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Abstract: We present the new skein invariants of classical links, H[H], K[K] and D[D], based on the1

invariants of links, H, K and D, denoting the regular isotopy version of the Homflypt polynomial,2

the Kauffman polynomial and the Dubrovnik polynomial. The invariants are obtained by abstracting3

the skein relation of the corresponding invariant and making a new skein algorithm comprising two4

computational levels: first producing unlinked knotted components, then evaluating the resulting5

knots. The invariants in this paper were revealed through generalizing the skein theoretic definition6

of the invariants Θd related to the Yokonuma–Hecke algebras and their 3-variable generalization7

Θ, which generalizes the Homflypt polynomial as well as the linking number. H[H] is the regular8

isotopy counterpart of Θ. The invariants K[K] and D[D] are new generalizations of the Kauffman and9

the Dubrovnik polynomials. We sketch skein theoretic proofs of the well-definedness and topological10

properties of these invariants. The invariants of this paper are reformulated into summations of11

the generating invariants (H, K, D) on sublinks of the given link L, obtained by partitioning L12

into collections of sublinks. The first such reformulation was achieved by W.B.R. Lickorish for the13

invariant Θ and we generalize it to the Kauffman and Dubrovnik polynomial cases. State sum models14

are formulated for all the invariants. These state summation models are based on our skein template15

algorithm which formalizes the skein theoretic process as an analog of a statistical mechanics partition16

function. Relationships with statistical mechanics models are articulated. Finally, we discuss physical17

situations where a multi-leveled course of action is taken naturally.18

Keywords: classical links; mixed crossings; skein relations; stacks of knots; Homflypt polynomial;19

Kauffman polynomial; Dubrovnik polynomial; 3-variable skein link invariant; closed combinatorial20

formula; state sums; double state summation; skein template algorithm21
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0. Introduction23

In this paper we present the new generalized skein invariants of links, H[H], D[D] and K[K],24

based on the regular isotopy version of the Homflypt polynomial, the Dubrovnik polynomial and25

the Kauffman polynomial, respectively (Theorems 1, 2 and 3). A link invariant is skein invariant if it26

can be computed on each link solely by the use of skein relations and a set of initial conditions. The27

generalized invariants are evaluated via a two-level procedure: for a given link we first untangle its28

compound knots using the skein relation of the corresponding basic invariant H, D or K and only then29

we evaluate on unions of unlinked knots by applying a new rule, which is based on the evaluation30
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of H, D and K respectively. In particular, on knots (that is, one-component links) each one of the31

generalized invariants has the same evaluation as its underlying basic invariant.32

We then show that each generalized invariant can be reformulated in terms of a closed formula,33

involving summation over evaluations of sublinks of the given link and linking numbers (Theorems 5, 634

and 7), so it can be also viewed as generalization of the linking number. It is remarkable that the35

generalized invariants have two such distinct faces, as skein invariants and as closed combinatorial36

formuli. In this paper we present both of these points of view and how they are related to state37

summations and possible relationships with statistical mechanics and applications. These constructions38

alter the philosophy of classical skein-theoretic techniques, whereby mixed as well as self-crossings in39

a link diagram would get indiscriminantly switched. Using a known skein invariant, one first unlinks40

all components using the skein relation and then one evaluates on unions of unlinked knots using that41

skein invariant and at the same time introducing a new variable. This approach could find applications42

in physical systems where different constituents need to be separated first.43

This paper is based on [43] where the reader can find more detailed treatment of much of the44

theory.45

There are not many known skein link invariants in the literature. Skein invariants include:46

the Alexander–Conway polynomial [4,14], the Jones polynomial [25], and the Homflypt polynomial47

[17,26,45,49], which specializes to both the Alexander–Conway and the Jones polynomial; there is48

also the bracket polynomial [38], the Brandt–Lickorish–Millett–Ho polynomial [6], the Dubrovnik49

polynomial and the Kauffman polynomial [40], which specializes to both the bracket and the50

Brandt–Lickorish–Millett–Ho polynomial. Finally, we have the Juyumaya–Lambropoulou family51

of invariants ∆d,D, d ∈ N, for any non-empty subset D of Z/dZ [31], and the analogous52

Chlouveraki–Juyumaya–Karvounis–Lambropoulou invariants Θd and their 3-variable generalization53

Θ [7]. In fact, this last invariant Θ was our motivation for constructing the generalized invariants.54

The invariant H[H] is in fact the regular isotopy version of the invariant Θ and Theorem 1 provides a55

self-contained skein theoretic proof of its existence.56

The invariant Θ was discovered via the following path: In [31] a family of framed link invariants57

was constructed via a Markov trace on the Yokonuma–Hecke algebras [28], which restrict to the family58

of classical link invariants {∆d,D} [32]. These were studied in [8,32], especially their relation to the59

Homflypt polynomial, P, but topological comparison had not been possible due to algebraic and60

diagrammatic difficulties. In [7,13] another presentation [11] was used for the Yokonuma–Hecke61

algebra and the related classical link invariants were now denoted Θd. The invariants Θd were then62

recovered via the skein relation of P that can only apply to mixed crossings of a link [7] and they were63

shown to be distinct from P on links, for d 6= 1, but topologically equivalent to P on knots [7,13] (hence64

also distinct from the Kauffman polynomial). Finally, the family of invariants {Θd}, which includes65

P for d = 1, was generalized to the new 3-variable skein link invariant Θ [7], which is also related66

to the theory of tied links [2]. A succinct exposition of the above results can be found in [36]. These67

constructions opened the way to new research directions. Cf. [1–3,7–13,16,18–22,24,29–34,48].68

Further, in [7, Appendix B] W.B.R. Lickorish provides a closed combinatorial formula for the69

definition of the invariant Θ, showing that it is a mixture of Homflypt polynomials and linking70

numbers of sublinks of a given link. The combinatorial formuli (7), (15) and (16) for the generalized71

invariants are inspired by the Lickorish formula. These closed formuli are remarkable summations72

of evaluations on sublinks with certain coefficients, that surprisingly satisfy the analogous mixed73

skein relations, so they can be regarded by themselves as definitions of the invariants H[H], D[D] and74

K[K] respectively. Formula (7) shows that the strength of H[H] against H comes from its ability to75

distinguish certain sublinks of Homflypt-equivalent links. In [7] a list of six 3-component links are76

given, which are Homflypt equivalent but are distinguished by the invariant Θ and thus also by H[H].77

We proceed with constructing state sum models associated to the generalized skein invariants. A78

state sum model is a sum over evaluations of combinatorial configurations (the states) related to the79

given link diagram, such that this sum is equal to the invariant that we wish to compute. The state80
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sums are based on the skein template algorithm, as explained in [41,42], which formalizes the skein81

theoretic process as an analog of a statistical mechanics partition function and produces the states to be82

evaluated. Our state sums use the skein calculation process for the invariants, but have a new property83

in the present context. They have a double level due to the combination in our invariants of a skein84

calculation combined with the evaluation of a specific invariant on the knots that are at the bottom of85

the skein process. If we choose a state sum evaluation of a different kind for this specific invariant,86

then we obtain a double-level state sum of our new invariant.87

The paper concludes with a discussion about possible relationships with reconnection in vortices88

in fluids, strand switching and replication of DNA, particularly the possible relations with the89

replication of Kinetoplast DNA, and we discuss the possibility of multiple levels in the quantum90

Hall effect where one considers the braiding of quasi-particles that are themselves physical subsystems91

composed of multiple electron vortices centered about magnetic field lines.92

The paper is organized as follows: In Section 1 we present the skein theoretic setting of the new93

skein 3-variable invariants that generalize the regular isotopy version of the Homflypt, the Dubrovnik94

and the Kauffman polynomials. In Section 2 we give the ambient isotopy reformulations of the95

generalized link invariants. In Section 3 we adapt the combinatorial formula of Lickorish to our regular96

isotopy setting for the generalized skein invariants. In Section 4 we define associated state sum models97

for the new invariants, while in Section 5 the idea about double state summations is articulated. Finally,98

in Section 6 we discuss the context of statistical mechanics models and partition functions in relation99

to multiple level state summations and in Section 7 we speculate about possible applications for these100

ideas.101

1. The skein-theoretic setting for the generalized invariants102

In this section we define the general regular isotopy invariant for links, H[H], D[D] and103

K[K], which generalize the regular isotopy version of the Homflypt polynomial, H, the Dubrovnik104

polynomial, D, and the Kauffman polynomial, K, respectively.105

As usual, an oriented link is a link with an orientation specified for each component. Also, a link106

diagram is a projection of a link on the plane with only finitely many double points, the crossings,107

which are endowed with information ‘under/over’. Two link diagrams are regularly isotopic if they108

differ by planar isotopy and by Reidemeister moves II and III (with all variations of orientations in the109

case of oriented diagrams). A mixed crossing is a crossing between different components.110

1.1. Defining H[H]111

Let L denote the set of classical oriented link diagrams. Let L+ ∈ L be an oriented diagram with112

a positive crossing specified and let L− be the same diagram but with that crossing switched. Let also113

L0 indicate the same diagram but with the smoothing which is compatible with the orientations of the114

emanating arcs in place of the crossing. See (1). The diagrams L+, L−, L0 comprise a so-called oriented115

Conway triple.116

(1)

L+ L− L0

We then have the following:117

Theorem 1 (cf. [43]). Let H(z, a) denote the regular isotopy version of the Homflypt polynomial. Then there118

exists a unique regular isotopy invariant of classical oriented links H[H] : L → Z[z, a±1, E±1], where z, a and119

E are indeterminates, defined by the following rules:120

1. On crossings involving different components the following mixed skein relation holds:

H[H](L+)− H[H](L−) = z H[H](L0),
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where L+, L−, L0 is an oriented Conway triple,121

2. For a union of r unlinked knots, Kr := tr
i=1Ki, with r ≥ 1, it holds that:

H[H](Kr) = E1−r H(Kr).

