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Abstract

In this article we suppose thét is an ordered Banach space the positive
cone of which is defined by a countable famify{ f;|i € N} of positive con-
tinuous linear functionals o, i.e. E, = {x € E | f;(z) > 0, for eachi}
and we study the existence of positive (Schauder) bases in the ordered sub-
spacesX of E with the Riesz decomposition property. So we consider the
elementse of E as sequences = (f;(x)) and we develop a process of
successive decompositions of a quasi-interior poinX gfwhich in any step
gives elements with smaller support. So we obtain element¥_ofwith
minimal support and we prove that these elements define a positive basis of
X which is also unconditional. In the first section of this article we study
ordered normed spaces with the Riesz decomposition property.

1 Introduction and notations

The most typical examples of ordered Banach spatesth a rich class of ordered
subspaces are the universal spacés 1] and/... As it is shown in [8], Theorem
4.1 each separable ordered Banach space with closed and normal positive cone is

*We would like to thank an anonymous referee for his helpful remarks and comments.
1This result it is shown by a slight modification of the classical proof of the universal@j@f1].



order-isomorphic to an ordered subspac€'{f, 1], therefore the existence of pos-
itive bases in the separable ordered Banach spaces is equivalent with the study of
positive bases in the closed ordered subspace&C|0, 1]. In this article we study

the general problem of the existence of positive bases in the ordered subXpaces
of F, as itis formulated in the abstract, by developing a method of decompositions
of a quasi-interior point o'. To develop this method we study the subspaCex

E with themaximum support propertyn this kind of subspaces the quasi-interior
points of X and in its closed principal solid subspaces, are characterized as the
positive vectors of these subspaces with maximum support. We show that in this
kind of subspaces the extremal pointsX¥of are the nonzero elements &f, with
minimal support and this is an important property for the study of positive bases.
Also this class of subspaces is a large one. Indeed as it is shown in [7], Lemma 5.1,
each Banach lattice with a positive basis is order isomorphic to a closed, ordered
subspace of ., with the maximum support property with respect to the farfily

of the Dirac measure§ supported at the natural numbérand a similar result

is also true for the spad€|0, 1], see in [8], Theorem 5.1. Therefore the class of
ordered subspaces 6f, or C|0, 1] with the maximum support property is a large
one and contains, in the sense of an order isomorphism, the class of Banach lattices
with a positive basis.

To develop our method of decompositions we study also the ordered subgpaces
of E with the following property which we caWs-property for anyz € X, and

any f; € Fthesetk = {y € X+\y < z and fi(y) = 0} has at least one
maximal element. According to the terminology of vector optimizati¥rhas the
ws-property if and only if the seék” has Pareto efficient points with respectiq.

If £ is a Banach lattice with order continuous norm ofifis a dual space, we
show, Corollary 20 and 21, that the ordered subspacésttdve the ws-property.

In the main result of this article, Theorem 32, we prove that the maximum support
property and the ws-property are sufficient conditions for the existence of positive
bases in the ordered subspacedrolvith the Riesz decomposition property. As

an application we show, Theorem 36, that the maximum support property and the
ws-property are necessary and sufficient in order a positive biorthogonal system
of an ordered Banach spaéewith the Riesz decomposition property to define a
positive basis ofv.

This article is a generalization of [7] where the same problem is studied in the
lattice-subspaces @f. So in the first section of this paper we study ordered normed
spaces with the Riesz decomposition property and we prove some results necessary
for our method of decompositions. Specifically we study quasi-interior points and
we generalize the existing results for normed lattices to ordered normed spaces
with the Riesz decomposition property, Theorem 4 and 6.

Finally note that each Banach space with an unconditional basis, ordered by the
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positive cone of the basis, is a Banach lattice with respect to an equivalent norm.
Also note that the problem of the existence of unconditional basic sequences in
Banach spaces, known as the unconditional basic sequence problem, was one of
the famous open problems of Functional Analysis till 1993 when W.T. Gowers and
B. Maurey gave a negative answer to it, [3]. Our results give necessary conditions
for the existence of unconditional basic sequences in ordered Banach spaces.
LetY be a (partially) ordered normed space with positive cdpelf Y = Y, —Y,

the con€Y, is generatingor reproducingand if a real numbes > 0 exists so that

z,y € Yy with z < y implies that||z|| < a||y||, the coneY is normal. Recall

that a convex seP of a linear space iseoneif Ax € P for any real numbek > 0

and anyr € PandP N (—P) = {0}. Thesellz,y] = {z €Y |z < z < y}

is the order intervaky, whenever:,y € Y with x < y. Apointz € Y, ,x £ 0

is anextremal poinbf Y, if forany y € Y with 0 < y < x there exists\ € R

such thaty = Ax. Denote byE P(Y., ) the set of extremal points &f,. Y has the
Riesz decomposition property (RDiPjor eachz, y1,y2 € Y with x < y1 + 4o

there existr1,z2 € Y, suchthatr = 1 + 20 and0 < z1 < 1,0 < x9 < ypo.

A subspaceZ of Y is solid if for any z,y € Z with x < y, the order interval

[z,y] = {z € Y | 2 < z < y} is contained inZ. We say that the cong, gives

an open decompositioof Y or thatY’, is non-flatif U, — U, is a neighborhood

of zero, wherd/, = U NY,, is the positive part of the closed unit béllof Y,

or equivalently, if anyr € Y has a representation= 1 — zo With 21,25 € Y
and||z1 ||, ||z2|| < M]||z||, whereM is a constant real number. A linear functional

f of Y is positive if f(x) > 0 for eachz € Y, and strictly positive iff (z) > 0

for eachx € Y,z # 0. Denote byY ™ the set of continuous, linear functionals of

Y and byY} the set of positive ones. Suppose thais an ordered Banach space.

A sequencee, } of Y is a (Schauderpasisof Y if eachz € Y has a unique
expansionz = > 7, A\pep, With A, € R for eachn. If moreoverY, = {z =

Yol Anen | Ay > 0 for eachn }, then{e, } is apositive basi®f Y. A positive

basis is unique in the sense tha{if,} is another positive basis af, then each
element of{b,,} is a positive multiple of an element ¢, }. If {e,,} is a positive
basis ofY then, by [9], Theorem 16.3, and [4], Theorem 3.5.2. and Theorem
4.1.5, the following statements are equivaldijtthe basis{e, } is unconditional,

(i) the coneY, is generating and normal, (iiiy” is a Banach lattice with respect

to an equivalent norm.

A linear operatofl” of Y onto an ordered normed spaZeés anorder-isomorphism

of Y onto Z if T is one-to-one7” and7~! are continuous and for eaghc Y we
have:z € Y, if and only if T'(xz) € Z,. For notions and terminology on ordered
spaces not defined here we refer to [4], [5], [1], [6] and [10]. For Schauder bases
we referto [9].



