
Journal of Mathematical Economics ( ) –

Contents lists available at SciVerse ScienceDirect

Journal of Mathematical Economics

journal homepage: www.elsevier.com/locate/jmateco

Coherent risk measures in general economic models and price bubbles
C. Kountzakis a, I.A. Polyrakis b,∗

a Department of Statistics and Actuarial–Financial Mathematics, University of the Aegean, Karlovassi 83200 Samos, Greece
b Department of Mathematics, National Technical University of Athens, Zographou Campus 157 80, Athens, Greece

a r t i c l e i n f o

Article history:
Received 20 June 2012
Received in revised form
5 February 2013
Accepted 6 February 2013
Available online xxxx

Keywords:
Risk measures
Coherent risk measures
Bubbles
Ordered spaces

a b s t r a c t

In this article we study coherent risk measures in general economic models where the set of financial
positions is an ordered Banach space E and the safe asset an order unit x0 of E. First we study some prop-
erties of risk measures. We show that the set of normalized (with respect to x0) price systems is weak
star compact and by using this result we prove a maximum attainment representation theorem which
improves the one of Jaschke and Küchler (2001). Also we study how a risk measure changes under differ-
ent safe assets and we show a kind of equivalence between these risk measures. In the sequel we study
subspaces of E consisting of financial positions of risk greater or equal to zero andwe call these subspaces
unsure. We find some criteria and we give examples of these subspaces. In the last section, we combine
the unsure subspaces with the theory of price-bubbles of Gilles and LeRoy (1992).

In this study we use the theory of cones (ordered spaces). This theory allows us to generalize basic
results and provides new proofs and ideas in the theory of risk measures.

© 2013 Published by Elsevier B.V.

1. Introduction

Coherent risk measures have been introduced by Artzner et al.
(1999), in financial markets in the case where the set of states
Ω is finite. This theory has been extended by Delbaen (2002),
in the case where Ω is infinite and the portfolio space is the
space L∞(Ω, F , P) or the space L0(Ω, F , P) ofF -measurable real
valued functions, where (Ω, F , P) is a probability space. In the
general frame, see the book of Föllmer and Schied (2002), it is
supposed that a financial position is a real valued function x : Ω →

R, where x(i) is the payoff of x in the state i and the set of financial
positions is a closed subspace E of the space RΩ of real valued
functions x : Ω −→ R. It is supposed that E is ordered by the
pointwise ordering and also that the constant function 1, which is
considered as the safe asset, belongs to E. It is easy to show that 1 is
an order unit of E, i.e. for any x ∈ E there exists a natural number n
so that −n1 ≤ x ≤ n1 and this property of the safe asset is crucial
for the theory of risk measures. A function ρ : E → R, such that

(i) x ≥ y ⇒ ρ(x) ≤ ρ(y) (monotonicity)
(ii) ρ(x + t1) = ρ(x) − t , for any t ∈ R (cash invariant),

is a risk measure. Then the function ρ̃(x) = ρ(x) − ρ(0), x ∈ E,
is again a risk measure with the property ρ̃(0) = 0. So by this
slightmodification,wemay suppose that any riskmeasure satisfies
the condition ρ(0) = 0. If a risk measure ρ is subadditive and
positively homogeneous, i.e.
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(i) ρ(x + y) ≤ ρ(x) + ρ(y), for each x, y ∈ E,

and

(ii) ρ(λx) = λρ(x), for each x ∈ E and each real number λ ≥ 0,

then ρ is a coherent risk measure. Any coherent risk measure is
convex, but the converse is not true. If a convex risk measure ρ is
positively homogeneous then ρ is coherent.

The set Aρ = {x ∈ E | ρ(x) ≤ 0} is the set of acceptable posi-
tions.We have E+ ⊆ Aρ . If the riskmeasure ρ is convex, the setAρ

is convex and if ρ is coherent, the set Aρ is a cone and the function
ρ is given by the formula

ρ(x) = inf{t ∈ R | ρ(x + t1) ≤ 0}.

Coherent risk measures can be defined by the converse process,
starting by a cone P of E which is considered as the set of accept-
able positions and suppose that E is ordered by the cone P . If 1 is
an order unit of E, then the function

ρ(x) = inf{t ∈ R | ρ(x + t1) ∈ P},

for any x ∈ E, is a coherent risk measure with P j Aρ and if P is
closedwehave P = Aρ . Representation theorems for coherent risk
measures have been proved by Delbaen (2002) and for convex risk
measures by Föllmer and Schied (2002) and by Frittelli and Gianin
(2002).

The theory of risk measures has been extended in the case
where the space of financial positions is an ordered Banach space
with order unit,where the order unit is considered as the safe asset.
This overview of riskmeasureswas started by the article of Jaschke
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and Küchler (2001), where it is supposed that E is an arbitrary or-
dered vector space and a representation theorem for coherent risk
measures is given. G. Stoica, studies in Stoica (2006), coherent risk
measures in vector lattices. In Cheridito and Li (2009), the repre-
sentation of convex risk measures on Orlicz hearts i.e. on maximal
subspaces of Orlicz spaces is studied. The theory of price bubbles,
as it is used in this article, has been expanded by Gilles (1989) and
Gilles and LeRoy (1992, 1997).

In this article we suppose that E is a Banach space ordered by a
closed cone P andwe consider the riskmeasureρ defined on Ewith
respect to the cone P and an order unit x0 of E which is considered
as safe asset. We start our study by the base Bx0 of the dual cone P

0

of P which is defined by x0. In fact Bx0 is the set of normalized (with
respect to the safe asset x0) price systems. In Theorem 4, we show
that the set Bx0 is a weak star compact subset of the topological
dual E∗ of E. By using this result we improve the representation
theorem of Jaschke and Küchler (2001), where it is proved that
ρ(x) = sup{−x(x∗) | x∗

∈ Bx0}, for any x ∈ E, by showing that
the supremum is attained.

In Theorem 6, we show that for any x ∈ E we have: ρ(x) < 0
if and only if x is an interior point of P . Note that this result is
known in the case where E is a subspace of an L∞ space and for
the proof the Lipschitz continuity of the risk measure ρ is needed.
In this article we generalize this result in Banach spaces without
any continuity assumption of the risk measure. In Theorem 7, we
study how a coherent risk measure changes under different safe
assets but with the same set of acceptable positions and we show
a kind of equivalence between these risk measures.

In the sequel, we study subspaces X of E with the property
ρ(x) ≥ 0 for any x ∈ X . We call these subspaces unsure because
any financial position x of an unsure subspace can be approximated
by a sequence of financial position of strictly positive risk.We show
different criteria for unsure subspaces. For example, in Theorem11,
we show that any solid subspaceX of E is unsure and in Theorem14
we show that any subspace X of E whose positive cone X+ = X ∩P
in the topology of X , does not have interior points is unsure.

It is worth noting that based on a result of Polyrakis (the lattice
universality of C[0, 1], (Polyrakis, 1994)) we show that anyone of
the spaces C[0, 1], L∞[0, 1] and ℓ∞, has at least so many unsure
subspaces as the cardinality of the set of separable Banach lattices
without order unit, see Corollary 22.

In the sequel we study the converse of the unsure subspace
problem. Sowe start by a fixed proper subspaceX of E andwe study
the existence of a cone P of E with an interior point x0 so that X to
be unsurewith respect to the riskmeasure of E defined by the cone
P and the safe asset x0. In Theorems 20 and 21, we show that the
answer to this problem is positive and we determine such a cone
and an interior point x0 of P .

In the last section we combine the unsure subspaces with the
theory of price-bubbles of Gilles and LeRoy (1992), and we give
an application in the case where the space of financial positions
is the space ℓ∞. Specifically in Theorem 24 we prove: If E = ℓ∞

and from the economy we exclude the price bubbles, then any
financial position x ∈ ℓ∞ can be approximated by unsure positions
of the same price, in the sense that for any x ∈ ℓ∞ there exists a
sequence {xn} of unsure positions (i.e. ρ(xn) ≥ 0 for any n) such
that lim q(xn) = q(x), for any price vector q.

