphism θrs . Then
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lim←−C
n
r
∼= Zn

p (see Proposition 3) and Zn
p contains Zn = 〈t1, . . . , tn〉 as a dense

subgroup (see Lemma 2). We then consider the inverse system (Fpr,n, π
r
s · id)

indexed by N, where the map πrs · id acts on the framing part of a modular
framed braid as described above, and trivially on the braiding part (Subsection
2.4). So, we define the p-adic framed braid group F∞,n (Definition 3) as

F∞,n = lim←−Fp
r,n.

Geometrically, a p-adic framed braid is an infinite sequence of modular
framed braids with the same braiding part and such that the framings of
the ith strands in each element of the sequence give rise to a p-adic integer.
See Subsection 2.5 and left-hand side of Figure 1 for an illustration, where
(a1, a2, . . .), (b1, b2, . . .) ∈ Zp. In Theorem 1 the natural identification

F∞,n
∼= Zn

p oBn

is established. This is used in Subsection 2.5, where we give geometric inter-
pretations of the p-adic framed braids as classical braids with framings p-adic
integers. See Figure 4. We can then say that a p-adic framed braid splits into
the ‘p-adic framing part’ and the ‘braiding part’. So, a p-adic framed braid
can be also interpreted as an infinite framed cabling of a braid in Bn, such that
the framings of each infinite cable form a p-adic integer. See right-hand side
of Figure 1. Of course, the closure of a p-adic framed braid defines an oriented
p-adic framed link. Figure 2 illustrates an example.

a1 b1

,

a 2 b2

, ...,

a 3 b3
(a , a  , a  ,...)1 2 3 (b , b  , b  ,...)1 2 3

... ...

Figure 1. A p-adic framed braid as an infinite framed cabling

The identification in Theorem 1 implies also that there are no modular rela-
tions for the framing in F∞,n. Moreover, that the classical framed braid group
Fn sits in F∞,n as a dense subset. Hence, the set A = {t1, σ1, . . . , σn−1} ⊂ Fn
is a set of topological generators for F∞,n. So, by Theorem 1, a p-adic framed
braid is a word of the form:

t
a1
←−
1 t

a2
←−
2 . . . t

an
←−
n · σ

where a1←−
, . . . , an←−

are the p-adic framings and σ ∈ Bn. In Subsection 2.6 we

give approximations of p-adic framed braids by sequences of classical framed
braids. See Figures 8 and 9 for examples.
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ba

closure
ba

Figure 2. A p-adic framed braid and a p-adic framed link

Section 3 deals with the construction of the p-adic Yokonuma-Hecke alge-
bras. More precisely, in Subsection 3.5 we define the p-adic Yokonuma-Hecke
algebra Y∞,n(u) as the inverse limit of the inverse system (Ypr,n(u), ϕ

r
s) of

classical Y-H algebras, indexed by N (Definition 5):

Y∞,n(u) = lim←−Ypr,n(u).

The above inverse system is induced by the inverse system (CFpr,n, φ
r
s), where

φrs is the ‘linear span’ of πrs · id at the level of the group algebra, using also
our definition of the Y-H algebras as finite dimensional quotients of the group
algebras CFd,n. Y∞,n(u) is an infinite dimensional algebra, in which the fram-
ing restrictions f di = 1 do not hold. Finally, in Subsection 3.6, Theorem 3, we
give the set of topological generators {t1, g1, . . . , gn−1} for Y∞,n(u), satisfying
the quadratic relations:

g2i = 1 + (1− u)ei(1− gi),

where the element ei is also an idempotent and its approximation involves the
‘framing’ generators ti, ti+1.

It is, perhaps, worth stressing that the quadratic relations satisfied in the
classical as well as in the p-adic Y-H algebras involve the framing, by definition
of the elements ei. One could also define ‘framed’ Iwahori-Hecke algebras (see
Subsection 3.7) by taking quotients of the group algebras CFd,n or CFn over
the well-known Hecke algebra quadratic relations:

g2i = (q − 1)gi + q.

The structure of these algebras is clearly not as rich as that of the Y-H algebras.

In [4] linear Markov traces have been constructed by the first author for the
classical Y-H algebras of any index. In a sequel paper we use these traces to
extend the construction to a p-adic linear Markov trace on the p-adic Y-H alge-
bras. We then normalize all these traces according to the Markov equivalence
for classical framed and p-adic framed braids to construct isotopy invariants
of classical and p-adic framed links. We also adapt the Markov traces con-
structed in [7] by the second author for obtaining a simpler family of framed
link invariants.
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We hope that this new concept of p-adic framed braids and p-adic framed
links that we propose, as well as our framed link invariants will be useful for
constructing new 3-manifold invariants.

0.2. As usual we denote by C, Z and N = {1, 2, . . .} the set of complex
numbers, the integers and the natural numbers respectively. We also denote
Z/dZ the additive group of integers modulo d. Throughout the paper we fix
a prime number p and a u ∈ C\{0, 1}. Finally, whenever two objects a, b are
identified we shall write a

.
= b.

0.3. Let H be a group and let Hn = H × · · · × H (n–times). The sym-
metric group Sn of the permutations of the set {1, 2, . . . , n} acts on Hn by
permutation, that is:

σ · (h1, . . . , hn) = (hσ(1), . . . , hσ(n)) ∀ σ ∈ Sn.

We define on the set Hn × Sn the operation:

(h, σ) · (h′, τ) = (hσ(h′), σ τ).

Then, the set Hn × Sn with the above operation is a group, the semidirect
product Hn o Sn.

1. Inverse Limits and p-adic Integers

1.1. An inverse system (Xi, φ
i
j) of topological spaces (groups, rings, algebras,

et cetera) indexed by a directed set I, consists of a family (Xi ; i ∈ I) of
topological spaces (groups, rings, algebras, et cetera) and a family (φij : Xi −→
Xj ; i, j ∈ I, i ≥ j) of continuous homomorphisms, such that

φii = idXi
and φjk ◦ φ

i
j = φik whenever i ≥ j ≥ k.

If no other topology is specified on the sets Xi, they are regarded as topolog-
ical spaces with the discrete topology. In particular, finite sets are compact
Hausdorff spaces.

The inverse limit lim←−Xi of the inverse system (Xi, φ
i
j) is defined as:

lim←−Xi := {z ∈
∏

Xi ; (φ
i
j ◦$i)(z) = $j(z) whenever i ≥ j},

where the map$i denotes the natural projection of the cartesian product
∏

Xi

onto Xi. It turns out that lim←−Xi is uniquely defined, and it is non-empty if
each Xi is a non-empty compact Hausdorff space. lim←−Xi is a topological group
(ring, algebra, et cetera) with operation induced in

∏

Xi componentwise by
the group (ring, algebra, et cetera) operations. Moreover, in this case, lim←−Xi

is always non-empty.
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As a topological space,
∏

Xi is endowed with the product topology, so lim←−Xi

inherits the induced topology. A basis of open sets in lim←−Xi contains elements
of the form

$−1i (Ui) ∩ lim←−Xi,

where Ui open in Xi. Then, any open set in lim←−Xi is a union of sets of the
form

(1.1) $−1i1 (U1) ∩ . . . ∩$
−1
in
(Un) ∩ lim←−Xi,

where i1, . . . , in ∈ I and Ur open in Xir for each r.

Amorphism between two inverse systems (Xi, φ
i
j) and (Yi, ψ

i
j), both indexed

by the same directed set I, is a collection of continuous homomorphisms

(ρi : Xi −→ Yi ; i ∈ I)

such that ψij ◦ ρi = ρj ◦ φ
i
j, for all i ∈ I. A morphism (ρi ; i ∈ I) from

the inverse system (Xi, φ
i
j) to the inverse system (Yi, ψ

i
j) induces a morphism

between the inverse limits:

lim←− ρi : lim←−Xi −→ lim←−Yi

by setting
lim←− ρi((xi)) := (ρi(xi)).

If we have embeddings ιi from Xi into Yi, these induce a natural embedding
lim←− ιr : lim←−Xi −→ lim←−Yi. Moreover, if the following sequence

0 −−−→ Xi
ιi−−−→ Yi

ϕi−−−→ Zi −−−→ 0

is exact for any i, then the sequence

(1.2) 0 −−−→ lim←−Xi

lim←− ιr

−−−→ lim←−Yi
lim←−ϕr

−−−→ lim←−Zi

is also exact.

