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Abstract. In this survey paper we sketch new combinatorial
proofs of the classification of rational tangles and of unoriented
and oriented rational knots, using the classification of alternating
knots and the calculus of continued fractions. We continue with the
classification of achiral and strongly invertible rational links, and
we conclude with a description of the relationships among tangles,
rational knots and DNA recombination.

1. Introduction

Rational knots and links, also known in the literature as four-plats,
Viergeflechte and 2-bridge knots, are a class of alternating links of one
or two unknotted components and they are the easiest knots to make
(also for Nature!). The first twenty five knots, except for 85, are ra-
tional. Furthermore all knots up to ten crossings are either rational or
are obtained from rational knots by certain simple operations. Ratio-
nal knots give rise to the lens spaces through the theory of branched
coverings. A rational tangle is the result of consecutive twists on neigh-
bouring endpoints of two trivial arcs, see Definition 2.1. Rational knots
are obtained by taking numerator closures of rational tangles (see Fig-
ure 5), which form a basis for their classification. Rational knots and
rational tangles are of fundamental importance in the study of DNA
recombination. Rational knots and links were first considered in [28]
and [1]. Treatments of various aspects of rational knots and rational
tangles can be found in [5], [34], [4], [30], [14], [17], [20], [23]. See also
[2] for a good discussion on classical relationships of rational tangles,
covering spaces and surgery. A rational tangle is associated in a canon-
ical manner with a unique, reduced rational number or ∞, called the
fraction of the tangle. Rational tangles are classified by their fractions
by means of the following theorem:

1991 Mathematics Subject Classification. 57M25, 57M27.
Key words and phrases. rational knots and links, 2-tangles, rational tan-

gles, continued fractions, tangle fraction, coloring, chirality, invertibility, DNA
recombination.

1



2 LOUIS H. KAUFFMAN AND SOFIA LAMBROPOULOU

Theorem 1.1 (Conway, 1970). Two rational tangles are isotopic if
and only if they have the same fraction.

John H. Conway [5] introduced the notion of tangle and defined the
fraction of a rational tangle using the continued fraction form of the
tangle and the Alexander polynomial of knots. Conway was the first
to observe the extraordinary interplay between the elementary number
theory of fractions and continued fractions, and the topology of rational
tangles and rational knots and links.

Proofs of Theorem 1.1 can be found in [22], [4] p.196, [13] and [15].
The first two proofs invoke the classification of rational knots and the
theory of branched covering spaces. The proof by Goldman and Kauff-
man [13] is the first combinatorial proof of this theorem. In [15] the
proof is combinatorial and the topological invariance of the fraction of
a rational tangle is proved via flyping and also via coloring.

More than one rational tangle can yield the same or isotopic ra-
tional knots and the equivalence relation between the rational tangles
is reflected into an arithmetic equivalence of their corresponding frac-
tions. This is marked by a theorem due originally to Schubert [33] and
reformulated by Conway [5] in terms of rational tangles.

Theorem 1.2 (Schubert, 1956). Suppose that rational tangles with

fractions p
q
and p′

q′
are given (p and q are relatively prime. Similarly for

p′ and q′.) If K(p
q
) and K(p

′

q′
) denote the corresponding rational knots

obtained by taking numerator closures of these tangles, then K(p
q
) and

K(p
′

q′
) are topologically equivalent if and only if

(1) p = p′ and
(2) either q ≡ q′(mod p) or qq′ ≡ 1(mod p).

This classic theorem [33] has hitherto been proved by using the ob-
servation of Seifert [31] that the 2-fold branched covering spaces of S3

along K(p
q
) and K(p

′

q′
) are lens spaces, and invoking the results of Rei-

demeister [29] on the classification of lens spaces. Another proof using
covering spaces has been given by Burde in [3]. Schubert also extended
this theorem to the case of oriented rational knots and links described
as 2-bridge links:

Theorem 1.3 (Schubert, 1956). Suppose that orientation-compatible

rational tangles with fractions p
q
and p′

q′
are given with q and q′ odd. (p

and q are relatively prime. Similarly for p′ and q′.) If K(p
q
) and K(p

′

q′
)

denote the corresponding rational knots obtained by taking numerator
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closures of these tangles, then K(p
q
) and K(p

′

q′
) are topologically equiv-

alent if and only if

(1) p = p′ and
(2) either q ≡ q′(mod 2p) or qq′ ≡ 1(mod 2p).

In [16] we give the first combinatorial proofs of Theorem 1.2 and The-
orem 1.3. Our methods for proving these results are in fact methods for
understanding these knots at the diagrammatic level. We have located
the essential points in the proof of the classification of rational knots in
the direct combinatorics related to the question: Which rational tangles
will close to form this specific knot or link diagram? By looking at the
theorems in this way, we obtain a path to the results that can be un-
derstood without extensive background in three-dimensional topology.
This allows us to explain deep results in an elementary fashion.

In this paper we sketch the proofs in [15] and [16] of the above three
theorems and we give the key examples that are behind all of our proofs.
In order to compose elementary proofs, we have relied on a deep result
in topology – namely the solution by Menasco and Thistlethwaite [21]
of the Tait Conjecture [37] concerning the classification of alternating
knots. The Tait Conjecture is easily stated and understood. Hence
it provides an ideal tool for our exploration. The present paper con-
stitutes an introduction to our work in this domain and it will be of
interest to biologists and mathematicians. We intend it to be accessible
to anyone who is beginning to learn knot theory and its relationship
with molecular biology. In most cases the detailed proofs are not given
here, but can be found in our research papers [15], [16]. We also give
some applications of Theorems 1.2 and 1.3 using our methods.

The paper is organized as follows. In Section 2 we introduce 2-
tangles, their isotopies and operations, and we state the Tait Conjec-
ture. In Section 3 we introduce the rational tangles as a special class of
2-tangles, and we show how to extract continued fraction expressions
for rational tangles. The section concludes with a proof that ratio-
nal tangles are alternating, which implies a unique canonical form for
rational tangles. In Section 4 we recall facts about finite continued
fractions with numerators equal to 1 and give a unique canonical form
for continued fractions. Then we associate a continued fraction to a ra-
tional tangle. The arithmetic value of this continued fraction is called
the fraction of the tangle. We then present the classification of ratio-
nal tangles (Theorem 1.1) in terms of their fractions by unravelling
the relationship between the topological and arithmetical operations
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on rational tangles and rational numbers. At the end of Section 4 we
give an alternate definition of the fraction of a rational tangle using the
method of integral coloring.

In Section 5 we give a sketch of our proof of Theorem 1.2 of the
classification of unoriented rational knots by means of a direct combi-
natorial and arithmetical analysis of rational knot diagrams, using the
Tait Conjecture and the classification of rational tangles. In Section
6 we discuss chirality of knots and give a classification of the achiral
rational knots and links as numerator closures of even palindromic ra-
tional tangles in continued fraction form (Theorem 6.1). In Section
7 we give our interpretation of the statement of Theorem 1.3 and we
sketch our proof of the classification of oriented rational knots, using
the methods we developed in the unoriented case, and examining the
connectivity patterns of oriented rational knots (Theorem 7.1).

In Section 8 we point out that all oriented rational knots and links are
invertible. This section gives a classification of the strongly invertible
rational links (reverse the orientation of one component) as closures
of odd palindromic oriented rational tangles in continued fraction form
(Theorem 8.1). The paper ends with an introduction to the application
of these methods to DNA recombination. Section 9 outlines the tangle
model of DNA recombination (see [35]) as an application of Theorem
1.2, and it gives a bound on the needed number of DNA recombination
experiments for solving certain tangle equations (Theorem 9.1).

2. Rational Tangles and their Operations

Throughout this paper we will be working with tangles. The theory
of tangles was discovered by John Conway [5] in his work on enumer-
ating and classifying knots. An (m,n)-tangle is an embedding of a
finite collection of arcs (homeomorphic to the interval [0,1]) and circles
into the three-dimensional Euclidean space, such that the endpoints of
the arcs go to a specific set of m + n points on the surface of a ball
B3 standardly embedded in S3, so that the m points lie on the upper
hemisphere and the n points on the lower hemisphere with respect to
the height function, and so that the circles and the interiors of the arcs
are embedded in the interior of this ball. An (n, n)-tangle will be ab-
breviated to n-tangle. Knots and links are 0-tangles, and braids on n
strands are the most well-known class of n-tangles. The left-hand side
of Figure 1 illustrates a 2-tangle. Finally, an (m,n)-tangle is oriented
if we assign orientations to each arc and each circle. By definition, the
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Figure 1. A 2-tangle and a rational tangle

total number of free strands, m+n, is required to be even, and without
loss of generality the m+n endpoints of a tangle can be arranged on a
great circle on the sphere or in a box, which may also be omitted. One
can then define a diagram of an (m,n)-tangle to be a regular projection
of the tangle on the plane of this great circle. As we shall see below,
the class of 2-tangles is of particular interest.

We will soon concentrate on a special class of 2-tangles, the rational
tangles. The simplest possible rational tangles comprise two unlinked
arcs either horizontal or vertical. These are the trivial tangles, denoted
[0] and [∞] tangles respectively, see Figure 2.

