Positive Bases in Ordered Subspaces with the Riesz Decomposition Property

by Vasilios Katsikis and Ioannis A. Polyrakis*
Department of Mathematics
National Technical University of Athens
Zografou Campus 157 80, Athens, Greece
e-mail: ypoly@math.ntua.gr

February 10, 2006

Mathematical subject classification: 46B40, 46B15, 46B42.
Key words: Positive bases, unconditional bases, Riesz decomposition property, quasi-interior points.

Abstract

In this article we suppose that E is an ordered Banach space the positive cone of which is defined by a countable family $\mathcal{F}=\left\{f_{i} \mid i \in \mathbb{N}\right\}$ of positive continuous linear functionals of E, i.e. $E_{+}=\left\{x \in E \mid f_{i}(x) \geq 0\right.$, for each $\left.i\right\}$ and we study the existence of positive (Schauder) bases in the ordered subspaces X of E with the Riesz decomposition property. So we consider the elements x of E as sequences $x=\left(f_{i}(x)\right)$ and we develop a process of successive decompositions of a quasi-interior point of X_{+}which in any step gives elements with smaller support. So we obtain elements of X_{+}with minimal support and we prove that these elements define a positive basis of X which is also unconditional. In the first section of this article we study ordered normed spaces with the Riesz decomposition property.

1 Introduction and notations

The most typical examples of ordered Banach spaces E with a rich class of ordered subspaces are the universal spaces $C[0,1]$ and ℓ_{∞}. As it is shown in [8], Theorem 4.1^{1} each separable ordered Banach space with closed and normal positive cone is

[^0]order-isomorphic to an ordered subspace of $C[0,1]$, therefore the existence of positive bases in the separable ordered Banach spaces is equivalent with the study of positive bases in the closed ordered subspaces X of $C[0,1]$. In this article we study the general problem of the existence of positive bases in the ordered subspaces X of E, as it is formulated in the abstract, by developing a method of decompositions of a quasi-interior point of X. To develop this method we study the subspaces X of E with the maximum support property. In this kind of subspaces the quasi-interior points of X and in its closed principal solid subspaces, are characterized as the positive vectors of these subspaces with maximum support. We show that in this kind of subspaces the extremal points of X_{+}are the nonzero elements of X_{+}with minimal support and this is an important property for the study of positive bases. Also this class of subspaces is a large one. Indeed as it is shown in [7], Lemma 5.1, each Banach lattice with a positive basis is order isomorphic to a closed, ordered subspace of ℓ_{∞} with the maximum support property with respect to the family \mathcal{F} of the Dirac measures δ_{i} supported at the natural numbers i and a similar result is also true for the space $C[0,1]$, see in [8], Theorem 5.1. Therefore the class of ordered subspaces of ℓ_{∞} or $C[0,1]$ with the maximum support property is a large one and contains, in the sense of an order isomorphism, the class of Banach lattices with a positive basis.
To develop our method of decompositions we study also the ordered subspaces X of E with the following property which we call ws-property: for any $x \in X_{+}$and any $f_{i} \in \mathcal{F}$ the set $K=\left\{y \in X_{+} \mid y \leq x\right.$ and $\left.f_{i}(y)=0\right\}$ has at least one maximal element. According to the terminology of vector optimization, X has the ws-property if and only if the set K has Pareto efficient points with respect to X_{+}. If E is a Banach lattice with order continuous norm or if E is a dual space, we show, Corollary 20 and 21, that the ordered subspaces of E have the ws-property. In the main result of this article, Theorem 32, we prove that the maximum support property and the ws-property are sufficient conditions for the existence of positive bases in the ordered subspaces of E with the Riesz decomposition property. As an application we show, Theorem 36, that the maximum support property and the ws-property are necessary and sufficient in order a positive biorthogonal system of an ordered Banach space E with the Riesz decomposition property to define a positive basis of E.
This article is a generalization of [7] where the same problem is studied in the lattice-subspaces of E. So in the first section of this paper we study ordered normed spaces with the Riesz decomposition property and we prove some results necessary for our method of decompositions. Specifically we study quasi-interior points and we generalize the existing results for normed lattices to ordered normed spaces with the Riesz decomposition property, Theorem 4 and 6.
Finally note that each Banach space with an unconditional basis, ordered by the
positive cone of the basis, is a Banach lattice with respect to an equivalent norm. Also note that the problem of the existence of unconditional basic sequences in Banach spaces, known as the unconditional basic sequence problem, was one of the famous open problems of Functional Analysis till 1993 when W.T. Gowers and B. Maurey gave a negative answer to it, [3]. Our results give necessary conditions for the existence of unconditional basic sequences in ordered Banach spaces.
Let Y be a (partially) ordered normed space with positive cone Y_{+}. If $Y=Y_{+}-Y_{+}$ the cone Y_{+}is generating or reproducing and if a real number $a>0$ exists so that $x, y \in Y_{+}$with $x \leq y$ implies that $\|x\| \leq a\|y\|$, the cone Y_{+}is normal . Recall that a convex set P of a linear space is a cone if $\lambda x \in P$ for any real number $\lambda \geq 0$ and any $x \in P$ and $P \cap(-P)=\{0\}$. The set $[x, y]=\{z \in Y \mid x \leq z \leq y\}$ is the order interval $x y$, whenever $x, y \in Y$ with $x \leq y$. A point $x \in Y_{+}, x \neq 0$ is an extremal point of Y_{+}if for any $y \in Y$ with $0<y<x$ there exists $\lambda \in \mathbb{R}_{+}$ such that $y=\lambda x$. Denote by $E P\left(Y_{+}\right)$the set of extremal points of $Y_{+} . Y$ has the Riesz decomposition property ($R D P$) if for each $x, y_{1}, y_{2} \in Y_{+}$with $x \leq y_{1}+y_{2}$ there exist $x_{1}, x_{2} \in Y_{+}$such that $x=x_{1}+x_{2}$ and $0 \leq x_{1} \leq y_{1}, 0 \leq x_{2} \leq y_{2}$. A subspace Z of Y is solid if for any $x, y \in Z$ with $x \leq y$, the order interval $[x, y]=\{z \in Y \mid x \leq z \leq y\}$ is contained in Z. We say that the cone Y_{+}gives an open decomposition of Y or that Y_{+}is non-flat if $U_{+}-U_{+}$is a neighborhood of zero, where $U_{+}=U \cap Y_{+}$, is the positive part of the closed unit ball U of Y, or equivalently, if any $x \in Y$ has a representation $x=x_{1}-x_{2}$ with $x_{1}, x_{2} \in Y_{+}$ and $\left\|x_{1}\right\|,\left\|x_{2}\right\| \leq M\|x\|$, where M is a constant real number. A linear functional f of Y is positive if $f(x) \geq 0$ for each $x \in Y_{+}$and strictly positive if $f(x)>0$ for each $x \in Y_{+}, x \neq 0$. Denote by Y^{*} the set of continuous, linear functionals of Y and by Y_{+}^{*} the set of positive ones. Suppose that Y is an ordered Banach space. A sequence $\left\{e_{n}\right\}$ of Y is a (Schauder) basis of Y if each $x \in Y$ has a unique expansion $x=\sum_{n=1}^{\infty} \lambda_{n} e_{n}$, with $\lambda_{n} \in \mathbb{R}$ for each n. If moreover $Y_{+}=\{x=$ $\sum_{n=1}^{\infty} \lambda_{n} e_{n} \mid \lambda_{n} \geq 0$ for each $\left.n\right\}$, then $\left\{e_{n}\right\}$ is a positive basis of Y. A positive basis is unique in the sense that if $\left\{b_{n}\right\}$ is another positive basis of Y, then each element of $\left\{b_{n}\right\}$ is a positive multiple of an element of $\left\{e_{n}\right\}$. If $\left\{e_{n}\right\}$ is a positive basis of Y then, by [9], Theorem 16.3, and [4], Theorem 3.5.2. and Theorem 4.1.5, the following statements are equivalent: (i) the basis $\left\{e_{n}\right\}$ is unconditional, (ii) the cone Y_{+}is generating and normal, (iii) Y is a Banach lattice with respect to an equivalent norm.
A linear operator T of Y onto an ordered normed space Z is an order-isomorphism of Y onto Z if T is one-to-one, T and T^{-1} are continuous and for each $x \in Y$ we have: $x \in Y_{+}$if and only if $T(x) \in Z_{+}$. For notions and terminology on ordered spaces not defined here we refer to [4], [5], [1], [6] and [10]. For Schauder bases we refer to [9].