Let now J be a subset of the index set I, such that for every i ∈ I there
is a j ∈ J with j ≥ i. Then J gives rise to the same inverse limit. This is
used in the following: Let X and Y be the inverse limits of the inverse systems
(Xi, φ

i
k ; i ∈ I) and (Yj, ψ

j
m ; j ∈ I), respectively. Then we have

(1.3) X × Y ∼= lim←−
(i,i)

(Xi × Yi) ∼= lim←−
(i,j)∈I×I

(Xi × Yj).

The isomorphism between X × Y and lim←−(i,i)(Xi × Yi) identifies pairs of se-

quences ((xi), (yi)) ∈ X × Y with the sequence (xi, yi) ∈ lim←−(i,i)(Xi × Yi).

Clearly, the above generalize to any finite cartesian product of inverse limits.

Finally, let Xi = X for all i and φij the identity for all i, j. Then lim←−X can
be identified naturally with X (identifying a constant sequence (x, x, . . .) with
x ∈ X).
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1.2. Our working example for the notion of inverse limit will be the con-
struction of the p-adic integers. Let p be a prime number, which will be fixed
throughout the paper, and let Z/prZ be the additive group of integers modulo
pr. An element ar ∈ Z/prZ can be written uniquely in the form

ar = k0 + k1p+ k2p
2 + · · ·+ kr−1p

r−1 + prZ,

where k0, . . . , kr−1 ∈ {0, 1, . . . , p− 1}. For any r, s ∈ N with r ≥ s we consider
the following natural epimorphisms:

(1.4) θrs : Z/prZ −→ Z/psZ

θrs(k0+k1p+k2p
2+ · · ·+kr−1p

r−1+prZ) = k0+k1p+k2p
2+ · · ·+ks−1p

s−1+psZ

(“cutting out” r − s terms). We obtain, thus, the inverse system (Z/prZ, θrs)
of topological groups, indexed by N. Its inverse limit, lim←−Z/prZ, is the group
of p-adic integers, denoted Zp. Zp is a non-cyclic subgroup of

∏

(Z/prZ) and
it contains no elements of finite order. Zp can be identified with the set of
sequences:

(1.5) Zp = {(ar) ; ar ∈ Z, ar ≡ as (mod ps) whenever r ≥ s}.

Clearly, for the (n + 1)st entry of an element (ar) ∈ Zp there are p choices,
namely:

(1.6) ar+1 ∈ {ar + λpr ; λ = 0, 1, . . . , p− 1}.

On the contrary, there is no choice for the entries before, as as ≡ ar(mod ps)
for all s = 1, . . . , r − 1. Elements in Zp shall be usually denoted as

(1.7) a←− := (a1, a2, a3, . . .) ∈ Zp

1.3. Contrary to embeddings between inverse systems, if each component
ρi : Xi −→ Yi of a morphism between two inverse systems is onto, the induced
map lim←− ρi between the inverse limits is not necessarily onto.

For example, consider the inverse systems (Z, id) and (Z/prZ, θrs), both in-
dexed by N, and for each s ∈ N define the canonical epimorphism

(1.8) ρs : Z −→ Z/psZ

Then (ρs ; s ∈ N) is a morphism between the two inverse systems. The first
inverse limit is isomorphic to Z, while the second is the set of p-adic integers Zp.
Note that the image of lim←−Z in Zp under lim←− ρs consists in all constant tuples

of integers. On the other hand, the tuple (br), where br = 1+ p+ · · ·+ pr−1 is
in Zp but is not constant.
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Yet, we have the following very important result.

Lemma 1. ([8], Lemma 1.1.7.) Let (Xi, φ
i
j) be an inverse system of topolog-

ical spaces indexed by a directed set I and let ρi : X −→ Xi be compatible
surjections from a topological space X onto the spaces Xi (i ∈ I). Then, either
lim←−Xi = ∅ or the induced mapping ρ = lim←− ρi : lim←−X −→ lim←−Xi maps lim←−X
onto a dense subset of lim←−Xi.

Proof. For the proof of Lemma 1 consider a non–empty open set V in lim←−Xi of
the form (1.1). We have to show that ρ(X)∩V 6= ∅. Indeed, let i0 ≥ i1, . . . , in
and let y = (yi) ∈ V . Choose x ∈ X so that ρi0(x) = yi0 . Then ρ(x) ∈ V . ¤

For example, let ρi denote the restriction on a subset A ⊂ lim←−Xi of the
canonical projection of lim←−Xi onto Xi. Recall that lim←−A can be identified
with A. Then we have the following.

Corollary 1. If for a subset A ⊂ lim←−Xi we have ρi(A) = Xi for all i ∈ I,
then ρ(lim←−A) is dense in lim←−Xi, where ρ = lim←− ρi.

Since Z projects onto each factor Z/prZ via the canonical epimorphism (1.8),
we obtain the following, as an application of Corollary 1.

Corollary 2. Z is dense in Zp.

This means that every p-adic integer can be approximated by a sequence of
constant sequences. In 1.4 we study further this approximation.

Definition 1. (cf. [8] § 2.4) Let Gi be a group (ring, algebra, et cetera) for
all i ∈ I. A subset S ⊂ lim←−Gi is a set of topological generators of lim←−Gi if
the span 〈S〉 is dense in lim←−Gi. If, moreover, S is finite, lim←−Gi is said to be
finitely generated.

For example, the element (1, 1, . . .) is a topological generator of Zp, since,
by Corollary 2, the cyclic subgroup 〈(1, 1, . . .)〉 = Z is dense in Zp.

1.4. As a topological space, Zp is endowed with the induced topology of
∏

(Z/prZ), which builds up from the discrete topology of each factor Z/prZ.
Thus, a basic open set in Zp is of the form {$

−1
i (Ui) ; Ui ⊆ Z/piZ}, where $i

is the restriction of the natural projection of Zp onto Z/piZ. So, for any given
element a = (a1, a2, . . .) ∈ Zp we have that a ∈ $

−1
i ({ai}) for all i. Moreover,

$−11 ({a1}) = {(a1, x2, x3, x4, . . .) ; x2 ≡ a1 (modp), xn ≡ xm (modpm), n ≥ m}

$−12 ({a2}) = {(a1, a2, y3, y4, . . .) ; y3 ≡ a2 (modp2), yn ≡ ym (modpm), n ≥ m}
...

As we can see, $−11 ({a1}) ) $−12 ({a2}) ) . . . .
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This implies, in particular, that for ai ∈ Z the constant sequence (ai, ai, . . .) ∈
Zp is contained in infinitely many open sets, each set being a refinement of the
previous one. Recall now, from Corollary 2, that the set of constant sequences
is dense in Zp. Thus, every element a←− = (a1, a2, a3, . . .) ∈ Zp can be appprox-

imated by a sequence of constant sequences, the following:

(1.9)

(a1, a1, a1, . . .) ∈ $−11 ({a1})

(a1, a2, a2, a2, . . .) = (a2, a2, a2, . . .) ∈ $
−1
2 ({a2})

(a1, a2, a3, a3, . . .) = (a3, a3, a3, . . .) ∈ $
−1
3 ({a3})

...

since ar ≡ a1(mod p), for r ≥ 1, ar ≡ a2(mod p2), for r ≥ 2, and so on.
Indeed, (a1, a2, a3, . . .) and (ai, ai, ai, . . .) = (a1, a2, . . . , ai−1, ai, ai, . . .) are both
in $−1i ({ai}) for all i. Finally, $−11 ({a1}) ) $−12 ({a2}) ) . . ., justifying the
approximation claim. We shall write:

(1.10) a←− = lim
k
(ak).

For more details and further reading on inverse limits and the p-adic integers
see, for example, [8, 9, 12].

2. p-adic framed braids

The aim of this section is to introduce the notion of p-adic framed braids.
These are similar to the classical framed braids but, instead of integral framing,
each strand may be coloured with a p-adic integer.

2.1. Before starting with our construction we need to digress briefly and recall
the definition and the structure of the classical framed braid group (see for
example [6]) and the modular framed braid group.

We consider the group Zn with the usual operation:

(2.1) (a1, . . . , an)(b1, . . . , bn) := (a1 + b1, . . . , an + bn).

Zn is generated by the ‘elementary framings’:

fi := (0, . . . , 0, 1, 0, . . . , 0)

with 1 in the ith position. Then, an element a = (a1, . . . , an) ∈ Zn can be
expressed as:

a = fa1
1 f

a2
2 . . . fann .