Definition 1. Let t be a pair of unoriented arcs properly embedded in a
3-ball B. A 2-tangle is rational if there exists an orientation preserving
homeomorphism of pairs:

g : (B, t) −→ (D2 × I, {x, y} × I) (a trivial tangle).

Definition 2.1 is equivalent to saying that rational tangles can be
obtained by applying a finite number of consecutive twists of neighbor-
ing endpoints to the elementary tangles [0] or [∞]. In one direction,
the act of untwisting a horizontal twist (e.g. the outer of the twists
labelled 2 in Figure 1) can be expressed by such a homeomorphism of
pairs. To see the equivalence of Definition 1, let S2 denote the two-
dimensional sphere, which is the boundary of the 3-ball B and let p
denote four specified points in S2. Let further h : (S2, p) −→ (S2, p)
be a self-homeomorphism of S2 with the four points. This extends to
a self-homeomorphism h of the 3-ball B (see [30], page 10). Further,
let a denote the two straight arcs {x, y} × I joining pairs of the fours
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[     ][0]

,

Figure 2. The trivial tangles [0] and [∞]

point of the boundary of B. Consider now h(a). We call this the tangle
induced by h. We note that up to isotopy (see definition below) h is a
composition of braidings of pairs of points in S2 (see [26], pages 61 to
65). Each such braiding induces a twist in the corresponding tangle.
So, if h is a composition of braidings of pairs of points, then the exten-
sion h is a composition of twists of neighboring end arcs. Thus h(a) is
a rational tangle and every rational tangle can be obtained this way.
We shall use this equivalence as the characterizing property of rational
tangles. Of course, each twisting operation changes the isotopy class
of the tangle to which it is applied. Examples of rational tangles are
illustrated in the right-hand side of Figure 1 as well as in Figures 7 and
10 below.

We are interested in studying tangles up to an equivalence relation
called isotopy. Two (m,n)-tangles, T, S, in B3 are said to be isotopic,
denoted by T ∼ S, if they have identical configurations of their m+ n
endpoints in S2 = ∂B3, and if there is an ambient isotopy of (B3, T ) to
(B3, S) that is the identity on the boundary (S2, ∂T ) = (S2, ∂S). An
ambient isotopy can be imagined as a continuous deformation of B3

fixing the m + n endpoints on the boundary sphere, and bringing one
tangle to the other without causing any self-intersections. Equivalently,
there is an orientation-preserving self-homeomorphism h : (B3, T ) −→
(B3, S) that is the identity map on the boundary. Isotopic tangles are
said to be in the same topological class.

In terms of diagrams, Reidemeister [27] proved that the local moves
on diagrams illustrated in Figure 3 capture combinatorially the notion
of ambient isotopy of knots, links and tangles in three-dimensional
space. That is, if two diagrams represent knots, links or tangles that
are isotopic, then the one diagram can be obtained from the other by a
sequence of Reidemeister moves. In the case of tangles the endpoints of
the tangle remain fixed and all the moves occur inside the tangle box.

Two oriented (m,n)-tangles are are said to be oriented isotopic if
there is an isotopy between them that preserves the orientations of the
corresponding arcs and the corresponding circles. The diagrams of two
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Figure 3. The Reidemeister moves

oriented isotopic tangles differ by a sequence of oriented Reidemeister
moves, i.e. Reidemeister moves with orientations on the little arcs that
remain consistent during the moves. From now on we will be thinking
in terms of tangle diagrams. Also, we will be referring to both knots
and links whenever we say ‘knots’.

Let T(m,n) denote the set of all (m,n) tangles. Among all tangles, the
class T(2,2) of 2-tangles is particularly interesting for various reasons.
For one, it is closed under operations of addition (+) and star-product
(∗) as illustrated in Figure 4. Addition is accomplished by placing the
tangles side-by-side and attaching the NE strand of the left tangle to
the NW strand of the right tangle, while attaching the SE strand of
the left tangle to the SW strand of the right tangle. The star product is
accomplished by placing one tangle underneath the other and attaching
the upper strands of the lower tangle to the lower strands of the upper
tangle.

The mirror image of a tangle T is denoted by −T and it is ob-
tained by switching all the crossings in T. A third operation illustrated
in Figure 4 is inversion, accomplished by turning the tangle counter-
clockwise by 90◦ in the plane and taking its mirror image. The inverse
of a tangle T is denoted by T i. It is worth noting that turning the
tangle clockwise by 90◦ is the cancelling operation, and its result will
be denoted by T−i. The inversion of a 2-tangle is an order 4 operation.
We also let T r denote a counter-clockwise rotation of T by 90◦ in the
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Figure 4. Addition, product and inversion of 2-tangles
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Figure 5. The numerator and denominator of a 2-tangle

plane. This is referred to as the rotate of the tangle T . Thus inver-
sion is accomplished by rotation and mirror image: T i = −T r. The
cancelling operation of T r is T−r. Remarkably, for rational tangles the
inversion is an order 2 operation, i.e. T−i ∼ T i and T ∼ (T i)i. For this
reason we shall also denote the inverse of a 2-tangle T by 1/T , and
hence the rotate of the tangle T will be denoted by −1/T . As we shall
see later, these notations are harmonious with a method of evaluating
a 2-tangle by a fraction. We note that all operations in T(2,2) can be
generalized appropriately to operations in T(m,n).

Finally, the special symmetry of the endpoints of 2-tangles allows
for the following closing operations, which yield two different knots:
the Numerator of a 2-tangle T , denoted by N(T ), which is obtained
by joining with simple arcs the two upper endpoints and the two lower
endpoints of T , and the Denominator of a 2-tangle T , which is obtained
by joining with simple arcs each pair of the corresponding top and
bottom endpoints of T , and it shall be denoted by D(T ). We have
N(T ) = D(T r) and D(T ) = N(T r). We note that every knot or link
can be regarded as the numerator closure of a 2-tangle.
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N(T) =

[     ][0]

=T T

Figure 6. The [0]− [∞] interchange

We obtain D(T ) from N(T ) by a [0]− [∞] interchange, as shown in
Figure 6. This ‘transmutation’ of the numerator to the denominator is
a precursor to the tangle model of a recombination event in DNA, see
Section 9. The [0]− [∞] interchange can be described algebraically by
the equations:

N(T ) = N(T + [0]) −→ N(T + [∞]) = D(T ).

This paper will concentrate on the class of rational knots and links
that come from closing the rational tangles. We point out that, even
though the sum/product of rational tangles is in general not rational,
the numerator (denominator) closure of the sum (product) of two ratio-
nal tangles is still a rational knot. Another interesting phenomenon is
that it may happen that two rational tangles are not isotopic but have
isotopic numerators. This is the basic idea behind the classification of
rational knots, see Section 5.

Note on the types of crossings. The type of crossings of knots and
2-tangles follow the checkerboard rule: shade the regions of the tangle
(knot) in two colors, starting from the left (outside) to the right (inside)
with grey, and so that adjacent regions have different colors. Such a
shading is illustrated in Figure 7. Crossings in the tangle are said to
be of positive type if they are arranged with respect to the shading as
exemplified in Figure 7 by the tangle [+1], i.e. they have the region on
the right shaded as one walks towards the crossing along the over-arc.
Crossings of the reverse type are said to be of negative type and they are
exemplified in Figure 7 by the tangle [−1]. (Compare with the rational
tangle of Figure 1.) The reader should note that our crossing type and
sign conventions are the opposite of those in [5]. Our conventions agree
with those of Ernst and Sumners [10], which also follow the standard
conventions of biologists.
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[-1][+1]

,

Figure 7. The checkerboard rule for shading

A tangle is said to be alternating if the crossings in the tangle al-
ternate from under to over as we go along any component or arc of
the weave. Similarly, a knot is alternating if it possesses an alternating
diagram. Notice that, according to the checkerboard shading, the only
way the weave alternates is if any two adjacent crossings are of the
same type, and this propagates to the whole diagram. Thus, a tangle
or a knot diagram is alternating if and only if it has all crossings of
the same type.

A flype is an isotopy move applied on a 2-subtangle of the form
[±1] + t or [±1] ∗ t and it fixes the endpoints of the subtangle, see
Figure 8. A flype preserves the alternating structure of a diagram.
Even more, flypes are the only isotopy moves needed in the statement
of the celebrated Tait Conjecture for alternating knots, stating that
two alternating knots are isotopic if and only if any two corresponding
diagrams on S2 are related by a finite sequence of flypes. This was
posed by P.G. Tait, [37] in 1898 and was proved by W. Menasco and
M. Thistlethwaite, [21] in 1993.

We describe now another operation applied on rational tangles, which
turns out to be an isotopy. We say that Rhflip is the horizontal flip of
the tangle R if Rhflip is obtained from R by a 180◦ rotation around
a horizontal axis on the plane of R. Moreover, Rvflip is the vertical
flip of the 2-tangle R if Rvflip is obtained from R by a 180◦ rotation
around a vertical axis on the plane of R. See Figure 9 for illustrations.
Note that a flip switches the endpoints of the tangle and, in general, a
flipped tangle is not isotopic to the original one. But it is a remarkable
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Figure 8. The flype moves
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Figure 9. The horizontal and vertical flip

property of rational tangles that T ∼ T hflip and T ∼ T vflip for any
rational tangle T. See [15] for a proof. This is obvious for the tangles
[n] and 1

[n]
. Using the vertical flip and induction it is easy to see that

the standard and the 3-strand braid representation of a rational tangle
are indeed equivalent.