2 Quasi-interior points in spaces with the Riesz decomposition property

In this section we will denote by Y an ordered normed space with the Riesz decomposition property whose positive cone Y_{+}is closed, normal and gives an open decomposition of Y. Then, by the Riesz-Kantorovich Theorem, the set of order bounded linear functionals Y^{b} of Y is an order complete linear lattice. For any $x \in Y_{+}, I_{x}=\cup_{n \in \mathbb{N}}[-n x, n x]$ is the solid subspace of Y generated by x and the closure of I_{x} is the closed solid subspace of Y generated by x. As we prove below the closure of I_{x} is again solid. Recall the following properties of an ordered Banach space W which we use in this article: (i) If W_{+}is closed and generating, then W_{+}gives an open decomposition of W (Krein-Smulian) and also any order bounded linear functional of W is continuous and (ii) the cone W_{+}is normal if and only if $W^{*}=W_{+}^{*}-W_{+}^{*}$ (M. Krein), see for example in [4], Theorems 3.5.2, 3.5.6. and 3.4.8. We start with the next obvious result.

Proposition 1. Any solid subspace of Y has the Riesz decomposition property.
Proposition 2. Suppose that $x \in Y_{+}, x \neq 0$ and I is the closure of I_{x}. Then,
(i) for any $y \in I_{+}$, there exists an increasing sequence $\left\{y_{n}\right\}$ of I_{x} which converges to y, with $0 \leq y_{n} \leq y$, for each n,
(ii) I is a solid subspace of Y,
(iii) the positive cone I_{x}^{+}of I_{x} is generating,
(iv) if we suppose moreover that Y is a Banach space then each positive, continuous, linear functional of I has a positive, continuous, linear extension on Y.
Proof. Let $y \in I_{+}, y \neq 0$. At first we shall show that there exists a sequence $\left\{y_{n}^{\prime}\right\}$ of $I_{x} \cap[0, y]$ convergent to y. Since $y \in I$, we have that $y=l i m_{n} \longrightarrow+\infty t_{n}$ where $t_{n} \in\left[-\kappa_{n} x, \kappa_{n} x\right]$ and $\left\{\kappa_{n}\right\}$ is an increasing sequence of natural numbers. Hence $t_{n}-y \longrightarrow 0$, therefore by [4] Theorem 3.3.5, there exist sequences $\left\{w_{n}\right\},\left\{v_{n}\right\}$ of Y_{+}with $t_{n}-y=w_{n}-v_{n}$ and $w_{n}, v_{n} \longrightarrow 0$. Then we have that $t_{n}+v_{n}-y=$ $w_{n} \geq 0$, therefore

$$
\begin{equation*}
y \leq t_{n}+v_{n} \leq \kappa_{n} x+v_{n} . \tag{1}
\end{equation*}
$$

By the RDP we have that $y=y_{n}^{\prime}+y_{n}^{\prime \prime}$ where $0 \leq y_{n}^{\prime} \leq \kappa_{n} x$ and $0 \leq y_{n}^{\prime \prime} \leq v_{n}$. Since the cone Y_{+}is normal and the sequence v_{n} converges to zero, the sequence $y_{n}^{\prime \prime}$ converges also to zero, hence $y_{n}^{\prime} \longrightarrow y$, therefore our assertion is true. So for any positive real number ε, we have $\left\|y-y_{n}^{\prime}\right\|<\frac{\varepsilon}{2}$, for a proper n. We put $r_{1}=y_{n}^{\prime}$. Similarly there exists $r_{2} \in I_{x}, r_{2} \in\left[0, y-r_{1}\right]$ with $\left\|y-r_{1}-r_{2}\right\|<\frac{\varepsilon}{2^{2}}$ and continuing this process we find a sequence $\left\{r_{n}\right\}$ of I_{x} with $r_{n} \in\left[0, y-\sum_{i=1}^{n-1} r_{i}\right]$ and $\left\|y-\sum_{i=1}^{n} r_{i}\right\|<\frac{\varepsilon}{2^{n}}$, for each n. Therefore the sequence $y_{n}=\sum_{i=1}^{n} r_{i}$ is an increasing sequence of $[0, y]$ which converges to y, therefore statement (i) is true.