Let also Bn be the classical braid group on n strands. Bn is generated by the
elementary braids σ1, . . . , σn−1, where σi is the positive crossing between the
ith and the (i + 1)st strand. The σi’s satisfy the well-known braid relations:
σiσj = σjσi, if |i − j| > 1 and σiσi+1σi = σi+1σiσi+1. Recall the symmetric
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group Sn, generated by the n − 1 elementary transpositions si := (i, i + 1),
and let further π be the natural projection of Bn on Sn. We let σ(j) denote
π(σ)(j) for any j = 1, 2, . . . , n. In particular, σi(j) = si(j). Using π we define
the framed braid group Fn as:

Fn = Zn oBn,

where the action of Bn on a = (a1, . . . , an) ∈ Zn is given by permutation of
the indices:

(2.2) σ(a) = (aσ(1), . . . , aσ(n)) (σ ∈ Bn).

In the above notation, the action of Bn on Zn is given by the multiplicative
formula:

σ(fa1
1 f

a2
2 . . . fann ) = f

aσ(1)

1 f
aσ(2)

2 . . . f
aσ(n)
n (σ ∈ Bn).

Any word in Fn splits, by construction, into the ‘framing’ part and the
‘braiding’ part. That is, it can be written in the form

(2.3) f k1
1 f

k2
2 . . . fknn · σ, where ki ∈ Z, σ ∈ Bn.

The multiplication in Fn is defined using the action of Bn on Zn as follows:

(2.4) (fa1
1 f

a2
2 . . . fann ·σ)(f

b1
1 f

b2
2 . . . f bnn · τ) := f

a1+bσ(1)

1 f
a2+bσ(2)

2 . . . f
an+bσ(n)
n ·στ.

Geometrically, an element of Fn is a classical braid on n strands, with each
strand decorated on the top by an integer, its framing. An element of Zn,
when this is seen as a subgroup of Fn, is identified with the identity braid
on n strands, each strand being decorated by the corresponding integer of the
element. For example, the element fi is the identity braid with framing 1 on
the ith strand and 0 elsewhere, while f a1

1 f
a2
2 . . . fann is the identity braid with

framings a1, a2, . . . , an. On the other hand, a braid in Bn, when this is seen as a
subgroup of Fn, is meant as a framed braid with all framings 0. Geometrically,
the multiplication in the group Fn is the usual concatenation in Bn together
with collecting the total framing of each strand to the top of the final braid.
See Figure 3 for an illustration.

a1 a2 a3

.

b1 b2 b3

a1
a2 a3

b1 b2b3+
+

+

=

Figure 3. Multiplication of framed braids
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Definition 2. The d-modular (or simply modular) framed braid group on n
strands is defined as Fd,n := (Z/dZ)n oBn.

The group Fd,n can be considered as the quotient of Fn by imposing the rela-
tions

fi
d = 1, (i = 1, . . . , n).

Clearly, Fd,n has the same geometric interpretation as Fn, only that the fram-
ings of the n strands are taken from the cyclic group Z/dZ. Note now that in
Fn or in Fd,n the fi’s can be deduced from f1, setting for example:

fi := σi−1 . . . σ1f1σ
−1
1 . . . σ−1i−1

Then we have the following.

Proposition 1. Fn has a presentation with generators f1, σ1, . . . , σn−1 and
relations:

f1σj = σjf1 for j > 1
f1σ1f1σ

−1
1 = σ1f1σ

−1
1 f1

σi(σi−1 . . . σ1f1σ
−1
1 . . . σ−1i−1)σ

−1
i = σ−1i (σi−1 . . . σ1f1σ

−1
1 . . . σ−1i−1)σi for all i

together with the usual braid relations among the σi’s.

Proposition 2. Fd,n has the same presentation as Fn, but with the extra
relation f d1 = 1.

2.2. In order to define the p-adic framed braids we would rather pass to
multiplicative notation for Z/prZ. Let Cr denote the multiplicative cyclic
group of order pr, generated by the element tr. That is,

Cr := 〈tr ; tp
r

r = 1〉.

Then Z/prZ ∼= Cr. The maps (1.4) of the inverse system (Cr, θ
r
s) are now

defined by:

(2.5)
θrs : Cr −→ Cs

tr 7→ ts

whenever r ≥ s. In this notation: θrs(t
k0+k1p+···+kr−1p

r−1

r ) = tk0+k1p+···+ks−1p
s−1

s .
We have:

Zp = lim←−Cr

and we can write:

Zp = {(t
a1
1 , t

a2
2 , . . .) ∈

∏

Ci ; ar ∈ Z, ar ≡ as (mod ps) whenever r ≥ s}.

The element

(2.6) t := (t1, t2, . . .) ∈ lim←−Cr

corresponds to (1, 1, . . .) in the additive notation, so, following the notation
of (1.7), we shall write: t a←− := (ta1

1 , t
a2
2 , . . .) for elements in lim←−Cr = Zp. The
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element t generates in lim←−Cr the constant sequences. So, we shall write Z =
〈t〉. By Corollary 2, Z is dense in lim←−Cr and t is a topological generator of
lim←−Cr, so an element (ta1

1 , t
a2
2 , . . .) ∈ Zp can be approximated by the sequence

(tak) of elements in Z. So, we shall write:

(2.7) t
a
←− = (ta1

1 , t
a2
2 , . . .) = lim

k
(tak).

For example, for b←− = (1, 1+p, 1+p+p2, . . .) in the additive notation we write

t
b
←− in the multiplicative notation, and we have that it can be approximated
by the sequence (t, t1+p, t1+p+p

2
, . . .). That is:

(2.8) t
b
←− = (t1, t

1+p
2 , t1+p+p

2

3 , . . .) = lim
k
(t1+p+···+p

k

).

With the above notation and according to Subsection 1.2, if t b←− = (tb11 , t
b2
2 , . . .)

is another element in Zp, the multiplication in Zp is defined as follows:

(2.9) t
a
←−t

b
←− := t

a
←−
+ b
←− = (ta1+b1

1 , ta2+b2
2 , . . .)

and we have the approximation:

(2.10) t
a
←−t

b
←− = lim

k
(tak+bk).

2.3. Consider now the direct product Cn
r := Cr × · · · × Cr (n–times). This

is an abelian group with the usual product operation defined componentwise,
generated by the n elements

(2.11) tr,i := (1, . . . , 1, tr, 1, . . . , 1)

where tr is in the ith position and where 1 is the unit element in Cr. In this
notation:

(2.12) (tm1
r , tm2

r , . . . , tmn

r ) = tm1
r,1 · t

m2
r,2 . . . t

mn

r,n in Cn
r .

Moreover, Cn
r has the presentation:

(2.13) Cn
r = 〈tr,1, . . . , tr,n ; tr,i tr,j = tr,j tr,i and tp

r

r,i = (1, . . . , 1)〉.

Using the maps (2.5) of the inverse system (Cr, θ
r
s) and (2.12) we define com-

ponentwise the maps:
πrs : Cn

r −→ Cn
s

tr,i 7→ ts,i
whenever r ≥ s. Then:

(2.14) πrs(t
m1
r,1 · t

m2
r,2 . . . t

mn

r,n ) = t
m1(mod ps)
s,1 · t

m2(mod ps)
s,2 . . . tmn(mod ps)

s,n .

The maps πrs are obviously group epimorphisms, so (Cn
r , π

r
s) is an inverse sys-

tem of topological groups, indexed by N, and so the inverse limit lim←−C
n
r exists.

Proposition 3. lim←−C
n
r
∼= (lim←−Cr)

n = Zn
p .

Proof. It follows immediately from (1.3). ¤
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Notice now that an element w ∈ lim←−C
n
r can be written as:

w = ((ta11
1 , ta12

1 , . . . , ta1n
1 ), (ta21

2 , ta22
2 , . . . , ta2n

2 ), . . .)

= (ta11
1,1 t

a12
1,2 . . . t

a1n
1,n , t

a21
2,1 t

a22
2,2 . . . t

a2n
2,n , . . .) (by (2.12))

= (ta11
1,1 , t

a21
2,1 , . . .) · (t

a12
1,2 , t

a22
2,2 , . . .) . . . (t

a1n
1,n , t

a2n
2,n , . . .) (by product operation)

= (tar1r,1 t
ar2
r,2 . . . t

arn
r,n )r.

An explicit isomorphism between lim←−C
n
r and Zp is then given by the map:

w 7→ ((ta11
1 , ta21

2 , . . .), (ta12
1 , ta22

2 , . . .), . . . , (ta1n
1 , ta2n

2 , . . .))

Thus, we have the identification:

(2.15)
(tar1r,1 t

ar2
r,2 . . . t

arn
r,n )r

.
= ((ta11

1 , ta21
2 , . . .), (ta12

1 , ta22
2 , . . .), . . . , (ta1n

1 , ta2n
2 , . . .))