The above isotopies composed consecutively yield T ∼ (T i)i = (T r)r

for any rational tangle T . This says that inversion (rotation) is an
operation of order 2 for rational tangles. Thus, the two inverses T i

and T−i of a rational tangle T are in fact isotopic, so we can rotate
the mirror image of T by 90◦ either counterclockwise or clockwise to
obtain T i. Then, with this notation we have 1

1
T

= T , and this conforms

with our notation 1
T
for the inverse of a 2-tangle, and T r = 1

−T
= − 1

T
.
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Figure 10. The elementary rational tangles

3. Rational Tangles and their Canonical Form

In this section we study rational tangles and we show that every
rational tangle is isotopic to an alternating one, that is said to be in
canonical form. We defined rational tangles as being obtained by ap-
plying a finite number of consecutive twists of neighbouring endpoints
to the elementary tangles [0] or [∞], (recall Definition 2.1). Clearly,
the simplest rational tangles are the [0], the [∞], the [+1] and the [−1]
tangles, while the next simplest ones are:

(i) The integer tangles, denoted by [n], made of n horizontal twists,
n ∈ Z.

(ii) The vertical tangles, denoted by 1
[n]
, made of n vertical twists,

n ∈ Z. These are the inverses of the integer tangles, see Figure
10. This terminology explains the need for mirror imaging in
the definition of inversion.

Note that the inverse of a 2-tangle is usually not isotopic to the
original tangle, but it is the case that [+1]−1 = [+1] and [−1]−1 = [−1].
Note also that the twists generating the rational tangles could take
place between the right, left, top or bottom endpoints of a previously
created rational tangle. Using obvious flypes on appropriate subtangles
one can always bring the twists to the right or bottom of the tangle. We
shall then say that the rational tangle is in standard form. For example
the rational tangles of Figure 1 and of Figure 7 are in standard form.
Hence, a rational tangle in standard form can be obtained inductively
from a previously created rational tangle, T say, either by adding an
integer tangle on the right: T → T + [±n], or by multiplying by a
vertical tangle at the bottom: T −→ T ∗ 1

[±n]
, see Figure 11. For

example, Figure 1 illustrates the tangle (([3] ∗ 1
[−2]

) + [2]), while Figure
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Figure 11. Creating new rational tangles

7 illustrates the tangle (([3] ∗ 1
[2]
)+ [2]) in standard form. Equivalently,

a rational tangle in standard form is created inductively by consecutive
additions of the tangles [±1] only on the right and multiplications by
the tangles [±1] only at the bottom, starting from the tangles [0] or
[∞].

A rational tangle in standard form has an algebraic expression of the
type:

((([an] ∗
1

[an−1]
) + [an−2]) ∗ · · · ∗

1

[a2]
) + [a1], for a2, . . . , an ∈ Z− {0},

where [a1] may be [0] and [an] may be [∞] (see also Remark 3.1 below).
Figure 12 illustrates two equivalent ways of representing an abstract
rational tangle in standard form: the standard representation and the 3-
strand-braid representation. This last one is a particular way of closing
a three-strand braid. In either representation the rational tangle begins
to twist from the tangle [an] ([a5] in Figure 12), and it untwists from the
tangle [a1]. The 3-strand-braid representation is actually a compressed
version of the vertical flip of the standard representation. Indeed, the
upper row of crossings of the 3-strand-braid representation corresponds
to the horizontal crossings of the standard representation and the lower
row to the vertical ones. Thus, the two representations for rational
tangles are equivalent, as it becomes clear from the discussion above
about flips. Note that in the 3-strand-braid representation we need
to draw the mirror images of the even terms, since when we rotate
them to the vertical position we obtain crossings of the opposite type.
The 3-strand-braid representation turns out to be more appropriate for
studying rational knots.
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a5
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a 2

a 3
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Figure 12. The standard and 3-strand-braid representation

~

Figure 13. The ambiguity of the first crossing

Figure 12 illustrates an abstract rational tangle in standard form
with an odd number of sets of twists (n = 5). Note that if n is even
and [a1] is horizontal then [an] has to be vertical. See the left illustration
of Figure 13 for such an example of n even.

Remark 3.1. When we start creating a rational tangle, the very first
crossing can be equally seen as a horizontal or as a vertical one. Thus,
we may always assume that we start twisting from the [0]-tangle. More-
over, because of the same ambiguity, the number n in the above nota-
tion may be assumed to be odd. This is sufficiently illustrated in Figure
13. We shall make this assumption for proving Theorems 1.1, 1.2 and
1.3.

From the above one may associate to a rational tangle diagram a
vector of integers (a1, a2, . . . , an), where the first entry denotes the place
where the tangle starts unravelling, and the last entry where it begins
to twist. This vector is unique up to breaking the entry an by a unit,
because of Remark 3.1. I.e. (a1, a2, . . . , an) = (a1, a2, . . . , an − 1, 1),
if an > 0, and (a1, a2, . . . , an) = (a1, a2, . . . , an + 1,−1), if an < 0.
Thus n may be always assumed to be odd. The example of Figure
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1 is associated to the vector (2,−2, 3), while the one of Figure 7 is
associated to the vector (2, 2, 3). As we shall soon see, if a rational
tangle changes by an isotopy, the associated vector does not necessarily
remain the same.

We next observe that multiplication of a rational tangle T by 1
[n]

may

be obtained as addition of [n] to the inverse 1
T
followed by inversion.

Indeed, we have:

Lemma 1. The following tangle equation holds for any rational tangle
T.

T ∗ 1

[n]
=

1

[n] + 1
T

.

Proof. Observe that a 90◦ clockwise rotation of T∗ 1
[n]

produces−[n]− 1
T
.

Hence, from the above (T ∗ 1
[n]
)
r
= −[n] − 1

T
, and thus (T ∗ 1

[n]
)i =

[n] + 1
T
. So, taking inversions on both sides yields the tangle equation

of the statement. �
Lemma 3.2 implies that the following two simple algebraic operations

between rational tangles preserve the rational tangle structure and, in
fact, they generate the whole class of rational tangles: Addition of [1]
or [−1] and Inversion. Moreover, it is easy to see that inversion can
be replaced by Rotation.

Definition 2. A continued fraction in integer tangles is an algebraic
description of a rational tangle via a continued fraction built from the
tangles [a1], [a2], . . . , [an] with all numerators equal to 1, namely an
expression of the type:

[[a1], [a2], . . . , [an]] := [a1] +
1

[a2] + · · ·+ 1
[an−1]+

1
[an]

for a2, . . . , an ∈ Z−{0} and n even or odd. We allow that the term a1
may be zero, and in this case the tangle [0] may be omitted. A rational
tangle described via a continued fraction in integer tangles is said to
be in continued fraction form. The length of the continued fraction is
arbitrary – in the previous formula illustrated with length n – whether
the first summand is the tangle [0] or not.

It follows from Lemma 3.2 that inductively every rational tangle can
be written in continued fraction form. Lemma 3.2 makes it easy to
write out the continued fraction form of a given rational tangle, since
horizontal twists are integer additions, and multiplications by vertical
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twists are the reciprocals of integer additions. For example, Figure
1 illustrates the rational tangle [2] + 1

[−2]+ 1
[3]

, Figure 7 illustrates the

rational tangle [2] + 1
[2]+ 1

[3]

, while the tangles of Figure 12 both depict

the rational tangle [[a1], [a2], [a3], [a4], [a5]]. In abstract terms:

([c]∗ 1

[b]
)+[a] has the continued fraction form [a]+

1

[b] + 1
[c]

= [[a], [b], [c]].

For T = [[a1], [a2], . . . , [an]] the following statements are now straight-
forward.

1. T + [±1] = [[a1 ± 1], [a2], . . . , [an]],

2. 1
T

= [[0], [a1], [a2], . . . , [an]],

3. −T = [[−a1], [−a2], . . . , [−an]].

Definition 3. A rational tangle T = [[a1], [a2], . . . , [an]] is said to be
in canonical form if T is alternating and n is odd.

As an example, the tangle of Figure 7 is in canonical form. Recall
that a tangle is alternating if and only if it has crossings all of the same
type. Thus, a rational tangle T = [[a1], [a2], . . . , [an]] is alternating
if the ai’s are all positive or all negative. For example, the tangle
of Figure 7 is alternating. We note that if T is alternating and n
even, then we can bring T to canonical form by breaking an by a
unit, i.e. [[a1], [a2], . . . , [an]] = [[a1], [a2], . . . , [an − 1], [1]], if an > 0,
and [[a1], [a2], . . . , [an]] = [[a1], [a2], . . . , [an + 1], [−1]], if an < 0, recall
Remark 3.1. Lemma 3.5 below is a key property of rational tangles.

Lemma 2. Every rational tangle can be isotoped to canonical form.

Proof. We prove that every rational tangle is isotopic to an alternating
tangle. Indeed, if T has a non-alternating continued fraction form then
the following configuration, shown in the left of Figure 14, must occur
somewhere in T , corresponding to a change of sign from one term to
an adjacent term in the tangle continued fraction. This configuration
is isotopic to a simpler isotopic configuration as shown in that figure.