For the proof of $(i i)$ it is enough to show that $[0, y] \subseteq I_{+}$, for any $y \in I_{+}$. So we suppose that $y \in I_{+}$and that $z \in[0, y]$. As in the proof of (i) we find again that y satisfies (1) and by the RDP we have that $z=z_{n}^{\prime}+z_{n}^{\prime \prime}$ where $0 \leq z_{n}^{\prime} \leq \kappa_{n} x$, $0 \leq z_{n}^{\prime \prime} \leq v_{n}$ and as before we have that the sequence $z_{n}^{\prime \prime}$ converges also to zero. Hence $z_{n}^{\prime} \longrightarrow z$, therefore $z \in I$ and statement $(i i)$ is true.
Statement (iii) is obvious because for any $y \in[-n x, n x]$ we have $0 \leq y+n x \leq$ $2 n x$, therefore $y+n x=a+b$ where $a, b \in Y_{+}$with $a \leq n x, b \leq n x$, therefore $y=a-(n x-b)$.
Suppose that f is a positive, continuous linear functional of I. For any $y \in Y_{+}$we put $L_{y}=\left\{z \in I_{x}^{+} \mid z \leq y\right\}$. L_{y} is bounded because the cone Y_{+}is normal. For any $y \in Y_{+}$we put $g(y)=\sup \left\{f(z) \mid z \in L_{y}\right\}$. By the RDP and by the fact that I_{x} is solid we have that $L_{y}+L_{w}=L_{y+w}$. Therefore g is positively homogeneous and additive on Y_{+}. Hence g has a linear and positive extension on Y which we will denote again by g, i.e. $g(x)=g\left(x_{1}\right)-g\left(x_{2}\right)$ for any $x=x_{1}-x_{2} \in Y$ with $x_{1}, x_{2} \in Y_{+}$. By [4], Corollary 3.5.6, g is continuous. By the definition of g and by the fact that I_{x} is solid, we have that $g(y)=f(y)$, for any $y \in I_{x}^{+}$, therefore g coincides with f on I_{x} because $I_{x}=I_{x}^{+}-I_{x}^{+}$. Since I_{x} is dense in I we have that g is also equal to f on I, therefore g is an extension of f from I to Y.

Definition 3. An element $u \in Z_{+}$, of an ordered topological linear space Z is a quasi-interior point of Z_{+}(or a quasi-interior positive element of Z) if the solid subspace $\cup_{n \in \mathbb{N}}[-n u, n u]$ of Z generated by u is dense in Z.

The above definition extends the notion of the quasi-interior point (see in [1], page 259) from normed lattices to ordered topological linear spaces. It is clear that if u is a quasi-interior point of Z_{+}then $f(u)>0$ for any positive, continuous, and nonzero linear functional f of Z. In [5], page 24, the points u of an ordered Banach space Z with the property $f(u)>0$ for any positive, continuous, nonzero linear functional f of Z are called quasi-interior points of Z_{+}. In Theorem 6 we show that in ordered Banach spaces with the RDP, these two definitions are equivalent. By Proposition 2 we get the following result:

Theorem 4. An element $u \in Y_{+}$is a quasi-interior point of Y_{+}if and only if for each $x \in Y_{+}$there exists an increasing sequence $\left\{x_{n}\right\}$ of I_{u} which converges to x, with $0 \leq x_{n} \leq x$, for each n.

Proposition 5. If u is a quasi-interior point of Y_{+}, then $[0, x] \cap[0, u] \neq\{0\}$, for each $x \in Y_{+}, x \neq 0$.

Proof. By the above theorem there exists an increasing sequence $\left\{x_{n}\right\}$ of I_{u} with $0<x_{n} \leq x$ which converges to x, therefore the proposition is true.

Theorem 6. If we suppose moreover that Y is a Banach space and $u \in Y_{+}$, then the following statements are equivalent:
(i) u is a quasi-interior point of Y_{+},
(ii) $f(u)>0$, for each $f \in Y_{+}^{*}, f \neq 0$.

Proof. The direct is obvious because $f(u)=0$ implies that $f=0$ on Y. For the converse suppose that statement $(i i)$ is true and that the closure I of I_{u} is a proper subspace of Y. So there exists $g \in Y^{*}, g \neq 0$ which is equal to zero on I. Then $|g| \in Y^{*}$ because Y is a Banach space and $|g|$ is positive. It is known that $|g|(y)=\sup g([-y, y])$ for any $y \in Y_{+}$. Since $g \neq 0$ and the positive cone of Y is generating we have that $g(y) \neq 0$, for at least one $y \in Y_{+}$which implies that $|g| \neq 0$. Therefore $|g|(u)>0$. Since $|g|(u)=\sup g([-u, u])$ we have that g is nonzero on the interval $[-u, u]$, a contradiction because g is equal to zero on I and $[-u, u] \subseteq I$. Therefore u is a quasi-interior point of Y_{+}and the converse is true.

Proposition 7. Suppose that Z is an ordered normed space and suppose that its positive cone Z_{+}is complete. Then the following statements are equivalent:
(i) Every $y \in Z_{+}, y \neq 0$, is a quasi-interior point of Z_{+},
(ii) $\operatorname{dim} Z=1$.

Proof. Suppose that statement (i) is true. At first we shall show that the boundary ϑZ_{+}of Z_{+}is equal to $\{0\}$. By the Bishop-Phelps Theorem (see for example in [4] Theorem 3.8.14) the support points of Z_{+}are dense in ϑZ_{+}. Suppose that r is a support point of Z_{+}which is supported by the functional $x^{*} \in Z^{*}, x^{*} \neq 0$, i.e. $x^{*}(r)=\min \left\{x^{*}(t) \mid t \in Z_{+}\right\}$. Then $x^{*}(r) \leq 0$ because $0 \in Z_{+}$. If we suppose that x^{*} is not positive, there exists $a \in Z_{+}$with $x^{*}(a)<0$. Then x^{*}, restricted on the halfline defined by a, takes any negative real value, therefore $x^{*}(r)=-\infty$, contradiction. Therefore x^{*} is positive. If we suppose that $r \neq 0$, then r is a quasi-interior point of Z_{+}, therefore $x^{*}(r)>0$, a contradiction, because as we have found before $x^{*}(r) \leq 0$, hence $r=0$ and $\vartheta Z_{+}=\{0\}$. We shall show now that $Z=Z_{+} \cup\left(-Z_{+}\right)$. So we suppose that $w \in Z \backslash Z_{+}$and that $y \in Z_{+}, y \neq 0$. Suppose also that z is a point of the line segment $y w$ with $z \in \vartheta Z_{+}$. Then $z=0$, therefore $w \in\left(-Z_{+}\right)$, hence $Z=Z_{+} \cup\left(-Z_{+}\right)$. Suppose now that w is a fixed point of $Z \backslash Z_{+}$. As we have shown before, for any point $y \in Z_{+}, y \neq 0$, the line segment $y w$ contains 0 , therefore y belongs to the line defined by w and 0 , hence Z_{+}is a halfline and $\operatorname{dim} Z=1$. So (i) implies $(i i)$. The converse is clear.