Formore results on riskmeasures butmainly for amore general
perspective on this subject, we refer to the articles Acerbi and
Scandolo (2008), Csoka et al. (2007), Jarrow and Purnanandam
(2005). In Acerbi and Scandolo (2008), the axioms of coherence
are properties of coherent risk measures, which are proved either
on certain liquidity operators or on the value function related to
a liquidity policy on the space of portfolios. In Csoka et al. (2007),
personalized coherent risk measures are studied, being related to
an incomplete markets equilibrium, through the pricing kernel

which arises from the marginal rates of substitution between
consumption at time-period 0 and any of the states 1, 2, . . . , S
calculated at the consumption vector of any consumer at the
equilibrium. In Jarrow and Purnanandam (2005) a generalized
risk measure notion is introduced, in order to indicate that the
solvency for a firm’s portfolio is the minimum quantity invested
to a marketed asset (which is not necessarily cash) jointly with
the original firm’s portfolio to be acceptable by the regulator. This
provides a motivation for the consideration of a risky asset for
insuring the financial positions in a normed linear space E.

For an introduction in ordered spaces and the notions we use
here see Appendix and for a detailed study of ordered spaces we
refer to Aliprantis and Burkinshaw (2006), Aliprantis and Tourky
(2007) and Jameson (1970).

Note that throughout this article, for simplicity, by the term
‘‘cone’’ wewillmean a ‘‘nontrivial cone’’. (A cone P of a vector space
E is nontrivial if P ≠ {0} and P ≠ E).

2. Risk measures in Banach spaces

Suppose that E is a Banach space ordered by the cone P and x0 ∈

P is an order unit of E which is considered as the safe asset. Recall
that in this article by the term ‘‘cone’’ we mean always ‘‘nontrivial
cone’’.

A function ρ : E → R with the properties

(i) x ≥ y ⇒ ρ(x) ≤ ρ(y) (monotonicity)
(ii) ρ(x + tx0) = ρ(x) − t , for any t ∈ R (cash invariant),

is a riskmeasure on E. By a slightmodification of the function ρ we
may also suppose that any risk measure satisfies the condition

(iii) ρ(0) = 0.

The set Aρ = {x ∈ E | ρ(x) ≤ 0}, is the set of acceptable
positions of ρ. If a risk measure ρ is subadditive and positively
homogeneous, then ρ is said coherent. Any coherent risk measure
is convex, but for the converse the extra assumption that ρ is
positively homogeneous is needed. If ρ is a coherent risk measure
on E, then the set Aρ is a cone of E which contains P and for each
x ∈ E we have

ρ(x) = inf{t ∈ R | x + tx0 ∈ Aρ}.

As in the classical case, risk measures in Banach spaces can also
be defined by a cone P of E which is considered as the set of ac-
ceptable positions and an order unit x0 of E which is considered as
safe asset. The next theorem has been formulated by Jaschke and
Küchler (2001), without proof. For a proof of this result we refer to
Stoica (2006, Theorem 2.1).

Theorem 1 (Jaschke and Küchler). Suppose that E is a Banach space
ordered by the cone P. If x0 is an order unit of E, then the function

ρ(x) = inf{t ∈ R | x + tx0 ∈ P} for each x ∈ E,

is a coherent risk measure with respect to the cone P and the vector
x0. If moreover P is closed then Aρ = P.

Recall the next theorem, see in Aliprantis and Tourky (2007,
Theorem 2.8). By this result, if the cone P is closed, then in the the-
ory of risk measures any order unit is an interior point of P and any
interior point of P can be considered as a safe asset.

Theorem 2. If E is a Banach space ordered by the closed cone P and
x ∈ P, the following are equivalent:

(i) x is an order unit of E,
(ii) x is an algebraic interior point (internal point) of P,
(iii) x is an interior point of P.
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3. Results on coherent risk measures

In this section we will suppose that E is a Banach space ordered
the closed cone P and ρ is the coherent risk measure defined on E
with respect to the cone P and the safe asset x0 ∈ P , according
to Theorem 1 of Jaschke and Küchler. Note that, in this article,
whenever we say that x0 is a safe asset wewill mean always that x0
is an order unit of E, or equivalently an interior point of the cone P .
As we have remarked in the previous section P coincides with the
set of acceptable positions Aρ , i.e.

P = {x ∈ E | ρ(x) ≤ 0}.

Recall again that in this article, our cones are supposed nontrivial.
We will denote by P0 the dual cone of P in E∗, i.e.

P0
= {x∗

∈ E∗
| x∗(x) ≥ 0 for each x ∈ P}.

If K is a cone of E∗ then K0 = {x ∈ E | x∗(x) ≥ 0, for any x∗
∈ K}

is the dual cone of K in E and K0 is weakly closed, see in Aliprantis
and Tourky (2007, Theorem 2.13), or Jameson (1970, Proposition
3.1.7). It is easy to show that if Q is a cone of E then Q ⊆ (Q 0)0 and
if Q is closed then Q = (Q 0)0 because Q as a closed, convex set is
also weakly closed. Recall that any vector x of E can be considered
as a continuous linear functional of E∗, which we will denote byx.
So we havex(x∗) = x∗(x), for any x∗

∈ E∗.

It is known thatx ∈ E∗∗, ∥x∥ = ∥x∥ and thatx is referred as the
natural image of x in E∗∗. We will denote by Bx0 the base for the
cone P0 which is defined by x0, i.e. the set

Bx0 = {x∗
∈ P0

| x0(x∗) = 1}.

The base Bx0 is the set of normalized (with respect to the safe asset
x0) price systems. In the case where the set of states is a set Ω and
E is the space of all bounded, measurable functions with respect to
the measure space (Ω, F ), equipped with the supremum norm,
x0 = 1 is the constant function 1 and P = E+ is the positive
cone of E in the pointwise ordering, then for any x∗

∈ Bx0 we
can define the finitely additive probability measure µx∗ such that
µx∗(A) = x∗(XA) for any A ∈ F , where XA is the characteristic
function of A. In the case where Ω is a compact and Hausdorff
topological space and E = C(Ω) is the set of continuous, real
valued functions on Ω , then E∗

= ca(Ω) is the set of countably
additive signedmeasures on the Borelσ -algebraB ofΩ (Aliprantis
and Border, 2006, Theorem 14.14) and Bx0 is the set of probability
measures defined on B.

In the next theorem we prove that Bx0 is a weak star compact
subset of P0. To show this, it is essential to show that the base Bx0
of P0 is bounded in order to apply the theorem of Alaoglou for the
weak star compactness of the unit ball of E∗. In general we cannot
say that any base Bx for the cone P0 defined by a vector x of P is
bounded and thereforewe cannot say that any base Bx of P0 isweak
star compact, as the next example shows. For a short note on the
weak topology of E and the weak star topology of E∗ see Appendix.

Example 3. Suppose that in our economy the space of financial
positions E is the space c0 of convergent to zero real sequences
equipped with the supremum norm and P = c+

0 is the positive
cone of c0. Then P0

= ℓ+

1 is the positive cone of the space ℓ1 of
absolutely summing real sequences. Suppose that Bx is the base for
P0 defined by the vector (sequence) x = ( 1

n ) of P . Then Bx is un-
bounded. Indeed, if en is the vector (sequence) of ℓ1 with 1 in the n
coordinate and zero everywhere else, we have thatx(nen) = 1 for
each n. Therefore nen ∈ Bx and ∥nen∥ = n for any n, therefore Bx is
unbounded and so Bx is not weakly compact.

Theorem 4. The set Bx0 is a weak star compact subset of P0.