Therefore, it follows by induction on the number of crossings in the
tangle that T is isotopic to an alternating rational tangle. An alternat-
ing rational tangle has a continued fraction expression with all terms
either positive or negative, and from Remark 3.1 above we may assume
that the number of terms is odd. �

The alternating nature of the rational tangles will be very useful to
us in classifying rational knots and links later in this paper. It turns out
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Figure 14. Reducing to the alternating form

from the classification of alternating knots that two alternating tangles
are isotopic if and only if they differ by a sequence of flypes. (See [36],
[32].) Even more, if the tangles are rational then the 2-subtangle of the
flype is also rational, see [15]. It is easy to see that the closure of an
alternating rational tangle is an alternating knot. Thus we have

Corollary 1. Rational knots are alternating, since they possess a
diagram that is the closure of an alternating rational tangle.

That rational knots are alternating was first proved quite differently
by Bankwitz and Schumann and independently by Goeritz, see [1].

4. Continued Fractions and the Classification of
Rational Tangles

In this section we assign to a rational tangle a fraction, and we
explore the analogy between rational tangles and continued fractions.
This analogy culminates in a common canonical form, which is used to
deduce the classification of rational tangles. We need first to recall some
facts about continued fractions. The subject of continued fractions is
of perennial interest to mathematicians, see for example [18], [24], [19],
[38]. In this paper we shall only consider continued fractions with all
numerators equal to 1, namely arithmetic expressions of the type

[a1, a2, . . . , an] := a1 +
1

a2 + · · ·+ 1
an−1+

1
an

for a1 ∈ Z, a2, . . . , an ∈ Z− {0} and n even or odd. As in the case of
rational tangles we allow that the term a1 may be zero. The length of
the continued fraction is the number n whether a1 is zero or not. Note
that if for i > 1 all terms are positive or all terms are negative and
a1 ̸= 0 or a1 = 0, then the absolute value of the continued fraction is
greater (smaller) than one. Clearly, the two simple algebraic operations
addition of +1 or −1 and inversion generate inductively the whole class
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of continued fractions starting from zero. For any rational number p
q

the following statements are really straightforward.

1. there are a1 ∈ Z, a2, . . . , an ∈ Z−{0} such that p
q
= [a1, a2, . . . , an],

2. p
q
± 1 = [a1 ± 1, a2, . . . , an],

3. q
p

= [0, a1, a2, . . . , an],

4. −p
q

= [−a1,−a2, . . . ,−an].

Property 1 above is a consequence of Euclid’s algorithm. The algorithm
by which Property 1 works is illustrated in the proof of Lemma 4.1
below, see also [18]. The main observation now is the following well-
known fact about continued fractions. This is the analogue of Lemma
3.5.

Lemma 3. Every continued fraction [a1, a2, . . . , an] can be transformed
to a unique canonical form [β1, β2, . . . , βm], where all βi’s are positive
or all negative integers and m is odd.

Proof. It follows immediately from Euclid’s algorithm. We evaluate
first [a1, a2, . . . , an] =

p
q
, and using Euclid’s algorithm we rewrite p

q
in

the desired form. We illustrate the proof with an example. Suppose
that p

q
= 11

7
. Then

11

7
= 1 +

4

7
= 1 +

1
7
4

= 1 +
1

1 + 3
4

= 1 +
1

1 + 1
4
3

= 1 +
1

1 + 1
1+ 1

3

= [1, 1, 1, 3] = 1 +
1

1 + 1
1+ 1

2+1
1

= [1, 1, 1, 2, 1].

It is the form of odd length that is unique, and any form of even length
converts to a form of odd length via the transformations

[b1, b2, . . . , bk] = [b1, b2, . . . , bk − 1,+1] for bi’s positive, or
[b1, b2, . . . , bk] = [b1, b2, . . . , bk + 1,−1] for bi’s negative.

This completes the proof. �
Remark 4.1. There is an algorithm that can be applied directly to the
initial continued fraction to obtain its canonical form without evalu-
ating it. The point is that this algorithm works in parallel with the
algorithm for the canonical form of rational tangles, see [15] for details.

We can now define the fraction of a rational tangle.

Definition 4. For a rational tangle T = [[a1], [a2], . . . , [an]] we define
the fraction F (T ) of T to be the numerical value of the continued
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fraction obtained by substituting integers for the integer tangles in the
expression for T , i.e.

F (T ) := a1 +
1

a2 + · · ·+ 1
an−1+

1
an

= [a1, a2, . . . , an],

if T ̸= [∞], and F ([∞]) := ∞ = 1
0
, as a formal expression.

Clearly the tangle fraction has the following properties.

1. F (T + [±1]) = F (T )± 1,

2. F ( 1
T
) = 1

F (T )
,

3. F (−T ) = −F (T ).

We are now in position to prove Theorem 1.1, the classification of
rational tangles.

Proof of Theorem 1.1. We show first that if two rational tangles are
isotopic they have the same fraction. We only sketch this part and
we refer the reader to our paper [15] for the details. Let T, S be two
isotopic rational tangles. We bring T, S to their canonical forms T ′, S ′

respectively. By Remark 4.2, this corresponds to bringing the initial
continued fractions F (T ), F (S) to their canonical forms. Now, the
tangles T ′, S ′ are alternating and isotopic, so they differ by a sequence
of flypes. Thus, by showing that if two rational tangles differ by a flype
they have the same continued fraction, and thus the same fraction, we
have completed the one direction of the proof.

Conversely, we show that if two rational tangles have the same frac-
tion they are isotopic. Indeed, let T = [[a1], [a2], . . . , [an]] and S =
[[b1], [b2], . . . , [bm]] be two rational tangles with F (T ) = F (S) = p

q
. We

bring T, S to their canonical forms T ′ = [[α1], [α2], . . . , [αk]] and S ′ =
[[β1], [β2], . . . , [βl]] respectively. From the other direction of the theorem
discussed above we have F (T ′) = F (T ) = F (S) = F (S ′) = p

q
. By

Lemma 4.1, the fraction p
q
has a unique continued fraction expansion

in canonical form, say p
q
= [γ1, γ2, . . . , γr]. This gives rise to the alter-

nating rational tangle in canonical form Q = [[γ1], [γ2], . . . , [γr]], which
is uniquely determined from the vector of integers (γ1, γ2, . . . , γr). We
claim that Q = T ′ (and similarly Q = S ′). Indeed, if this were not the
case we would have the two different continued fractions in canonical
form giving rise to the same rational number: [α1, α2, . . . , αk] =

p
q
=

[γ1, γ2, . . . , γr]. But this contradicts the uniqueness of the canonical
form of continued fractions (Lemma 4.1). �
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Some comments are now due. Theorem 1.1 says that rational num-
bers are represented bijectively by rational tangles; their negatives are
represented by the mirror images and their inverses by inverses of ra-
tional tangles. Adding integers to a rational number corresponds to
adding integer twists to a rational tangle; but sums of non-integer ra-
tional numbers do not correspond to the rational tangles of the sums.
Moreover, Theorem 1.1 implies that the canonical form of a rational
tangle is unique, since the corresponding canonical form of its continued
fraction is unique. Another observation is that in order to bring a ratio-
nal tangle to its canonical form one simply has to calculate its fraction
and express it in canonical form. This canonical form gives rise to an
alternating tangle in canonical form which, by Theorem 1.1, is isotopic
to the initial one. For example, let T = [[2], [−3], [5]]. Then F (T ) =
[2,−3, 5] = 23

14
. But 23

14
= [1, 1, 1, 1, 4], thus T ∼ [[1], [1], [1], [1], [4]], and

this last tangle is the canonical form of T . In [15] we discuss the analogy
between rational tangles and continued fractions for infinite continued
fractions.

There are, in fact, definitions that associate a rational fraction F (T )
(including 0/1 and 1/0) to any 2-tangle T whether or not it is rational.
The first definition is due to John Conway in [5] using the Alexander
polynomial of the knots N(T ) and D(T ). In [13] an alternate definition
is given that uses the bracket polynomial of the knots N(T ) and D(T ),
and in [12] the fraction of a tangle is related to the conductance of an
associated electrical network. Below we give yet a different definition
of the fraction using the coloring method. In all these definitions the
fraction is by definition an isotopy invariant of tangles, and we have
to show that non-isotopic rational tangles will have different fractions.
In the present paper and in [15] the fraction of a rational tangle is
defined directly from its combinatorial structure (as originally defined
by Conway), and we verify the topological invariance of the fraction
using the Tait conjecture.

We conclude this section by giving an alternate definition of the frac-
tion that uses the concept of coloring of knots and tangles. We color
the arcs of the knot/tangle with integers, using the basic coloring rule
that if two undercrossing arcs colored α and γ meet at an overcrossing
arc colored β, then α + γ = 2β. We often think of one of the under-
crossing arc colors as determined by the other two colors. Then one
writes γ = 2β − α.