Definition 8. Suppose that Z is an ordered space and $x, y \in Z_{+}$with $x, y \neq 0$. If $[0, x] \cap[0, y]=\{0\}$, we will say that x, y are disjoint in Z_{+}and we will write $\inf _{Z_{+}}\{x, y\}=0$.

The next result will be used later for the study of positive bases. Statement (i) is an easy consequence of the Riesz decomposition property.

Proposition 9. Suppose that Z is an ordered normed space with the Riesz decomposition property. Then the following statements are true:
(i) If the vectors $y_{1}, y_{2}, \ldots, y_{n}$ are pairwise disjoint in Z_{+}and $x \in Z_{+}$with $x \leq y_{1}+y_{2}+\ldots,+y_{n}$, we have:
(a) x has a unique decomposition $x=x_{1}+x_{2}+\ldots+x_{n}$ with $0 \leq x_{i} \leq y_{i}$, for each $i=1,2, \ldots, n$, and
(b) if $x \geq y_{i}$ for each $i=1,2, \ldots, n$, then $x=y_{1}+y_{2}+\ldots,+y_{n}$,
(c) if Φ_{1}, Φ_{2} are subsets of $\{1,2, \ldots, n\}, y_{\Phi_{1}}=\sum_{i \in \Phi_{1}} \lambda_{i} y_{i}, y_{\Phi_{2}}=\sum_{i \in \Phi_{2}} \mu_{i} y_{i}$, where λ_{i} and μ_{i} are positive real numbers and $h \leq y_{\Phi_{1}}, h \leq y_{\Phi_{2}}$ then h has a unique decomposition $h=\sum_{i \in\left(\Phi_{1} \cap \Phi_{2}\right)} h_{i}$ where $0 \leq h_{i} \leq \min \left\{\lambda_{i}, \mu_{i}\right\} y_{i}$, for each $i \in \Phi_{1} \cap \Phi_{2}$. If $\Phi_{1} \cap \Phi_{2}=\emptyset$ then $y_{\Phi_{1}}, y_{\Phi_{2}}$ are disjoint in Z_{+}.
(ii) If the positive cone Z_{+}of Z is normal, the vectors $y_{i}, i \in \mathbb{N}$ are pairwise disjoint in Z_{+}and the sum $\sum_{i=1}^{\infty} y_{i}$ exists, then
(a) $\inf _{Z_{+}}\left\{\sum_{i=1}^{n} y_{i}, \sum_{i=n+1}^{\infty} y_{i}\right\}=0$ for each n, and
(b) each element x of Z_{+}with $0 \leq x \leq \sum_{i=1}^{\infty} y_{i}$ has a unique expansion $x=\sum_{i=1}^{\infty} x_{i}$, with $0 \leq x_{i} \leq y_{i}$ for each i.

Proof. The proof of (i) is the following: By the RDP we have that $x=x_{1}+x_{2}+$ $\ldots+x_{n}$ with $0 \leq x_{i} \leq y_{i}$, for each i. Suppose that $x=x_{1}^{\prime}+x_{2}^{\prime}+\ldots+x_{n}^{\prime}$ with $0 \leq x_{i}^{\prime} \leq y_{i}$, for each i. Then $0 \leq x_{j}^{\prime} \leq x_{1}+x_{2}+\ldots+x_{n}$, therefore $x_{j}^{\prime}=x_{1}^{\prime \prime}+x_{2}^{\prime \prime}+\ldots+x_{n}^{\prime \prime}$ with $0 \leq x_{i}^{\prime \prime} \leq x_{i} \leq y_{i}$, for each i, therefore $x_{i}^{\prime \prime}=0$ for each $i \neq j$ because y_{i} and y_{j} are disjoint. So we have that $x_{j}^{\prime} \leq x_{j}$ and similarly $x_{j} \leq x_{j}^{\prime}$, therefore $x_{j}=x_{j}^{\prime}$, for each j, and the expansion of x is unique. If we suppose that $y_{j} \leq x$ for each j, we have that $y_{j}=y_{j 1}+y_{j 2}+\ldots+y_{j n}$, with $0 \leq y_{j i} \leq x_{i} \leq y_{i}$ for each i, therefore $0 \leq y_{j i} \leq y_{j}$, hence $y_{j i}=0$ for each $i \neq j$. So we have that $y_{j}=y_{j j} \leq x_{j} \leq y_{j}$, therefore $y_{j}=x_{j}$ for each j and (b) is true. To prove (c) we remark that $0 \leq h \leq y_{\Phi_{1}}$ implies that $h=\sum_{i \in \Phi_{1}} h_{i}$ with $0 \leq h_{i} \leq \lambda_{i} y_{i}$ for each $i \in \Phi_{1}$. Since $h \leq y_{\Phi_{2}}$ we have that $h_{i}=\sum_{j \in \Phi_{2}} h_{i}^{j}$ with $0 \leq h_{i}^{j} \leq \mu_{j} y_{j}$, for any $j \in \Phi_{2}$. Since the vectors y_{i} are disjoint we have that $h_{i}^{j}=0$ for each $j \neq i$, therefore $h_{i}=h_{i}^{i} \leq \min \left\{\lambda_{i}, \mu_{i}\right\} y_{i}$ and (c) is true.
To prove statement (a) of $(i i)$ we suppose that $0 \leq h \leq \sum_{i=1}^{n} y_{i}, \sum_{i=n+1}^{\infty} y_{i}$. Then $h=\sum_{i=1}^{n} h_{i}$, with $0 \leq h_{i} \leq y_{i}$ for each $i=1,2, \ldots, n$. Also $h_{i} \leq y_{n+1}+$ $\sum_{i=n+2}^{\infty} y_{i}$, therefore $h_{i}=h_{n+1}+h_{n+1}^{\prime}$ where $0 \leq h_{n+1} \leq y_{n+1}$ and $0 \leq h_{n+1}^{\prime} \leq$ $\sum_{i=n+2}^{\infty} y_{i}$. Since y_{i} and y_{n+1} are disjoint we have that $h_{n+1}=0$, therefore $0 \leq h_{i}=h_{n+1}^{\prime} \leq \sum_{i=n+2}^{\infty} y_{i}$ and by induction we have that $0 \leq h_{i} \leq \sum_{i=n+m}^{\infty} y_{i}$ for each $m \in \mathbb{N}$. Since the cone is normal and the sequence $\sum_{i=n+m}^{\infty} y_{i}$ converges
to zero, we have that $h_{i}=0$, for each $i=1,2, \ldots, n$. Therefore $h=0$ and (a) is true. To prove (b) suppose that $0 \leq x \leq \sum_{i=1}^{n} y_{i}+\sum_{i=n+1}^{\infty} y_{i}$. Then x has a unique decomposition $x=\sum_{i=1}^{n} x_{i}+x_{n}^{\prime}$ with $0 \leq x_{i} \leq y_{i}$ for each $i=1,2, \ldots, n$ and $0 \leq x_{n}^{\prime} \leq \sum_{i=n+1}^{\infty} y_{i}$. If we suppose that $m>n$ and $x=\sum_{i=1}^{m} v_{i}+v_{m}^{\prime}$, with $0 \leq v_{i} \leq y_{i}$ for $i=1,2, \ldots, m$ and $0 \leq v_{m}^{\prime} \leq \sum_{i=m+1}^{\infty} y_{i}$, then $x=$ $\sum_{i=1}^{n} v_{i}+\left(\sum_{i=n+1}^{m} v_{i}+v_{m}^{\prime}\right)$ therefore $x_{i}=v_{i}$ for each $i=1,2, \ldots n$. Hence the vectors $x_{i}, i \in \mathbb{N}$ are uniquely determined and the expansion $x=\sum_{i=1}^{\infty} x_{i}$, with $0 \leq x_{i} \leq y_{i}$ for each i, of x is unique.