2 Quasi-interior points in spaces with the Riesz decompo-
sition property

In this section we will denote by an ordered normed space with the Riesz de-
composition property whose positive corie is closed, normal and gives an open
decomposition ofy”. Then, by the Riesz-Kantorovich Theorem, the set of order
bounded linear functional¥® of Y is an order complete linear lattice. For any
x € Yy, I, = Upen|[—nz, nz] is the solid subspace d&f generated by: and
the closure off,, is theclosed solid subspace &f generated by:. As we prove
below the closure of, is again solid. Recall the following properties of an ordered
Banach spac&” which we use in this article: (i) I#¥. is closed and generating,
thenTV, gives an open decomposition Bf (Krein-Smulian) and also any order
bounded linear functional ofi” is continuous and (ii) the coné’,. is normal if
and only ifiW* = Wi — W7} (M. Krein), see for example in [4], Theorems 3.5.2,
3.5.6. and 3.4.8. We start with the next obvious result.

Proposition 1. Any solid subspace af has the Riesz decomposition property.

Proposition 2. Suppose that € Y.,z # 0 and/ is the closure of .. Then,

(i) foranyy € I, there exists an increasing sequergg } of I, which converges
toy, with0 <y, <y, for eachn,

(i) I is a solid subspace af,

(iii) the positive cond of I, is generating,

(iv) if we suppose moreover th&tis a Banach space then each positive, continu-
ous, linear functional of has a positive, continuous, linear extensionion

Proof. Lety € I,y # 0. At first we shall show that there exists a sequefgg
of I, N [0, y] convergent tg,. Sincey € I, we have thay = lim,,— . ~t, Where
tn € [—knx, knx] and{ky,} is an increasing sequence of natural numbers. Hence
t, —y — 0, therefore by [4] Theorem 3.3.5, there exist sequekegs, {v,}
of Y, with ¢, —y = w,, — v, andw,,, v,, — 0. Then we have that, + v,, —y =
wy, > 0, therefore
Yy <tn+ vy < KpZ + vp. (1)

By the RDP we have that = o/, + ¢/ where0 < g/, < k,z and0 < y” < v,,.
Since the con&’, is normal and the sequeneg converges to zero, the sequence
y» converges also to zero, henge — y, therefore our assertion is true. So for
any positive real number, we have|y — ;|| < §, for a propem. We putr; = y,.
Similarly there exists, € I, 2 € [0,y — ri] with |ly —r; — ra|| < 55 and
continuing this process we find a sequefieg} of I, with r, € [0,y — 327! 7]
and|ly — > 7, 7i]| < 5=, for eachn. Therefore the sequengg = 37", r; is an
increasing sequence fff, y| which converges tg, therefore statemei(t) is true.
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For the proof of(i:) it is enough to show thdb, y] C I, foranyy € I.. So we
suppose thay € I and thatz € [0,y]. As in the proof of(i) we find again that
y satisfies (1) and by the RDP we have that 2/, + 2]/ where0 < 2/, < k,z,

0 < 2! < v, and as before we have that the sequerjceonverges also to zero.
Hencez], — z, thereforez € I and statemerti7) is true.

Statementiii) is obvious because for anye [—nx, nx] we have) < y + nz <
2nx, thereforey + nx = a + b wherea,b € Y, with a < nx,b < nz, therefore
y=a— (nx—0D).

Suppose thaf is a positive, continuous linear functional bf For anyy € Y, we
putL, = {z € I} | z < y}. L, is bounded because the cotie is normal. For
anyy € Y, we putg(y) = sup{f(2) | z € L,}. By the RDP and by the fact that
I, is solid we have thak, + L., = Ly.,. Thereforey is positively homogeneous
and additive orY’;. Henceg has a linear and positive extension Brnwhich we
will denote again by, i.e. g(x) = g(x1) — g(z2) for anyx = z; — z2 € Y with
x1,x9 € Y4. By [4], Corollary 3.5.6g is continuous. By the definition af and
by the fact thatl,, is solid, we have thag(y) = f(y), for anyy € I/, thereforey
coincides withf on I, becausd, = I} — I . Sincel, is dense i/ we have that
g is also equal t¢f on I, thereforeg is an extension of from/to Y. [ |

Definition 3. An element; € Z, of an ordered topological linear spacg is a
guasi-interior point ofZ, (or a quasi-interior positive element &) if the solid
subspaceJ,,cn[—nu, nu] of Z generated by: is dense inZ.

The above definition extends the notion of the quasi-interior point (see in [1], page
259) from normed lattices to ordered topological linear spaces. It is clear that if
u is a quasi-interior point o then f(u) > 0 for any positive, continuous, and
nonzero linear functiongl of Z. In [5], page 24, the points of an ordered Banach
spaceZ with the propertyf(u) > 0 for any positive, continuous, nonzero linear
functional f of Z are called quasi-interior points &f,.. In Theorem 6 we show

that in ordered Banach spaces with the RDP, these two definitions are equivalent.
By Proposition 2 we get the following result:

Theorem 4. An element, € Y, is a quasi-interior point oY, if and only if for
eachz € Y, there exists an increasing sequedag, } of I,, which converges ta,
with0 < z,, < z, for eachn.

Proposition 5. If  is a quasi-interior point of’;, then[0, z] N [0, u] # {0}, for
eachr € Y,z # 0.

Proof. By the above theorem there exists an increasing sequengeof I,, with
0 < =, < z which converges ta, therefore the proposition is true. [ |



Theorem 6. If we suppose moreover thatis a Banach space and € Y, then
the following statements are equivalent:

(i) u is a quasi-interior point ol ,

(i) f(u) >0, foreachf e Y, f #0.

Proof. The direct is obvious becauggu) = 0 implies thatf = 0 onY. For
the converse suppose that statem@iitis true and that the closureof I, is a
proper subspace &f. So there existg € Y*, g # 0 which is equal to zero on
I. Then|g| € Y* becaus&” is a Banach space angl| is positive. It is known
that|g|(y) = supg([—y,y]) for anyy € Y,. Sinceg # 0 and the positive cone
of Y is generating we have thafy) # 0, for at least one/ € Y, which implies
that|g| # 0. Therefore|g|(u) > 0. Since|g|(u) = sup g([—u,u]) we have that
g is nonzero on the intervél-u, u], a contradiction becauggis equal to zero on
I and[—u,u] C I. Thereforeu is a quasi-interior point of; and the converse is
true. |

Proposition 7. Suppose tha¥ is an ordered normed space and suppose that its
positive conéZ,. is complete. Then the following statements are equivalent:

() Everyy € Z,y # 0, is a quasi-interior point ofZ .,

(i) dimZ = 1.