It is easy to verify that this coloring method is invariant under the
Reidemeister moves in the following sense: Given a choice of coloring
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0

1 2 3 4

0

1 2 3

0 = 3

α

β
2β − α

4

1 = 4

Figure 15. The coloring rule, integral and modular coloring

for the tangle/knot, there is a way to re-color it each time a Reidemeis-
ter move is performed, so that no change occurs to the colors on the
external strands of the tangle (so that we still have a valid coloring).
This means that a coloring potentially contains topological informa-
tion about a knot or a tangle. In coloring a knot (and also many
non-rational tangles) it is usually necessary to restrict the colors to the
set of integers modulo N for some modulus N . For example, in Figure
15 it is clear that the color set Z/3Z = {0, 1, 2} is forced for coloring
a trefoil knot. When there exists a coloring of a tangle by integers,
so that it is not necessary to reduce the colors over some modulus we
shall say that the tangle is integral.

It turns out that every rational tangle is integral: To see this choose
two ‘colors’ for the initial strands (e.g. the colors 0 and 1) and color
the rational tangle as you create it by successive twisting. We call the
colors on the initial strands the starting colors. See Figure 16 for an
example. It is important that we start coloring from the initial strands,
because then the coloring propagates automatically and uniquely. If
one starts from somewhere else, one might get into an edge with an
undetermined color. The resulting colored tangle now has colors as-
signed to its external strands at the northwest, northeast, southwest
and southeast positions. Let NW (T ), NE(T ), SW (T ) and SE(T ) de-
note these respective colors of the colored tangle T and define the color
matrix of T , M(T ), by the equation

M(T ) =

[
NW (T ) NE(T )
SW (T ) SE(T )

]
.

Definition 5. To a rational tangle T with color matrix M(T ) =[
a b
c d

]
we associate the number

f(T ) :=
b− a

b− d
∈ Q ∪∞.



22 LOUIS H. KAUFFMAN AND SOFIA LAMBROPOULOU
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T = [2] + 1/([2] + 1/[3])

F(T) = 17/7 = f(T)

Figure 16. Coloring rational tangles

It turns out that the entries a, b, c, d of a color matrix of a rational
tangle satisfy the ‘diagonal sum rule’: a+ d = b+ c.

Proposition 1. The number f(T ) is a topological invariant associated
with

the tangle T . In fact, f(T ) has the following properties:

1. f(T + [±1]) = f(T )± 1,

2. f(− 1
T
) = − 1

f(T )
,

3. f(−T ) = −f(T ),

4. f( 1
T
) = 1

f(T )
,

5. f(T ) = F (T ).

Thus the coloring fraction is identical to the arithmetical fraction de-
fined earlier.

It is easy to see that f([0]) = 0
1
, f([∞]) = 1

0
, f([±1]) = ±1. Hence

Statement 5 follows by induction. For proofs of all statements above
as well as for a more general set-up we refer the reader to our paper
[15]. This definition is quite elementary, but applies only to rational
tangles and tangles generated from them by the algebraic operations
of ‘+’ and ‘∗’.

In Figure 16 we have illustrated a coloring over the integers for the
tangle [[2], [2], [3]] such that every edge is labelled by a different integer.
This is always the case for an alternating rational tangle diagram T.
For the numerator closure N(T ) one obtains a coloring in a modular
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TT

*N(T) ~ N(T       ) 
[n]
_1

[n]
_1

~

Figure 17. Twisting the bottom of a tangle

number system. For example in Figure 16 the coloring of N(T ) will be
in Z/17Z, and it is easy to check that the labels remain distinct in this
example. For rational tangles, this is always the case when N(T ) has
a prime determinant, see [15] and [25].

5. The Classification of Unoriented Rational Knots

By taking their numerators or denominators rational tangles give
rise to a special class of knots, the rational knots. We have seen so far
that rational tangles are directly related to finite continued fractions.
We carry this insight further into the classification of rational knots
(Schubert’s theorems). In this section we consider unoriented knots,
and by Remark 3.1 we will be using the 3-strand-braid representation
for rational tangles with odd number of terms. Also, by Lemma 3.5 and
Corollary 3.6 we may assume all rational knots to be alternating. Note
that we only need to take numerator closures, since the denominator
closure of a tangle is simply the numerator closure of its rotate.

As already said in the introduction, it may happen that two rational
tangles are non-isotopic but have isotopic numerators. The simplest
instance of this phenomenon is adding n twists at the bottom of a
tangle T , see Figure 17. This operation does not change the knot
N(T ), i.e. N(T ∗ 1/[n]) ∼ N(T ), but it does change the tangle, since
F (T ∗ 1/[n]) = F (1/([n] + 1/T )) = 1/(n+ 1/F (T )); so, if F (T ) = p/q,
then F (T ∗ 1/[n]) = p/(np + q). Hence, if we set np + q = q′ we have
q ≡ q′(mod p), just as Theorem 1.2 dictates. Note that reducing all
possible bottom twists implies |p| > |q|.

Another key example of the arithmetic relationship of the classifica-
tion of rational knots is illustrated in Figure 18. Here we see that the
‘palindromic’ tangles
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 T = [2] + 1/( [3] + 1/[4] ) S = [4] + 1/( [3] + 1/[2] )

~

N(T) = N(S)

Figure 18. An instance of the palindrome equivalence

T = [[2], [3], [4]] = [2] +
1

[3] + 1
[4]

and

S = [[4], [3], [2]] = [4] +
1

[3] + 1
[2]

both close to the same rational knot, shown at the bottom of the figure.
The two tangles are different, since they have different corresponding
fractions:

F (T ) = 2 +
1

3 + 1
4

=
30

13
and F (S) = 4 +

1

3 + 1
2

=
30

7
.

Note that the product of 7 and 13 is congruent to 1 modulo 30.

More generally, consider the following two fractions:

F = [a, b, c] = a+
1

b+ 1
c

and G = [c, b, a] = c+
1

b+ 1
a

.

We find that

F = a+ c
1

cb+ 1
=

abc+ a+ c

bc+ 1
=

P

Q
,

while

G = c+ a
1

ab+ 1
=

abc+ c+ a

ab+ 1
=

P

Q′ .
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SR += [1] [-3]=
[2]
_1

~

Figure 19. An example of the special cut

Thus we found that F = P
Q
and G = P

Q′ , where

QQ′ = (bc+ 1)(ab+ 1) = ab2c+ ab+ bc+ 1 = bP + 1.

Assuming that a, b and c are integers, we conclude that

QQ′ ≡ 1 (modP ).

This pattern generalizes to arbitrary continued fractions and their
palindromes (obtained by reversing the order of the terms). I.e. If
{a1, a2, . . . , an} is a collection of n non-zero integers, and if A = [a1, a2, . . . , an] =
P
Q

and B = [an, an−1, . . . , a1] = P ′

Q′ , then P = P ′ and QQ′ ≡
(−1)n+1(modP ). We will be referring to this as ‘the Palindrome The-
orem’. The Palindrome Theorem is a known result about continued
fractions. For example, see [34] and [15]. Note that we need n to be
odd in the previous congruence. This agrees with Remark 3.1 that
without loss of generality the terms in the continued fraction of a ra-
tional tangle may be assumed to be odd.

Finally, Figure 19 illustrates another basic example for the unori-
ented Schubert Theorem. The two tangles R = [1] + 1

[2]
and S = [−3]

are non-isotopic by the Conway Theorem, since F (R) = 1+ 1/2 = 3/2
while F (S) = −3 = 3/ − 1. But they have isotopic numerators:
N(R) ∼ N(S), the left-handed trefoil. Now 2 is congruent to −1
modulo 3, confirming Theorem 1.2.

We now analyse the above example in general. From the analysis
of the bottom twists we can assume without loss of generality that a
rational tangle R has fraction P

Q
, for |P | > |Q|. Thus R can be written

in the form R = [1]+T or R = [−1]+T . We consider the rational knot
diagram K = N([1] + T ), see Figure 20. (We analyze N([−1] + T ) in
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T T
open

to obtain
K = N([1] +T) = = [1] +T 

Figure 20. A standard cut

the same way.) The tangle [1] + T is said to arise as a standard cut on
K.

Notice that the indicated horizontal crossing of N([1] + T ) could be
also seen as a vertical one. So, we could also cut the diagram K at
the two other marked points (see Figure 21) and still obtain a rational
tangle, since T is rational. The tangle obtained by cutting K in this
second pair of points is said to arise as a special cut on K. Figure 21
demonstrates that the tangle of the special cut is the tangle [−1]−1/T .
So we have N([1]+T ) ∼ N([−1]− 1

T
). Suppose now F (T ) = p/q. Then

F ([1] + T ) = 1 + p/q = (p+ q)/q, while F ([−1]− 1/T ) = −1− q/p =
(p + q)/(−p), so the two rational tangles that give rise to the same
knot K are not isotopic. Since −p ≡ q mod(p + q), this equivalence is
another example for Theorem 1.2. In Figure 21 if we took T = 1

[2]
then

[−1]− 1/T = [−3] and we would obtain the example of Figure 19.