For a further study of the Riesz decomposition property on the space of operators between Banach lattices we refer to [2] and the references inside.

3 Ordered subspaces

In this section we will denote by E an infinite dimensional ordered Banach space whose positive cone E_{+}is defined by a countable family $\mathcal{F}=\left\{f_{i} \mid i \in \mathbb{N}\right\}$, of positive, continuous linear functionals of E, i.e. $E_{+}=\left\{x \in E \mid f_{i}(x) \geq\right.$ 0 , for each $i\}$. Also we will denote by X an ordered subspace of E, i.e. X is a subspace of E ordered by the induced ordering. It is clear that E_{+}is closed and that $X_{+}=X \cap E_{+}$is the positive cone of X. For any $x, y \in X$, denote by $\sup _{X}\{x, y\}$ the supremum and by $\inf _{X}\{x, y\}$ the infimum of $\{x, y\}$ in X whenever exist. If $\sup _{X}\{x, y\}$ and $\inf _{X}\{x, y\}$ exist for any $x, y \in X$, we say that X is a lattice-subspace of E. According to our notations, for any $x, y \in X$ we have: $[x, y]_{X}=\{z \in X \mid x \leq z \leq y\}$, is the order interval $x y$ in X whenever $x \leq y$, if $x, y \in X_{+}$with $[0, x]_{X} \cap[0, y]_{X}=\{0\}$, we say that x, y are disjoint in X_{+} and we will write $\inf _{X_{+}}\{x, y\}=0$. Also for any $x \in X_{+}, x \neq 0$, we denote by $I_{x}(X)=\bigcup_{n=1}^{\infty}[-n x, n x]_{X}$ the solid subspace of X generated by x. The closure $\overline{I_{x}(X)}$ of $I_{x}(X)$ in X is the closed solid subspace of X generated by x. If $\overline{I_{x}(X)}=X, x$ is a quasi-interior point of X_{+}.

3.1 The minimal and the maximum support property

The minimal and maximum support property have been introduced in [7]. For any point $x \in E$ we will denote by $x(i)$ the real number $f_{i}(x)$ and by $\operatorname{supp}(x)=$ $\{i \in \mathbb{N} \mid x(i) \neq 0\}$, the support of x (with respect to \mathcal{F}). The set $\operatorname{supp}\left(X_{+}\right)=$ $\bigcup_{x \in X_{+}} \operatorname{supp}(x)$, is the support of X_{+}(with respect to \mathcal{F}). An element x of X_{+} has minimal support in X_{+}(with respect to \mathcal{F}) if for any $y \in X_{+}, \operatorname{supp}(y) \varsubsetneqq$ $\operatorname{supp}(x)$ implies $y=0$.

Definition 10. The ordered subspace X of E has the minimal support property (with respect to \mathcal{F}) if for each $x \in X_{+} \backslash\{0\}$ we have : x is an extremal point of X_{+}if and only if x has minimal support in X_{+}.

Proposition 11. Suppose I is the closed solid subspace of X generated by a nonzero, positive element x of X_{+}. Then $\operatorname{supp}(u)=\operatorname{supp}\left(I_{+}\right)$for any quasiinterior point u of I_{+}. (The converse is not always true).

Proof. It is clear that $\operatorname{supp}(u) \subseteq \operatorname{supp}\left(I_{+}\right)$. If we suppose that $f_{i}(u)=0$ for some $i \in \operatorname{supp}\left(I_{+}\right)$, then f_{i} is equal to zero on $I_{u}(X)$ and therefore also on I, a contradiction because we have supposed that $i \in \operatorname{supp}\left(I_{+}\right)$. Hence $f_{i}(u)>0$ and $\operatorname{supp}(u)=\operatorname{supp}\left(I_{+}\right)$. By Example 15, (ii), we have that the converse is not always true.

Definition 12. The ordered subspace X of E has the maximum support property (with respect to \mathcal{F}) if each subspace F of X which is equal to X or F is a closed solid subspace of X generated by a nonzero element of X_{+}has the property: an element $x \in F_{+}$is a quasi-interior point of F_{+}if and only if $\operatorname{supp}(x)=\operatorname{supp}\left(F_{+}\right)$.

Proposition 13. If X_{+}is closed and X has the maximum support property, then X_{+}has quasi-interior points.

Proof. For each $i \in \operatorname{supp}\left(X_{+}\right)$there exists $x_{i} \in X_{+}$with $f_{i}\left(x_{i}\right)>0$. So $u=$ $\sum_{i \in \operatorname{supp}\left(X_{+}\right)} \frac{x_{i}}{2^{i}\left\|x_{i}\right\|}$, is a quasi-interior point of X_{+}because X has the maximum support property and $\operatorname{supp}(u)=\operatorname{supp}\left(X_{+}\right)$.

The proof of the next proposition is the same with the proof of Proposition 3.4 of [7]. The extra assumption here that X_{+}is closed is posed in order to use Proposition 7.

Proposition 14. If X_{+}is closed and X has the maximum support property, then X has the minimal support property.