Proof. According to our hypothesis, x0 is an interior point of P . We
will show that x0, as a linear functional of E∗, is strictly positive on
P , i.e. x0(y∗) > 0 for any y∗

∈ P0, y∗
≠ 0. So we suppose thatx0(y∗) = 0 for some y∗

∈ P0, y∗
≠ 0. Since x0 is an interior point

of P , we have that x0 + rU ⊆ P for some real number r > 0, where
by U we denote the closed unit ball of E. Hence, for each y ∈ E, we
have that x0 +

r
2

y
∥y∥ ∈ x0 + rU ⊆ P , therefore, by the definition of

P0, we have

x0(y∗) +
r
2
y(y∗)

∥y∥
≥ 0,

hencey(y∗) ≥ 0 because we have supposed that x0(y∗) = 0. So
we have that y∗(y) ≥ 0 for any y ∈ E, hence y∗(y) = 0 for each
y ∈ E, because y, −y ∈ E. This implies that y∗

= 0, a contradiction.
Hence x0 is strictly positive on P0. We will show now that the base
Bx0 is bounded.

Let x∗
∈ Bx0 . For any y ∈ U we have −y ∈ U , therefore

x∗(x0 ± ry) ≥ 0, because x∗
∈ Bx0 ⊆ P0 and x0 + rU ⊆ P .

Therefore we have that |x∗(y)| ≤
1
r . So for each x∗

∈ Bx0 we have
that ∥x∗

∥ = sup{|x∗(y)| | y ∈ U} ≤
1
r . Hence the base Bx0 is

bounded and by the theorem of Alaoglou, see in Megginson (1998,
Theorem 2.6.18), Bx0 is weak star compact. �

The next theorem has been formulated by Jaschke and Küchler
(2001, Theorem 2), for general vector spaces where it is proved
that ρ(x) = sup{−x(x∗) | x∗

∈ Bx0}, for any x ∈ E. In the next
theoremwe improve this result by replacing the supremum by the
maximum.

Theorem 5. If E is a Banach space and ρ is a risk measure defined on
E with respect to the closed cone P ⊆ E and the safe asset x0 ∈ int P,
then for any x ∈ E we have:

ρ(x) = max{−x(x∗) | x∗
∈ Bx0} = −min{x(x∗) | x∗

∈ Bx0}.

Proof. The cone P is closed therefore, as we have remarked in the
beginning of this section we have P = (P0)0, hence

P = {x ∈ E | x∗(x) ≥ 0 for each x∗
∈ P0, x∗

≠ 0}.

But any x∗
∈ P0, x∗

≠ 0, is the positive multiple of a vector of Bx0 ,
therefore we have P = {x ∈ E | x∗(x) ≥ 0, for each x∗

∈ Bx0}.
Suppose that x ∈ E. By the definition of ρ we have, ρ(x) = inf{t ∈

R | x + tx0 ∈ P}, or equivalently,

ρ(x) = inf{t ∈ R | x∗(x + tx0) ≥ 0 for each x∗
∈ Bx0}.

Since x∗
∈ Bx0 we have x∗(x0) = 1, therefore

ρ(x) = inf{t ∈ R | t ≥ −x∗(x) for each x∗
∈ Bx0}. (1)

By Theorem 4, Bx0 is weak star compact. Therefore −x, as a weak
star continuous linear functional of E∗ takes maximum on a vector
x∗

0 of Bx0 . Then the real number x∗

0(−x) = −x∗

0(x) is the minimum
value of t in (1), therefore ρ(x) = −x∗

0(x) = max{−x∗(x) | x∗
∈

Bx0} and the theorem is true because for any subset A of R we have
max(−A) = −min(A). �

Before to state the next theorem note that in the case where E
is a subspace of some L∞ space then, by the Lipschitz continuity of
the risk measure ρ with respect to the supremum norm of L∞ we
have that any x ∈ E with ρ(x) < 0 is an interior point of the cone
P = L+

∞
. Indeed, if we suppose that ρ(x) = a < 0, then for any

y ∈ E with ∥x− y∥ < −
a
2 we have that |ρ(x)− ρ(y)| ≤ ∥x− y∥ <

−
a
2 , therefore ρ(y) < a

2 < 0. So the ball of center x and radius −
a
2

is contained in P . This result is known, see for example in the book
of Föllmer and Schied (2004, p. 162), where it is noted that the set
B = {x ∈ E | ρ(x) < 0} is an open subset of P . In the next theorem
we generalize this result in Banach spaces without the assumption
of the Lipschitz continuity of the risk measure.
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Theorem 6. Let E be a Banach space ordered by the closed cone P
and suppose that x0 is an interior point of P. If ρ is the risk measure
defined on E with respect to the cone P ⊆ E and the safe asset x0, then
for any x ∈ E, the following statements are equivalent:
(i) ρ(x) < 0,
(ii) x is an interior point of P.

Proof. (i) H⇒ (ii) Suppose that ρ(x) < 0. By Theorem 5 we have
min{x(x∗) | x∗

∈ Bx0} = −ρ(x) = a > 0. Also x as a linear
functional of E∗ is strictly positive on the cone P0. Indeed for any
x∗

∈ P0, x∗
≠ 0 we have x∗

x∗(x0)
∈ Bx0 , hence

x
x∗

x∗(x0)


≥ a > 0, (2)

thereforex(x∗) > 0. By Theorem 4, Bx0 is a bounded base for the
cone P0 and suppose that ∥x∗

∥ ≤ M for any x∗
∈ Bx0 . We will

show that the base Bx = {x∗
∈ P0

| x(x∗) = 1} is a bounded base
for the cone P0. Indeed, for any x∗

∈ Bx we have that x∗x0(x∗)
∈ Bx0 ,

therefore ∥
x∗x0(x∗)

∥ ≤ M , because M is a norm bound of Bx0 . Hence
∥x∗

∥ ≤ Mx0(x∗).
By (2) we havex( x∗x0(x∗)

) ≥ a, hence

x(x∗) ≥ ax0(x∗) ≥
a
M

∥x∗
∥.

Butx(x∗) = 1 becausewe have supposed that x∗
∈ Bx, therefore

∥x∗
∥ ≤

M
a , and the base Bx is bounded.

We will show that x is an interior point of P . Denote by U the
closed unit ball of E and by U0 the closed unit ball of E∗. Since the
base Bx is a bounded base of P0, there exists a real number b > 0
such that Bx ⊆ bU0. We shall show that

D = {y ∈ E | |x∗(y)| ≤ 1, for any x∗
∈ Bx},

is a neighborhood of zero in E such that x + D ⊆ P . We assert that
1
bU ⊆ D. Indeed, for any y ∈

1
bU we have that ∥y∥ ≤

1
b , therefore

for any x∗
∈ Bx ⊆ bU0 we have that

|x∗(y)| ≤ ∥x∗
∥ ∥y∥ ≤ b

1
b

= 1 ⇒ y ∈ D.

So D is a neighborhood of zero. Let y ∈ D. Then for any x∗
∈ Bx we

have

x∗(x + y) = 1 + x∗(y) ≥ 1 + (−1) = 0,

because by the definition ofDwe have that |x∗(y)| ≤ 1. Sowe have
that x + y ∈ (P0)0 = P , therefore x + D ⊆ P and x is an interior
point of P .

(ii) H⇒ (i) Since x is an interior point of P there exists δ > 0
such that x + tx0 ∈ P for any t ∈ (−δ, δ), hence we have ρ(x) ≤

−δ < 0. �

In the next theorem we study risk measures for different
interior points considered as safe assets but with the same set P
of acceptable positions. The formula of the theorem shows a kind
of equivalence between these two risk measures.