The proof of Theorem 1.2 can now proceed in two stages. First,
given a rational knot diagram we look for all possible places where we
could cut and open it to a rational tangle. The crux of our proof in
[16] is the fact that all possible ‘rational cuts’ on a rational knot fall
into one of the basic cases that we have already discussed. I.e. we
have the standard cuts, the palindrome cuts and the special cuts. In
Figure 22 we illustrate on a representative rational knot, all the cuts
that exhibit that knot as a closure of a rational tangle. Each pair of
points is marked with the same number. The arithmetics is similar to
the cases that have been already verified. It is convenient to say that
reduced fractions p/q and p′/q′ are arithmetically equivalent, written
p/q ∼ p′/q′ if p = p′ and either qq′ ≡ 1 (mod p) or q ≡ q′ (mod p ) . In
this language, Schubert’s theorem states that two rational tangles close
to form isotopic knots if and only if their fractions are arithmetically
equivalent.

In Figure 23 we illustrate one example of a cut that is not allowed since
it opens the knot to a non-rational tangle.
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special cut
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K = N([1] +T) = T
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Figure 21. A special cut
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Figure 22. Standard, palindrome and special cuts

In the second stage of the proof we want to check the arithmetic
equivalence for two different given knot diagrams, numerators of some
rational tangles. By Corollary 3.6 the two knot diagrams may be as-
sumed alternating, so by the Tait Conjecture they will differ by flypes.
We analyse all possible flypes to prove that no new cases for study
arise. Hence the proof becomes complete at that point. We refer the
reader to our paper [16] for the details. �
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open

Figure 23. A non-rational cut

6. Rational Knots and Their Mirror Images

In this section we give an application of Theorem 1.2. An unoriented
knot or link K is said to be achiral if it is topologically equivalent to
its mirror image −K. If a link is not equivalent to its mirror image
then it is said be chiral. One then can speak of the chirality of a given
knot or link, meaning whether it is chiral or achiral. Chirality plays
an important role in the applications of Knot Theory to Chemistry
and Molecular Biology. It is interesting to use the classification of
rational knots and links to determine their chirality. Indeed, we have
the following well-known result (for example see [34] and also page 24,
Exercise 2.1.4 in [17]):

Theorem 6.1. Let K = N(T ) be an unoriented rational knot or link,
presented as the numerator of a rational tangle T . Suppose that F (T ) =
p/q with p and q relatively prime. Then K is achiral if and only if q2 ≡
−1 (mod p). It follows that achiral rational knots and links are all nu-
merators of rational tangles of the form [[a1], [a2], . . . , [ak], [ak], . . . , [a2], [a1]]
for any integers a1, . . . , ak.

Note that in this description we are using a representation of the
tangle with an even number of terms. The leftmost twists [a1] are
horizontal, thus the rightmost starting twists [a1] are vertical.

Proof. With −T the mirror image of the tangle T , we have that −K =
N(−T ) and F (−T ) = p/(−q). If K is topologically equivalent to
−K, then N(T ) and N(−T ) are equivalent, and it follows from the
classification theorem for rational knots that either q(−q) ≡ 1 (mod p)
or q ≡ −q (mod p). Without loss of generality we can assume that
0 < q < p. Hence 2q is not divisible by p and therefore it is not the
case that q ≡ −q (mod p). Hence q2 ≡ −1 (mod p).
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180  rotation

K
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swing arc

Figure 24. An achiral rational link

Conversely, if q2 ≡ −1 (mod p), then it follows from the Palindrome
Theorem that the continued fraction expansion of p/q has to be sym-
metric with an even number of terms. It is then easy to see that the
corresponding rational knot or link, say K = N(T ), is equivalent to its
mirror image. One rotates K by 180◦ in the plane and swings an arc,
as Figure 24 illustrates. The point is that the crossings of the second
row of the tangle T , that are seemingly crossings of opposite type than
the crossings of the upper row, become after the turn crossings of the
upper row, and so the types of crossings are switched. This completes
the proof. �

In [9] the authors find an explicit formula for the number of achiral
rational knots among all rational knots with n crossings.

7. The Oriented Case

Oriented rational knots and links arise as numerator closures of ori-
ented rational tangles. In order to compare oriented rational knots via
rational tangles we need to examine how rational tangles can be ori-
ented. We orient rational tangles by choosing an orientation for each
strand of the tangle. Here we are only interested in orientations that
yield consistently oriented knots upon taking the numerator closure.
This means that the two top end arcs have to be oriented one inward
and the other outward. Same for the two bottom end arcs. We shall
say that two oriented rational tangles are isotopic if they are isotopic
as unoriented tangles, by an isotopy that carries the orientation of one
tangle to the orientation of the other. Note that, since the end arcs of
a tangle are fixed during a tangle isotopy, this means that the tangles
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~
close close

Figure 25. Non-isotopic oriented rational links

must have identical orientations at their four end arcs NW, NE, SW,
SE. It follows that if we change the orientation of one or both strands
of an oriented rational tangle we will always obtain a non-isotopic ori-
ented rational tangle.

Reversing the orientation of one strand of an oriented rational tangle
may or may not give rise to isotopic oriented rational knots. Figure
25 illustrates an example of non-isotopic oriented rational knots, which
are isotopic as unoriented knots.

Reversing the orientation of both strands of an oriented rational tan-
gle will always give rise to two isotopic oriented rational knots or links.
We can see this by doing a vertical flip, as Figure 26 demonstrates.
Using this observation we conclude that, as far as the study of ori-
ented rational knots is concerned, all oriented rational tangles may be
assumed to have the same orientation for their NW and NE end arcs.
We fix this orientation to be downward for the NW end arc and upward
for the NE arc, as in the examples of Figure 25 and as illustrated in
Figure 27. Indeed, if the orientations are opposite of the fixed ones
doing a vertical flip the knot may be considered as the numerator of
the vertical flip of the original tangle. But this is unoriented isotopic
to the original tangle (recall Section 3, Figure 9), whilst its orientation
pattern agrees with our convention.

Thus we reduce our analysis to two basic types of orientation for the
four end arcs of a rational tangle. We shall call an oriented rational
tangle of type I if the SW arc is oriented upward and the SE arc is
oriented downward, and of type II if the SW arc is oriented downward
and the SE arc is oriented upward, see Figure 27. From the above
remarks, any tangle is of type I or type II. Two tangles are said to be
compatible it they are both of type I or both of type II and incompatible
if they are of different types. In order to classify oriented rational knots
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Figure 26. Isotopic oriented rational knots and links
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Incompatible

Figure 27. Compatible and incompatible orientations

seen as numerator closures of oriented rational tangles, we will always
compare compatible rational tangles. Note that if two oriented tangles
are incompatible, adding a single half twist at the bottom of one of
them yields a new pair of compatible tangles, as Figure 27 illustrates.
Note also that adding such a twist, although it changes the tangle, it
does not change the isotopy type of the numerator closure. Thus, up to
bottom twists, we are always able to compare oriented rational tangles
of the same orientation type.

We shall now introduce the notion of connectivity and we shall relate
it to orientation and the fraction of unoriented rational tangles. We
shall say that an unoriented rational tangle has connectivity type [0] if
the NW end arc is connected to the NE end arc and the SW end arc
is connected to the SE end arc. Similarly, we say that the tangle has
connectivity type [+1] or type [∞] if the end arc connections are the
same as in the tangles [+1] and [∞] respectively. The basic connectivity
patterns of rational tangles are exemplified by the tangles [0], [∞] and
[+1]. We can represent them iconically by the symbols shown below.
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[0] = ≍
[∞] =><

[+1] = χ

Note that connectivity type [0] yields two-component rational links,
while type [+1] or [∞] yields one-component rational links. Also,
adding a bottom twist to a rational tangle of connectivity type [0]
will not change the connectivity type of the tangle, while adding a bot-
tom twist to a rational tangle of connectivity type [∞] will switch the
connectivity type to [+1] and vice versa. While the connectivity type
of unoriented rational tangles may be [0], [+1] or [∞], note that an
oriented rational tangle of type I will have connectivity type [0] or [∞]
and an oriented rational tangle of type II will have connectivity type
[0] or [+1].

Further, we need to keep an accounting of the connectivity of rational
tangles in relation to the parity of the numerators and denominators of
their fractions. We refer the reader to our paper [16] for a full account.

We adopt the following notation: e stands for even and o stands
for odd. The parity of a fraction p/q is defined to be the ratio of the
parities (e or o) of its numerator and denominator p and q. Thus the
fraction 2/3 is of parity e/o. The tangle [0] has fraction 0 = 0/1, thus
parity e/o, the tangle [∞] has fraction ∞ = 1/0, thus parity o/e, and
the tangle [+1] has fraction 1 = 1/1, thus parity o/o. We then have
the following result.

Theorem 7.1. A rational tangle T has connectivity type ≍ if and only
if its fraction has parity e/o. T has connectivity type >< if and only
if its fraction has parity o/e. T has connectivity type χ if and only if
its fraction has parity o/o. (Note that the formal fraction of [∞] itself
is 1/0.) Thus the link N(T ) has two components if and only if T has
fraction F (T ) of parity e/o.