Example 15. (i) The sequence spaces c_{0} and ℓ_{p} for $1 \leq p<+\infty$ have the maximum support property with respect to the family $\mathcal{F}=\left\{\delta_{i}\right\}$ of the Dirac measures $\delta_{i}(x)=x(i)$ supported at the natural numbers i. The space ℓ_{∞} of bounded real sequences does not have the maximum support property with respect to \mathcal{F}. Indeed the vector x with $x(i)=\frac{1}{i}$ for any i has maximum support and the closed solid subspace generated by x is $c_{0} . \ell_{\infty}$ has the minimal support property because the extermal points of ℓ_{∞}^{+}, as positive multiples of the vectors e_{i}, have minimal support.
(ii) The family $\left\{\delta_{r_{i}} \mid i \in \mathbb{N}\right\}$ of the Dirac measures $\delta_{r_{i}}$ supported at the rational numbers r_{i} of $[0,1]$ and also the family $\mathcal{G}=\left\{\mu_{i} \mid i \in \mathbb{N}\right\}$ of the Lebesgue measures
μ_{i} supported at I_{i} where $\left\{I_{i}\right\}$ is a sequence of subintervals of $[0,1]$ so that each interval (a, b) of $[0,1]$ contains at least one I_{i}, define the positive cone of the space $E=C[0,1]$ of continuous, real valued functions defined of $[0,1] . E$ does not have the maximum support with respect to these families. Indeed, if $x \in E_{+}$with $x\left(t_{0}\right)=0$ for some irrational number t_{0} and $x(t)>0$ for each $t \neq t_{0}$, then $\operatorname{supp}(x)=\mathbb{N}$ but x is not a quasi-interior point of E_{+}.

Theorem 16. ([8], Proposition 2.5.) If X is closed and X has a positive basis $\left\{b_{n}\right\}$, the following statements are equivalent:
(i) X has the maximum support property with respect to \mathcal{F},
(ii) there exists a sequence $\left\{i_{n}\right\}$ of \mathbb{N} such that $f_{i_{n}}\left(b_{n}\right)>0$ and $f_{i_{n}}\left(b_{m}\right)=0$, for each $m \neq n$, i.e. the coefficient functionals of the basis $\left\{b_{n}\right\}$ can be extended on E to positive multiples of elements of \mathcal{F}.

The next is an example of an ordered subspace with a positive basis, without the maximum support property.

Example 17. Let $\left\{b_{n}\right\}$ be a sequence of l_{∞} so that $b_{1}(4 n)=\frac{1}{2^{n}}, b_{1}(4 n+1)=\frac{1}{3^{n}}$ and $b_{1}(i)=0$ in the other cases, $b_{2}(4 n)=\frac{1}{3^{n}}, b_{2}(4 n+1)=\frac{1}{2^{n}}$ and $b_{2}(i)=0$ in the other cases and $b_{n}=e_{4 n+2}$, for $n \geq 3$. Then $\left\{b_{n}\right\}$ is a positive basis of the closed subspace X of l_{∞} generated by it. X does not have the maximum support property with respect to the family \mathcal{F} of the Dirac measures δ_{i} supported at the natural numbers i. Indeed, $\operatorname{supp}\left(b_{1}\right)=\operatorname{supp}\left(b_{2}\right)$ therefore $\delta_{i}\left(b_{1}\right)>0$ if and only if $\delta_{i}\left(b_{2}\right)>0$, and by Theorem $16, X$ does not have the maximum support property.

3.2 The ws-property

The notion of the s-property (supremum property) has been introduced in [7]. We define here a weaker property, which we call ws-property (weak s-property) as follows:

Definition 18. An ordered subspace X of E has the ws-property (with respect to \mathcal{F}) if for each $x \in X_{+}, x \neq 0$ and for each $i \in \operatorname{supp}\left(X_{+}\right)$the set $\left\{y \in[0, x]_{X} \mid\right.$ $y(i)=0\}$ has at least one maximal element.

If in the above definition the set $\left\{y \in[0, x]_{X} \mid y(i)=0\right\}$ has a maximum element, then X has the s-property. If X has the ws-property, each solid subspace Z of X has this property. In the theory of vector optimization the maximal elements of a subset K of a normed space Z with respect to an ordering cone P of Z are the Pareto efficient points of K. In our case, the ws-property ensures the existence of Pareto efficient points with respect to X_{+}. We start with the following easy result.

Theorem 19. Suppose that τ is a linear topology of E. If
(i) X_{+}is τ-closed,
(ii) each increasing net of X_{+}order bounded in X, has a τ-convergent subnet, and (iii) for each i the positive part $K_{i}^{+}=\left\{y \in X_{+} \mid f_{i}(y)=0\right\}$ of the kernel of f_{i} in X is τ-closed,
then X has the ws-property.
Proof. Suppose that $x \in X_{+}$and that A is a totaly ordered subset of the τ-closed set $[0, x]_{X} \cap K_{i}^{+}$. For each finite subset Φ of A denote by x_{Φ} the maximum of Φ. Then $\left\{x_{\Phi}\right\}$, as an increasing, order bounded net of $[0, x]_{X} \cap K_{i}^{+}$, is convergent to $x_{0} \in[0, x]_{X} \cap K_{i}^{+}$which is an upper bound of A and by Zorn's lemma the set $[0, x]_{X} \cap K_{i}^{+}$has maximal elements.

Corollary 20. If E is a Banach lattice with order continuous norm and X_{+}is closed, then X has the ws-property.

Proof. Each order interval of E weakly compact. Since X_{+}is weakly closed, each order interval of X is weakly compact, hence X has the ws-property.

Corollary 21. If E is a dual space, the functionals f_{i} are weak-star continuous and X_{+}is weak-star closed and normal, then X has the ws-property.
Proof. For each $x \in X_{+}$the order interval $[0, x]_{X}$ is weak-star closed and bounded because X_{+}is normal, therefore $[0, x]_{X}$ is weak-star compact. Hence X has the ws-property.

Corollary 22. If X is closed with a positive basis, then X has the ws-property.
Proof. By [11] Theorem 5, each order interval of X is compact.
Example 23. (i) The spaces c_{0} and ℓ_{p} with $1 \leq p<+\infty$ and also the spaces $L_{p}^{+}(\mu) 1 \leq p<+\infty$, as Banach lattices with order continuous norm have the wsproperty with respect to any countable family which defines their positive cone. Also their closed ordered subspaces have the ws-property.
(ii) By Corollary $21, \ell_{\infty}$ and its weak-star closed ordered subspaces have the wsproperty with respect to the family of the Dirac measures δ_{i} supported at the natural numbers i.
(iii) $C[0,1]$ does not have the ws-property with respect to the family of the Dirac measures $\delta_{r_{i}}$ supported at the rational numbers r_{i} of $[0,1]$. It is easy to show that the set $\left\{y \in C[0,1] \mid 0 \leq y \leq x\right.$ and $\left.y\left(\frac{1}{2}\right)=0\right\}$, where $x \in C_{+}[0,1]$ with $x\left(\frac{1}{2}\right)>0$, does not have maximal elements .
If P, Q, R are subcones of X_{+}with $R=P+Q$ and $P \cap Q=\{0\}$, we will say that R is the direct sum of P, Q and we will write $P \oplus Q=R$.