In particular, the following elements get identified, for i = 1, . . . , n:

lim←−C
n
r 3 (tr,i)r

.
= ((1, 1, . . .), . . . , (t1, t2, . . .), . . . , (1, 1, . . .)) ∈ (lim←−Cr)

n,

where the sequence (t1, t2, . . .) is in the ith position. Set now 1 := (1, 1, . . .)
and t = (t1, t2, . . .) (recall (2.6)) in lim←−Cr and denote:

(2.16) ti := (1, . . . ,1, t,1, . . . ,1) ∈ (lim←−Cr)
n

where t is in the ith position. Then we have the identifications:

(2.17) lim←−C
n
r 3 (tr,i)r

.
= ti ∈ Zn

p

Thus, with the above notation and with the notation of (2.7) we can rewrite
the identification (2.15) as follows, for ai←−

= (ari)r:

(2.18)

lim←−C
n
r 3 w = (tar1r,1 t

ar2
r,2 . . . t

arn
r,n )r

.
= (t

a1
←−, t

a2
←−, . . . , t

an
←−) = t

a1
←−
1 t

a2
←−
2 . . . t

an
←−
n ∈ Zn

p .

Lemma 2. The identification in lim←−C
n
r of the set X = {t1, . . . , tn} ⊂ Zn

p is
a set of topological generators of lim←−C

n
r . Equivalently, the identification in

lim←−C
n
r of the subgroup Zn = 〈X〉 of Zn

p is dense in lim←−C
n
r .

Proof. By Corollary 2 and by Definition 1, 〈ti〉 is clearly dense in the ith factor
({1} × . . .× {1} × Zp × {1} × . . .× {1}) of Zn

p . The result now follows from
Corollary 2 and the identification (2.18). ¤

For example, by (2.16) and (2.17), and by the approximation (2.7), we have
the approximation of (tarr,i)r ∈ lim←−C

n
r :

(2.19) (tarr,i)r
.
= ti

a
←− = lim

k
(ti

ak)
.
= lim

k
[(takr,i)r].
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In general, for an element in Zn
p we have, by (2.18), (2.7) and (2.19), the

following approximation, where ai←−
= (ari)r:

(2.20) Zn
p 3 t

a1
←−
1 t

a2
←−
2 . . . t

an
←−
n = lim

k
(tak11 t

ak2
2 . . . taknn ) = lim

k
(tak1 , tak2 , . . . , takn).

Consequently, for the product of two elements in Zn
p we have by (2.10) the

following approximation, where bi←−
= (bri)r:

(2.21) (t
a1
←−
1 . . . t

an
←−
n ) (t

b1
←−
1 . . . t

bn
←−
n ) = lim

k
(tak1+bk11 . . . takn+bknn ).

Hence, for an element w ∈ lim←−C
n
r , w = (tar1r,1 t

ar2
r,2 . . . t

arn
r,n )r

.
= t

a1
←−
1 t

a2
←−
2 . . . t

an
←−
n we

obtain, by (2.18), (2.19) and (2.20), the approximation:

(2.22) lim←−C
n
r 3 (tar1r,1 t

ar2
r,2 . . . t

arn
r,n )r = lim

k
[(tak1r,1 t

ak2
r,2 . . . t

akn
r,n )r]

and for the product of two elements in lim←−C
n
r we have the approximation:

(2.23) (tar1r,1 . . . t
arn
r,n )r (t

br1
r,1 . . . t

abn
r,n )r = lim

k
[(tak1+bk1r,1 . . . taknbknr,n )r].

2.4. p-adic framed braids. In order to introduce the inverse limits in the con-
struction of framed braids we start the construction from the beginning. Con-
sider the cartesian product Cn

r × Bn. Using the maps (2.14), define for any
r, s ∈ N with r ≥ s the surjective maps:

(2.24)
πrs × id : Cn

r ×Bn −→ Cn
s ×Bn

(tar1r,1 t
ar2
r,2 . . . t

arn
r,n , σ) 7→ (tas1s,1 t

as2
s,2 . . . t

asn
s,n , σ)

for any σ ∈ Bn and for any exponents satisfying ari ≡ asi (mod ps). Then we
have the following.

Proposition 4. (Cn
r ×Bn, π

r
s × id) is an inverse system of topological spaces,

indexed by N and we have:

lim←−(C
n
r ×Bn) ∼= lim←−C

n
r ×Bn

∼= Zn
p ×Bn.

Moreover, the identification in lim←−(C
n
r ×Bn) of Zn×Bn is dense in lim←−(C

n
r ×Bn)

and Zn ×Bn is dense in Zn
p ×Bn.

Proof. Since the maps πrs are maps of the inverse system (Cn
r , π

r
s), it follows

immediately that (Cn
r ×Bn, π

r
s× id) is an inverse system of topological spaces.

An element in lim←−(C
n
r × Bn) is a sequence of the form ((w1, σ), (w2, σ), . . .),

where σ ∈ Bn and where w1 ∈ C
n
1 , w2 ∈ C

n
2 , . . ., such that πrs(wr) = ws when-

ever r ≥ s. Identifying it with the pair of sequences ((w1, w2, . . .), (σ, σ, . . .)) ∈
lim←−C

n
r × lim←−Bn, where lim←−Bn arises as the inverse limit of the trivial inverse

system (Bn, id), induces the bijection between lim←−(C
n
r ×Bn) and lim←−C

n
r ×Bn:

(2.25)
lim←−(C

n
r ×Bn) 3 ((w1, σ), (w2, σ), . . .)

.
= ((w1, w2, . . .), σ) ∈ lim←−C

n
r ×Bn,
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where the natural identification between lim←−Bn and Bn is induced by the
identification (σ, σ, . . .) = σ. So the assertion lim←−(C

n
r × Bn) ∼= lim←−C

n
r × Bn is

proved. Moreover, by (2.15), lim←−C
n
r ×Bn

∼= Zn
p ×Bn.

By Lemma 2, and by Corollary 2, the identification of Zn = 〈t1, t2, . . . , tn〉 in
lim←−C

n
r projects surjectively on each factor Cn

r of the inverse system (Cn
r , π

r
s).

Extending the projection by the identity map on Bn implies that the identifi-
cation of Zn × Bn projects surjectively on each factor Cn

r × Bn of the inverse
system (Cn

r ×Bn, π
r
s× id). Hence, by Corollary 1, the identification of Zn×Bn

is dense in lim←−(C
n
r ×Bn). ¤

Consider now the action of the group Bn on the group Cn
r by permutation,

as defined in (2.2). For the case d = pr and with the above notation, we have
that Cn

r o Bn = Fpr,n, the modular framed braid group with the operation
(2.4) (in additive notation).

Remark 1. The generator fi of Fpr,n (Proposition 2) in the additive notation
corresponds to the generator tr,i of C

n
r . The generators of Cn

r o Bn = Fpr,n
are the n elementary framings tr,1, . . . , tr,n and the n − 1 elementary braids
σ1, . . . , σn−1.

Further, use the maps (2.24) of the inverse system (Cn
r × Bn, π

r
s × id) to

define:

(2.26)
πrs · id : Fpr,n −→ Fps,n

(tr,i, id) 7→ (ts,i, id),
((1, . . . , 1), σi) 7→ ((1, . . . , 1), σi),

whenever r ≥ s.

Lemma 3. (Fpr,n, π
r
s · id) is an inverse system of topological groups, indexed

by N.

Proof. On the level of the sets Cn
r ×Bn, the map πrs ·id is π

r
s×id. We shall show

that πrs · id is a group homomorphism. Indeed, let (x, σ), (y, τ) ∈ Cn
r o Bn.

Then we have:

(πrs · id)[(x, σ), (y, τ)] = (πrs · id)(xσ(y), στ) = (πrs(xσ(y)), στ)
(inCn

r )=

= (πrs(x)π
r
s(σ(y)), στ)

(πrs◦σ=σ◦π
r
s)= (πrs(x)σ(π

r
s(y)), στ)

= (πrs(x), σ) · (π
r
s(y)τ) = (πrs · id)(x, σ) · (π

r
s · id)(y, τ).

Hence, (Fpr,n, π
r
s · id) is an inverse system of topological groups. ¤

Definition 3. The p-adic framed braid group on n strands F∞,n is defined to
be the inverse limit of the inverse system (Fpr,n, π

r
s · id), that is:

F∞,n := lim←−Fp
r,n = lim←−(C

n
r oBn).