We recall that the invariant H(z, a) is determined by the following rules:122

(H1) For L+, L−, L0 an oriented Conway triple, the following skein relation holds:

H(L+)− H(L−) = z (L0),

(H2) The indeterminate a is the positive curl value for H:

R( ) = a R( ) and R( ) = a−1 R( ),

(H3) On the standard unknot:
R(©) = 1.

We also recall that the above defining rules imply the following:123

(H4) For a diagram of the unknot, U, H is evaluated by taking:

H(U) = awr(U),

where wr(U) denotes the writhe of U –instead of 1 that is the case in the ambient isotopy category.124

(H5) H being the Homflypt polynomial, it is multiplicative on a union of unlinked knots,Kr := tr
i=1Ki.

Namely, for η := a−a−1

z we have:

H(Kr) = ηr−1Πr
i=1H(Ki).

Consequently, the evaluation of H[H] on the standard unknot is H[H](©) = H(©) = 1.125

Assuming Theorem 1 one can compute H[H] on any given oriented link diagram L ∈ L by126

applying the following procedure: the skein rule (1) of Theorem 1 can be used to give an evaluation of127

H[H](L+) in terms of H[H](L−) and H[H](L0) or of H[H](L−) in terms of H[H](L+) and H[H](L0).128

We switch mixed crossings so that the switched diagram is more unlinked than before. Applying this129

principle recursively we obtain a sum with polynomial coefficients and evaluations of H[H] on unions130

of unlinked knots. These are formed by the mergings of components caused by the smoothings in the131

skein relation (1). To evaluate H[H] on a given union of unlinked knots we then use the invariant H132

according to rule (2) of Theorem 1. Note that the appearance of the indeterminate E in rule (2) is the133

critical difference between H[H] and H. Finally, evaluations on individual knotted components are134

done with the use of H via formula (H5) above.135

One could specialize the z, the a and the E in Theorem 1 in any way one wishes. For example, if a =136

1 then H specializes to the Alexander–Conway polynomial [4,14]. If z =
√

a− 1/
√

a then H becomes137

the unnormalized Jones polynomial [25]. In each case H[H] can be regarded as a generalization of that138

polynomial.139

The invariant H[H] generalizes H to a new 3-variable invariant for links. Indeed, H[H] coincides140

with the regular isotopy version of the new 3-variable link invariant Θ of [7]. On the other hand, by141

normalizing H[H] to obtain its ambient isotopy counterpart, we have by Theorem 1 an independent,142

skein-theoretic proof of the well-definedness of Θ.143

1.2. Defining D[D] and K[K]144

We now consider the class Lu of unoriented link diagrams. For any crossing of a diagram of a145

link in Lu, if we swing the overcrossing arc counterclockwise it sweeps two regions out of the four. If146
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we join these two regions, this is the A-smoothing of the crossing, while joining the other two regions147

gives rise to the B-smoothing. We shall say that a crossing is of positive type if it produces a horizontal148

A-smoothing and that it is of negative type if it produces a vertical A-smoothing. Let now L+ be an149

unoriented diagram with a positive type crossing specified and let L− be the same diagram but with150

that crossing switched. Let also L0 and L∞ indicate the same diagram but with the A-smoothing and151

the B-smoothing in place of the crossing. See (2). The diagrams L+, L−, L0, L∞ comprise a so-called152

unoriented Conway quadruple.153

(2)

L+ L− L0 L∞

In analogy to Theorem 1 we also have the 3-variable generalizations of the regular isotopy versions154

of the Dubrovnik and the Kauffman polynomials [40]:155

Theorem 2 (cf. [43]). Let D(z, a) denote the regular isotopy version of the Dubrovnik polynomial. Then there156

exists a unique regular isotopy invariant of classical unoriented links D[D] : Lu → Z[z, a±1, E±1], where z, a157

and E are indeterminates, defined by the following rules:158

1. On crossings involving different components the following skein relation holds:

D[D](L+)− D[D](L−) = z
(

D[D](L0)− D[D](L∞)
)
,

where L+, L−, L0, L∞ is an unoriented Conway quadruple,159

2. For a union of r unlinked knots in Lu, Kr := tr
i=1Ki, with r ≥ 1, it holds that:

D[D](Kr) = E1−r D(Kr).

We recall that the invariant D(z, a) is determined by the following rules:160

(D1) For L+, L−, L0, L∞ an unoriented Conway quadruple, the following skein relation holds:

D(L+)− D(L−) = z
(

D(L0)− D(L∞)
)
,

(D2) The indeterminate a is the positive type curl value for D:

D( ) = a D( ) and D( ) = a−1 D( ),

(D3) On the standard unknot:
D(©) = 1.

We also recall that the above defining rules imply the following:161

(D4) For a diagram of the unknot, U, D is evaluated by taking

D(U) = awr(U),

(D5) D, being the Dubrovnik polynomial, it is multiplicative on a union of unlinked knots, Kr :=
tr

i=1Ki. Namely, for δ := a−a−1

z + 1 we have:

D(Kr) = δr−1Πr
i=1D(Ki).

Consequently, on the standard unknot we evaluate D[D](©) = D(©) = 1.162
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The Dubrovnik polynomial, D, is related to the Kauffman polynomial, K, via the following
translation formula, observed by W.B.R Lickorish [40]:

D(L)(a, z) = (−1)c(L)+1 i−wr(L)K(L)(ia,−iz). (3)

Here, c(L) denotes the number of components of the link L ∈ Lu, i2 = −1, and wr(L) is the writhe of L163

for some choice of orientation of L, which is defined as the algebraic sum of all crossings of L. The164

translation formula is independent of the particular choice of orientation for L. Our theory generalizes165

also the regular isotopy version of the Kauffman polynomial [40] through the following:166

Theorem 3 (cf. [43]). Let K(z, a) denote the regular isotopy version of the Kauffman polynomial. Then there167

exists a unique regular isotopy invariant of classical unoriented links K[K] : Lu → Z[z, a±1, E±1], where z, a168

and E are indeterminates, defined by the following rules:169

1. On crossings involving different components the following skein relation holds:

K[K](L+) + K[K](L−) = z
(
K[K](L0) + K[K](L∞)

)
,

where L+, L−, L0, L∞ is an unoriented Conway quadruple,170

2. For a union of r unlinked knots in Lu, Kr := tr
i=1Ki, with r ≥ 1, it holds that:

K[K](Kr) = E1−r K(Kr).

We recall that the invariant K(z, a) is determined by the following rules:171

(K1) For L+, L−, L0, L∞ an unoriented Conway quadruple, the following skein relation holds:

K(L+) + K(L−) = z
(
K(L0) + K(L∞)

)
,

(K2) The indeterminate a is the positive type curl value for K:

K( ) = a K( ) and K( ) = a−1 Q( ),

(K3) On the standard unknot:
K(©) = 1.

We also recall that the above defining rules imply the following:172

(K4) For a diagram of the unknot, U, K is evaluated by taking

K(U) = awr(U),

(K5) K, being the Kauffman polynomial, it is multiplicative on a union of unlinked knots,Kr := tr
i=1Ki.

Namely, for γ := a+a−1

z − 1 we have:

K(Kr) = γr−1Πr
i=1K(Ki).