Proof. We will now proceed with sketching the proof of Theorem 1.3.
We shall prove Schubert’s oriented theorem by appealing to our previ-
ous work on the unoriented case and then analyzing how orientations
and fractions are related. Our strategy is as follows: Consider an ori-
ented rational knot or link diagram K in the form N(T ) where T is
a rational tangle in continued fraction form. Then any other rational
tangle that closes to this knot N(T ) is available, up to bottom twists
if necessary, as a cut from the given diagram. If two rational tangles
close to give K as an unoriented rational knot or link, then there are
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orientations on these tangles, induced from K so that the oriented tan-
gles close to give K as an oriented knot or link. The two tangles may or
may not be compatible. Thus, we must analyze when, comparing with
the standard cut for the rational knot or link, another cut produces a
compatible or incompatible rational tangle. However, assuming the top
orientations are the same, we can replace one of the two incompatible
tangles by the tangle obtained by adding a twist at the bottom. It is
this possible twist difference that gives rise to the change from modulus
p in the unoriented case to the modulus 2p in the oriented case. We
will now perform this analysis. There are many interesting aspects to
this analysis and we refer the reader to our paper [16] for these details.
Schubert [33] proved his version of the oriented theorem by using the
2-bridge representation of rational knots and links, see also [4]. We give
a tangle-theoretic combinatorial proof based upon the combinatorics of
the unoriented case.

The simplest instance of the classification of oriented rational knots
is adding an even number of twists at the bottom of an oriented ra-
tional tangle T , see Figure 27. We then obtain a compatible tangle
T ∗ 1/[2n], and N(T ∗ 1/[2n]) ∼ N(T ). If now F (T ) = p/q, then
F (T ∗ 1/[2n]) = F (1/([2n] + 1/T )) = 1/(2n+ 1/F (T )) = p/(2np+ q).
Hence, if we set 2np + q = q′ we have q ≡ q′(mod 2p), just as the
oriented Schubert Theorem predicts. Note that reducing all possible
bottom twists implies |p| > |q| for both tangles, if the two tangles
that we compare each time are compatible or for only one, if they are
incompatible.

We then have to compare the special cut and the palindrome cut with
the standard cut. In the oriented case the special cut is the easier to
see whilst the palindrome cut requires a more sophisticated analysis.
Figure 28 illustrates the general case of the special cut. In order to
understand Figure 28 it is necessary to also view Figure 21 for the
details of this cut.

Recall that if S = [1] + T then the tangle of the special cut on the
knot N([1] + T ) is the tangle S ′ = [−1]− 1

T
. And if F (T ) = p/q then

F ([1] + T ) = p+q
q

and F ([−1] − 1
T
) = p+q

−p
. Now, the point is that

the orientations of the tangles S and S ′ are incompatible. Applying
a [+1] bottom twist to S ′ yields S ′′ = ([−1] − 1

T
) ∗ [1], and we find

that F (S ′′) = p+q
q
. Thus, the oriented rational tangles S and S ′′ have

the same fraction and by Theorem 1.1 and their compatibility they are
oriented isotopic and the arithmetics of Theorem 1.3 is straightforward.



34 LOUIS H. KAUFFMAN AND SOFIA LAMBROPOULOU

*  

S' = [-1] - 

special

on N(S)

_1
T

TT

S = [1] +T 

bottom

twist

S'' = ([-1] -     )   [+1]  ~  S_1
T

T
cut

Figure 28. The oriented special cut
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Figure 29. Oriented standard cut and palindrome cut

We are left to examine the case of the palindrome cut. In Figure 29
we illustrate the standard and palindrome cuts on the oriented rational
knot K = N(T ) = N(T ′) where T = [[2], [1], [2]] and T ′ its palindrome.
As we can see, the two cuts place incompatible orientations on the
tangles T and T ′. Adding a twist at the bottom of T ′ produces a
tangle T ′′ = T ′ ∗ [−1] that is compatible with T . Now we compute
F (T ) = F (T ′) = 8/3 and F (T ′′) = F (T ′ ∗ [−1]) = 8/−5 and we notice
that 3 · (−5) ≡ 1(mod 16) as Theorem 1.3 predicts. This example also
illustrates an example of strong invertibility, as we shall see in the next
section.
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Figure 30. The connectivity charts, compatibility and parity

In order to analyze the palindrome case we must understand when
the standard cut and the palindrome cut are compatible or incompat-
ible. Then we must compare their respective fractions. This involves
a deeper analysis along the lines of Theorem 7.1. More precisely, let
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K = N(T ) be an oriented rational knot or link with T a rational tan-
gle in 3-strand-braid form. Then the three strands connect according
to one of the six permutations of three points, as the first column of
Figure 30 illustrates. This is the connectivity chart of the tangle T or
the link K. For each case we specify by an ‘i’ or ‘c’ if the standard
and the palindrome cut are orientation incompatible or compatible. In
the second and third column of the same figure we give the connectiv-
ity type and the parity of the standard cut and the palindrome cut of
the connectivity chart respectively. We analyze the relation between
connectivity, parity and compatibility in the standard and palindrome
cuts on K. The proof of Theorem 1.3 follows after this analysis by a
combination of enumeration and mathematical induction. In particu-
lar, we can assume that K = N([[a1], . . . , [an]]) with n odd. We then
know that the matrix product

M = M(a1)M(a2) · · ·M(an) =

(
p q′

q u

)
encodes the fractions of the tangle T = [[a1], . . . , [an]] and its palin-
drome T ′ = [[an], . . . , [a1]] with F (T ) = p/q and F (T ′) = p/q′. By
construction, T is the standard cut on K and T ′ is the palindrome cut
on K. Since Det(M) = −1, we have the formula qq′ = 1 + up relating
the denominators of these fractions. When p is odd the argument fol-
lows from the information on the connectivity chart, Figure 30. When
p is even we make an induction argument using the connectivity chart.
We use induction to show in this case that

(1) u is even if and only if the standard and palindrome cuts are
compatible.

(2) u is odd if and only if the standard and palindrome cuts are
incompatible.

We refer the reader to our paper [16] for the details. The proof sketch
of Theorem 1.3 is now complete. �

8. Strongly Invertible Links

An oriented knot or link is said to be invertible if it is oriented
isotopic to the link obtained from it by reversing all orientations of all
components. By applying a vertical rotation by 180◦ we have seen that
rational knots and links are invertible. A link L of two components is
said to be strongly invertible if L is ambient isotopic to itself with the
orientation of only one component reversed. This terminology for links
is not to be confused with the corresponding terminology for knots in
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[2]. In Figure 29 we illustrate the link L = N([[2], [1], [2]]). This is a
strongly invertible link as is apparent by a 180◦ vertical rotation. This
link is well-known as the Whitehead link, a link with linking number
zero. Note that since [[2], [1], [2]] has fraction equal to 1+1/(1+1/2) =
8/3 this link is non-trivial via the classification of rational knots and
links. Note also that 3 · 3 = 1+ 1 · 8. In general we have the following.

Theorem 8.1. Let L = N(T ) be an oriented rational link with associ-
ated tangle fraction F (T ) = p/q of parity e/o, with p and q relatively
prime and |p| > |q|. Then L is strongly invertible if and only if q2 = 1+
up with u an odd integer. It follows that strongly invertible links are all
numerators of rational tangles of the form [[a1], [a2], . . . , [ak], [α], [ak], . . . , [a2], [a1]]
for any integers a1, . . . , ak, α.

Proof. In T the upper two strands close to form one component of L
and the lower two strands close to form the other component of L. Let
T ′ denote the tangle obtained from the oriented tangle T by reversing
the orientation of the component containing the lower two arcs and let
N(T ′) = L′. Note that T and T ′ are incompatible. Thus, in order to
apply the Schubert Theorem for comparing the links L and L′ we need
to add a bottom twist on T ′. Since T and T ′ have the same fraction
p/q, after adding the twist we need to compare the fractions p/q and
p/(p + q). Since q is not congruent to (p + q) modulo 2p, we need to
determine when q(p+q) is congruent to 1 modulo 2p. This will happen
exactly when qp+ q2 = 1+2mp for some integer m. The last equation
is the same as saying that q2 = 1+up with u odd, since q is odd. It then
follows from the Palindrome Theorem for continued fractions that the
continued fraction expansion of p/q has to be symmetric with an odd
number of terms. It is then easy to see that the corresponding rational
link is ambient isotopic to itself through a vertical 180◦ rotation, just as
in the example of the Whitehead link given above. Hence it is strongly
invertible. This completes the proof. �

Figure 31 illustrates another example of a strongly invertible rational
link. Here L = N([[3], [1], [1], [1], [3]]) = N(T ). We find F (T ) = 40/11
and we observe that 112 = 1 + 3 · 40.

9. Applications to the Topology of DNA

DNA supercoils, replicates and recombines with the help of certain
enzymes. Site-specific recombination is one of the ways nature alters
the genetic code of an organism, either by moving a block of DNA
to another position on the molecule or by integrating a block of alien
DNA into a host genome. For a closed molecule of DNA a global picture



38 LOUIS H. KAUFFMAN AND SOFIA LAMBROPOULOU

L = N([[3], [1], [1], [1], [3]])

Figure 31. An example of a strongly invertible link

N (      )
[-3]
_1 N (      + [0])

[-3]
_1 N (      + [1])

[-3]
_1

Figure 32. Global picture of recombination

of the recombination would be as shown in Figure 32, where double-
stranded DNA is represented by a single line and the recombination
sites are marked with points. This picture can be interpreted as N(S+
[0]) −→ N(S+[1]), for S = 1

[−3]
in this example. This operation can be

repeated as in Figure 33. Note that the [0]− [∞] interchange of Figure
6 can be seen as the first step of the process.