Elements of F∞,n shall be denoted β
←−
.
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Remark 2. F∞,n could have alternatively been defined as the semidirect prod-
uct Zn

p oBn. In fact, the two groups are isomorphic, as the following theorem
states. Our definition, though, leads naturally to the construction of the p-adic
Yokonuma–Hecke algebras, since the classical Yokonuma–Hecke algebras are
quotients of the modular framed braid groups (see Section 3).

Theorem 1. There are group isomorphisms:

F∞,n
∼= Zn

p oBn
∼= lim←−C

n
r oBn.

Moreover, Fn is dense in Zn
p × Bn and the identification in F∞,n of Fn =

Zn o Bn is dense in F∞,n. Finally, the identification in F∞,n of the set A =
{t1, σ1, . . . , σn−1} ⊂ Fn is a set of topological generators of F∞,n.

Proof. The second isomorphism is clear from Proposition 3. We will prove the
first one. On the right hand side Bn acts on Zn

p by permutation, that is, a
σ ∈ Bn permutes accordingly the positions of an n-tuple of p-adic integers.
We consider the bijection:

α : F∞,n −→ Zn
p oBn

defined by combining (2.25) and (2.15). More precisely:

((w1, σ), (w2, σ), . . .)
α
7→ ([(w11, w21, . . .), (w12, w22, . . .), . . . , (w1n, w2n, . . .)], σ)

where wr = (wr1, wr2, . . . , wrn) ∈ C
n
r .

Claim: α is a group homomorphism. Indeed, let x = ((w1, σ), (w2, σ), . . .) and
y = ((µ1, τ), (µ2, τ), . . .) ∈ F∞,n, where µr = (µr1, µr2, . . . , µrn) ∈ C

n
r . Then:

xy = ((w1, σ), (w2, σ), . . .) · ((µ1, τ), (µ2, τ), . . .)

= ((w1, σ)(µ1, τ), (w2, σ)(µ2, τ), . . .)

= ((w1 σ(µ1), στ), (w2 σ(µ2), στ), . . .)

= ([(w11µ1σ(1), . . . , w1nµ1σ(n)), στ ], [(w21µ2σ(1), . . . , w2nµ2σ(n)), στ ], . . .).

Hence,

α(xy) = ([(w11µ1σ(1), w21µ2σ(1), . . .), . . . , (w1nµ1σ(n), w2nµ2σ(n), . . .)], στ).

On the other hand:

α(x)α(y) = ([(w11, . . .), . . . , (w1n, . . .)], σ) · ([(µ11, . . .), . . . , (µ1n, . . .)], τ)

= ([(w11, . . .), . . . , (w1n, . . .)]σ([(µ11, . . .), . . . , (µ1n, . . .)], στ)

= ([(w11, . . .), . . . , (w1n, . . .)] [(µ1σ(1), . . .), . . . , (µ1σ(n), . . .)], στ)

= ([(w11, . . .) (µ1σ(1), . . .), . . . , (w1n, . . .) (µ1σ(n), . . .)], στ)

= ([(w11µ1σ(1), . . .), . . . , (w1nµ1σ(n), . . .)], στ) = α(xy).

Further, Zn oBn is identical as set to Zn ×Bn. By Proposition 4, Zn ×Bn is
dense in Zn

p × Bn, which in turn is identical as set to Zn
p o Bn. With similar

reasoning the identification in F∞,n of Fn = Zn oBn is dense in F∞,n.
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For the last statement of the theorem, we only need to observe that the
generators (2.16) of Zn are the multiplicative versions of the generators fi
of Fn given in Subsection 2.1. Therefore, the span 〈A〉 is isomorphic to the
classical framed braid group Fn. So, the identification of A in F∞,n is a set of
topological generators for F∞,n. ¤

In the sequel we will not distinguish between Zn
p oBn and F∞,n.

Remark 3. The fact that Zp and Bn contain no elements of finite order imply
that F∞,n

∼= Zn
p o Bn contains neither element of finite order. In particular,

the modular relations for the framing are not valid in F∞,n.

2.5. Geometric interpretations. By Definition 3 a p-adic framed braid is an
infinite sequence of the same braid σ ∈ Bn, such that the rth braid of the
sequence gets framed in the modular framed braid group Fpr,n (recall Defini-
tion 2) with the framings (ar1, ar2, . . . , arn) ∈ (Z/Zpr)

n, where ai←−
= (ari)r. By

the isomorphism in Theorem 1, a p-adic framed braid can be identified with
the element:

(2.27) t
a1
←−
1 t

a2
←−
2 . . . t

an
←−
n · σ ∈ Zn

p oBn,

that is, the braid σ ∈ Bn with each strand decorated with a p-adic integer.
This in turn can be interpreted as an infinite framed cabling of a braid σ ∈ Bn.
See Figure 4.

=
.

a
1

b
1

,

a
2

b
2

, ...,

a
3

b
3

... ...
a b

=

(a  , a   , a   ,...)
1 2 3 (b  , b   , b   ,...)

1 2 3

Figure 4. A p-adic framed braid

In particular, the element t
a1
←−
1 t

a2
←−
2 . . . t

an
←−
n ∈ Zn

p can be viewed as the identity
braid in Bn, having the p-adic framing ai←−

on the ith strand, see Figure 5.

a2 ana1

...

Figure 5. A p-adic identity framed braid
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Remark 4. By (2.3) for classical framed braids, by Theorem 1 and by (2.27)
a p-adic framed braid splits into the ‘p-adic framing’ part and the ‘braiding’
part.

The operation in F∞,n corresponds geometrically to concatenating in each
position of the infinite sequence the two corresponding modular framed braids
and collecting the total modular framings to the top (recall Subsection 2.1,
(2.1) and Figure 3). See Figure 6 for an illustration.

.

a11+
+

+

a11 a12 a13

,

a21 a22 a23

, ...

b11 b12 b13

,

b21 b22 b23

, ...

= , , ...

b13

a12 b11
a13 b12

a21+
+

+b23

a22 b21
a23 b22

Figure 6. Multiplication of p-adic framed braids in F∞,n

On the other hand, by (2.9), the multiplication between two elements in Zn
poBn

is defined as follows:

(2.28) (t
a1
←−
1 . . . t

an
←−
n · σ) · (t

b1
←−
1 . . . t

bn
←−
n · τ) = t

a1
←−
+bσ(1)
←−−−

1 . . . t
an
←−
+bσ(n)
←−−−

n · στ

where ai←−
= (ari)r and bi←−

= (bri)r. This corresponds geometrically to concate-

nating the two braids σ and τ with p-adic framings (a1←−
, . . . , an←−

) and (b1←−
, . . . , bn←−

)

respectively, and collecting the total p-adic framings to the top. The result-
ing braid will then have the p-adic framings (a1←−

+ bσ(1)
←−−

, . . . , an←−
+ bσ(n)
←−−

), where

ai←−
+ bσ(i)
←−−

= (ari + brσ(i))r, according to (2.9). See Figure 7.

As we said, we consider F∞,n
.
= Zn

p o Bn. So, the expression (2.27) and its
corresponding geometric interpretation is what we will have in mind from now
on. In this context, if b←− ∈ Zn

p oBn, such that all framings of b←− are constant

sequences (k1), . . . , (kn) ∈ Zn
p for (ki ∈ Z), then b←− ∈ Zn o Bn and it is a

classical framed braid with framings k1, . . . , kn. Of course, a classical braid in
Bn is meant as a p-adic framed braid with all framings 0.
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a2 a3a1

.

b1 b2 b3

a1
a2 a3

b1 b2b3+
+

+

=

Figure 7. Multiplication of p-adic framed braids in Zn
p oBn

2.6. Approximations. By Theorem 1, any element w = (tar1r,1 t
ar2
r,2 . . . t

arn
r,n · σ)r

in F∞,n can be approximated as follows:

(2.29) w = lim
k
(wk)

where wk is the constant sequence (t
ak1
r,1 t

ak2
r,2 . . . t

akn
r,n · σ)r ∈ F∞,n. The product

of two elements is approximated according to (2.29) and (2.23). Further, the
fact that Fn is dense in Zn

p oBn
.
= F∞,n, means that any p-adic framed braid

can be approximated by a sequence of classical framed braids. More precisely,

let β
←−

= t
a1
←−
1 t

a2
←−
2 . . . t

an
←−
n · σ ∈ Zn

p o Bn, where ai←−
= (ari)r. Then, by (2.20), we

have:

(2.30) β
←−

= lim
k
(βk),

where βk = t
ak1
1 t

ak2
2 . . . taknn ·σ ∈ Fn, and where aki = (aki, aki, . . .), the constant

sequence in Z ⊂ Zp. For example, the p-adic braid t a←− for a←− = (a1, a2, . . .), can

be approximated as shown in Figure 8, where ak = (ak, ak, . . .) ∈ Z ⊂ Zp. See
Figure 9 for a generic example. Of course, the product of two p-adic framed
braids is approximated accordingly, by (2.30) and (2.21).

a

=

ak

lim
k

Figure 8. The approximation of an one-strand p-adic framed braid

3. Quotient algebras from p-adic framed braids

In this section we define the main algebra studied in the paper. This algebra
arises as the inverse limit of an inverse system of so-called Yokonuma-Hecke
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=

a
2
a
3 a

k 1
a
k 2

a
k 3

a
1

lim
k

a
k i

= (        ,         , ... )a
k i
a
k i

,
.