Consequently, on the standard unknot we evaluate K[K](©) = K(©) = 1.173

In Theorems 2 and 3 the basic invariants D(z, a) and K(z, a) could be replaced by specializations174

of the Dubrovnik and the Kauffman polynomial respectively and, then, the invariants D[D] and K[K]175

can be regarded as generalizations of these specialized polynomials. For example, if a = 1 then K(z, 1)176

is the Brandt–Lickorish–Millett–Ho polynomial [6] and if z = A + A−1 and a = −A3 then K becomes177

the Kauffman bracket polynomial [38]. In both cases the invariant K[K] generalizes these polynomials.178

Furthermore, a formula analogous to (3) relates the generalized invariants D[D] and K[K], see (17).179
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In order to prove Theorems 1, 2 and 3 one needs to show that the computation of the180

corresponding generalized invariant can be done solely from the rules of the theorem and that it181

is independent from any choices involved during the unlinking of different components as well as182

from the regular isotopy moves. To do this, we specify a computing algorithm to be used; but before183

we set some terminology.184

1.3. Terminology and notations185

A link diagram is called generic if it is ordered, that is, an order c1, . . . , cr is given to its components,186

directed, that is, a direction is specified on each component, and based, that is, a basepoint is specified187

on each component, distinct from the double points of the crossings.188

A diagram that is the union of r unlinked knots, Kr := tr
i=1Ki, with r ≥ 1, is said to be a189

descending stack if, when walking along the components of Kr in their given order, starting from their190

basepoints and following the specified directions, every mixed crossing is first traversed along its191

over-arc. Clearly, the structure of a descending stack no longer depends on the choice of basepoints; it192

is entirely determined by the order of its components. Note also that a descending stack is regularly193

isotopic to the corresponding split link comprising the r knotted components, Ki, where the order of194

components is no longer relevant. The descending stack of knots associated to a given link diagram L195

is denoted as dL.196

1.4. Computing algorithm for the generalized invariants197

The generalized invariants are computed on two levels: on the first level one abstracts the198

corresponding skein relation and applies it only on mixed crossings of a given link diagram. On the199

second level one evaluates the generalized invariant on unions of unlinked knots, by applying a new200

rule that uses the corresponding ground invariant and introduces a new variable. More precisely,201

assuming Theorems 1, 2 and 3 a generalized invariant can be easily computed on any link diagram202

L by applying the algorithm below. This algorithm is necessary for proving well-definedness of the203

invariants.204

1. (Diagrammatic level) Make L generic by choosing an order for its components and a basepoint205

and a direction on each component. Start from the basepoint of the first component and go206

along it in the chosen direction. When arriving at a mixed crossing for the first time along an207

under-arc we switch it by the mixed skein relation, so that we pass by the mixed crossing along208

the over-arc. At the same time we smooth the mixed crossing, obtaining a new diagram in209

which the two components of the crossing merge into one. We repeat for all mixed crossings of210

the first component. Among all resulting diagrams there is only one with the same number of211

crossings and the same number of components as the initial diagram and in this one the first212

component gets unlinked from the rest and lies above all of them. The other resulting diagrams213

have one less crossing and have the first component fused together with some other component.214

We proceed similarly with the second component switching all its mixed crossings except for215

crossings involving the first component. In the end the second component gets unliked from216

all the rest and lies below the first one and above all others in the maximal crossing diagram,217

while we also obtain diagrams containing mergings of the second component with others (except218

component one). We continue in the same manner with all components in order and we also219

apply this procedure to all product diagrams coming from smoothings of mixed crossings. In the220

end we obtain the unlinked version of L plus a number of links ` with unlinked components221

resulting from the mergings of different components.222

2. (Computational level) On the level of the generalized invariant, Rule (1) of Theorem 1, 2 or 3 tells223

us how the switching of mixed crossings is controlled. After all applications of the mixed skein224

relation we obtain a linear sum of the values of the generalized invariant on all the resulting225

links ` with unlinked components. The evaluation of the generalized invariant on each ` reduces226

to the evaluation of the corresponding basic invariant by Rule (2) of Theorem 1, 2 or 3.227
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1.5. Sketching the proof of Theorems 1, 2 and 3228

For proving Theorems 1, 2 and 3 one must prove that the resulting evaluation for a link diagram229

L does not depend on the choices made for bringing L to generic form, namely the sequence of230

mixed crossing changes, the ordering of components and the choice of basepoints, and also that231

it is invariant under regular isotopy moves. A good guide for this is the skein-theoretic proof232

of Lickorish–Millett of the well-definedness of the Homflypt polynomial [45], with the necessary233

adaptations and modifications, taking for granted the well-definedness of the basic invariant. The234

difference here lies in modifying the original skein method, which bottoms out on unlinks, since235

self-crossings are not distinguished from mixed crossings, to the present context, where the evaluations236

bottom out on evaluations by the basic invariant on unions of unlinked knots. This difference causes237

the need of particularly elaborate arguments in proving invariance of the resulting evaluation under238

the sequence of mixed crossing switches and the order of components in comparison with [45].239

Namely, we assume that the statement is valid for all link diagrams of up to n − 1 crossings,240

independently of choices made during the evaluation process and of Reidemeister III moves and241

Reidemeister II moves that do not increase the number of crossings above n− 1. Our aim is to prove242

that the statement is valid for all generic link diagrams of up to n crossings, independently of choices,243

Reidemeister III moves and Reidemeister II moves not increasing above n crossings. We do this by244

double induction on the total number of crossings of a generic link diagram (which applied to all245

intermediate diagrams related to smoothings) and on the number of mixed crossing switches needed246

for bringing the diagram to the form of a descending stack of knots (for which we make the assumption247

that Rule 2 of the corresponding theorem applies).248

The interested reader may consult [43] for a detailed exposition.249

2. Translations to Ambient Isotopy250

In this section we provide the formuli for the corresponding ambient isotopy invariants,251

counterparts of the regular isotopy generalized invariants H[H], D[D] and K[K].252

2.1. Normalization of H[H]253

Let P denote the classical Homflypt polynomial. Then, as we know, one can obtain the ambient
isotopy invariant P from its regular isotopy counterpart H via the formula:

P(L) := a−wr(L)H(L),

where wr(L) is the total writhe of the oriented diagram L. From our generalized regular isotopy
invariant H[H] one can derive an ambient isotopy invariant P[G] via:

P[P](L) := a−wr(L)H[H](L). (4)

Then for the invariant P[P] we have the following:254

Theorem 4 (cf. [43]). Let P(z, a) denote the Homflypt polynomial. Then there exists a unique ambient isotopy255

invariant of classical oriented links P[P] : L → Z[z, a±1, E±1] defined by the following rules:256

1. On crossings involving different components the following skein relation holds:

a P[P](L+)− a−1 P[P](L−) = z P[P](L0),

where L+, L−, L0 is an oriented Conway triple.257

2. For Kr := tr
i=1Ki, a union of r unlinked knots, with r ≥ 1, it holds that:

P[P](Kr) = E1−r P(Kr).
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Remark 1. As pointed out in the Introduction, in Theorem 1 we could specialize the z, the a and the E258

in any way we wish. For example, if a = 1 then H(z, 1) becomes the Alexander–Conway polynomial,259

while if z =
√

a− 1/
√

a then H(
√

a− 1/
√

a, a) becomes the unnormalized Jones polynomial. In each260

case H[H] can be regarded as a generalization of that polynomial. Furthermore, the ambient isotopy261

invariant P[P] coincides with the new 3-variable link invariant Θ(q, λ, E) [7], while for E = 1/d, P[P]262

coincides with the invariant Θd [31] (for E = 1 it coincides with P). So, our invariant P[P] is stronger263

than P and it coincides with the invariant Θ. Hence, our proof of the existence of H[H] provides a264

direct skein-theoretic proof of the existence of the invariant Θ, without the need of algebraic tools265

or the theory of tied links. Finally, for z =
√

a− 1/
√

a the invariant P[P] can be renamed to V[V], V266

denoting the ambient isotopy version of the Jones polynomial, and it coincides with the new 2-variable267

link invariant θ(a, E) [22], which generalizes V and is stronger than V.268

2.2. Normalization of D[D] and K[K]269

Let Y denote the classical ambient isotopy Dubrovnik polynomial. Then, one can obtain the
ambient isotopy invariant Y from its regular isotopy counterpart D via the formula:

Y(L) := a−wr(L)D(L),

where wr(L) is the total writhe of the diagram L for some choice of orientation of L. Analogously, and
letting Z denote Y but with different variable, from our generalized regular isotopy invariant D[D]

one can derive an ambient isotopy invariant Y[Y] via:

Y[Y](L) := a−wr(L)D[D](L). (5)

In order to have a skein relation one leaves it in regular isotopy form.270

As for the Dubrovnik polynomial, one can also define for the Kauffman polynomial the ambient
isotopy generalized invariant, counterpart of the regular isotopy generalized invariant K[K] constructed
above. Let K denote the classical regular isotopy Kauffman polynomial. Then, one can obtain the
ambient isotopy invariant F from its regular isotopy counterpart K via the formula:

F(L) := a−wr(L)K(L),

where wr(L) is the total writhe of the diagram L for some choice of orientation of L. Analogously, and
letting S denote F but with different variable, from our generalized regular isotopy invariant K[K] one
can derive an ambient isotopy invariant F[F] via:

F[F](L) := a−wr(L)K[K](L). (6)

In order to have a skein relation one leaves it in regular isotopy form.271

3. Closed combinatorial formuli for the generalized invariants272

3.1. A closed formula for H[H]273

As we mentioned in the Introduction, in [7, Appendix B] W.B.R. Lickorish provides a closed274

combinatorial formula for the definition of the invariant Θ = P[P], that uses the Homflypt polynomials275

and linking numbers of sublinks of a given link. We will give here an analogous formula for our276

regular isotopy extension H[H]. Namely:277
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Theorem 5 (cf. [43]). Let L be an oriented link with n components. Then

H[H](L) =
n

∑
k=1

ηk−1Ek ∑
π

H(πL) (7)

where the second summation is over all partitions π of the components of L into k (unordered) subsets and278

H(πL) denotes the product of the Homflypt polynomials of the k sublinks of L defined by π. Furthermore,279

Ek = (E−1 − 1)(E−1 − 2) · · · (E−1 − k + 1) and η = a−a−1

z .280

Proof. We present the proof in full detail, as we believe it is instructive and it proves the existence of
the generalized invariants. Before proving the result, note the following equalities:

H(L1 t L2) = η H(L1) H(L2),

H[H](L1 t L2) =
η

E
H[H](L1) H[H](L2).

In the case where both L1 and L2 are knots the above formuli follow directly from rules (H5) and (2)281

above. If at least one of L1 and L2 is a true link, then the formuli follow by doing independent skein282

processes on L1 and L2 for bringing them down to unlinked components, and then using the defining283

rules above.284

Suppose now that a diagram of L is given. The proof is by induction on n and on the number, u,285

of crossing changes between distinct components required to change L to n unlinked knots. If n = 1286

there is nothing to prove. So assume the result true for n− 1 components and u− 1 crossing changes287

and prove it true for n and u.288

The induction starts when u = 0. Then L is the union of n unlinked components L1, . . . , Ln

and all linking numbers are zero. A classic elementary result concerning the Homflypt polynomial
shows that H(L) = ηn−1H(L1) · · ·H(Ln). Furthermore, in this situation, for any k and π, H(πL) =
ηn−k H(L1) · · ·H(Ln). Note that H[H](L) = E1−n H(L) = ηn−1E1−n H(L1) · · ·H(Ln). So it is required
to prove that

ηn−1E1−n = ηn−1
n

∑
k=1

S(n, k)(E−1 − 1)(E−1 − 2) · · · (E−1 − k + 1), (8)

where S(n, k) is the number of partitions of a set of n elements into k subsets. Now it remains to prove
that:

E1−n =
n

∑
k=1

S(n, k)(E−1 − 1)(E−1 − 2) · · · (E−1 − k + 1). (9)

However, in the theory of combinatorics, S(n, k) is known as a Stirling number of the second kind and289

this required formula is a well known result about such numbers.290

Now let u > 0. Suppose that in a sequence of u crossing changes that changes L, as above, into
unlinked knots, the first change is to a crossing c of sign ε between components L1 and L2. Let L′ be L
with the crossing changed and L0 be L with the crossing annulled. Now, from the definition of H[H],

H[H](L) = H[H](L′) + εz H[H](L0).

The induction hypotheses imply that the result is already proved for L′ and L0 so

H[H](L) =
n

∑
k=1

ηk−1Ek ∑
π′

H(π′L′) + εz
n−1

∑
k=1

ηk−1Ek ∑
π0

H(π0L0), (10)

where π′ runs through the partitions of the components of L′ and π0 through those of L0.291
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A sublink X0 of L0 can be regarded as a sublink X of L containing L1 and L2 but with L1 and L2

fused together by annulling the crossing at c. Let X′ be the sublink of L′ obtained from X by changing
the crossing at c. Then

H(X) = H(X′) + εz H(X0).

This means that the second (big) term in (10) is

n−1

∑
k=1

ηk−1Ek ∑
ρ

(
H(ρL)− H(ρ′L′)

)
, (11)

where the summation is over all partitions ρ of the components of L for which L1 and L2 are in the292

same subset and ρ′ is the corresponding partition of the components of L′.293

Note that, for any partition π of the components of L inducing partition π′ of L′, if L1 and L2 are
in the same subset then we can have a difference between H(πL) and H(π′L′), but when L1 and L2

are in different subsets then
H(π′L′) = H(πL). (12)

Thus, substituting (11) in (10) we obtain:

H[H](L) =
n

∑
k=1

ηk−1Ek

(
∑
π′

H(π′L′) + ∑
ρ

(
H(ρL)− H(ρ′L′)

))
, (13)

where π′ runs through all partitions of L′ and ρ through partitions of L for which L1 and L2 are in the
same subset. Note that, for k = n the second sum is zero. Therefore:

H[H](L) =
n

∑
k=1

ηk−1Ek

(
∑
π′

H(π′L′) + ∑
ρ

H(ρL)
)

, (14)

where π′ runs through only partitions of L′ for which L1 and L2 are in different subsets and ρ through
all partitions of L for which L1 and L2 are in the same subset. Hence, using (14) and also (12), we
obtain:

H[H](L) =
n

∑
k=1

ηk−1Ek ∑
π

H(πL)

and the induction is complete.294

Remark 2. Note that the combinatorial formula (7) can be regarded by itself as a definition of the295

invariant H[H], since the right-hand side of the formula is an invariant of regular isotopy, since H296

is invariant of regular isotopy. The proof of Theorem 5 then proves that this invariant is H[H] by297

verifying the skein relation and axioms for H[H]. In the same way the original Lickorish formula (3)298

can be regarded as a definition for the invariant Θ = P[P]. Clearly, the two formuli for H[H] and Θ are299

intechangeable by writhe normalization, recall (4).300

The combinatorial formula (7) is a remarkable summation of evaluations on sublinks with certain301

coefficients, that surprisingly satisfies the skein relations and order of switchings and evaluations that302

we have described above.303

The reader should note that the formula above (the right hand side) is, by its very definition, a304

regular isotopy invariant of the link L. This follows from the regular isotopy invariance of H and305

the well-definedness of summing over all partitions of the link L into k parts. In fact the summations306

Ik(L) = ∑π H(πL), where π runs over all partitions of L into k parts, are each regular isotopy invariants307

of L. What is remarkable here is that these all assemble into the new invariant H[H](L) with its striking308

two-level skein relation. We see from this combinatorial formula that the extra strength of H[H](L)309
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comes from its ability to detect linking numbers and non-triviality of certain sublinks of the link L. In310

the regular isotopy formulation, even the linking numbers are not needed.311

Remark 3. Since the Lickorish combinatorial formula is itself a link invariant and we prove by312

induction that it satisfies the two-tiered skein relations of H[H], this combinatorial formula can be313

used as a mathematical basis for H[H]. We have chosen to work out the skein theory of H[H] from314

first principles, but a reader of this paper may wish to first read the proof of the Lickorish formula and315

understand the skein relations on that basis. The same remarks apply to the combinatorial formuli for316

the other two invariants [D] and K[K].317

Remark 4. The combinatorial formula (7) shows that the strength of H[H] against H comes from its318

ability to distinguish certain sublinks of Homflypt-equivalent links. In [7] a list of six 3-component319

links are given, which are Homflypt equivalent but are distinguished by the invariant Θ and thus also320

by H[H].321

3.2. An example322

Here is an example by the firstnamed author and D. Goundaroulis showing how H[H] and the323

combinatorial formula give extra information in the case of two link components.324

Example 1. We will use the ambient isotopy version of the Jones polynomial VK(q) and so first work
with a skein calculation of the Jones polynomial, and then with a calculation of the generalized
invariant V[V](L)(q). Recall from Remark 1 that V[V](L) = θ(a, E) [22]. We use the link ThLink first
found by Morwen Thisthlethwaite [53] and generalized by Eliahou, Kauffman and Thistlethwaite
[15]. This link of two components is not detectable by the Jones polynomial, but it is detectable by
our extension of the Jones polynomial. In doing this calculation we (Louis Kauffman and Dimos
Goundaroulis) use Dror Bar Natan’s Knot Theory package for Mathematica. In this package, the Jones
polynomial is a function of q and satisfies the skein relation

q−1VK+(q)− qVK−(q) = (q1/2 − q−1/2)VK0(q)

where K+, K−, K0 is the usual skein triple. Let

a = q2, z = (q1/2 − q−1/2), b = qz, c = q−1z.