Proof. Suppose that statemef} is true. At first we shall show that the boundary
974 of Z, is equal to{0}. By the Bishop-Phelps Theorem (see for example in
[4] Theorem 3.8.14) the support points6f are dense iWZ,.. Suppose that is

a support point o7, which is supported by the functional € Z*, x* # 0, i.e.
x*(r) = min{z*(t) | t € Z4+}. Thenz*(r) < 0 becaus® € Z, . If we suppose
thatz* is not positive, there exists € Z, with 2*(a) < 0. Thenz*, restricted
on the halfline defined by, takes any negative real value, therefotér) = —oo,
contradiction. Therefore* is positive. If we suppose that # 0, thenr is a
quasi-interior point ofZ, thereforez*(r) > 0, a contradiction, because as we
have found before*(r) < 0, hencer = 0 and¥Z, = {0}. We shall show now
thatZ = Z, U (—Z). So we suppose that € Z \ Z, and thaty € Z,,y # 0.
Suppose also thatis a point of the line segmentv with z € ¥Z,. Thenz = 0,
thereforew € (—Z,), henceZ = Z, U (—Z4). Suppose now that is a fixed
point of Z \ Z,. As we have shown before, for any poine 7,y # 0, the line
segmentw containsd, thereforey belongs to the line defined hy and0, hence
Z4 is a halfline andlimZ = 1. So(i) implies (ii). The converseisclear. N

Definition 8. Suppose that is an ordered space and,y € Z, with z,y # 0.
If [0, 2] N [0,y] = {0}, we will say thatx, y are disjoint inZ and we will write
infz {z,y} = 0.



The next result will be used later for the study of positive bases. Statement (i) is an
easy consequence of the Riesz decompaosition property.

Proposition 9. Suppose thaf is an ordered normed space with the Riesz decom-
position property. Then the following statements are true:

(i) If the vectorsyy,yo, ..., y, are pairwise disjoint inZ, andx € Z, with
<y +y2+ ..., +yn, We have:
(a) = has a unique decompositian= x; + z2 + ... + z, With0 < z; < y;,
foreachi =1,2,...,n, and
(b)ifz > y; foreachi =1,2,...,n, thenz = y1 +y2 + ..., +yn,
(C) if ®,, Py are subsets O{fl, 2, ..., n}, Yo, = Zi€¢1 AiVi, Yo, = Zz‘e% HilYi,
where)\; andy; are positive real numbers anfd< ys,, h < yg, thenh has
a unique decompositialn = Zi6(<1>1ﬂ<1>2) h; whereQ < h; < min{\;, p; }yi,
for eachi € &1 N . If &1 N Py = () thenys, , yo, are disjoint inZ..

(i) If the positive con&Z. of Z is normal, the vectorg;,i € IN are pairwise
disjointin Z, and the sun}_;°, y; exists, then
(@) infz, {d> i vis > s py1 ¥i} = 0 foreach n, and
(b) each element of Z, with0 < = < > 2, y; has a unique expansion
r =) 2 x;With0 < z; < y; for eachi.

Proof. The proof of (i) is the following: By the RDP we have that= x + x5 +
o + 2 With 0 < z; < y;, for eachi. Suppose that = =} + i, + ... + 2/,
with 0 < z < y;, for eachi. Then0 < x; < x1 + 22 + ... + z,, therefore
x; =af +2f + ...+ 2 with 0 < 2/ < z; <y, for eachi, thereforez! = 0 for
each: # j becausey; andy; are disjoint. So we have thag. < z; and similarly
zj < i, thereforer; = 27, for eachj, and the expansion of is unique. If we
suppose thay; < x for eachj, we have thay; = y;1 + yj2 + ... + yjn, With
0 < yj < x; <y for eachi, therefored < y;; < y;, hencey;; = 0 for each
i # j. So we have thay; = y;; < z; < y;, thereforey; = z; for eachj and
(b) is true. To provéc) we remark thad < h < yg, implies thath = >, 4 hi
with 0 < h; < Ay, for eachi € ;. Sinceh < yq, we have thah; = ", 4, h
with 0 < h{ < ujy;, foranyj € ®,. Since the vectorg; are disjoint we have that
h{ = 0 for eachj # i, thereforeh; = h! < min{\;, u; }y; and(c) is true.

To prove statementa) of (ii) we suppose thal < h < > i, > 01 ¥
Thenh = 377" | h;, with0 < h; < y; foreachi = 1,2,...,n. Also h; < yp41 +
> oo to Yir thereforeh; = hy, 1+, where0 < hy,y1 < ypr1and0 < hj, | <
Z;’imz yi- Sincey; andy,,1 are disjoint we have thdi,.; = 0, therefore
0<h;=nh, , <32 . oy andbyinduction we have that< h; < 772 v
for eachm € N. Since the cone is normal and the sequengg, ., v; converges
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to zero, we have that; = 0, for eachi = 1,2,...,n. Thereforeh = 0 and(a)
is true. To prove(b) suppose thad < = < >y + > 72 ., ;- Thenz has a
unique decomposition = > | z; + 2], with 0 < x; < y; foreachi = 1,2,...,n
and0 < z;, < > ., . If we suppose thatr > n andz = > 71", v; + vy,
with 0 < v < gy fori = 1,2,...,mand0 < vy, < 32 .y, thenz =
S v+ (3, vi +vy,) thereforer; = v; for eachi = 1,2,...n. Hence the
vectorsz;, 7 € N are uniquely determined and the expansios ) ;2 x;, with
0 < z; < y; for eachi, of z is unique. [ |

For a further study of the Riesz decomposition property on the space of operators
between Banach lattices we refer to [2] and the references inside.

3 Ordered subspaces

In this section we will denote by an infinite dimensional ordered Banach space
whose positive cond’, is defined by a countable familf= {f;|i € N}, of
positive, continuous linear functionals &f, i.e. £, = {z € E | fi(x) >
0,for eachi}. Also we will denote byX anordered subspacef E, i.e. X is
a subspace oF ordered by the induced ordering. It is clear ttat is closed
and thatX, = X N E. is the positive cone oK. For anyz,y € X, denote by
sup y{z,y} the supremum and biyf x {z,y} the infimum of{x, y} in X when-
ever exist. Ifsupx{z,y} andinfx{xz,y} exist for anyz,y € X, we say thatX
is alattice-subspacef E. According to our notations, for any,y € X we have:
[z,y]x = {z € X | x < z < y}, is theorder intervalzy in X whenever: < y,
if z,y € Xy with [0,z]x N [0,y]x = {0}, we say thatr, y aredisjoint in X
and we will writeinfx_ {z,y} = 0. Also for anyz € X,z # 0, we denote
by I,(X) = U,~,[—nz,nz]x thesolid subspace ok generated by:. The clo-
surel,(X) of I,(X) in X is the closed solid subspace &f generated by:. If
I.(X) = X, x is a quasi-interior point ok, .