Figure 9. The approximation of a p-adic framed braid

algebras. In the sequel we fix an element u in C\{0, 1} and we shall denote
C[G] (or simply CG) the group algebra of a group G.

3.1. Let H = 〈h〉 be a finite cyclic group of order d. As in (2.11) we define
the element hi in H

n := H × · · · × H (n copies) as the element having h on
the ith component and 1 elsewhere. So, for any element (ha1 , . . . , han) ∈ Hn

we can write

(ha1 , . . . , han) = ha1
1 . . . hann .

For any i, j with i 6= j, we define the subgroups Hi,j of H
n as follows:

(3.1) Hi,j := 〈hih
−1
j 〉.

Clearly, Hi,j is isomorphic to the group H. In C[Hn] = CHn we define the
following elements:

ed,i,j :=
1

d

∑

x∈Hi,j

x ∈ CHn

or, equivalently:

ed,i,j =
1

d

∑

1≤m≤d

hmi h
−m
j .

Lemma 4. For any i, j with i 6= j the elements ed,i,j are idempotents.

Proof. It is enough to observe that ed,i,j is the average on the elements of the
group Hi,j. Indeed,

(ed,i,j)
2 =

1

d

∑

y∈Hi,j

y
1

d

∑

x∈Hi,j

x =
1

d2

∑

y∈Hi,j

∑

x∈Hi,j

yx =
d

d2

∑

x′∈Hi,j

x′ = ed,i,j .

¤

Remark 5. Notice that Hi,j = Hj,i. In the case j = i+1 we denote Hi,i+1 by
Hi and ed,i,i+1 by ed,i.
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3.2. Consider now the modular framed braid group Fd,n (Definition 2). The
C–algebra CHn is a subalgebra of the group algebra CFd,n and the elements
ed,i,j are still idempotents in CFd,n. The main commutation relations among
them and the elementary braids σi are given in the proposition below.

Proposition 5. For any i, j ∈ {1, . . . , n− 1} we have:

(1) σ±1i ed,j = ed,jσ
±1
i , for all j 6= i− 1, i+ 1

(2) σ±1i ed,j = ed,i,jσ
±1
i , for |i− j| = 1

(3) ed,jσ
±1
i = σ±1i ed,i,j, for |i− j| = 1

(4) ed,i h
a1
1 . . . hann = ed,i h

a1
1 . . . h

ai−1

i−1

(

h
ai+1

i haii+1
)

h
ai+2

i+2 . . . h
an
n .

Proof. (1) If j 6= i, i ± 1, the claim follows from the fact that σi commutes
with hj. Let now that j = i. We have σied,i = σid

−1
∑

s h
s
ih
−s
i+1. Note now that

σih
s
ih
−s
i+1 = hsi+1σih

−s
i+1 = hsi+1h

−s
i σi. Then

σied,i =
1

d
(
∑

s

hsi+1h
−s
i )σi = ed,iσi.

(2) Let j = i + 1. We have that σih
s
i+1h

−s
i+2 = hsiσih

−s
i+2 = hsif

−s
i+2σi. So, we

deduce: σied,i+1 = d−1
∑

s h
s
ih
−s
i+2σi. Claim 3 follows similarly as Claim 2.

(4) Setting c := ha1
1 . . . hann we have:

hsih
−s
i+1c = ha1

1 . . . h
ai−1

i−1 h
ai+s
i h

ai+1−s

i+1 h
ai+2

i+2 . . . h
an
n

= ha1
1 . . . h

ai−1

i−1 h
(s+ai−ai+1)+ai+1

i h
−(s+ai−ai+1)+ai
i+1 h

ai+2

i+2 . . . h
an
n

= ha1
1 . . . h

ai−1

i−1 h
(s+ai−ai+1)
i h

ai+1

i h
−(s+ai−ai+1)
i+1 haii+1h

ai+2

i+2 . . . h
an
n

= (h
(s+ai−ai+1)
i h

−(s+ai−ai+1)
i+1 )ha1

1 . . . h
ai−1

i−1 h
ai+1

i haii+1h
ai+2

i+2 . . . h
an
n .

Therefore,

ed,ic =
1

d

∑

0≤s≤d−1

hsih
−s
i+1c

=

(

1

d

∑

s

h
(s+ai−ai+1)
i h

−(s+ai−ai+1)
i+1

)

ha1
1 . . . h

ai−1

i−1

(

h
ai+1

i haii+1
)

h
ai+2

i+2 . . . h
an
n

= ed,ih
a1
1 . . . h

ai−1

i−1

(

h
ai+1

i haii+1
)

h
ai+2

i+2 . . . h
an
n .

¤

Remark 6. The elements hi correspond to the elementary framings fi in the
additive notation of Subsection 2.1 and, for d = pr, to the elements tr,i defined
in (2.11).
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3.3. The Yokonuma-Hecke (Y-H) algebras were introduced by Yokonuma [13]
in the context of Chevalley groups, as generalizations of the Iwahori-Hecke alge-
bras. More precisely, the Iwahori-Hecke algebra associated to a finite Chevalley
group G is the centralizer algebra associated to the permutation representation
of G with respect to a Borel subgroup of G. The Y-H algebra is the central-
izer algebra associated to the permutation representation of G with respect
to a unipotent subgroup of G. So, the Y-H algebra can be also regarded as a
particular case of a unipotent algebra. See [10] for the general definition of
unipotent algebras.

Definition 4. We define the Yokonuma-Hecke algebra of type A, Yd,n(u), as
the quotient of the group algebra of the modular framed braid group Fd,n
under the quadratic relations:

(3.2) g2i = 1 + (u− 1) ed,i (1− gi) (i = 1, . . . , n− 1).

More precisely, Yd,n(u) is defined as follows:

Yd,n(u) :=
CFd,n

〈σ2i − 1− (u− 1)ed,i(1− σi), i = 1, . . . , n− 1〉
.

Corresponding now σi ∈ CFd,n to gi ∈ Yd,n(u) and fi ∈ Fd,n to hi ∈ Yd,n(u),
we obtain from the above and from Proposition 2 a presentation of Yd,n(u),
by setting:

(3.3) hi = gi . . . g1h1g
−1
1 . . . g−1i .

Indeed, we have:

Theorem 2. The algebra Yd,n(u) can be presented with the generators h1, g1,
. . . , gn−1 and the following relations:

(1) Braid relations among the gi’s
(2) h1gi = gih1, for i ≥ 2
(3) h1g1h1g

−1
1 = g1h1g

−1
1 h1

(4) hd1 = 1
(5) gi(gi−1 . . . g1h1g

−1
1 . . . g−1i−1)g

−1
i = g−1i (gi−1 . . . g1h1g

−1
1 . . . g−1i−1)gi

(6) g2i = 1 + (u− 1)ed,i(1− gi),
(i = 1, . . . , n− 1).

In this above notation, we may rewrite the elements ed,i ∈ Yd,n(u) as:

ed,i =
1

d

∑

1≤m≤d

(g−1i−1 . . . g
−1
1 hm1 g1 . . . gi−1)(gi . . . g1h

−m
1 g−11 . . . g−1i ).

Remark 7. The Y-H algebra Yd,n(u) can be also thought of as a u–deformation
of the group algebra C[Hn o Sn] in the following sense: The algebra C[Hn o
Sn] = C[Hn o Sn] contains CHn as a subalgebra, so the elements ed,i are also
in C[HnoSn]. We correspond now the generator si ∈ C[HnoSn] to the gener-
ator gi ∈ Yd,n(u), the generator h1 ∈ C[HnoSn] to the generator h1 ∈ Yd,n(u)
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and ed,i ∈ C[Hn o Sn] to ed,i ∈ Yd,n(u) (we keep the same notation). Then,
the canonical presentation of C[HnoSn] gives rise to a presentation of Yd,n(u)
(the same as in Theorem 2) by imposing the quadratic relations (3.2) instead
of the relations s2i = 1.