In this depiction of recombination, we have shown a local replace-
ment of the tangle [0] by the tangle [1] connoting a new cross-connection
of the DNA strands. In general, it is not known without corroborating
evidence just what the topological geometry of the recombination re-
placement will be. Even in the case of a single half-twist replacement
such as [1], it is certainly not obvious beforehand that the replacement
will always be [+1] and not sometimes the reverse twist of [−1]. It was
at the juncture raised by this question that a combination of topologi-
cal methods in biology and a tangle model using knot theory developed
by C.Ernst and D.W. Sumners resolved the issue in some specific cases.
See [10], [35] and references therein.



CLASSIFYING AND APPLYING RATIONAL KNOTS AND RATIONAL TANGLES39

~

~

~

~

K1

K2

K3

K4

Figure 33. Multiple recombinations

On the biological side, methods of protein coating developed by N.
Cozzarelli, S.J. Spengler and A. Stasiak et al. In [6] it was made pos-
sible for the first time to see knotted DNA in an electron micrograph
with sufficient resolution to actually identify the topological type of
these knots. The protein coating technique made it possible to design
an experiment involving successive DNA recombinations and to exam-
ine the topology of the products. In [6] the knotted DNA produced by
such successive recombinations was consistent with the hypothesis that
all recombinations were of the type of a positive half twist as in [+1].
Then D.W. Sumners and C. Ernst [10] proposed a tangle model for
successive DNA recombinations and showed, in the case of the exper-
iments in question, that there was no other topological possibility for
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the recombination mechanism than the positive half twist [+1]. This
constituted a unique use of topological mathematics as a theoretical
underpinning for a problem in molecular biology.

Here is a brief description of the tangle model for DNA recombina-
tion. It is assumed that the initial state of the DNA is described as the
numerator closure N(S) of a substrate tangle S. The local geometry
of the recombination is assumed to be described by the replacement of
the tangle [0] with a specific tangle R. The results of the successive
rounds of recombination are the knots and links

N(S+R) = K1, N(S+R+R) = K2, N(S+R+R+R) = K3, . . .

Knowing the knots K1, K2, K3, . . . one would like to solve the above
system of equations with the tangles S and R as unknowns. For such
experiments Ernst and Sumners [10] used the classification of ratio-
nal knots in the unoriented case, as well as results of Culler, Gordon,
Luecke and Shalen [7] on Dehn surgery to prove that the solutions
S + nR must be rational tangles. One could then apply the theorem
on the classification of rational knots to deduce (in these instances) the
uniqueness of S and R. Note that, in these experiments, the substrate
tangle S was also pinpointed by the sequence of knots and links that
resulted from the recombination.

Here we shall solve tangle equations like the above under rationality
assumptions on all tangles in question. This allows us to use only the
mathematical techniques developed in this paper. We shall illustrate
how a sequence of rational knots and links

N(S + nR) = Kn, n = 0, 1, 2, 3, . . .

with S and R rational tangles, such that R = [r], F (S) = p
q
and p,

q, r ∈ Z (p > 0) determines p
q
and r uniquely if we know sufficiently

many Kn. We call this the “DNA Knitting Machine Analysis”.

Theorem 9.1. Let a sequence Kn of rational knots and links be defined
by the equations Kn = N(S+nR) with specific integers p, q, r (p > 0),
where R = [r], F (S) = p

q
. Then p

q
and r are uniquely determined if

one knows the topological type of the unoriented links K0, K1, . . . , KN

for any integer N ≥ |q| − p
qr
.

Proof. In this proof we shall writeN(p
q
+nr) orN(p+qnr

q
) forN(S+nR).

We shall also write K = K ′ to mean that K and K ′ are isotopic
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links. Moreover we shall say for a pair of reduced fractions P/q and
P/q′ that q and q′ are arithmetically related relative to P if either
q ≡ q′(modP ) or qq′ ≡ 1(modP ). Suppose the integers p, q, r give
rise to the sequence of links K0, K1, . . .. Suppose there is some other
triple of integers p′, q′, r′ that give rise to the same sequence of links.
We will show uniqueness of p, q, r under the conditions of the theorem.
We shall say “the equality holds for n” to mean that N((p+ qrn)/q) =
N((p′ + q′r′n)/q′). We suppose that Kn = N((p + qrn)/q) as in the
hypothesis of the theorem, and suppose that there are p′, q′, r′ such
that for some n (or a range of values of n to be specified below) Kn =
N((p′ + q′r′n)/q′).

If n = 0 then we have N(p/q) = N(p′/q′). Hence by the classification
theorem we know that p = p′ and that q and q′ are arithmetically
related. Note that the same argument shows that if the equality holds
for any two consecutive values of n, then p = p′. Hence we shall assume
henceforth that p = p′. With this assumption in place, we see that if
the equality holds for any n ̸= 0 then qr = q′r′. Hence we shall assume
this as well from now on.

If |p + qrn| is sufficiently large, then the congruences for the arith-
metical relation of q and q′ must be equalities over the integers. Since
qq′ = 1 over the integers can hold only if q = q′ = 1 or −1 we see that
it must be the case that q = q′ if the equality is to hold for sufficiently
large n. From this and the equation qr = q′r′ it follows that r = r′. It
remains to determine a bound on n. In order to be sure that |p+qrn| is
sufficiently large, we need that |qq′| ≤ |p+qrn|. Since q′r′ = qr, we also
know that |q′| ≤ |qr|. Hence n is sufficiently large if |q2r| ≤ |p+ qrn|.

If qr > 0 then, since p > 0, we are asking that |q2r| ≤ p+qrn. Hence

n ≥ (|q2r| − p)/(qr) = |q| − (p/qr).

If qr < 0 then for n large we will have |p + qrn| = −p − qrn. Thus
we want to solve |q2r| ≤ −p− qrn, whence

n ≥ (|q2r|+ p)/(−qr) = |q| − (p/qr).

Since these two cases exhaust the range of possibilities, this com-
pletes the proof of the theorem. �

Here is a special case of Theorem 9.1. See Figure 33. Suppose that
we were given a sequence of knots and links Kn such that
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Kn = N(
1

[−3]
+ [1] + [1] + . . .+ [1]) = N(

1

[−3]
+ n [1]).

We have F ( 1
[−3]

+n [1]) = (3n−1)/3 and we shall write Kn = N([(3n−
1)/3]). We are told that each of these rational knots is in fact the
numerator closure of a rational tangle denoted

[p/q] + n [r]

for some rational number p/q and some integer r. That is, we are told
that they come from a DNA knitting machine that is using rational
tangle patterns. But we only know the knots and the fact that they
are indeed the closures for p/q = −1/3 and r = 1. By this analysis, the
uniqueness is implied by the knots and links {K1, K2, K3, K4}. This
means that a DNA knitting machine Kn = N(S + nR) that emits the
four specific knots Kn = N([(3n−1)/3]) for n = 1, 2, 3, 4 must be of the
form S = 1/[−3] and R = [1]. It was in this way (with a finite number
of observations) that the structure of recombination in Tn3 resolvase
was determined [35].

In this version of the tangle model for DNA recombination we have
made a blanket assumption that the substrate tangle S and the recom-
bination tangle R and all the tangles S + nR were rational. Actually,
if we assume that S is rational and that S + R is rational, then it
follows that R is an integer tangle. Thus S and R necessarily form a
DNA knitting machine under these conditions. It is relatively natu-
ral to assume that S is rational on the grounds of simplicity. On the
other hand it is not so obvious that the recombination tangle should
be an integer. The fact that the products of the DNA recombination
experiments yield rational knots and links, lends credence to the hy-
pothesis of rational tangles and hence integral recombination tangles.
But there certainly is a subtlety here, since we know that the numera-
tor closure of the sum of two rational tangles is always a rational knot
or link. In fact, it is here that some deeper topology shows that cer-
tain rational products from a generalized knitting machine of the form
Kn = N(S + nR) where S and R are arbitrary tangles will force the
rationality of the tangles S + nR. We refer the reader to [10], [11], [8]
for the details of this approach.
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[18] A.Ya. Khinchin, “Continued Fractions”, Dover (1997) (republication of the

1964 edition of Chicago Univ. Press).
[19] K. Kolden, Continued fractions and linear substitutions, Archiv for Math.

og Naturvidenskab, 6 (1949), 141–196.
[20] W.B.R. Lickorish, “An introduction to knot theory”, Springer Graduate

Texts in Mathematics, 175 (1997).
[21] W. Menasco, M. Thistlethwaite, The classification of alternating links,

Annals of Mathematics, 138 (1993), 113–171.



44 LOUIS H. KAUFFMAN AND SOFIA LAMBROPOULOU

[22] J.M. Montesinos, Revetements ramifies des noeuds, Espaces fibres de
Seifert et scindements de Heegaard, Publicaciones del Seminario Mathematico
Garcia de Galdeano, Serie II, Seccion 3 (1984).

[23] K. Murasugi, “Knot theory and its applications”, Translated from the 1993
japanese original by B. Kurpita, Birkhäuser Verlag (1996).
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