Theorem 7. Let E be a Banach space ordered by the closed cone
P ⊆ E, let x1, x2 be interior points of the cone P and suppose that
a0, b0 are the real numbers defined by the formula: a0 = min{a ∈

R | x1 ≤ ax2}, b0 = min{b ∈ R | x2 ≤ bx1}. If ρ1, ρ2 are the risk
measures defined on E with respect to the cone P and the safe assets
x1, x2 respectively, then for any x ∈ E we have:

1
a0

ρ2(x) ≤ ρ1(x) ≤ b0ρ2(x).

Proof. We will show that a0, b0 exist. Since x1, x2 are interior
points of P , we have that x1, x2 are order units of E. Hence there

exists a ∈ R+ such that x1 ≤ ax2 and suppose that a0 = inf{a ∈

R+ | x1 ≤ ax2}. For any such a we have ax2 − x1 ≥ 0 and it
is easy to show that a0x2 − x1 ≥ 0 because the cone P is closed.
Hence a0 = min{a ∈ R | x1 ≤ ax2} and a0 ≠ 0 because if
we suppose that a0 = 0 we have that x1 = 0, a contradiction
because x1 is an order unit of E and E ≠ {0}. Similarly we have
b0 = min{b ∈ R | x2 ≤ bx1}. By the definition of the risk measure,
for any x ∈ E we have ρ1(x) = inf{t ∈ R | x + tx1 ∈ P}. Also
for t = ρ1(x) we have that x + ρ1(x)x1 ∈ P because the cone is
closed. But x+ρ1(x)x1 ∈ P implies that x+ a0ρ1(x)x2 ∈ P because
x + a0ρ1(x)x2 ≥ x + ρ1(x)x1, therefore ρ2(x) ≤ a0ρ1(x). Similarly
we have that ρ1(x) ≤ b0ρ2(x) and the theorem is true. �

Corollary 8. Let E be a Banach space ordered by the closed cone
P ⊆ E and let x1, x2 be interior points of the cone P. If ρ1, ρ2 are
the risk measures defined on E with respect to the cone P and the safe
assets x1, x2 respectively, then for any x ∈ E we have:

(i) ρ1(x) < 0 ⇐⇒ ρ2(x) < 0,
(ii) ρ1(x) = 0 ⇐⇒ ρ2(x) = 0,
(iii) ρ1(x) > 0 ⇐⇒ ρ2(x) > 0.

Example 9. Suppose that E = ℓ∞ is the space of bounded real
sequences ordered by the pointwise ordering and equipped with
the supremum norm and suppose that ρ is the risk measure of ℓ∞

with respect to the cone ℓ+
∞

and the safe asset 1.
Suppose also that the sequence r = (ri) is an interior point

of ℓ+
∞

which we consider as safe asset. Then r is a risky vector in
the sense that r can have different payoffs ri, so x + tr finances x
with different payoffs in the different states. Suppose that ρr is the
risk measure with respect to ℓ+

∞
and the safe asset r . Since r is an

interior point of ℓ+
∞
, there exists θ > 0 such that ri ≥ θ for each i,

therefore 1 ≤ ar with a =
1
θ
. Similarly if b = sup{ri} we have that

r ≤ b1. By the above theorem and these remarks we have

1
a0

ρr(x) ≤ ρ(x) ≤ b0ρr(x),

for any x ∈ ℓ∞ where a0 = inf{ri} and b0 = sup{ri}. So if we
suppose that ri = 4 −

1
i if i is even and ri = 2 +

1
i if i is odd, we

have

2ρr(x) ≤ ρ(x) ≤ 4ρr(x).

4. Unsure subspaces

In this section we will also suppose that E is a Banach space
ordered by the closed cone P and ρ is the coherent risk measure
defined on E with respect to the cone P and the safe asset x0 ∈ P .
Recall that whenever we say that x is a safe asset wewill mean that
x is an interior point of P .

In Theorem 6, we have proved that the risk measure of a
financial position x ∈ E is strictly lower than zero (ρ(x) < 0)
if and only if x is an interior point of the cone P . This means that
there exists a ball B(x, r) of E of center x and radius r > 0 which
is contained in the set of acceptable positions P of E. Since any
financial position y ∈ B(x, r) is also an interior point of P we have
that ρ(y) < 0, therefore x ‘‘is surrounded’’ by financial positions of
risk strictly lower than zero. On the other hand if ρ(x) = 0, then x
is not an interior point of P therefore for any ball B(x, r) there exists
at least one financial position yr ∈ B(x, r)which does not belong to
P or equivalentlywithρ(yr) > 0. Therefore x can be approximated,
in the norm topology of E, by financial positions yr with ρ(yr) > 0.
So in the sense of the above remarks we can say that the financial
position x is strictly acceptable or strictly safe if ρ(x) < 0 and that x
is not strictly safe or unsure if ρ(x) ≥ 0.

In the spirit of the above remarks we give the definition of the
unsure subspace as follows:
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Definition 10. A subspace X of E consisting of unsure positions
i.e. ρ(x) ≥ 0 for any x ∈ X , is an unsure subspace of E.

We give below criteria of unsure subspaces. Recall that a sub-
space X ⊆ E is solid if for any x, y ∈ X , with x ≤ y, the order
interval [x, y] = {z ∈ E | x ≤ z ≤ y} is contained in X .

Theorem 11. Let E be a Banach space and let ρ be the risk measure
defined on E with respect to the closed cone P ⊆ E and the safe asset
x0 and suppose that E is ordered by the cone P. Then any solid subspace
X of E is unsure.

Proof. Suppose that X is a solid subspace of E but X is not unsure.
Then there exists x ∈ X such that ρ(x) < 0. Then x is an interior
point of P and therefore x is an order unit of E. Therefore for any
y ∈ E there exists k ∈ R+ such that −kx ≤ y ≤ kx. Hence
y ∈ X because X , as a solid subspace of E, contains all the vectors
of the order interval [−kx, kx] so we have that X = E. This is a
contradiction, therefore X is an unsure subspace. �

Example 12. Suppose that E = L∞[0, 1] and

X = {x ∈ L∞[0, 1] | x(t) = 0, for each t ∈ A},

where A is a nonempty, proper subset of [0, 1]. Then X is a solid
subspace of L∞[0, 1]because for each x, y ∈ X , with x ≤ ywehave:
z ∈ L∞[0, 1] and x ≤ z ≤ y implies that z(t) = 0 for each t ∈ A
therefore z ∈ X . Recall that the equality and the pointwise ordering
in L∞[0, 1] are defined in the sense of the almost everywhere. We
also suppose that 0 < µ(A) < 1 where µ(A) is the Lebesgue
measure of A (we may suppose for example that A = [

1
2 , 1] or that

A = ∪n:even(
1

n+1 ,
1
n )). Then X is a proper subspace of L∞[0, 1] and

therefore an unsure subspace of L∞[0, 1] with respect to the risk
measure of L∞[0, 1], defined by the closed cone L+

∞
[0, 1] and the

safe asset 1.

As we have noted before Theorem 4, any vector x ∈ E can
be considered as a linear functional of E∗, which, is denoted byx.
From the theory of Functional Analysis we know thatx ∈ E∗∗ with
∥x∥ = ∥x∥ andx is referred as the natural image of x in the second
dual E∗∗ of E. We denote byE the setE = {x | x ∈ E} and we know
thatE is a closed subspace of E∗∗ in the norm topology of E∗∗ butE is dense in E∗∗ with respect to the weak star topology of E∗∗. IfE = E∗∗, the space E is called reflexive.

Recall also that a Banach lattice E has order continuous norm, if
each decreasing sequence of E with infimum zero is convergent to
zero.

Corollary 13. Suppose that E is a non reflexive Banach lattice with
order continuous norm, x∗∗

0 is an interior point of E∗∗
+

and ρ is the
risk measure defined on E∗∗ with respect to the cone E∗∗

+
and the safe

asset x∗∗

0 . ThenE is an unsure subspace of E∗∗ with respect to the risk
measure ρ .