Remark 8. The fact that the element ed,i is an idempotent makes it possible
to define in Yd,n(u) the inverse of gi. Indeed, multiplying relation (3.2) by
gi gives g

3
i = gi + (u − 1) ed,igi − (u − 1) ed,i g

2
i . Replacing now g2i by its

expression (3.2) and using the fact that ed,i is an idempotent, we obtain that
g3i = gi− (u2− u)ed,i + (u2− u)ed,igi. Using again (3.2) we substitute ed,igi by
(u− 1)−1(1 + (u− 1)ed,i − g

2
i ), so we have g

3
i = u+ gi − ug

2
i . Multiplying the

latter by g−1i we deduce g−1i = u−1(g2i + ugi − 1) and, using (3.2) once more,
we finally obtain:

(3.4) g−1i = gi − (u−1 − 1) ed,i + (u−1 − 1) ed,i gi.

3.4. In this part we give a diagrammatic interpretation of the elements ed,i
and of the quadratic relations in Yd,n(u). The elements ed,i seen as elements of
CFd,n can be interpreted geometrically as the average of the sum of d identity
framed braids with framings as shown in Figure 10.

... ...

0 0 0 0s

i    strandth

d,ie    = Σ1
0  s  d-1

d-s

i+1    strandst

d
_

Figure 10. The elements ed,i

Similarly, the quadratic relations g2i = 1 + (u− 1) ed,i − (u− 1)ed,igi can be
also considered as relations in CFd,n. In Figure 11 we illustrate the relation
for g21 in CFd,3. Note that the effect of ed,i on the identity element or on gi
is to produce d copies and frame appropriately the ith and (i + 1)st strand.
Similar is the effect of ed,i on any braid. In Figure 12 we illustrate the quadratic
relation in a compact form. Finally, in Figure 13 we illustrate the equation for
g−11 in CFd,3.

Remark 9. Note the resemblance of relation (3.4) to the skein relations used
for defining classical quantum link invariants. For d = 1 the relation becomes
the skein relation of the 2-variable Jones polynomial (HOMFLYPT), that arises
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01

= u-1

d-1

d
+

02 d-2

+ ...

01d-1

+ +

000000

+

- u-1
d

01 d-1

+

02 d-2

+ ...

01d-1

+ +

000

00 0

_

_

Figure 11. Geometric interpretation of g21

s

= u-1

d-s

d

00

+ -

00

Σ
0  s  r-1

s d-s

_

Figure 12. g2i = 1 + (u− 1) ed,i (1− gi)

01

= u  -1

d-1

d
+

02 d-2

+ ...

01d-1

+ +

000

-

+

01 d-1

+

02 d-2

+ ...

01d-1

+ +

000

00 0 000
-1

u  -1
d

-1

_

_

Figure 13. Geometric interpretation of g−11

from the quadratic relation of the Hecke algebra of type A, see [3]. In fact,
Y1,n(u) coincides with the Hecke algebra of type A.

3.5. The p-adic Yokonuma-Hecke algebra. We shall now explain our construc-
tion of the p-adic Yokonuma-Hecke algebra Y∞,n(u). The C–algebra Y∞,n(u)
will be defined as the inverse limit of an inverse system of the Y-H algebras
Ypr,n(u), r ∈ N, where p is a fixed prime number. On this family of Y-H
algebras we consider epimorphisms

ϕrs : Ypr,n(u) −→ Yps,n(u) (r ≥ s),
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induced from the group homomorphisms πrs · id defined in (2.26). More pre-
cisely, extending πrs · id linearly, yields a natural algebra epimorphism

φrs : CFpr,n −→ CFps,n (r ≥ s).

It is a routine to check the following lemma.

Lemma 5. (CFpr,n, φ
r
s) is an inverse system of rings, indexed by N.

Note that the natural embedding ιr : Fpr,n ↪→ CFpr,n induces a natural
embedding lim←− ιr : F∞,n ↪→ lim←−CFpr,n. So, up to identifications, we have the
inclusions:

Fn ⊆ F∞,n ⊆ lim←−CFpr,n

Recall now that t1 := (t,1, . . . ,1) and σi := (σi, σi, . . .) in lim←−CFpr,n, we have
the following result:

Proposition 6. The set X = {t1, σ1, . . . , σn−1} is a set of topological gener-
ators of the algebra lim←−CFpr,n. In particular, the subalgebra CFn is dense in
lim←−CFpr,n.

Proof. By Proposition 1, the set X is a set of generators for the group Fn,
hence X spans the algebra CFn. Now, the mapping σi 7→ σi, t1 7→ tr,1 defines
an epimorphism ηr : CFn −→ CFpr,n, for any r ∈ N. Notice now that ηr is
surjective and that we have the following commutative diagram:

1 −−−→ CFn −−−→ lim←−CFpr,n

ηr





y
ξr





y

CFpr,n CFpr,n

where ξr is the natural projection. Then the proof follows from Corollary 1. ¤

Recall now the subgroups Hi,j defined in (3.1). With the notations of Sec-
tion 2 for H = Cr we denote these subgroups by Hr,i,j and we have:

Hr,i,j = 〈tr,it
−1
r,i+1〉.

Hence epr,i,j ∈ CCn
r . Recalling also that Fpr,n = Cn

r oBn, we have the following.

Proposition 7. For any i, j with i 6= j and for s ≤ r, we have:

(1) The homomorphism φrs maps Hr,i,j onto Hs,i,j.
(2) The kernel of the restriction of φrs on Hr,i,j has order p

r−s.
(3) φrs(epr,i,j) = eps,i,j.

Proof. Since φrs(tr,it
−1
r,j ) = ts,it

−1
s,j Claim 1 follows. Claim 2 is clear by the

fundamental theorem of homomorphisms for groups. Finally, Claim 3 follows
directly from Claims 1 and 2. ¤
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Defining now in CFpr,n the elements:

εr,i := σ2i − 1− (u− 1)epr,i(1− σi) ∈ CFpr,n (i = 1, . . . , n− 1),

and the ideal
Ipr,n = 〈εr,i ; i = 1, . . . , n− 1〉.

We have that

Ypr,n(u) =
CFpr,n
Ipr,n

.

Using (3) of Proposition 7 we obtain the following lemma.

Lemma 6. For all i and for s ≤ r, we have: φrs(Ipr,n) = Ips,n.

According to Lemma 6 we obtain the following commutative diagram of
rings:

CFpr,n
φrs−−−→ CFps,n

ρr





y

ρs





y

Ypr,n(u)
ϕrs−−−→ Yps,n(u)

where ρr and ρs are the canonical epimorphisms and ϕrs is defined via φrs as:

(3.5) ϕrs(x+ Ipr,n) := φrs(x) + Ips,n.

Recall that Ker(ρr) = Ipr,n. Thus, the inverse system (CFpr,n, φ
r
s) induces the

inverse system
(Ypr,n(u), ϕ

r
s)

indexed by N.

Definition 5. The p-adic Yokonuma-Hecke algebra Y∞,n(u) is defined as the
inverse limit of this last inverse system.

Y∞,n(u) := lim←−Ypr,n(u).

The algebra Y∞,n(u) is equipped with canonical epimorphisms:

Ξr : Y∞,n(u) −→ Ypr,n(u),

such that ϕrs ◦ Ξr = Ξs.

3.6. We shall now try to understand better the structure of Y∞,n(u). By
Lemma 6 the restriction of φrs to Ipr,n yields the inverse system (Ipr,n, φ

r
s).

Furthermore, for any r we have the following exact sequence:

0 −−−→ Ipr,n
ιr−−−→ CFpr,n

ρr
−−−→ Ypr,n(u) −−−→ 0

Then, by (1.2), we obtain the exact sequence:

0 −−−→ lim←− Ip
r,n

ι
−−−→ lim←−CFpr,n

ρ
−−−→ Y∞,n(u)
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where ι := lim←− ιr and ρ := lim←− ρr. Hence, and since lim←− Ip
r,n is an ideal in

lim←−CFpr,n, we have:
lim←−CFpr,n

lim←− Ip
r,n

∼= ρ(lim←−CFpr,n).

At this writing it is not clear whether the map ρ is a surjection or not. Yet,
we have the following result.