Proposition 24. Suppose that Xis closed, X_{+}is generating and normal and also that X has the Riesz decomposition property and the ws-property with respect to \mathcal{F}. Let $x \in X_{+}, x \neq 0, i \in \operatorname{supp}\left(X_{+}\right)$and we denote by z_{i} a maximal element of the set $\left\{y \in[0, x]_{X} \mid y(i)=0\right\}$. Then $z_{i}^{\prime}=x-z_{i}$ is a minimal element of the set $\left\{y \in[0, x]_{X} \mid y(i)=x(i)\right\}$. If I, J, W are the closed solid subspaces of X generated respectively by the elements x, z_{i}, z_{i}^{\prime}, then
(i) $\inf _{X_{+}}\left\{z_{i}, z_{i}^{\prime}\right\}=0$,
(ii) the functional f_{i} is equal to zero on J. If $f_{i}(x)>0$ then f_{i} is strictly positive on W. If $f_{i}(x)=0$, then $z_{i}=x$ and if f_{i} is strictly positive on I, then $z_{i}^{\prime}=x$. If f_{i} is nonzero and non-strictly positive on I then $0<z_{i}<x$ and $0<z_{i}^{\prime}<x$,
(iii) if $f_{i}(x)>0$, then $I_{z_{i}}^{+}(X) \oplus I_{z_{i}^{\prime}}^{+}(X)=I_{x}^{+}(X)$ and $J_{+} \oplus W_{+}=I_{+}$.

Proof. Suppose that $z \in A=\left\{y \in[0, x]_{X} \mid y(i)=x(i)\right\}$ with $z_{i}^{\prime}>z$. Then $x-z>z_{i}$ and $f_{i}(x-z)=0$, which contradicts the definition of z_{i}. Therefore z_{i}^{\prime} is a minimal element of A.
(i) Let $h \in X$ with $0<h \leq z_{i}, z_{i}^{\prime}$. Then $0 \leq h(i) \leq z_{i}(i)=0$, hence $h(i)=0$. So we have that $h+z_{i} \leq x$ and $\left(h+z_{i}\right)(i)=0$, a contradiction. Therefore $h=0$ and $\inf _{X_{+}}\left\{z_{i}, z_{i}^{\prime}\right\}=0$.
(ii) Since $z_{i}(i)=0, f_{i}$ is equal to zero on $I_{z_{i}}$ and therefore also on J. Suppose that $f_{i}(x)>0$. Then $z_{i}<x$, hence $z_{i}^{\prime}>0$ and $W_{+} \neq\{0\}$. Suppose that $w \in W_{+}, w>0$ with $w(i)=0$. Then by Theorem $4, w$ is the limit of an increasing sequence of elements of $I_{z_{i}^{\prime}}^{+}(X)$, therefore $y(i)=0$ for at least one $y \in X$ with $0<y \leq z_{i}^{\prime}$. Then $y+z_{i} \leq x$ and $\left(y+z_{i}\right)(i)=0$, a contradiction, therefore f_{i} is strictly positive on W. If we suppose that $f_{i}(x)=0$, then by the definition of z_{i} we have that $z_{i}=x$ and if we suppose that f_{i} is strictly positive on I we have that $z_{i}=0$, therefore $z_{i}^{\prime}=x$. Suppose now that f_{i} is nonzero and also non strictly positive on I. Then $x(i)>0$ and also $v(i)=0$, for at least one nonzero point v of I_{+}. Since v is the limit of an increasing sequence of elements of $I_{x}^{+}(X)$, we have that $y(i)=0$ for at least one nonzero element $y \in[0, x]_{X}$. This implies that $z_{i}>0$ because if we suppose that $z_{i}=0$ we have that $z_{i}<y$, which contradicts the definition of z_{i}. Hence $0<z_{i}$. Also $z_{i}<x$ because $x(i)>0$. So we have $0<z_{i}<x$ and $0<z_{i}^{\prime}<x$.
(iii) Let $f_{i}(x)>0$. Suppose that $h \in J_{+} \cap W_{+}$. Then $h \in J_{+}$therefore $h(i)=0$. Since the functional f_{i} is strictly positive on W we have that $h=0$, therefore $J_{+} \cap W_{+}=\{0\}$. Suppose that $y \in[0, x]_{X}$. Then $y \leq z_{i}+z_{i}^{\prime}$ and by the RDP we have that $y=y_{1}+y_{2}$ with $y_{1} \in\left[0, z_{i}\right]_{X}$ and $y_{2} \in\left[0, z_{i}^{\prime}\right]_{X}$. By the above remarks we have that the first assertion of $(i i i)$ is true. Suppose now that $y \in I_{+}$. By Theorem 4, y is the limit of an increasing sequence y_{n} of $I_{x}^{+}(X)$, with $y_{n} \leq y$ for each n. Hence $y_{n+1}-y_{n} \in I_{x}^{+}(X)$, therefore $y_{n+1}-y_{n} \leq k_{n} x=k_{n}\left(z_{i}+z_{i}^{\prime}\right)$, and by the RDP we have that $y_{n+1}-y_{n}=a_{n+1}+b_{n+1}$ with $a_{n+1} \in I_{z_{i}}^{+}(X)$ and
$b_{n+1} \in I_{z_{i}^{\prime}}^{+}(X)$. If $y_{1}=a_{1}+b_{1}$ with $a_{1} \in I_{z_{i}}^{+}(X)$ and $b_{1} \in I_{z_{i}^{\prime}}^{+}(X)$, we have that $y_{n}=\left(a_{1}+a_{2}+\ldots+a_{n}\right)+\left(b_{1}+b_{2}+\ldots+b_{n}\right)$. If $s_{n}=a_{1}+a_{2}+\ldots+a_{n}$ and $r_{n}=b_{1}+b_{2}+\ldots+b_{n}$ we have that $s_{n+1}-s_{n}=a_{n+1} \leq y_{n+1}-y_{n}$, therefore the sequence $\left\{s_{n}\right\}$ is convergent because $\left\{y_{n}\right\}$ is convergent and the cone X_{+}is normal. Similarly we have that $\left\{r_{n}\right\}$ is convergent therefore $y=y^{\prime}+y^{\prime \prime}$ with $y^{\prime} \in J_{+}$and $y^{\prime \prime} \in W_{+}$. Hence $I_{+}=J_{+} \oplus W_{+}$.