3.1 The minimal and the maximum support property

The minimal and maximum support property have been introduced in [7]. For
any pointz € E we will denote byz(i) the real numbey;(x) and bysupp(z) =

{i € N]z(z’) # 0}, the support ofx (with respect taF). The setsupp(Xy) =
Usex, supp(), is thesupportof X (with respect ta ). An elementz of X,

has minimal supporin X, (with respect taF ) if for any y € Xy, supp(y) &
supp(x) impliesy = 0.



Definition 10. The ordered subspac¥ of E has the minimal support property (
with respect taF ) if for eachz € X \ {0} we have :z is an extremal point of
X ifand only ifx has minimal support i .

Proposition 11. Suppose! is the closed solid subspace &f generated by a
nonzero, positive elementof X ;. Thensupp(u) = supp(ly) for any quasi-
interior pointu of ;. (The converse is not always true).

Proof. It is clear thatsupp(u) C supp(Iy). If we suppose thaf;(u) = 0 for
somes: € supp(ly), then f; is equal to zero o, (X) and therefore also oh,
a contradiction because we have supposeditl@atsupp(l;). Hencef;(u) > 0
andsupp(u) = supp(1). By Example 15, (ii), we have that the converse is not

always true. [ |

Definition 12. The ordered subspack of £ has the maximum support property
(with respect taF) if each subspacé’ of X which is equal taX or F'is a closed
solid subspace oK generated by a nonzero element’df has the property: an
element: € F. is a quasi-interior point of; if and only ifsupp(z) = supp(F4).

Proposition 13. If X is closed andX has the maximum support property, then
X, has quasi-interior points.

Proof. For eachi € supp(X, ) there existse; € X with f;(x;) > 0. Sou =
D icsupp(Xy) m, is a quasi-interior point oX | becauseX has the maximum
support property anglupp(u) = supp(X4). [ |

The proof of the next proposition is the same with the proof of Proposition 3.4 of
[7]. The extra assumption here th&t_ is closed is posed in order to use Proposi-
tion 7.

Proposition 14. If X is closed andX has the maximum support property, then
X has the minimal support property.

Example 15. (i) The sequence spacegand/, for 1 < p < 400 have the max-
imum support property with respect to the famifi={J;} of the Dirac measures
0;(xz) = z(i) supported at the natural numbérsThe space,, of bounded real
sequences does not have the maximum support property with respéct o
deed the vector with z(i) = % for any i has maximum support and the closed
solid subspace generated bys ¢y. ¢, has the minimal support property because
the extermal points of! , as positive multiples of the vectoes, have minimal
support.

(i) The family {5”\2‘ € N} of the Dirac measure§,, supported at the rational

numbers-; of [0, 1] and also the familyg= {ui]i € N} of the Lebesgue measures
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w; supported af; where{I;} is a sequence of subintervals [6f 1] so that each
interval (a,b) of0, 1] contains at least ong, define the positive cone of the space
E = (C]0,1] of continuous, real valued functions defined[@f1]. E does not
have the maximum support with respect to these families. Indeeds i with
x(tg) = 0 for some irrational numbety andz(t) > 0 for eacht # tg, then
supp(x) = N butz is not a quasi-interior point af..

Theorem 16. ([8], Proposition 2.5.) IfX is closed andX has a positive basis
{bn }, the following statements are equivalent:

(i) X has the maximum support property with respectto

(ii) there exists a sequendg,, } of N such thatf; (b,) > 0 and f;, (b,,) = 0, for
eachm # n, i.e. the coefficient functionals of the baséis,} can be extended on
E to positive multiples of elements 6t

The next is an example of an ordered subspace with a positive basis, without the
maximum support property.

Example 17. Let {b, } be a sequence &, so thath; (4n) = 5=, b1 (4n+1) = 3
andb; (i) = 0 in the other casedp(4n) = &, ba(4n + 1) = 5= andby(i) = 0

in the other cases artgl = e4,,+2, forn > 3. Then{b,, } is a positive basis of the
closed subspac¥ of I, generated by itX does not have the maximum support
property with respect to the famil§ of the Dirac measures supported at the
natural numbers. Indeed,supp(b1) = supp(bz) therefored;(b1) > 0 if and only

if 9;(b2) > 0, and by Theorem 16X does not have the maximum support property.

3.2 The ws-property

The notion of the s-property (supremum property) has been introduced in [7]. We
define here a weaker property, which we call ws-property (weak s-property) as
follows:

Definition 18. An ordered subspac& of &/ has the ws-property (with respect to
F) if for eachz € X,z # 0 and for eachi € supp(X) the set{y € [0, z]x |
y(i) = 0} has at least one maximal element.

If in the above definition the séy € [0, z]x | y(i) = 0} has a maximum element,
then X has the s-property. IK has the ws-property, each solid subspaocef X

has this property. In the theory of vector optimization the maximal elements of a
subsetK of a normed spac& with respect to an ordering confe of Z are the
Pareto efficient pointsf K. In our case, the ws-property ensures the existence of
Pareto efficient points with respect 0, . We start with the following easy result.
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Theorem 19. Suppose that is a linear topology of. If

(i) X4 isT-closed,

(i) each increasing net ok ;. order bounded inX, has ar-convergent subnet, and
(iii) for eachi the positive parts;* = {y € X | fi(y) = 0} of the kernel off; in
X is 7-closed,

thenX has the ws-property.

Proof. Suppose that € X, and thatA is a totaly ordered subset of theclosed
set[0, z]x N K. For each finite subsét of A denote byre the maximum ofb.
Then{zs}, as an increasing, order bounded nefdofr] x N K", is convergent to
zo € [0,2]x N K;" which is an upper bound of and by Zorn’s lemma the set
[0,z]x N K" has maximal elements. |

Corollary 20. If E is a Banach lattice with order continuous norm axd. is
closed, thenX has the ws-property.

Proof. Each order interval off weakly compact. Sinc& , is weakly closed, each
order interval ofX is weakly compact, henc¥ has the ws-property. [ |

Corollary 21. If E is a dual space, the functiona)s are weak-star continuous
and X is weak-star closed and normal, théhhas the ws-property.

Proof. For eachr € X the order interval0, z] x is weak-star closed and bounded
becauseX is normal, thereforg0, z]x is weak-star compact. Hencé has the
Ws-property. |

Corollary 22. If X is closed with a positive basis, théhhas the ws-property.

Proof. By [11] Theorem 5, each order interval &fis compact. |

Example 23. (i) The spacesy and/, with 1 < p < +oo and also the spaces
L;,L(u) 1 < p < 400, as Banach lattices with order continuous norm have the ws-
property with respect to any countable family which defines their positive cone.
Also their closed ordered subspaces have the ws-property.