Proof. Suppose that E∗∗ is ordered by the cone E∗∗
+
. By Aliprantis

and Burkinshaw (2006, Theorem 4.9),E is a solid subspace of E∗∗

andE $ E∗∗ because E is non reflexive. ThereforeE is an unsure
subspace of E∗∗. �

Suppose that X is a subspace of E, A j X and x ∈ A. x is an in-
terior point of A in the topology of X if there exists a ball B(x, r)
of E of center x and radius r so that X ∩ B(x, r) j A. An interior
point of A in the topology of X is not necessarily an interior point
of A in the topology of E. For example, if E = R2, then x = (1, 0)
is an interior point of the positive cone X+ = {(t, 0) | t ∈ R+}

of X = {(t, 0) | t ∈ R}, in the topology of X , but x is not an in-
terior point of X+ in the topology of E. In the next theorem the
set Q = P ∩ X is a cone which in some cases can be the trivial
cone {0}.

Theorem 14. Suppose that E is Banach space ordered by the closed
cone P, x0 is an interior point of P and suppose that ρ is the risk
measure defined on E with respect to the cone P and the safe asset
x0. If X is a closed subspace of E such that the set Q = P ∩ X, in
the topology of X, does not have interior points, then X is an unsure
subspace of E with respect to ρ .

Proof. Suppose that ρ(x) < 0 for some x ∈ X . Then x is an interior
point of P , therefore there exists a ball D = {y ∈ E | ∥x − y∥ ≤ δ}
of E of center x and radius δ > 0which is contained in P . So for any
z ∈ X with ∥x− z∥ < δ we have that z ∈ P therefore z ∈ Q . Hence
x is an interior point of the set Q = P ∩ X , a contradiction. Hence
X is an unsure subspace. �

Theorem 15. Let E be a Banach space and let ρ be the risk measure
defined on E with respect to the closed cone P ⊆ E and the safe
asset x0 ∈ int P. Suppose that X is a subspace of E, F is a subspace
of the algebraic dual E ′ of E and consider the dual pair ⟨X, F⟩ with
⟨x, x′

⟩ = x′(x), for any x ∈ X, x′
∈ F and consider also the cone

P0
F = {x′

∈ F | x′(x) ≥ 0 for any x ∈ P}.

If P0
F ≠ {0} and the vector 0 of E ′ belongs to the σ(F , X)-closure of

the base

BF
x0 = {x′

∈ P0
F | x0(x′) = 1},

of the cone P0
F , then X is an unsure subspace of E.

Proof. Suppose that 0 belongs to the σ(F , X)-closure of BF
x0 . Then

there exists a net (x′
a)a∈A of BF

x0 such that x′
a(x) −→ 0 for any x ∈ X .

Suppose that x ∈ X . Then

ρ(x + ρ(x)x0) = 0,

hence x + ρ(x)x0 ∈ P , therefore we have

x′

a(x + ρ(x)x0) = x′

a(x) + ρ(x)x′

a(x0) ≥ 0,

therefore

ρ(x)x′

a(x0) ≥ −x′

a(x), for any a.

By our assumptions that x′
a is a net of BF

x0 we have x′
a(x0) = 1,

therefore

ρ(x) ≥ −x′

a(x), for any a,

and by taking limits we have ρ(x) ≥ 0. �

In the above theorem we may also suppose that F ⊆ E∗. In the
case where F = E∗, we have:

Corollary 16. Let E be a Banach space and let ρ be the risk measure
defined on E with respect to the closed cone P ⊆ E and the safe asset
x0 ∈ int P. Suppose that X is a subspace of E. If 0 belongs to the
σ(E∗, X)-closure of the base Bx0 for the cone P0, then X is an unsure
subspace of E.

Example 17. The space X = c0, of convergent to zero real se-
quences, is an unsure subspace of the space E = ℓ∞ of bounded
real sequences with respect to the cone P = ℓ+

∞
and the safe as-

set x0 = 1. We can show this directly because for any x ∈ c0 we
have that x + t1 ≥ 0 implies t ≥ 0. Indeed, since the sequence
x = (x(i)) converges to zero, if we suppose that x + t1 ≥ 0 we
have that x(i) + t ≥ 0, for each i and by taking limits we have that
t ≥ 0, therefore ρ(x) ≥ 0 and c0 is an unsure subspace of ℓ∞. By
Corollary 8, c0 is also an unsure subspace of E with respect to any
risk measure ρr of E having as safe asset an interior point r of ℓ+

∞
.

Also we can show this by applying our criteria of unsure sub-
spaces as follows:
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(i) By Theorem 11, because c0 is a solid subspace of ℓ∞. Indeed,
for any x, y ∈ c0 and any z ∈ ℓ∞ with x ≤ z ≤ y we have that
z ∈ c0 because z is dominated between two zero sequences, hence
[x, y] ⊆ c0.

(ii) By Theorem 14, because one can show that c+

0 , in the topol-
ogy of c0 does not have interior points. Indeed if we suppose that
x = (x(i)) is an interior point of c+

0 , there exists ε > 0 such that
the ball of c0 of center x and radius ε is contained in c+

0 . Since the
sequence x converges to zerowe have that 0 ≤ x(j) < ε

4 for at least
one j. If y ∈ c0 such that y(i) = x(i) for any i ≠ j and y(j) = −

ε
4 ,

then ∥x − y∥ < ε and y ∉ c+

0 , a contradiction.
(iii) By Theorem 15, as follows: It is known that the dual E∗ of

ℓ∞ is the direct sum E∗
= F ⊕ G where F = ℓ1 and G = ℓd

1 is the
disjoint component of ℓ1 (see Appendix). Consider the dual system
⟨X, F⟩, where X = c0.
Then P0

F = {f ∈ F | f (x) ≥ 0 for each x ∈ P} = ℓ+

1 and

BF
x0 =


f ∈ ℓ+

1 |

∞
i=1

fi = 1


,

is the base for the cone P0
F defined by x0. It is easy to show that

0 belongs to the σ(F , X)-closure of Bx0 . Indeed, the sequence {en},
where en is the vector of ℓ+

1 with 1 in the n coordinate and zero
everywhere else, is a sequence of BF

x0 which converges to zero
in the σ(F , X) topology because for each x ∈ X we have thatx(en) = x(n) −→ 0.

We have proved above some criteria for unsure subspaces and
we have given some examples. It is worth noting that, by applying
the result of Polyrakis (1994, Theorem 4.1) that any separable
Banach lattice X is order isomorphic to a lattice-subspace Z of C[0, 1]
we can show that the space C[0, 1] has at least so many unsure
subspaces as the cardinality of the set of separable Banach lattices
without order unit. Since C[0, 1] is a closed sublattice of L∞[0, 1]
we have that any separable Banach lattice X is order isomorphic to
a lattice-subspace Z of L∞[0, 1], therefore L∞[0, 1] has at least so
many unsure subspaces as the cardinality of the set of separable
Banach lattices without order unit. An analogous result is also true
for the subspaces of ℓ∞ because C[0, 1] is order isomorphic to a
closed sublattice of ℓ∞. Indeed, if {ri} is the sequence of rational
numbers of the real interval [0, 1], it is easy to show that the
function T (x) = (x(ri)), x ∈ C[0, 1], is an order isometry of C[0, 1]
into ℓ∞ and its imageW is a sublattice of ℓ∞. To emphasize this fact
we state the next theorem. Of course the safe asset of the theorem
can be the constant function 1.

Theorem 18. Suppose that E is one of the spaces C[0, 1], ℓ∞, or
L∞[0, 1], ordered by the pointwise ordering and suppose that x0 is an
interior point of E+. If ρ is the risk measure defined on E with respect
to the positive cone E+ of E and the safe asset x0, then E has at least so
many infinite dimensional unsure subspaces, with respect to ρ , as the
cardinality of the set of infinite dimensional, separable Banach lattices
without order unit.