Then we have the skein expansion formulas:

VK+ = aVK− + bVK0 and VK− = a−1VK+ − cVK0 .

In Figure 1 we show the Thistlethwaite link that is invisible to the Jones polynomial. In the same
figure we show an unlink of two components obtained from the Thisthlethwaite link by switching
four crossings. In Figure 2 we show the links K1, K2, K3, K4 that are intermediate to the skein process
for calculating the invariants of L by first switching only crossings between components. From this it
follows that the knots and links in the figures indicated here satisfy the formula

VThLink = bVK1 + abVK2 − ca2VK3 − acVK4 + VUnlinked.

This can be easily verified by the specific values computed in Mathematica:

VThLink = −q−1/2 − q1/2

VK1 = −1 +
1
q7 −

2
q6 +

3
q5 −

4
q4 +

4
q3 −

4
q2 +

3
q
+ q
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VK2 = 1− 1
q9 +

3
q8 −

4
q7 +

5
q6 −

6
q5 +

5
q4 −

4
q3 +

3
q2 −

1
q

VK3 = 1− 1
q9 +

2
q8 −

3
q7 +

4
q6 −

4
q5 +

4
q4 −

3
q3 +

2
q2 −

1
q

VK4 = −1− 1
q6 +

2
q5 −

2
q4 +

3
q3 −

3
q2 +

2
q
+ q

VUnlinked =
1

q13/2 −
1

q11/2 −
1

q7/2 +
1

q3/2 −
1
√

q
− q3/2

This is computational proof that the Thistlethwaite link is not detectable by the Jones polynomial.
If we compute V[V](ThLink)(q) then we modify the computation to

V[V](ThLink)(q) = bVK1 + abVK2 − ca2VK3 − acVK4 + E−1VUnlinked.

and it is quite clear that this is non-trivial when the new variable E is not equal to 1.325

On the other hand, the Lickorish formula for this case tells us that, for the regular isotopy version
of the Jones polynomial V′[V′](ThLink)(q),

V′[V′](ThLink)(q) = η(E−1 − 1)V′K1
V′K2

(q) + V′ThLink(q)

whenever we evaluate a 2-component link. Note that η(E−1 − 1) is non-zero whenever E 6= 1. Thus it326

is quite clear that the Lickorish formula detects the Thisthlethwaite link since the Jones polyomials327

of the components of that link are non-trivial. We have, in this example, given two ways to see how328

the extended invariant detects the link ThLink. The first way shows how the detection works in the329

extended skein theory. The second way shows how it works using the Lickorish formula.330

ThLink UnLink

Figure 1. The Thistlethwaite Link and Unlink
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K1 2

3 4

K

K K

Figure 2. The links K1, K2, K3, K4

3.3. Closed formuli for D[D] and K[K]331

As for the case of H[H], there are analogous formuli for the generalized invariants D[D] and K[K].332

Theorem 6 (cf. [43]). Let L be an unoriented link with n components. Then

D[D](L) =
n

∑
k=1

δk−1Ek ∑
π

D(πL) (15)

where the second summation is over all partitions π of the components of L into k (unordered) subsets and333

D(πL) denotes the product of the Dubrovnik polynomials of the k sublinks of L defined by π. Furthermore,334

Ek = (E−1 − 1)(E−1 − 2) · · · (E−1 − k + 1), with E1 = 1, and δ = a−a−1

z + 1.335

The proof of Theorem 6 uses similar arguments as the one for Theorem 5. Further, a closed336

combinatorial formula exists also for the invariant K[K]:337

Theorem 7 (cf. [43]). Let L be an unoriented link with n components. Then

K[K](L) = iwr(L)
n

∑
k=1

γk−1Ek ∑
π

i−wr(πL)K(πL). (16)

where the second summation is over all partitions π of the components of L into k (unordered) subsets and338

K(πL) denotes the product of the Kauffman polynomials of the k sublinks of L defined by π. The term wr(πL)339

denotes the sum of the writhes of the parts of the partitioned link πL. Furthermore, Ek = (E−1 − 1)(E−1 −340

2) · · · (E−1 − k + 1), with E1 = 1, and γ = a+a−1

z − 1.341

We prove this Theorem [43] by using the translation formula between the Kauffman and
Dubrovnik polynomials and the combinatorial formula that we have already proved for the Dubrovnik
polynomial extension D[D]. The following equation is the translation formula from the Dubrovnik to
Kauffman polynomial, observed by W.B.R. Lickorish [40]:

D(L)(a, z) = (−1)c(L)+1 i−wr(L)K(L)(ia,−iz).

Here, c(L) denotes the number of components of L, i2 = −1, and wr(L) is the writhe of L for some
choice of orientation of L. The translation formula is independent of the particular choice of orientation
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for L. By the same token, we have the following formula translating the Kauffman polynomial to the
Dubrovnik polynomial.

K(L)(a, z) = (−1)c(L)+1 iwr(L)D(L)(−ia, iz).

These formulas are proved by checking them on basic loop values and then using induction via the
skein formulas for the two polynomials. This same method of proof shows that the same translation
occurs between our generalizations of the Kauffman polynomial K[K] and the Dubrovnik polynomial
D[D]. In particular, we have

D[D](L)(a, z) = (−1)c(L)+1 i−wr(L)K[K](L)(ia,−iz) (17)

and
K[K](L)(a, z) = (−1)c(L)+1 iwr(L)D[D](L)(−ia, iz).

Note that the formuli (15) and (16) can be regarded by themselves as definitions of the invariants342

D[D] and K[K] respectively, since the right-hand sides of the formuli are invariants of regular isotopy,343

since D and K are invariants of regular isotopy. Furthermore, Remark 4 applies also for the invariants344

D[D] and K[K].345

Remark 5. As noted in the Introduction, in Theorems 2 and 3 the basic invariants D(z, a) and K(z, a)346

could be replaced by specializations of the Dubrovnik and the Kauffman polynomial respectively and,347

then, the invariants D[D] and K[K] can be regarded as generalizations of these specialized polynomials.348

For example, if a = 1 then K(z, 1) is the Brandt–Lickorish–Millett–Ho polynomial and if z = A + A−1
349

and a = −A3 then K(A + A−1,−A3) is the Kauffman bracket polynomial. In both cases the invariant350

K[K] generalizes these polynomials.351

4. State sum models352

In this section we present state sum models for the generalized regular isotopy invariant H[H] of353

Theorem 1. A state sum model is a sum over evaluations of combinatorial configurations (the states)354

related to the given link diagram, such that this sum is equal to the invariant that we wish to compute.355

The definitions for the state sum will be given in Section 4.2. The state sum we use depends on the skein356

template algorithm (see [41,42]) that effectively produces the states to be evaluated. The skein template357

algorithm is detailed in Section 4.1.358

In fact, we will consider the lower level invariant to be H or any specialization of H and we will359

be denoting it generically by R(w, a). Thus we will write H[R] to indicate that we have specialized360

the lower level invariant. This liberty is justified by the 4-variable framework of [43] and it is useful361

in applications and computations. Everything we do in the remainder of the paper applies to the362

generalized Dubrovnik and Kauffman polynomials, D[D] and K[K], in essentially the same way.363

Definition 1. Let L denote a diagram of an oriented link. The oriented smoothing of a crossing is the364

replacement of the crossing by the smoothing that is consistent with the orientations of its two arcs.365

See Figure 4. Pre-states, Ŝ, for L are obtained by successively smoothing or switching mixed crossings366

(a mixed crossing is a crossing between two components of the link). That is, one begins by choosing a367

mixed crossing and replacing it by smoothing it and switching it, see Figure 5 top. The smoothing is368

decorated as in Figure 4, so that there is a dot that discriminates whether the smoothing comes from a369

positive or a negative crossing. The process of placing the dot is related to walking along the diagram.370

That walk only allows a smoothing at a mixed crossing that is approached along an undercrossing arc as shown371

in Figure 4. After the smoothing is produced, that walk and the dotting are related as shown Figure 4.372

The reasons for these conventions will be clarified below, where we explain a process that encodes373

the skein calculation of the invariants. The switched crossing is circled to indicate that it has been374

chosen by this skein process, see Figure 3. Then one chooses another mixed crossing in each of the375

resulting diagrams and applies the same procedure. New self-crossings can appear after a smoothing.376
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A completed pre-state is obtained when a decorated diagram is reached where all the undecorated crossings are377

self-crossings. A state, S, for L is a completed pre-state that is obtained with respect to a template as we378

describe it below. In a state, we are guaranteed that the resulting link diagram is a topological union379

of unlinked knot diagrams (a stack). In fact, the skein template process will produce exactly a set of380

states whose evaluations correspond to the skein evaluation of the invariant H[R].381

In the skein template algorithm we produce a specific set of pre-states that we can call states, and382

show how to compute the link invariant H[R] from these states by adding up evaluations of each state.383

The key to producing these pre-states is the template. A template, T, for a link diagram L is an indexed,384

flattened diagram for L (the underlying universe of L, a 4-valent graph obtained from L by ignoring385

the over and under crossing data in L) so that the indices are on the edges of the graph. See Figure 6 for386

an illustration of a template T for the Hopf link. We assume that the indices are distinct elements of an387

ordered set (for example, the natural numbers). We use the template to decide the order of processing388

for the pre-state. As we know, the invariant H[R] itself is independent of this ordering. Take the link389

diagram L and a template T for L. Process the diagram L to produce pre-states Ŝ generated by the390

template T by starting at the smallest index and walking along the diagram, smoothing and marking391

as described below.392

In a mixed crossing an approach 
at an undercrossing switches
the crossing from diagram to state.