(if) By Corollary 21, /., and its weak-star closed ordered subspaces have the ws-
property with respect to the family of the Dirac measuresipported at the natural
numbers.

(i) C[0,1] does not have the ws-property with respect to the family of the Dirac
measures,, supported at the rational numbessof [0, 1]. It is easy to show that
the set{y € C[0,1]|0 < y < z and y(3) = 0}, wherez € C,[0,1] with

x(%) > (, does not have maximal elements .

If P,Q, R are subcones ok with R = P+ Q andP N Q = {0}, we will say
that R is thedirect sumof P, Q and we will write P & Q = R.
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Proposition 24. Suppose thakXis closed,X ; is generating and normal and also
that X has the Riesz decomposition property and the ws-property with respect to
F.Letx € X,z # 0,1 € supp(X) and we denote by, a maximal element of
the set{y € [0,z]x | y(¢) = 0}. Thenz, = = — z; is a minimal element of the
set{y € [0,z]x | y(i) = x(i)}. If I, J,W are the closed solid subspacesXf
generated respectively by the elements;, 2/, then

(i) infx, {2, 2;} =0,

(i) the functionalf; is equal to zero ow. If f;(xz) > 0 thenf; is strictly positive
onW. If fi(x) = 0, thenz; = x and if f; is strictly positive or/, thenz] = z. If

fi is nonzero and non-strictly positive drthen0 < z; < z and0 < z, < z,

(i) if fi(z) >0, thenI}(X) & I[(X)=If(X)andJ, & Wy =I,.

Proof. Suppose that € A = {y € [0,z]x | y(¢) = =(:)} with 2{ > 2. Then
x — z > z; and f;(x — z) = 0, which contradicts the definition af. Thereforez]
is a minimal element ofl.

(i) Let h € X with 0 < h < z;,2}. Then0 < h(i) < z(i) = 0, henceh(i) = 0.
So we have thalt + z; < z and(h + z;)(¢) = 0, a contradiction. Thereforke = 0
andinfy, {z;, 2/} = 0.

(17) Sincez;(i) = 0, f; is equal to zero ot,, and therefore also off. Suppose
that f;(z) > 0. Thenz; < z, hencez, > 0 andW, # {0}. Suppose that
w € Wi, w > 0withw(i) = 0. Then by Theorem 4y is the limit of an increasing
sequence of elements 6f,(X), thereforey(i) = 0 for at least oney € X with
0 <y <z. Theny + z <z and(y + z;)(#) = 0, a contradiction, thereforg
is strictly positive onlV. If we suppose thaf;(z) = 0, then by the definition of
z; we have that; = x and if we suppose thgf is strictly positive onl we have
thatz; = 0, thereforez] = z. Suppose now thaf; is nonzero and also non strictly
positive on/. Thenz(i) > 0 and alsov(i) = 0, for at least one nonzero point
of I.. Sincew is the limit of an increasing sequence of elements0fX), we
have thaty(i) = 0 for at least one nonzero element [0, z]x. This implies that
z; > 0 because if we suppose that= 0 we have that; < y, which contradicts
the definition ofz;. Hence0 < z;. Also z; < x becauser(i) > 0. So we have
0<z <zandl <z <z,

(731) Let f;(xz) > 0. Suppose thai € J, NW,. Thenh € J, thereforeh(i) = 0.
Since the functional; is strictly positive onWW we have that: = 0, therefore
J N W, = {0}. Suppose thay € [0,z]x. Theny < z; + 2/ and by the RDP
we have thaty = y; + y2 with y; € [0, z;]x andys € [0, 2}|x. By the above
remarks we have that the first assertior{#f) is true. Suppose now thate 1.
By Theorem 4y is the limit of an increasing sequengg of 7.7 (X), with y,, < y
for eachn. Hencey,, 11 — v, € I/ (X), thereforey, 1 — yn < knz = ky (2 +21),
and by the RDP we have thgt 1 — ¥, = anq1 + bpg1 With a1 € I (X) and
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b1 € I(X). If yy = ay + by with ay € I (X) andb; € I, (X), we have that
Yn = (a1ii—ag—i—...—l—an)—i—(bl+b2+...+bn). If s, :al—il—ag—i—...—i—anand
rn = b1 + ba + ... + b, we have thak,, 1 — s, = ant1 < Yn+1 — Yn, therefore
the sequencés,, } is convergent becaudey, } is convergent and the con€,. is
normal. Similarly we have thafr,} is convergent thereforg = 3’ + y” with
y' € Jy andy” € W,. Hencel, = J, & W,. |

Definition 25. Let X be a closed ordered subspaceffs in the previous propo-
sition, and suppose thatis a nonzero element 6f ;. and f; € F. If f; is nonzero
and non-strictly positive o, (X ) andz = x; + x5 wherez; is a maximal element
of the se{y € [0, z]x | y(¢) = 0}, then we will say that = z; + x5 is a decom-
position ofz with respect tof; (or with respect ta) and also that: is decomposed
with respect tof; in the elements, zo. If f; is equal to zero od,(X) orif f; is
strictly positive on/,,(X), we will say thate is not decomposed with respectfo
(or with respect ta).

3.3 Existence of positive bases

In what follows we will denote byX a closed, ordered subspacefko that: (i)

X has the Riesz decomposition property, (ii) the positive ciineof X is closed,
normal and generating and (iilj has the maximum support property and the ws-
property with respect to©. As we have noted in the beginning of the previous
section, (i) and (ii) imply thatX, gives an open decomposition &f and thatX*

is an order complete linear lattice. We will also denoteMbythe following subset
of N: M = {i € supp(X+) | fiisnon strictly positive onX }. Therefore for
eachr € X,z # 0 we have that:(i) > 0, foreachi € supp(X)\ M. Also

M +# o because if we suppose thaf = &, we have thasupp(z) = supp(Xy)

for eachz € X,z # 0, therefore dink = 1 by Proposition 7. In order to
prove the existence of extremal pointsXf we develop a process of successive
decompositions of a quasi-interior point &f,. So we suppose thatis a quasi-
interior point of X, (such a point exists by Proposition 13) and we decompose
as follows:

Step 1:We puti; = min M and we decomposewith respect ta; in the elements
x1, 2. Thenu = x; + 29 andinfy, {z1,22} = 0. Also f;, is equal to zero
on I; and strictly positive ol wherel, I, are the closed solid subspacesXf
generated by, x5 respectively. The seb; = {z1, 22} is thefrontand the natural
numberi; is theindexof the first decomposition.