Proof. Suppose X is an infinite dimensional, separable Banach
lattice without order unit. Then by the discussion above X is order
isomorphic to an infinite dimensional closed lattice-subspace Z of
E and suppose that T is an order isomorphism of X onto Z . If we
suppose that Z is not an unsure subspace we have ρ(y0) < 0 for
some y0 ∈ Z . Then, by Theorem 6, y0 is an interior point of E+.
Therefore y0 is an interior point of Z+ = E+ ∩ Z in the topology of
X . So we have that y0 is an order unit of Z , therefore

Z = ∪
n∈N

[−ny0, ny0]Z ,

where

[−ny0, ny0]Z = {x ∈ Z | −ny0 ≤ x ≤ ny0},

is the order interval in Z , defined by −ny0 and ny0. Since T is an
order isomorphism we have that

X = ∪
n∈N

T−1([−ny0, ny0]Z ) = ∪
n∈N

([−nT−1(y0), nT−1(y0)]),

therefore T−1(y0) is an order unit of X , a contradiction. Hence Z is
an unsure subspace of E. �

As an application of the above theorem we give below an
example of an unsure subspace of L∞[0, 1]. Of course the existence
of the subspace is ensured by the theorem and the subspace cannot
be completely determined.

Example 19. Suppose that X = L1[0, 1] is the Banach lattice of
absolutely integrable real sequences with respect to the Lebesgue
measure µ. Note that L1[0, 1] itself cannot be considered as a
subset of L∞[0, 1] because there are vectors of L1[0, 1] which are
not essentially bounded. By Theorem 4.1 of Polyrakis (1994) and
the remarks above, there exists an order isomorphism T of L1[0, 1]
onto a closed lattice-subspace Z of L∞[0, 1]. The cone L+

1 [0, 1] does
not have interior points because if we suppose that x is an interior
point of L+

1 [0, 1] we have a contradiction as follows: There exists a
ball B(x, ϵ) of center x and radius ϵ which is contained in L+

1 [0, 1].
We select ameasurable subset A of [0, 1] so that 0 <


A |x(t)|dµ <

ϵ
2 and we define the vector y of L1[0, 1] so that y(t) = x(t) for any
t ∉ A and y(t) = −x(t) for t ∈ A. Then y ∈ B(x, ϵ) but y ∉ L+

1 [0, 1].
So L1[0, 1] does not have interior points and therefore does not
have order units. By the above theoremwe have that Z is an unsure
subspace of L∞[0, 1] with respect to the risk measure defined by
the cone L+

∞
[0, 1] and the safe asset 1 or any other interior point of

L+
∞

[0, 1].

In the next theorems we start by a fixed subspace X $ E of E.
Our aim is to define a riskmeasure ρ on E so that the subspace X to
be unsure with respect to the risk measure ρ. We show that such
a risk measure always exists. Recall that if A is a closed subset of E
and x ∉ A, then

d = inf{∥x − y∥ | y ∈ A} > 0,

is the distance of x from A.

Theorem 20. Let E be a Banach space and let be X $ E be a closed
subspace of E. Suppose that x0 ∈ E \ X and D is the closed ball of
E of center x0 and radius δ, where 0 < δ < d and d is the distance
of x0 from X. If P is the cone of E generated by D and if ρ is the risk
measure defined on E with respect to the cone P and the safe asset x0,
then P is closed and X is an unsure subspace of E with respect to the
risk measure ρ . Specifically we have: ρ(x) > 0, for any x ∈ X, x ≠ 0.

Proof. Since 0 ∈ X we have that d ≤ ∥x0 − 0∥ = ∥x0∥, therefore
0 ∉ D because we have supposed that 0 < δ < d. Also P is
closed because it is generated by a closed and bounded set D. For
any x ∈ X , x ≠ 0 we have that x ∉ P because if we suppose that
x ∈ P , then x = ty for some y ∈ D and t > 0. So we have that
y ∈ X and ∥x0 − y∥ < d, a contradiction. Hence x ∉ P , therefore
ρ(x) > 0. �

Theorem 21. Let E be a Banach space and let X ⊆ E be a closed
subspace of E. Suppose that x0 ∈ E \ X, such that d < ∥x0∥, where d
is the distance of x0 from X. If D is the closed ball of E of center x0 and
radius d, P is the cone of E generated by D, and ρ is the risk measure
defined on E with respect to the cone P and the safe asset x0, then X is
an unsure subspace of E with respect ρ .

Proof. Suppose that ρ(x) < 0 for some x ∈ X . Then by the defini-
tion of the risk measure, there exists a real number t > 0 such that
x − tx0 ∈ P . Therefore x − tx0 = λy for some y ∈ D and λ ≥ 0. But
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y ∈ D, therefore y = x0 + z for some z ∈ E with ∥z∥ ≤ d. So we
have x − tx0 = λ(x0 + z). Hence

x
λ + t

= x0 +
λ

λ + t
z,

with ∥
λ

λ+t z∥ < ∥z∥ ≤ d because λ
λ+t < 1.

Therefore we have thatw =
x

λ+t ∈ X with ∥x0 −w∥ < dwhich
contradicts the fact that d is the distance of x0 from X . Therefore X
is an unsure subspace. �

Corollary 22. Let E be a non reflexive Banach space and x∗∗

0 ∈ E∗∗
\E,

such that d < ∥x∗∗

0 ∥, where d is the distance of x∗∗

0 fromE. Suppose
that 0 < δ ≤ d and that P is the cone of E∗∗ generated by D, where
D is the closed ball of E∗∗ of center x∗∗

0 and radius δ. If ρ is the risk
measure defined on E∗∗ with respect to the cone P and the safe asset
x∗∗

0 , thenE is an unsure subspace of E∗∗ with respect to ρ . Specifically
if δ < d, we have that ρ(x) > 0 for any x ∈ E, x ≠ 0.

5. Price-bubbles and unsure subspaces

In this section we follow the definition of Gilles and LeRoy
(1992), for price-bubbles. In Gilles and LeRoy (1992), L∞(µ) =

L∞(M, M, µ) is the commodity space, where M is a set, M is a
σ -algebra of M , µ is a σ -finite measure on M and L∗

∞
(µ) is the

price space. From the pages 327–328 of Gilles and LeRoy (1992),
we quote the following text where the definition of the price
bubble is given:Our problemnow is to formulate the general principle
underlying the separation of a price system into fundamental and
bubble when the price system is characterized as a general continuous
linear functional on L∞(µ). For any positive and continuous linear
function u of L∞(µ) the fundamental f can be defined by

f (x) =


M
p(s)x(s)µ(ds),

where p is a maximal element of the set

D =


q ∈ L1(µ)


M
q(s)x(s)µ(ds) ≤ u(x),

for any positive x ∈ L∞(µ)


and the bubble b is defined by the formula

b(x) = u(x) − f (x), x ∈ L∞(µ).

In Gilles and LeRoy (1992), it is noted that p is the maximum of
D, therefore p is unique. Note that L∗

∞
(µ), as the dual of L∞(µ), is

ordered by the ordering: h ≥ g , where h, g ∈ L∗
∞

(µ), if and only
if h(x) ≥ g(x) for any x ∈ L+

∞
(µ). So if we consider L1(µ) as a

subspace of L∗
∞

(µ) the above definition is the following: For any
price system u ∈ (L∗

∞
(µ))+ we consider the set

D = {q ∈ L1(µ) | q(x) ≤ u(x)
for any x ∈ L+

∞
(µ), or equivalently q ≤ u}

and we consider the maximum point p of D. Then by the definition
of f we have that f (x) = p(x) for any x ∈ L∞(µ), therefore f = p
and b = u − p. So according to the definition of Gilles and LeRoy,
the price system u is decomposed in a fundamental p and a bubble
b, i.e.

u = p + b.