Proposition 8. ρ(lim←−CFpr,n) is dense in Y∞,n(u).

Proof. The proof is again an application of Corollary 1. Indeed, define the
map θ : ρ(x) 7→ (ρr ◦ ξr)(x), for x = (xr) ∈ lim←−CFpr,n. Clearly θ is a surjective
map. Also, we have: (ρr ◦ ξr)(x) = ρr(ξr(x)) = ρr(xr) = xr + Ipr,n = Ξr((xr +
Ipr,n)r∈N) = Ξr(ρr(xr)) = (Ξr ◦ lim←− ρr)(x). Hence the proposition follows. ¤

Proposition 8 tells us that, although Y∞,n(u) may not arise as a quotient of
lim←−CFpr,n, yet it does contain a dense quotient. This means that, if we find a
set of topological generators for ρ(lim←−CFpr,n) we will have a set of topological
generators for Y∞,n(u). In order to do that, we define first certain idempotents
ei,j in lim←−CFpr,n that play analogous role to the idempontent epr,i,j . According
to (3) in Proposition 7 we can define the following elements:

(3.6) ei,j := (ep,i,j , ep2,i,j , . . .) ∈ lim←−CCn
r ⊆ lim←−CFpr,n

where i, j ∈ {1, . . . n− 1} and i 6= j. For j = i+ 1 we shall denote:

ei := ei,i+1.

Notice that ei,j = ej,i. According to Remark 6 and Definition 4, epr,i,j is also
an element in Ypr,n(u). So (3.6) defines an element in Y∞,n(u) (with same
notation) and we have from the diagram below:

lim←−CCn
r −−−→ lim←−CFpr,n

ρ
−−−→ Y∞,n(u)





y

ξr





y

Ξr





y

CCn
r −−−→ CFpr,n

ρr
−−−→ Ypr,n(u) −−−→ 1

(Ξr ◦ ρ)(ei,j) = (ρr ◦ ξr)(ei,j) = epr,i,j , (for all r).

Lemma 7. For any i, j with i 6= j, the elements ei,j ∈ lim←−CFpr,n are idempo-
tents.

Proof. The multiplication in lim←−CFpr,n is defined componentwise, so the proof
follows directly from Lemma 4. ¤

Lemma 8. In lim←−CFpr,n, we have:

σ2i = 1 + (u− 1)ei(1− σi) mod (lim←− Ip
r,n).
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Proof. We must prove that σ2i − (1 + (u − 1)ei(1 − σi)) ∈ lim←− Ip
r,n. Recall

that σi is the constant sequence (σi, σi, . . .), hence σ
2
i is the constant sequence

(σ2i , σ
2
i , . . .). Also, the rth component of the element 1 + (u − 1)ei(1 − σi) ∈

lim←−CFpr,n is 1 + (u − 1)epr,i(1 − σi) ∈ CFpr,n. Therefore, the element σ2i −
(1+ (u− 1)ei(1−σi)) is the sequence (ε1,r, ε2,r, . . .), and εi,r ∈ Ipr,n. Hence the
lemma follows. ¤

Proposition 9. Setting εi := σ2i − 1− (u− 1)ei+(u− 1)eiσi ∈ lim←−CFpr,n, we
have:

lim←− Ip
r,n = 〈εi ; i = 1, . . . , n− 1〉.

Proof. Recall that εi = (εr,i)r∈N. Now, for any i and for any x = (xr), y =
(yr) ∈ lim←−CFpr,n we have that xεiy = (xrεr,i yr). Furthermore φrs(xrεr,iyr) =
φrs(xr)εs,iφ

r
s(yr) ∈ Ips,n. Thus, xεiy belongs to lim←− Ip

r,n for all i. Hence, the ideal
generated by the εi’s is contained in lim←− Ip

r,n. Let now w = (wr)r∈N ∈ lim←− Ip
r,n.

Then wr =
∑

i yr,iεr,izr,i, where yr,i, zr,i ∈ CFpr,n. Thus, we can write:

w =
∑

i

(yr,i)r(εr,i)r(zr,i)r ∈ lim←− Ip
r,n.

As (yr,i)r, (zr,i)r ∈ lim←−CFpr,n we obtain w ∈ 〈εi ; i = 1, . . . , n− 1〉. ¤

Recall that, according to our inverse system, the element σi ∈ Bn cor-
responds to the constant sequence (gi, gi, . . .) in Y∞,n(u). We denote this
sequence by gi. Similarly, the braid σ−1i ∈ Bn corresponds to the constant
sequence (g−1i , g−1i , . . .) in Y∞,n(u) and it shall be denoted by g−1i . Thus, in
ρ(lim←−CFpr,n) ⊆ Y∞,n(u) the following quadratic relations holds:

g2i = 1 + (u− 1)ei(1− gi) (i = 1, . . . , n− 1).

We define now ti := ρ(ti) and ei := ρ(ei). Then, from Theorem 2 and Propo-
sition 8, we deduce the following theorem.

Theorem 3. {1, t1, g1, . . . , gn−1} is a set of topological generators of Y∞,n(u).
Moreover, these elements satisfy the following relations:

(1) Braid relations among the gi’s
(2) t1gi = git1, for i ≥ 2
(3) t1g1t1g

−1
1 = g1t1g

−1
1 t1

(4) gigi−1 . . . g1t1g
−1
1 . . . g−1i−1)g

−1
i = g−1i (gi−1 . . . g1t1g

−1
1 . . . g−1i−1)gi

(5) g2i = 1 + (u− 1)ei(1− gi), (i = 1, . . . , n− 1).

Moreover, as in Proposition 5, we can prove analogous commutation rela-
tions for ei. More precisely we have:

Proposition 10. In Y∞,n(u) we have :

(1) g±1i ej = ejg
±1
i , for j 6= i− 1, i+ 1

(2) g±1i ej = eijg
±1
i , for |i− j| = 1
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(3) ejg
±1
i = g±1i eij, for |i− j| = 1.

Proof. The proofs follow directly from Lemma 7 and Proposition 5. ¤

Remark 10. It is worth observing that Y∞,n(u) can be regarded as a topo-
logical deformation of a quotient of the group algebra CFn, recall Theorem 3.
Roughly, the algebra Y∞,n(u) can be described in terms of topological genera-
tors, in the sense of Definition 1, and the same relations as the algebra Yd,n(u)
but where the relations hdi = 1 do not hold. Consequently, Y∞,n(u) has a set of
topological generators which look like the canonical generators of the framed
braid group Fn (recall Proposition 1), but with the addition of the quadratic
relation.

3.7. As already noted in the introduction, the advantage of the classical and
the p-adic Y-H algebras is that, by definition of the elements ei, their quadratic
relations involve the framing. Using the well-known Iwahori-Hecke quadratic
relations we define the modular and classical framed Hecke algebras:

Hd,n(q) := CFd,n/〈σ
2
i − (q − 1)σi − q ; i = 1, . . . , n− 1〉

and
H∞,n(q) := CFn/〈σ

2
i − (q − 1)σi − q ; i = 1, . . . , n− 1〉.

The structure of these algebras is simpler than that of the Y-H algebras. Yet,
the framed Hecke algebras are related to the cyclotomic and ‘generalized’ Hecke
algebras of type B (see [7] and references therein) in a similar manner that
the modular and classical framed braid groups are related to the B-type Artin
braid group. So, the Markov traces and the link invariants for the solid torus
constructed in [7] by the second author can be adapted here for obtaining
invariants of framed links.

In a sequel paper we construct a p-adic linear Markov trace using the linear
Markov traces in [4]. More precisely, we can prove the following result.

Theorem 4. There exists a unique p-adic linear Markov trace defined as

τ := lim←− τr : Y∞,n+1(u) −→ lim←−C[Xr]

where τr is the trace trk of [4] for k = pr and where lim←−C[Xr] is constructed
via appropriate connecting epimorphisms: δrs : C[Xr] −→ C[Xs] (see [5]).
Furthermore

τ(ab) = τ(ba)
τ(1) = 1

τ(agnb) = (z)rτ(ab)
τ(atmn+1b) = (xm)rτ(ab)

for any a, b ∈ Y∞,n(u) and m ∈ Z.

Normalizing all these traces according to the Markov equivalence for classical
framed and p-adic framed braids, we construct invariants of classical and p-adic
oriented framed links.
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We hope that this new concept of p-adic framed braids and p-adic framed
links that we propose, as well as the use of the Yokonuma-Hecke algebras and
our framed and p-adic framed link invariants, will lead to the construction of
new 3-manifold invariants.
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