Stepr + 1 : Suppose that we have accomplished itk step and suppose that
m,, is the front andi,, the index of thevth decomposition. Then at least one of
the elements ofn, is decomposed with respect to a M. Indeed if we sup-
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pose that any elementof m,, is not decomposed with respect to ang M then

for anyi € M, f; is strictly positive or equal to zero on the closed solid sub-
spacel of X generated by and it is easy to show thatpp(y) = supp(1y) for
anyy € I,y # 0 thereforey is a quasi-interior point of. HencedimlI = 1
and X is finite-dimensional because,, is finite. We puti,;; = min{i € M |

at least one element o, is decomposed with respect . Theni,; > i, and

we decompose with respectio. | the elements of,, which allow such a decom-
position. We denote by, .1 the set which contains the elementsaf which are
not decomposed with respecti#o.; and also the elements that arise from the de-
composition of the elements of, with respect ta,, ;1. The setn, .1 is the front
andi, is the indexof the (v + 1)th decomposition. The séi(u) = U2 ym,
wherem = {u}, is thetree of decompositionsf .

Proposition 26. In the above process of decompositions @fe have:

(i) the sequence of indices of decompositifig is strictly increasing,

(ii) for eachi € M withi < 4, and for eachrz € m,, = is not decomposed with
respect ta), thereforef; is strictly positive or equal to zero oh= I,(X),

(iii) the elements ofn, are nonzero with sum equal ta Alsoinfx, {z,y} =
0, for eachz,y € m,, withz # y,

(iv) inf x, {z,u — 2} = 0, for eachx € o(u).

Proof. Statements (i),(ii) and (iii) are obvious. To prove (iv) we suppose:that
m,, for somer and suppose that, = {z,y1,y2, ..., yx}. Since the elements of
m,, are pairwise disjoint in\;, with sum equal ta; we have that, — x = Zle Yi
and (iv) is true by Proposition 9. [ |

For anyz € m, with v > 1 it is easy to show that there exists a unique vector
y € my_1 With y > z. Also for anyz € m, there exists at least onec m, 1
with z > y. So if we suppose that, y € 6(u) withz € m,,, y € m, 1, andy < z,

we will say thatz is thepresuccessoof y in m,, or thaty is asuccessoof z in
My4,. If Moreovery € m,1 we will say thatx is thefirst presuccessoof y or
thaty is afirst successoof z.

Proposition 27. The following are true:

(i) for any x € m,, the sum of the successorswoih m, ., is equal toz,

(ii) if y is a successor af with x > y and [ is the closed solid subspace &f
generated byz, theninfx, {y,z — y} = 0 andy is not a quasi-interior point of
I,,

(iii) for each z € 6(u) and eachi € M N supp(x), there exists a successpof =
such that the functionaf; is strictly positive on the closed solid subspdcef X
generated by;.
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Proof. (i) Any element ofd(u) is the sum of its first successors, therefore the
proposition is true fops = 1 and continuing, we have that the proposition is true
for any u.

(i) Sincex—y < u—y andinfx, {y,u—y} = 0 we have thainfx_ {y,z—y} =0,
thereforey is not a quasi-interior point of . by Proposition 5.

(iii) Suppose that: € m,,. Since the sequendg, } is strictly increasing, there
existsy € Nwith v > k andi < i,. Thenf; is strictly positive or equal to zero on
any closed solid subspace @fgenerated by an elementaf,. Butz = 237:1 xj
wherez;, ..., z, are the successors @fn m, andf;(x) > 0 becauseé € supp(x),
thereforef; is strictly positive on at least one of the closed solid subspacés of
generated by, ..., =, and the proposition is true. |

If z € §(u) andx € m, for eachrv > 1y, then we will say thathe process of
decomposition stopat the pointr of 6(«). In other words, the process of decom-
position stops at if there exists,y € N so thatz € m,,, and for eachi € M with

i > 1y, the functionalf; is strictly positive or equal to zero on the closed solid
subspacd of X generated by. Then for eachi € M with i < i,,, f; is strictly
positive or equal to zero oh, Proposition 26, thereforeupp(z) = supp(I.) for
anyz € I,z # 0, hence any nonzero vector 6f is a quasi-interior point of
which implies thatdim(I) = 1. Sox is an extremal point oX; and we have
proved the following:

Proposition 28. If the process of decompositionw$tops at an element) € 6(u)
thenz is an extremal point ok, .

A sequencegz, } of (u) is abranch ofd(u) , if x, > x,41 for eachr € N.
Proposition 29. Each branch of(u) converges to zero.

Proof. It is enough to show that any bran¢h, } of §(u) with =y = u converges
to zero. Letz, = x,_1 — xz,,, for eachv > 1. Then for eachy, i1, we have

u=2z+2+..+z+tz,andr, =z + o+ Zugpy + Togp (2)

The vectorsyy, 29, ..., 2, x,, are pairwise disjoint in\. Indeed,infy {x,,u —
z,} = 0, henceinfx_ {z,,> ., z} = 0, thereforeinfyx, {z,,2} = 0 for
eachi < v, because; < Z;le zj. Suppose thaj > i. Thenz; < z; and
infx. {z,z;} = 0, thereforeinfx, {z;,2;} = 0. Henceinfx, {z;,%} = 0 for
anyi # j. Letug = > )2, 5%. We shall show thakupp(ug) = supp(Xy).
For eachi € supp(Xy) \ M we have that(i) > 0 for eachz € X,z # 0,
hencei € supp(up). Suppose that € M and thatz, is decomposed at the
r,th decomposition. Since the sequeriég, } is strictly increasing, there exists
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p € Nwith i < i, . By statementii) of Proposition 26f; is strictly positive
or equal to zero od = I,,(X). We shall show that in both caseg supp(uo).
If f; is strictly positive on/ we havez, (i) > 0 because) < z,41 < z,
thereforei € supp(up). If f; is equal to zero ol thenx,(i) = 0, therefore
filzi + o+ 24) = filz1 + oo + 20 + 2,) = fi(uw) > 0, hencef;(z;) > 0 for
at least ong, thereforei € supp(up). Thereforesupp(X) = supp(up) andug
is a quasi-interior point o. By Theorem 4, there exists an increasing sequence
on € [0,u]lx N[0, ru0]x , where{r, } is a strictly increasing sequence of natural
numbers withimy, o, ¢, = u. Leth, =377, ry 5. Sincel < ¢, < rnug
we have) < ¢,, < r,z1+...+7rp2y, +hy, and by Proposition 95,, has a unique de-
compositionp,, = ¢L+...+¢rm+H, with 0 < ¢! < r,2; foreachiando < H,, <
h,. The last inequality implies thaim,, .., H,, = 0 becauséim,, ... h, =0
and the coneX, is normal. Also we hav® < ¢! < u,r,z;fori = 1,2,...,rp,
therefore¢! = a1 + as + ... + a,, + b, with 0 < a; < z;, for eachj and
0 < b, < x,,. Since the vectorsy, zs, ..., 2, , x,, are pairwise disjoint inX
we have tha), = a;, therefore0 < ¢!, < z; for eachi = 1,2,...,r,. Since
H, <u,we havethatl, =y +v2 + ... + 7, + ¢, With 0 < ~; < 25, for each
j=12,..,m7,and0 < ¢, < z,,. SinceH,, < h,, we have also that; < h,, for
eachj. Since the vectors;, j = 1,2, ..., , andh,, are pairwise disjoint inX_, we
havey; = 0 for eachj = 1,2, ..., ,, henceH,, = c¢,, thereforeH,, < z,,,. So we
have thatim,, .o (u — (¢}, + ... + ¢} + Hy)) = 0, therefore