For this approach in Gilles and LeRoy (1992), the Yosida–Hewitt
decomposition of signed measures of bounded variation in a
countably additive and a purely additive part is used. In this article
we use an analogous decomposition from the theory of Banach

lattices. Especially we use the fact that the second dual E∗∗ of a KB
space E is the direct sum
E∗∗

= E ⊕ Ed,

where, for simplicity, by E is denoted the natural imageE of E in
E∗∗. In the above formula, E is a projection band in E∗∗ and Ed is the
disjoint component of E in E∗∗. Recall that reflexive Banach lattices
and AL-spaces are standard examples of KB spaces. The space E =

L1(µ) is an AL-space, therefore its second dual is decomposed as
follows
L∗

∞
(µ) = L1(µ) ⊕ Ld1(µ).

So any u ∈ L∗
∞

(µ) has a unique decomposition u = u1 + u2 with
u1 ∈ L1(µ) and u2 ∈ Ld1(µ) and if u is positive we have
u1 = sup{y ∈ L1(µ) | y ≤ u},
see in Aliprantis and Burkinshaw (2006, Theorem 1.43, p. 36).
Therefore for positive u, u1 = p is the fundamental and u2 = b
is the bubble of the definition of Gilles and LeRoy. So if we exclude
the bubbles the price space is L1(µ).

In the next remark we give an intuitional explanation of the
above definition for price-bubbles in the case of ℓ∞.

Remark 23. Consider an economy with commodity–price duality
⟨E, E∗

⟩ where E = ℓ∞. Then E∗
= X∗∗ where X = ℓ1. Therefore

ℓ∗

∞
= ℓ1 ⊕ ℓd

1,

because ℓ1 is a KB space. So any u ∈ (ℓ∗
∞

)+ has a unique decom-
position u = u1 + u2 where u1 ∈ ℓ+

1 is the fundamental and
u2 ∈ (ℓd

1)
+, is the bubble. It is known that any g ∈ ℓd

1 is a limit
functional of ℓ∞ i.e. there exists a real number kg such that for any
x ∈ c we have

g(x) = kg lim
n→∞

x(n),

where c is the set of convergent real sequences and kg = g(1), see
in Aliprantis and Border (2006, Lemma 16.30). Hence, if 1 is the
constant sequence 1 and 1n is the sequence with 1n(i) = 0, for
i = 1, . . . , n and 1n(i) = 1 for any i > n, we have that

g(1) = g(1n) = kg , for any n ∈ N.

For any fixed state i, we have that any financial position 1n with
n > i has payoff 0 at the state i, but kg is the price (payoff) of any fi-
nancial position 1n corresponding to the price system g . From these
remarkswehave that in order the price system g to finance a finan-
cial position x by kg it is only needed the promise that in the outer
future the payoffs of xwill be equal to one. This property of ℓd

1 jus-
tifies by a natural way the definition of price-bubbles of Gilles and
LeRoy which in the case of ℓ∞, identifies the price-bubbles with
the component ℓd

1 of ℓ∗
∞
.

Theorem 24. Suppose that the commodity–price duality is the dual
pair ⟨ℓ∞, ℓ1⟩ and ρ is the coherent risk measure defined on ℓ∞ with
respect to the positive cone ℓ+

∞
of ℓ∞ and the interior point x0 of ℓ+

∞
.

Then any financial position can be approximated by unsure positions
of the same price, in the sense that for any x ∈ ℓ∞, there exists a
sequence {xn} of c0 such that ρ(xn) ≥ 0 for any n and lim q(xn) =

q(x) for any price system q ∈ ℓ1.

Proof. Let x ∈ ℓ∞. Since ℓ∞ is the second dual of c0, the space
c0 is weak star dense in ℓ∞. Also the weak star topology of ℓ∞

is metrizable because ℓ∞ is the dual of a separable space (the
space ℓ1) therefore there exists a sequence {xn} of c0 such that
for any q ∈ ℓ1 we have q(xn) → q(x). But as we have noted
before (Example 17) c0 is an unsure subspace of ℓ∞, therefore
ρ(xn) ≥ 0 for any n. So we have proved that for any financial
position x ∈ ℓ∞ there exists a sequence {xn} of unsure positions
such that lim q(xn) = q(x) for any price system q ∈ ℓ+

1 and the
theorem is true. �
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Remark 25. The above theoremcanbe formulated inmore general
cases. If for example E is an orderedBanach space and ifwe suppose
that the commodity–price duality is the dual pair ⟨E∗∗, E∗

⟩wehave
the following: The space E is weak star dense in E∗∗, i.e. for any
x∗∗

∈ E∗∗, there exists a net (xa)a∈A of E such that lima q(xa) =

x∗∗(q) for any q ∈ E∗. Note that in the case where the dual E∗ of
E is not separable, then we cannot say that the weak star topology
of E∗∗ is metrizable therefore any vector of E∗∗ is interpolated by a
net of E∗∗, not by a sequence. So in the case whereE is an unsure
subspace of E∗∗, then any financial position x∗∗

∈ E∗∗, can be
approximated by unsure positions of the same price. Recall that
ifE is a solid subspace of E∗∗, or if E+ does not have interior points,
thenE is an unsure subspace of E∗∗.
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Appendix. Partially ordered linear spaces

We give some notions and results from the theory of cones and
partially ordered linear spaces which are needed in this article. Let
E be a linear space. A nonempty, convex subset P of E is a cone if
λx ∈ P , for any λ ∈ R+ and x ∈ P , where R+ = {t ∈ R | t ≥ 0}.
A cone P of E with the property P ∩ (−P) = {0}, is pointed and
P is nontrivial if {0} $ P & E. If P is a cone of E, then we can
define the binary relation ≥ of E so that for any x, y ∈ E we have:
x ≥ y ⇐⇒ x − y ∈ P . This binary relation satisfies the properties

(i) x ≥ x, for any x ∈ E (reflexivity),
(ii) x ≥ y and y ≥ z implies x ≥ z, for any x, y, z ∈ E (transitivity)
(iii) for any x, y ∈ E, x ≥ y implies λx ≥ λy for any λ ∈ R+ and

x + w ≥ y + w for any w ∈ E (compatibility with the linear
structure of E),

andwe say that E is ordered by the cone P or that≥ is the ordering of
E defined by the cone P . This relation is antisymmetric i.e.≥ satisfies
the property

(iv) x ≥ y and y ≥ x implies x = y, for any x, y ∈ E,

if and only if the cone P is pointing. If ≥ is a binary relation of E
which satisfies (i), (ii), (iii) and (iv), then we say that ≥ is a partial
linear ordering of E or that (E, ≥) (or simply E) is a partially ordered
linear space.

Let E be ordered by the cone P . For any x, y ∈ E with x ≤ y, the
set [x, y] = {z ∈ E | x ≤ z ≤ y} is an order interval of E defined by
x, y.

A vector e ∈ E+ is an order unit of E if E = ∪
∞

n=1[−ne, ne]. If E
is a normed linear space, then every interior point of P is an order
unit of E (Aliprantis and Tourky, 2007, Lemma 2.5). If E is a Banach
space and E+ is closed, then the converse is also true, i.e. every
order unit of E+ is an interior point of E+ (Aliprantis and Tourky,
2007, Theorem 2.8).

Denote by E ′ the algebraic and by E∗ the topological dual of
E, i.e. E ′ is the set of linear and E∗ the set of continuous, linear
functionals of E.

A linear functional f ∈ E ′ is positive (on P) if f (x) ≥ 0 for any
x ∈ P and f is strictly positive (on P) if f (x) > 0 for any x ∈ P \ {0}.
If a strictly positive linear functional (of P) exists, then P is pointed.