:

:

For a same component crossing,
retain the crossing in the orginal diagram
for both approached at either an under or
an overcrossing, and do not circle the crossing.

:

In a mixed crossing an approach
at an overcrossing retains the crossing type.

:

Figure 3. Decorations on walking past a crossing in a pre-state
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walk indicator first passage 
indicator

:

:

Smooth

Smooth

Mixed crossings only.

With distinct components, smooth as well
as switch. Mark the smoothing with a 
first-passage dot, and continue walking 
as shown by the walker.

Figure 4. First passage decoration at mixed crossings

Distinct components.

smooth switch

] =  z Z[R][ ]  + Z[R][ ]Z[R][

] =  z H[R][ ]  + H[R][ ]H[R][

] = -z H[R][ ]  + H[R][ ]H[R][

Decorations for the skein template algorithm
at distinct components.

Decorations for the basic skein relation at
identical components.

] = -z Z[R][ ]  + Z[R][ ]Z[R][

smooth switch

Figure 5. Decorated state production by the skein template algorithm
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4.1. The skein template algorithm393

The skein template algorithm is basically very simple. It is a formalization of the skein calculation394

process, designed to fix all the choices in this process by the choice of the template T. Then the resulting395

states are exactly the ends of a skein tree for evaluating H[R]. Each state, as a link diagram, is a stack396

of knots, ready to be evaluated by R. The product of the vertex weights for the state multiplied by R397

evaluated on the state is equal to the contribution of that state to the polynomial.398

We now detail the skein template algorithm. Consider a link diagram L (view Figures 6 and 8).399

Label each edge of the projected flat diagram of L from an ordered index set I so that each edge receives400

a distinct label. We have called this labeled graph the template T(L). We have defined a pre-state Ŝ of L401

by either smoothing or flattening each crossing in L according to a walks on the template, starting with402

the smallest index in the labeling of T. We now go through the skein template algorithm, referring at403

the same time to specific examples.404

1
2

3
4

S State S from S and the 
template T.

T

S S'

State S' from 
template T.

Figure 6. State production for the Hopf link

1. Begin walking along the link L, starting at the least available index from T(L). See Figures 6 and405

8.406

2. When meeting a mixed crossing via an under-crossing arc, produce two new diagrams (see407

Figure 5 top), one by switching the crossing and circling it (Figure 3) and one by smoothing the408

crossing and labeling it (Figure 4).409

3. When traveling through a smoothing, label it by a dot and a connector indicating the place of first410

passage as shown in Figure 4 and exemplified in Figures 6 and 8. At a smoothing, assign to the411

smoothing a vertex weight of +z or −z (the weights are indicated in Figure 7).412

We clarify these steps with two examples, the Hopf link and the Whitehead link. See Figure 6413

and Figure 8. In these figures, for Step 1 we start at the edge with index 1 and meet a mixed414

crossing at its under-arc, switching it for one diagram and smoothing it for another. We walk415

past the smoothing, placing a dot and a connector.416

4. When meeting a mixed over-crossing, circle the crossing (Figure 3 middle) to indicate that it has417

been processed and continue the walk.418

5. When meeting a self-crossing, leave it unmarked (Figure 3 bottom) and continue the walk.419

6. When a closed path has been traversed in the template, choose the next lowest unused template420

index and start a new walk. Follow the previous instructions for this walk, only labeling421

smoothings or circling crossings that have not already been so marked.422
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7. When all paths have been traversed, and the pre-state has no remaining un-processed mixed423

crossing, the pre-state Ŝ is now a state S for L. When we have a state S, it is not hard to see that424

it consists in an unlinked collection of components in the form of stacks of knots as we have425

previously described in this paper.426

8. When a pre-state is finished, there will be no undecorated mixed crossings in the state. All427

uncircled crossings will be self-crossings and there will also be some marked smoothings. All428

the smoothings will have non-zero vertex weights ( z, −z or 1) and the pre-state becomes a429

contributing state for the invariant.430

9. This state is evaluated by taking the product of the vertex weights and the evaluation of the431

invariant R on the the link underlying the state after all the decorations have been removed. The432

skein template process produces a link from the state that is a stack of knots. We give the details433

in the next section.434

10. The (unnormalized) invariant H[R] is the sum over all the evaluations of these states obtained by435

applying the skein-template algorithm. We will denote this sum by Z[R](L) for a given link L436

and justify in the discussion below that it is indeed equal to the previously defined H[R](L).437

Returning to our example, we have the diagram shown in Figure 6. In this diagram S is a438

completed state for the initial link L. Note that in forming S we start at 1 in the template and first439

encounter a mixed under-crossing. This is smoothed to produce the pre-state Ŝ, and the walk continues440

to encounter a self-crossing that is left alone. The result is the state S. Moreover, first encounter from441

1 meets an under-crossing and we switch and circle this crossing and continue that walk. The next442

crossing is an over-crossing that is mixed. We circle this crossing and produce the state S′. The two443

states S and S′ are a complete set of states produced by the skein template algorithm for the Hopf link444

L with this template T.445

4.2. The state summation446

We are now in a position to define the state sum.447

Definition 2. Let S(L) denote the collection of states defined by the skein template algorithm for a
link diagram L with template T. Given a state S, we shall define an evaluation of S relative to L and the
invariant R, denoted by < L|S >. The state sum is then defined by

Z[R](L) = ∑
S∈S(L)

< L|S > . (18)

We will show that Z[R](L) = H[R](L), the regular isotopy invariant that we have defined in
earlier sections of the paper. For the specialization R, we let P[R](L) = a−wr(L)H[R](L) denote
the corresponding invariant of ambient isotopy. Thus

P[R](L) = a−wr(L) ∑
S∈S(L)

< L|S > (19)

gives the normalized invariant of ambient isotopy in state sum form. The sites of the state S consist in
the decorated smoothings and the decorated crossings indicated in Figure 5. Each state evaluation
< L|S > consists of two parts. We shall write it in the form

< L|S >= [L|S][R|S]. (20)

The first part [L|S] depends only on L and the state S. The second part [R|S] uses the chosen knot
invariant R. We define [L|S] as a product over the sites of S:

[L|S] = ∏
σ∈sites(S)

[L|σ] (21)
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where [L|σ] is defined by the equations in Figure 7, comparing a crossing in L with the corresponding
site σ. This means that if a smoothed site has a dot along its lower edge (when oriented from left to
right), then its vertex weight is +z and if it has a dot along its upper edge, then it has a vertex weight
−z. Circled crossings have vertex weights 1. In Figure 7 we have indicated the possibility of vertex
weights 0, but these will never occur in the states produced by the skein template algorithm. If we
were to sum over a larger set of states, then some of them would be eliminated by this rule. The reader
should note that the choice of +z or −z is directly in accord with the rules for the skein relation from a
positive crossing or a negative crossing, respectively. We define [R|S] as a weighted product of the
R-evaluations of the components of the state S:

[R|S] = [
k

∏
i=1

ρ(Ki)]E1−k (22)

where E is defined previously and448

ρ(K) = awr(K)R(K).449

Here {K1, . . . , Kk} is the set of component knots of the state S. Recall that each state S is a stacked450

union of single unlinked component knots Ki, i = 1, . . . , k, with k depending on the state. In computing451

ρ(Ki) we ignore the state decorations and remove the circles from the crossings. With this, we have452

completed the definition of the state sum.453
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1

Figure 7. State evaluation relative to the diagram L

Note that, by (18) and (20) we assert that

Z[R](L) = ∑
S∈S(L)

[L|S][R|S]. (23)