Jim [(z1 = ) + (22 = 03) + o+ (2, — O7) + (2, — Hn)] = 0.
Since the members in the above limit are positive and the codé,ofs normal
we have thatim,,_,(z,, — H,) = 0. As we have shown abovém H, = 0
thereforelim z,,, = 0. Since the sequende:,, } is decreasing it converges to zero
and the proposition is true. |

Proposition 30. For eachz € d(u) at least one of the successorszofs an ex-
tremal point of X .

Proof. Letz € d(u). If at least one of the successarsof 2 does not belong to a
branch ofé(u), then the process of decompositions stops after a finite number of
steps at any successordf therefore any successor gfis an extremal point of

X, dominated byr and the proposition is true. So we suppose that any successor
of x belongs to a branch of«). Also we may suppose that< u because in the
case where: = u, it is enough to show the proposition for one of its successors.
Let I be the closed solid subspaceXfgenerated by: and suppose thdt = {i €
supp(x) | f; is not strictly positive orf,,(X)}. ThenL C M. Also supp(x) =
supp(I4). If Lis finite, then after a finite number of steps the decomposition stops
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at any successor af and the proposition is true. So we suppose that thd. $et
infinite. Letj; = min L. Then by statemer(tii) of Proposition 27, there exists
xz1 € 6(u) such thatz; < z and f;, is strictly positive onl,, (X). Sincexz;

is an element of a branch éfu) dominated byr and any such a branch 6fu)
converges to zero, we may suppose that there exists an elgment(«) such that
y1 < x1 <, ||ly1|| < 27 %, wheree is a constant real number with< & < ||z]|.
Note also thatf;, is strictly positive onl,, (X) because it is strictly positive on
I, (X) and0 < y; < 1. By Proposition 27 we have thatfx_ {y1,z —y1} =

0 hencey,is not a quasi-interior point of. Thereforesupp(y1) # supp(l;),
hence there exists at least ohe supp(I;) with ¢ & supp(y1), therefore there
existsi € L with y1(i) = 0. We putjo = min{i € L : y1(i) = 0}. Then
J1 < je and as before we can find a vectgr € §(u) so thatys < =z, ||y <
27%¢ and f;, is strictly positive onl,,(X) . Theninfx, {y1,y2} = 0, because
foranyh € X with 0 < h < y;,y2 we have thad < h(j2) < y1(j2) = 0,
thereforeh = 0 becausef;, is strictly positive onZ,, (X). By the way we have
selectedy; (as a sufficiently small member of a branch which converges to zero)
we may also suppose that € m,, andys € m,, with v; < ,. We may
also suppose that, is sufficiently large so that»,,, except the successors of
and the elemeng,, contains at least one extra element so we may suppose that
My, = {Y2,a1,a9,...,ax,b1,b2, ..., by, c1,Ca, ..., }, Whereay, as, ..., ar are the
successors of; andys, a1, as, ..., ag, b1, ba, ..., b, are the successors af We
puts; = y1,s2 = y1 + y2. Thens; < x andss < z. The first inequality is
obvious and the second holds because the sum of its successorssim,,. Also
s1(j1) > 0 and by the definition ofj;, we have that,(i) > 0 for eachi € L
with i < jp. By Proposition 9jnfx_ {s;,z — s;} = 0, for eachi = 1,2 because
the successors of in m,, are pairwise disjoint. Sinceaf x, {s2, 2 — s2} = 0
we have thats, is not quasi-interior point of ,, hence there exists € L with
s2(i) = 0. Letjz = min{i € L : s2(i) = 0}. Thenjy < jz and as before we
can findys € my, such thatv, < vs, |lys|| < 273, fj, is strictly positive on
I,,(X) and the set of the successorscdah m,,, contains the successors:f the
successors afq, the elements and at least one extra element. As before we can
show thatinfx, {y1,ys} = infx, {y2,y3} = 0. We puts3 = s + y3. Continuing
this process we obtain a sequerdgg} of L and the sequencdg, }, {s,} of X
such thats; = y1,s, = su,—1 + w., for eachv = 2,3, ..., with the following
properties:

()0 < sy, < Spq1 <,

(i) lsvr1 — sull = [lyora |l < 277" e andy, € my, with k, < k,1, for eachy,
(iii) infx, {s,,z — s, } = 0 for eachv,

(iv) {j.} is a strictly increasing sequence bfand for each € L with i < j,41
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we haves, (i) > 0.

By (ii), the sequencds,} is Cauchy and suppose that= lim,_~s,. Then
0 <s, <s <u,foreachv. Since|s,| < Y7, [yl < e < |z|, we have
thats < z . Also by (iv) and by the fact that the sequenfeg } is increasing
we have thak(i) > 0 for eachi € L, thereforesupp(s) = supp(l+). Hences
is a quasi-interior point of .. We will show thatinfx, {s,z — s} = 0. To this
end we suppose that< h < s,z — s. Sinces = s, + (s — s,) we have that
h = h, + hl, with0 < h, < s,,0 < hl, < (s —s,). Since the cone is normal
andlim(s — s,) = 0 we have thalim k!, = 0, thereforeh = limh,. Since
0 < hy, <s,andh, <z —s <z — s, we have that, = 0 for eachv, by (iii).
Thereforeh = 0, henceinfy, {s,z — s} = 0. Sincel is solid we have also that
inf7, {s,z — s} = 0 which contradicts the fact thatis a quasi-interior point of
I, Proposition 5. Hence at least one of the success@bx does not belong to a
branch ofd(u), therefore at least one of the successgrsf = is an extremal point
of X and the proposition is true. |

Proposition 31. Any extremal point:y of X is a positive multiple of a unique
element ob(u).