A convex set B ⊆ P is a base for the cone P if a strictly positive
linear functional f ∈ E ′ exists such that B = {x ∈ P | f (x) = 1}. In
this case the base B is denoted by Bf and we say that B is the base
for P defined by f . P0

= {x∗
∈ E∗

|x∗(x) ≥ 0 for any x ∈ P} is the
dual cone of P in E∗. For any strictly positive x∗

∈ E∗ we have: The
base Bx∗ = {x ∈ P|x∗(x) = 1} of P is bounded if an only if x∗ is an

interior point of P0 (Jameson, 1970, Theorem 3.8.4). If K is a cone
of E∗ then K0 = {x ∈ E|x∗(x) ≥ 0, for any x∗

∈ K} is the dual
cone of K in E and K0 is weakly closed, see in Aliprantis and Tourky
(2007, Theorem 2.13), or Jameson (1970, Proposition 3.1.7). Recall
that the dual cone P0 of P is weak star closed in E∗. So for the cone
P of E we have: P ⊆ (P0)0 and if P is closed then P = (P0)0 because
P , as a convex set, is also weakly closed.

Let E be a partially ordered vector space. If for each x, y ∈ E the
supremum and the infimum of the set {x, y} exist in E, then E is
a vector lattice or a Riesz space. Following the classical notation we
write x∨y = sup{x, y} and x∧y = inf{x, y}. Let E be a vector lattice.
For any x ∈ E we denote by x+

= x ∨ 0 and x−
= (−x) ∨ 0 the

positive and negative part of x respectively andwith |x| = x∨(−x)
the absolute value of x. Suppose that X is a subspace of E. If for any
x, y ∈ X , x ∨ y ∈ X and x ∧ y ∈ X , then X is a sublattice or a
Riesz subspace of E. X is a lattice-subspace of E if for any x, y ∈ X
the supremum, supX {x, y} of {x, y} in X and the infimum infX {x, y}
of {x, y} in X exist. Recall that supX {x, y} is the minimum of the set
of upper bounds of the set {x, y} which belong (the upper bounds)
to X but x ∨ y is the minimum of the set of upper bounds of the
set {x, y} which belong to E. Note also that every sublattice of E is
a lattice-subspace of E but the converse is not true. If X is a lattice-
subspace of E we have:

inf
X

{x, y} ≤ x ∧ y and x ∨ y ≤ sup
X

{x, y}.

If X is a sublattice of E and for each x, y ∈ E we have: y ∈ X and
|x| ≤ |y| implies x ∈ X , then X is an ideal of E. An ideal X of E is
a band of E if for each D ⊆ X such that sup(D) exists in E we have
that sup(D) ∈ X . For any subset D of E we denote by Dd the disjoint
complement of D in E, i.e.

Dd
= {x ∈ E | |x| ∧ |y| = 0 for each y ∈ D}.

A band B of E is a projection band if E = B ⊕ Bd. If B is a projection
band then every element x ∈ E has a unique decomposition x =

x1 + x2, with x1 ∈ B and x2 ∈ Bd. Then any x ∈ E+ is decomposed
in x1, x2 where

x1 = sup{y ∈ B | 0 ≤ y ≤ x}

and the map PB : E → B with PB(x) = x1 for each x ∈ E is
a projection of E onto B which is called the band projection of B
(Aliprantis and Burkinshaw, 2006, Theorem 1.43). Note that, for
each x ∈ E+, x1 is also given by the formula

x1 = sup{y ∈ B | y ≤ x},

because B is a band of E.
An ordered Banach space E is a Banach lattice if E is a vector

lattice and for each x, y ∈ E we have: |x| ≤ |y| implies ∥x∥ ≤ ∥y∥.
A Banach lattice E is an AL-space if for each x, y ∈ E+, x ∧ y = 0
implies that ∥x + y∥ = ∥x∥ + ∥y∥. A Banach lattice E is a KB
space if every increasing positive and bounded sequence of E+

is norm convergent. Aliprantis and Burkinshaw (2006, p. 232).
Reflexive Banach lattices and AL-spaces are standard examples of
KB spaces. If E is a KB space, then E is a projection band in E∗∗,
Aliprantis and Burkinshaw (2006, Theorem 4.60) and by Aliprantis
and Burkinshaw (2006, Theorem 1.43), we have

E∗∗
= E ⊕ Ed.

Note also that there are KB spaces which are dual spaces. For
example the space ℓ1 is a dual space. Also the AL-space of finite
Borel measures defined on a compact, metrizable topological
space K , is the topological dual of the space of continuous real
valued functions C(K) defined on K , Aliprantis and Border (2006,
Theorem 14.15).

Suppose that X, Y are partially ordered Banach spaces. A linear
operator T : X −→ Y is an isomorphism of X onto Y , if T is one to
one and onto and T , T−1 are continuous. Ifmoreover ∥T (x)∥ = ∥x∥,
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for any x ∈ X , T is an isometric isomorphism of X onto Y . It is
known that any separable Banach space is isometric with a closed
subspace Z of C[0, 1]. Since an isomorphism ‘‘identifies’’ the spaces
the space C[0, 1] of continuous real valued functions on [0, 1] is a
universal Banach space because it contains any separable Banach
space.

If X, Y are ordered Banach spaces, a linear operator T : X −→ Y
is an order isomorphism ofX onto Y , if T is an isomorphismofX onto
Y and for each x ∈ X we have: x ∈ X+ if and only if T (x) ∈ Y+. Then
the spaces X and Y are order isomorphic and their topological and
order structure ‘‘are identified’’.

It is known (Polyrakis, 1994, Theorem 4.1) that any separable
Banach lattice X is order isomorphic to a closed lattice-subspace Z of
C[0, 1], therefore C[0, 1] is also a universal Banach lattice. So in the
sense of this result, the class of closed lattice-subspaces of C[0, 1]
represents the class of all separable Banach lattices.

Weak topologies: A dual system ⟨E, F⟩ is a pair of vector spaces
togetherwith bilinear form ⟨·, ·⟩ : E×F → R such that: ⟨x, x′

⟩ = 0
for any x′

∈ F implies x = 0 (F separates the points of E) and
⟨x, x′

⟩ = 0 for any x ∈ E implies x′
= 0 (E separates the points

of F ).
The σ(E, F)-topology of E, or theweak topology of E with respect

to the dual system ⟨E, F⟩, is the linear topology of E whose a base
of neighborhoods of zero is consisting of the sets

Vx′1,x
′
2,...,x

′
n,ϵ

= {x ∈ E : |⟨x, x′

i⟩| < ϵ, for any i = 1, 2, . . . , n},

for any finite set of vectors x′

i of F and any ϵ > 0. Similarly, the
linear topology of F with a neighborhood base of zero consisting of
the sets

Vx1,x2,...,xn,ϵ = {x′
∈ F : |⟨xi, x′

⟩| < ϵ, for any i = 1, 2, . . . , n},

for any finite set of vectors xi of E and any ϵ > 0, is the σ(F , E)-
topology of F , or the weak topology of F with respect to the dual
system ⟨E, F⟩.

A net (xa)a∈A of E converges to x ∈ E in the σ(E, F)-topology of
E if

lim
a

⟨xa, x′
⟩ = ⟨x, x′

⟩, for any x′
∈ F .

Analogously, a net (x′
a)a∈A of F converges to x′

∈ F in the σ(F , E)-
topology of F if lima⟨x, x′

a⟩ = ⟨x, x′
⟩, for any x ∈ E.

If E is a normed space and F = E∗ is the topological dual of E
and the bilinear form is ⟨x, x∗

⟩ = x∗(x) for any x ∈ E, x∗
∈ E∗,

then the σ(E, E∗)-topology of E is referred as the weak topology of
E and the σ(E∗, E)-topology of E∗ as the weak star topology of E∗.
For more details on the weak topologies see Aliprantis and Border
(2006) or Megginson (1998).
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