Remark 6. If the invariant R is itself generated by a state summation, then we obtain a hybrid state sum454

for Z[R](L) consisting in the concatenations (in order) of these two structures. We expand on this idea455

in Section 5.456

4.3. Connection of the state sum with skein calculation457

We will show that the sum over states corresponds exactly with the results of making a skein458

calculation that is guided by the template in the skein template algorithm. Thus the template that we459

have already described works in these two related contexts. In this way we will show that the state460

summation gives a formula for the invariant H[R](L).461

We begin with an illustration for a single abstract crossing as shown in Figure 3. We shall refer462

to the skein calculation guided by the template as the skein algorithm. In this figure the walker in the463

skein algorithm (using the template) approaches along the under-crossing line. If the crossing that is464

met is a self-crossing of the given diagram, then the walker just continues and the crossing is circled.465
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If the crossing that is a mixed crossing of the given diagram, then two new diagrams are produced.466

In the first case we produce a smoothing with the labelling that indicates a passage along the edge467

met from the undercrossing arc. In the second case the walker switches the crossing and continues in468

the same direction as shown in the figure. This creates a bifurcation in the skein tree. Each resulting469

branch of the skein tree is treated recursively in this way, but first the walker continues on these given470

branches until it meets an undercrossing of two different components. Using the Homflypt regular471

isotopy skein relation (recall Theorem 1, rule (1)) we can write an expansion symbolically as shown in472

Figure 5. Here it is understood that in expanding a crossing,473

1. its two arcs lie on separate components of the given diagram,474

2. the walker for the skein process always switches a mixed crossing that the walker approaches as475

an under-crossing, and never switches a crossing that it approaches as an over-crossing,476

3. in expanding the crossing, the walker is shifted along according to the illustrations in Figure 5.477

Thus, for different components, we have the expansion equation shown in Figure 5. Here, the478

template takes on the role of letting us make a skein tree of exactly those states that contribute to479

the state sum for Z[H](L). Indeed, examine Figure 7. The zero-weights correspond to inadmissible480

states while the z and −z weights correspond to admissible states where the walker approached at481

an under-crossing; the one-weights correspond to any circled crossing. Thus, we can use the skein482

algorithm to produce exactly those states that have a non-zero contribution to the state sum.483

By using the skein template algorithm and the skein formulas for expansion, we produce a skein
tree where the states at the ends of the tree (the original link is the root of the tree) are exactly the states
S that give non-zero weights for [L|S]. Thus, by (18) we obtain:

Z[R](L) = ∑
S∈Ends(SkeinTree)

< L|S > . (24)

Since we have shown that the state sum is identical with the skein algorithm for computing H[R](L),484

for any link L, this shows that Z[R](L) = H[R](L), as promised. Thus, we have proved:485

Theorem 8. The state sum we have defined as Z[R](L) is identical with the skein evaluation of the invariant486

H[R](L) described and proved to be invariant earlier in this paper. We conclude that Z[R](L) = H[R](L), and487

thus that the skein template algorithm provides a state summation model for the invariant H[R](L).488

Proof. The state sum Z[R](L) = ∑S∈S(L) < L|S > where S(L) denotes all the states produced by the
skein template algorithm, for a choice of template T. Z[R](L) is equal to the sum of evaluations of
those states that are produced by the skein algorithm. That is we have the identity

Z[R](L) = ∑
S∈S(L)

< L|S >= ∑
S∈Ends(SkeinTree)

< L|S >= H[R](L).

The latter part of this formula follows because the skein template algorithm is a description of a489

particular skein calculation process for H[R](L), that is faithful to the rules and weights for H[R](L).490

We have also proved that H[R](L) is invariant and independent of the skein process that produces491

it. Thus we conclude that Z[R](L) = H[R](L), and thus that the skein template algorithm provides a492

state summation model for the invariant H[R](L).493

Remark 7. Note that it follows from the proof of Theorem 8 that the calculation of Z[R](L) = H[R](L)494

is independent of the choice of the template for the skein template algorithm.495

Example 2. In the example shown in Figure 8 we apply the skein template algorithm to the Whitehead496

link L. The skein-tree shows that for the given template T there are three contributing states S1, S2, S3.497

S1 is a knot K. S2 is a stacked unlink or two unknotted components. S3 is an unknot. Thus, referring to498

Figure 9 and using (19) we find the calculation shown below.499
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Z[R](L) = z[R|S1] + [R|S2]− z[R|S3]500

= zR(K) + a−2(η/E)− za−3,501

where η = (a− a−1)/w is defined in Rule (5) after Theorem 1 and K = S1.502

Remark 8. In the example above we see that any choice of specialization for the invariant R that can503

distinguish the trivial knot from the trefoil knot K will suffice for our invariant to distinguish the504

Whitehead link from the trivial link, for which Z[R](©©) = η/E.505
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91011
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T(L)

S1
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Figure 8. Skein template algorithm applied to the Whitehead link
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z

-z

~

K

~

Figure 9. States for the Whitehead link

5. Double state summations506

In this section we consider state summations for our invariant where the invariant R has a state507

summation expansion. The invariant R has a variable w and a framing variable a. By choosing these508
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variables in particular ways, we can adjust R to be the usual regular isotopy Homflypt polyomial or509

specializations of the Homflypt polynomial such as a version of the Kauffman bracket polynomial, or510

the Alexander polynomial, or other invariants. We shall refer to these choices as specializations of R.511

A given specialization of R may have its own form of state summation. This can be combined with512

the skein template algorithm that produces states to be evaluated by R. The result is a double state513

summation.514

As in the previous section we have the global state summation (23):

Z[R](L) = ∑
S∈S(L)

[L|S][R|S]

where [R|S] denotes the evaluation of the invariant R on the union of unlinked knots that is the
underlying topological structure of the state S. It is possible that the specialization we are using has
itself a state summation that is of interest. In this case we would have a secondary state summation
formula of the type

[R|S] = ∑
σ

[S|σ]. (25)

Then, we would have a double state summation for the entire invariant in the schematic form:

Z[R](L) = ∑
S∈S(L),σ∈Rstates(S)

[L|S][S|σ], (26)

where Rstates(S) denotes the secondary states for R of the union of unlinked knots that underlies the515

state S.516

Example 3. Since we use the skein template algorithm to produce the first collection of states S ∈ S(L),517

this double state summation has a precedence ordering with these states produced first, then each518

S is viewed as a stack of knots and the second state summation is applied. In this section we will519

discuss some examples for state summations for R and then give examples of using the double state520

summation.521

We begin with a state summation for the bracket polynomial that is adapted to our situation.522

View Figure 10. At the top of the figure we show the standard oriented expansion of the bracket. If the523

reader is familiar with the usual unoriented expansion [41], then this oriented expansion can be read524

by forgetting the orientations. The oriented states in this state summation contain smoothings of the525

type illustrated in the far right hand terms of the two formulas at the top of the figure. We call these526

disoriented smoothings since two arrowheads point to each other at these sites. Then by multiplying the527

two equations by A and by A−1 respectively, we obtain a difference formula of the type528

A < K+ > −A−1 < K− >= (A2 − A−2) < K0 >529

where K+ denotes the local appearance of a positive crossing, K− denotes the local appearance of a530

negative crossing and K0 denotes the local appearance of standard oriented smoothing. The difference531

equation eliminates the disoriented terms. It then follows easily from this difference equation that if532

we define a curly bracket by the equation533

{K} = Awr(K) < K >534

where wr(K) is the diagram writhe (the sum of the signs of the crossings of K), then we have a
Homflypt type relation for {K} as follows:

{K+} − {K−} = (A2 − A−2){K0}. (27)

This means that we can regard {K} as a specialization of the Homflypt polynomial and so we can use535

it as the invariant R in our double state summation. The state summation for {K} is essentially the536

same as that for the bracket, as we now detail.537
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Figure 10. Oriented bracket with Homflypt skein relation

From Figure 10 it is not difficult to see that

{K+} = A2{K0}+ {K∞} (28)

and
{K−} = A−2{K0}+ {K∞}. (29)

Here K∞ denotes the disoriented smoothing shown in the figure. These formulas then define the state
summation for the curly bracket. The reader should note that the difference of these two expansion
equations (28) and (29) is the difference formula (27) for the curly bracket in Homflypt form. The
corresponding state summation [42] for these equations is

{K} = ∑
σ

A2s+(σ)−2s−(σ)(−A2 − A−2)||σ||−1,

where σ runs over all choices of oriented and disoriented smoothings of the crossings of the diagram538

K. Here s+(σ) denotes the number of oriented smoothings of positive crossings and s−(σ) denotes the539

number of oriented smoothings of negative crossings in the state σ. Further, ||σ|| denotes the number540

of loops in the state σ.541

With this state sum model in place we can proceed to write a double state sum for the bracket542

polynomial specialization of our invariant. The formalism of this invariant is after (26), as follows.543

Z[{ }](L) = ∑
S∈S(L)

[L|S]{S} = ∑
S∈S(L)

∑
σ∈smoothings(S)