Proof. Suppose thatq is an extremal point oX .. By proposition 5 and by the
fact thatz is an extremal point o, a real number > 0 exists withrzy < wu.
Hencer < a%, wherea is the constant of the normal coné,. Therefore
sup{r € Ry : rag < u} = X € Ry, with A > 0. Letzy = Azg. Then
0 < 20 < wu. Sinceu = . = and the elements ofy, are pairwise disjoint,
there exists a uniqug, € m, so thatzy < y,. Theninfx, {z9,2} = 0 for each
x € my, x # y,. AlSOy, > y,11 > zo for eachr. Since each branch ofu)
converges to zero, the process of decompositions stops at agpoivitich is an
extremal point ofX with zyp < y,,. Hencey, = N'z. Alsoy, < u and by the
definition of A we have thad’ < ), thereforey,, < zo which implies thaty,, = z
andzy € d(u). If we suppose that, = kzg € d(u), thenkzy < u, therefore
k < Xandz| < zp. Hencez{ is a successor ofy. If we suppose that, < z
we get a contradiction becausgas an extremal point oK, is undecomposable.

Thereforez(, = z, and the proposition is true. |

In our main result below we prove thaf has a positive basis. For the sake of
completeness we repeat the standard assumptiors émd X . In the next results
the positive basis oK is also unconditional becaugé, is generating and normal.

Theorem 32. Suppose thak’ is an ordered Banach space and that is defined
by the family7= { f;|: € N} of E . Let X be a closed ordered subspacefotvith
the Riesz decomposition property and supposeXhats normal and generating.
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If X has the maximum support property and the ws-property with respegt to
thenX has a positive basis.

Proof. Let B be the set of extremal points of ;. with norm 1. By proposition
30, B # @ and by the previous proposition the map: B — ¢§(u) so that
T(x) = Az € §(u) is one-to-one. Sincé(u) is countableB is also countable.
Suppose thaB = {u; : i € N} andb; = M\u; € 6(u). Letug = 3%, & For
eachi € M there exists € d(u) so thatf; is strictly positive on/ = I,(X). By
Proposition 30z > b; for at least ong, thereforeb; (i) > 0. Hencesupp(ug) =
suppX 4+ andug is a quasi-interior point oX ;. Letz € X,. Then there exists
an increasing sequenag, € [0,z] N [0, k,uo] Where the sequends, is strictly
increasing withlim,, .., x, = x. Since0 < z, < k,ug, eachx, has a unique
expressionz,, = > -2, oniui, With o,,; € Ry, by Proposition 9. The sequence
{oni | n € N} isincreasing. Indeed, for each > n we take again the expansion
Tm — T, = Y ooq Giu; @and we have that,,; = o, + a; > op,. Suppose that
o; = limy,—oo0n;. Theno < og;u; < x becausd < o,,;u; < z, for each:. For
eachm € N we have) ", opu; < z,, < 2 and by taking limits ass — +oo
we have thad """, o;u; < z. Since the sequende:,,} converges ta: there exists
a strictly increasing sequenee,, of natural numbers so that the sequepge=
Yo oniu; converges ta. Thend ™ opu; < Y i oyu; < x, from where we
getthatr = 3%, oyu,. Letu; = 37, . b . Theng; is not a quasi-interior point
of X, becausénfx_ {b;,u;} = 0, Proposition 9. Thereforeupp(u;) is a proper
subset ofsupp(X ), hence there exists; € M with fi (u;) = 0. Therefore
fr;(ui) = 0, for eachi # j. Also fy (u;) > 0 becausefy, (ug) > 0. Letg; =
Tk,

Then for eachr € X we haveg;(z) = o;, thereforer = "2, g;(z)u;.

iy (ug)”
Since the conéX, is generating we have that= >"°, g;(z)u; for eachz € X
and this expansion is unique. Therefdig, } is a positive basis ak'. |

By the previous result and Corollary 20 and 21 we have:

Corollary 33. Suppose thak' is a Banach lattice with order continuous norm and
suppose thatv, is defined by a countable familf of £%. Let X be a closed
ordered subspace @ with the Riesz decomposition property and generating pos-
itive coneX .. If X has the maximum support property with respecftdhen X

has a positive basis.

Corollary 34. Let E be an ordered Banach space whose positive cone is defined
by the familyF= {f;|i € N} of E%. Suppose also that is a dual space and
that the functionalg; are weak-star continuous. K is a closed ordered subspace

of E with the Riesz decomposition properdy, is weak-star closed, normal and
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generating andX has the maximum support property with respec#tothen X
has a positive basis.

Remark 35. In the special case whe8 = /., and X is a weak-star closed
ordered subspace éf, with the RDP and generating positive coe we have:

If X has the maximum support property with respect to the family of the Dirac
measures; supported at the natural numbeéyshenX has a positive basis.

4 Biorthogonal systems

The results of the previous section can be applied to the problemer what
conditions a biorthogonal system defines a positive baSie1n this section we
suppose that’ is an ordered Banach space wittpasitive biorthogonal system
{(ei,fi){z‘ € N}, i.e.e; € Fandf; € E% for eachi so thatf;(e;) = 1, fi(e;) =0,
for eachj # ¢ and the familyF = { f;|i € N} defines the positive cone @. In
the next results the positive basisiofis also unconditional.

Theorem 36. Suppose thak’ is an ordered Banach space with a positive biorthog-
onal systen{(e;, fi)\i € N}. If E is normal and generating an has the Riesz
decomposition property, the following statements are equivalent:

() The sequencée; } of the biorthogonal system is a positive basigiof

(i) £ has the maximum support property and the ws-property with respect to the
family 7= { fi|i € N}.

Proof. Suppose thafe;} is a positive basis of. Since{(e;, f;)} is a positive
biorthogonal system aof we have thaif;(e;) = 1 and fi(e;) = 0, for eachj # i
therefore, by Theorem 1&; has the maximum support property with respect to
F. Since{e;} is a positive basis of, by Corollary 22,F has the ws-property,
therefore (i) implies (ii). Suppose now that statement (i) is true. Themas a
positive basigb,, }. SinceE has the maximum support property with respeckto

E has the minimal support property, therefore an elemgmf £ is an extremal
point of £ if and only if xo has minimal support iZ;.. Therefore the extremal
points of E;. are the positive multiples of the element(supp(e,) = {n}). Since
the elements of the positive basis define the extremal rays, ove have that the
basis{b,,} coincides, in the sense of a scalar multiple and a proper enumeration,
with the sequencée,, }. [ |

Corollary 37. Suppose thak is an ordered Banach space with a positive biorthog-
onal systen (e;, fi)\i € N} and suppose also thdt has the Riesz decomposition
property. If

(a) E is a Banach lattice with order continuous norm, or

20



(b) F is a dual space, the positive coig of F is weak-star closed, normal and
generating and the functional are weak-star continuous,

then the following statements are equivalent:

(i) The sequencée; } of the biorthogonal system is a positive basigiof

(i) E has the maximum support property with respect to the fa{’[flﬂy € N}

Remark 38. According to the Corrolary, the sequenieg} of the usual biorthog-
onal systene;, d;} of £, is not a positive basis df,, because it does not have the
maximum support property with respect to the fanfily}, Example 15.
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