[L|S]A2s+(σ)−2s−(σ)(−A2 − A−2)||σ||−1. (30)

Here we see the texture of the double state summation. The skein template algorithm produces544

from the oriented link L the stacks of knots K. Each such stack has a collection of smoothing states, and545

for each such smoothing state we have the term in the curly bracket expansion formula multiplying a546

corresponding term from the skein template expansion.547

There are many other examples of specific double state summations for other choices of the548

specialization of the Homflypt polynomial.549

Example 4. For example, we can use the specialized Homflypt state summation based on a solution to550

the Yang-Baxter equation as explained in [27,41,42].551
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Example 5. We could also take the specialization to be the Alexander–Conway polynomial and use552

the Formal Knot Theory state summation as explained in [37].553

All these different cases deserve more exploration, particularly for computing examples of these554

new invariants.555

Remark 9. The skein template algorithm as well as the double state summation generalizes to the556

Dubrovnik and Kauffman polynomials, and so applies to our generalizations of them, D[D] and K[K],557

as well. We will take up this computational and combinatorial subject in a sequel to the present paper.558

Remark 10. Consider the combinatorial formula (7). This formula can be regarded itself as a state559

summation, where the states are the partitions π and the state evaluations are given by the formula and560

the evaluations of the regular isotopy Homflypt polynomial R on πL. If we choose a state summation561

for R or a specialization of R, then this formula becomes a double state summation in the same sense as562

we discussed above, but without using the skein template algorithm. These double state sums deserve563

further investigation both for H[R] and also for the counterparts (15) and (16) for the generalizations564

D[D] and K[K] of the Kauffman and the Dubrovnik polynomials.565

6. Statistical mechanics and double state summations566

In statistical mechanics, one considers the partition function for a physical system [5]. The partition
function ZG(T) is a summation over the states σ of the system G:

ZG = ∑
σ

e
−1
kT E(σ)

where T is the temperature and k is Bolztmann’s constant. Combinatorial models for simplified
systems have been studied intensively since Onsager [47] showed that the partition function for the
Ising model for the limits of planar lattices exhibits a phase transition. Onsager’s work showed that
very simple physical models, such as the Ising model, can exhibit phase transitions, and this led to
the deep research subject of exactly solvable statistical mechanics models [5]. The q-state Potts model
[5,39] is an important generalization of the Ising model that is based on q local spins at each site in a
graph G. For the Potts model, a state of the graph G is an assignment of spins from {1, . . . , q} to each
of the nodes of the graph G. If σ is such a state and i denotes the i-th node of the graph G, then we let
σi denote the spin assignment to this node. Then the energy of the state σ is given by the formula

E(σ) = ∑
〈i,j〉

δ(σi, σj)

where 〈i, j〉 denotes an edge in the graph between nodes i and j, and δ(x, y) is equal to 1 when x = y567

and equal to 0 otherwise.568

Temperley and Lieb [52] proved that the partition function for the Potts model can be calculated569

using a contraction - deletion algorithm, and so showed that ZG is a special version of the dichromatic570

or Tutte polynomial in graph theory. This, in turn, is directly related to the bracket polynomial state571

sum, and so by generalizing the variables in the bracket state sum and translating the planar graph572

G into a knot diagram by a medial construction (associating a planar graph to a link diagram via a573

checkerboard coloring of the diagram so that each shaded region in the checkerboard corresponds to a574

graphical node and each crossing between shaded regions corresponds to an edge) , one obtains an575

expression for the Potts model as a bracket summation with new parameters [39]. We wish to discuss576

the possible statistical mechanical interpretation of our generalized bracket state summation Z[{ }]577

(see Eq. 30). In order to do this we shall extend the variables of our state sum so that the bracket578

calculation (for the stacks of knots S that correspond to skein template states) is sufficiently general to579
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support (generalized) Potts models associated with these knots. Accordingly, we add variables to the580

bracket expansion so that581

{K+} = x{K0}+ y{K∞},582

{K−} = x′{K0}+ y′{K∞}583

and the loop value is taken to be D rather than −A2 − A−2.584

Distinct components.

smooth switch

] =  z Z[R][ ]  + Z[R][ ]Z[R][

] = -z Z[R][ ]  + Z[R][ ]Z[R][

Summary of the Skein Template Algorithm

Expand by these rules for positive and negative crossings of 
distinct components. Note that when a crossing is smoothed, the 
local distinctions of same and different components changes.
Crossings are smoothed and marked with a dot,
or switched and marked with a circle. This provides
raw states (containing only self-crossings) that are then filtered
by the choice of template in the algorithm and further evaluated. 
The resulting disjoint collections of knots are evaluated
by R. For a statistical mechanics model, we keep all raw states that
are disjoint unions of knot diagrams.

Figure 11. Raw state production for skein template algorithm

For a given knot in the stack S, the state sum remains well-defined and it now can be specialized585

to compute a generalized Potts model for a plane graph via a medial graph translation. Letting586

R(K) = {K} denote this bracket state sum, we can then form a generalized version of Z[R] by using587

the expansion in Figure 11 where we use the raw states of this figure, and we do not filter them by the588

skein template algorithm, but simply ask that each final state is a union of unlinked knots. The result589

will then be a combinatorially well-defined double-tier state sum. It is this state sum Z[R] that can590

be examined in the light of ideas and techniques in statistical mechanics. The first tier expansion is591

highly non-local, and just pays attention to dividing up the diagrams so that the first tier of states are592

each collections of unlinked knots. Then each knot can be regarded as a localized physical system593

and evaluated with the analogue of a Potts model. This is the logical structure of our double state594

summation, and it is an open question whether it has a significant physical interpretation.595
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7. Discussing applications596

We contemplate how these new ideas can be applied to physical situations. We present these597

indications of possible applications here with the full intent to pursue them in subsequent publications.598

1. Reconnection (in vortices). In a knotted vortex in a fluid or plasma (for example in solar flares)599

[50] one has a cascade of changes in the vortex topology as strands of the vortex undergo600

reconnection. The process goes on until the vortex has degenerated into a disjoint union of601

unknotted simpler vortices. This cascade or hierarchy of interactions is reminiscent of the way602

the skein template algorithm proceeds to produce unlinks. Studying reconnection in vortices603

may be facilitated by making a statistical mechanics summation related to the cascade. Such a604

summation will be analogous the state summations we have described here.605

2. In DNA, strand switching using topoisomerase of types I and II is vital for the structure of606

DNA recombination and DNA replication [51]. The mixed interaction of topological change607

and physical evolution of the molecules in vitro may benefit from a mixed state summation that608

averages quantities respecting the hierarchy of interactions.609

3. Remarkably, the process of separation and evaluation that we have described here is analogous to610

proposed processing of Kinetoplast DNA [46] where there are huge links of DNA circles and these611

must undergo processes that both unlink them from one another and produce new copies for612

each circle of DNA. The double-tiered structure of DNA replication for the Kinetoplast appears613

to be related to the mathematical patterns of our double state summations. For chainmail DNA.614

If the readers examines the Wiki on Kinetoplast DNA, she will note that that Topoisomerase II615

figures crucially in the self-replication [44].616

4. We wondered whether we could have physical situations that would have the kind of a mixture617

that is implicit in this state summation, where the initial skein template state sum yields a sum618

over R-evaluations, and R may itself have a state summation structure. One possible example619

in the physical world is a normal statistical mechanical situation, where one can have multiple620

types of materials, all present together, each having different energetic properties. This can lead621

to a mixed partition function, possibly not quite ordered in the fashion of our algorithm. This622

would involve a physical hierarchy of interactions so that there would be a double (or multiple)623

tier resulting from that hierarchy.624

5. Mixed state models can occur in physical situations when we work with systems of systems.625

There are many examples of this multiple-tier situation in systems physical and biological. We626

look for situations where a double state sum would yield new information. For example, in a627

quantum Hall system [23], the state of the system is in its quasi-particles, but each quasi-particle628

is itself a vortex of electrons related to a magnetic field line. So the quasi-particles are themselves629

localized physical systems. Some of this is summarized in the Laughlin wave function for630

quantum Hall [23]. Not a simple situation, but a very significant one. There should be other631

important examples.632

8. Conclusions633

We have generalized the known skein polynomials to new and more powerful invariants of links634

by adopting a new two-level skein procedure. We have shown that these new invariants can also be635

achieved by special formulas evaluating the original invariants on collections of sublinks of the given636

initial link. We then show how our new skeining procedure leads to state summation expressions for637

the invariants and how, if the original invariant is given by a state sum, the new state sums are double638

level state sums involving a mixture of the two forms of summation. This leads to considerations of639

statistical mechanics models and also physical and biological processes that have significant multiple640

levels. We conclude that this way of working with skein invariants has the potential to lead to new641

insights into physical and biological processes.642
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