Definition 25. Let X be a closed ordered subspace of E as in the previous proposition, and suppose that x is a nonzero element of X_{+}and $f_{i} \in \mathcal{F}$. If f_{i} is nonzero and non-strictly positive on $I_{x}(X)$ and $x=x_{1}+x_{2}$ where x_{1} is a maximal element of the set $\left\{y \in[0, x]_{X} \mid y(i)=0\right\}$, then we will say that $x=x_{1}+x_{2}$ is a decomposition of x with respect to f_{i} (or with respect to i) and also that x is decomposed with respect to f_{i} in the elements x_{1}, x_{2}. If f_{i} is equal to zero on $I_{x}(X)$ or if f_{i} is strictly positive on $I_{x}(X)$, we will say that x is not decomposed with respect to f_{i} (or with respect to i).

3.3 Existence of positive bases

In what follows we will denote by X a closed, ordered subspace of E so that: (i) X has the Riesz decomposition property, (ii) the positive cone X_{+}of X is closed, normal and generating and (iii) X has the maximum support property and the wsproperty with respect to \mathcal{F}. As we have noted in the beginning of the previous section, (i) and (ii) imply that X_{+}gives an open decomposition of X and that X^{*} is an order complete linear lattice. We will also denote by M the following subset of $\mathbb{N}: M=\left\{i \in \operatorname{supp}\left(X_{+}\right) \mid \quad f_{i}\right.$ is non strictly positive on $\left.X\right\}$. Therefore for each $x \in X_{+}, x \neq 0$ we have that $x(i)>0, \quad$ for each $i \in \operatorname{supp}\left(X_{+}\right) \backslash M$. Also $M \neq \varnothing$ because if we suppose that $M=\varnothing$, we have that $\operatorname{supp}(x)=\operatorname{supp}\left(X_{+}\right)$ for each $x \in X_{+}, x \neq 0$, therefore $\operatorname{dim} X=1$ by Proposition 7. In order to prove the existence of extremal points of X_{+}we develop a process of successive decompositions of a quasi-interior point of X_{+}. So we suppose that u is a quasiinterior point of X_{+}(such a point exists by Proposition 13) and we decompose u as follows:
Step 1: We put $i_{1}=\min M$ and we decompose u with respect to i_{1} in the elements x_{1}, x_{2}. Then $u=x_{1}+x_{2}$ and $\inf _{X_{+}}\left\{x_{1}, x_{2}\right\}=0$. Also $f_{i_{1}}$ is equal to zero on I_{1} and strictly positive on I_{2} where I_{1}, I_{2} are the closed solid subspaces of X generated by x_{1}, x_{2} respectively. The set $m_{1}=\left\{x_{1}, x_{2}\right\}$ is the front and the natural number i_{1} is the index of the first decomposition.
Step $\nu+1$: Suppose that we have accomplished the ν th step and suppose that m_{ν} is the front and i_{ν} the index of the ν th decomposition. Then at least one of the elements of m_{ν} is decomposed with respect to an $i \in M$. Indeed if we sup-
pose that any element x of m_{ν} is not decomposed with respect to any $i \in M$ then for any $i \in M, f_{i}$ is strictly positive or equal to zero on the closed solid subspace I of X generated by x and it is easy to show that $\operatorname{supp}(y)=\operatorname{supp}\left(I_{+}\right)$for any $y \in I_{+}, y \neq 0$ therefore y is a quasi-interior point of I. Hence $\operatorname{dim} I=1$ and X is finite-dimensional because m_{ν} is finite. We put $i_{\nu+1}=\min \{i \in M \mid$ at least one element of m_{ν} is decomposed with respect to $\left.i\right\}$. Then $i_{\nu+1}>i_{\nu}$ and we decompose with respect to $i_{\nu+1}$ the elements of m_{ν} which allow such a decomposition. We denote by $m_{\nu+1}$ the set which contains the elements of m_{ν} which are not decomposed with respect to $i_{\nu+1}$ and also the elements that arise from the decomposition of the elements of m_{ν} with respect to $i_{\nu+1}$. The set $m_{\nu+1}$ is the front and $i_{\nu+1}$ is the index of the $(\nu+1)$ th decomposition. The set $\delta(u)=\cup_{\nu=0}^{\infty} m_{\nu}$ where $m_{0}=\{u\}$, is the tree of decompositions of u.

Proposition 26. In the above process of decompositions of u we have:
(i) the sequence of indices of decompositions $\left\{i_{\nu}\right\}$ is strictly increasing,
(ii) for each $i \in M$ with $i \leq i_{\nu}$ and for each $x \in m_{\nu}, x$ is not decomposed with respect to i, therefore f_{i} is strictly positive or equal to zero on $I=\overline{I_{x}(X)}$,
(iii) the elements of m_{ν} are nonzero with sum equal to u. Also $\inf _{X_{+}}\{x, y\}=$ 0 , for each $x, y \in m_{\nu}$, with $x \neq y$,
(iv) $\inf _{X_{+}}\{x, u-x\}=0$, for each $x \in \delta(u)$.

Proof. Statements (i),(ii) and (iii) are obvious. To prove (iv) we suppose that $x \in$ m_{ν} for some ν and suppose that $m_{\nu}=\left\{x, y_{1}, y_{2}, \ldots, y_{k}\right\}$. Since the elements of m_{ν} are pairwise disjoint in X_{+}with sum equal to u we have that $u-x=\sum_{i=1}^{k} y_{i}$ and (iv) is true by Proposition 9.

For any $x \in m_{\nu}$ with $\nu \geq 1$ it is easy to show that there exists a unique vector $y \in m_{\nu-1}$ with $y \geq x$. Also for any $x \in m_{\nu}$ there exists at least one $y \in m_{\nu+1}$ with $x \geq y$. So if we suppose that $x, y \in \delta(u)$ with $x \in m_{\nu}, y \in m_{\nu+\mu}$ and $y \leq x$, we will say that x is the presuccessor of y in m_{ν}, or that y is a successor of x in $m_{\nu+\mu}$. If moreover $y \in m_{\nu+1}$ we will say that x is the first presuccessor of y or that y is a first successor of x.

Proposition 27. The following are true:
(i) for any $x \in m_{\nu}$ the sum of the successors of x in $m_{\nu+\mu}$ is equal to x,
(ii) if y is a successor of x with $x>y$ and I is the closed solid subspace of X generated by x, then $\inf _{X_{+}}\{y, x-y\}=0$ and y is not a quasi-interior point of I_{+},
(iii) for each $x \in \delta(u)$ and each $i \in M \cap \operatorname{supp}(x)$, there exists a successor y of x such that the functional f_{i} is strictly positive on the closed solid subspace I of X generated by y.

Proof. (i) Any element of $\delta(u)$ is the sum of its first successors, therefore the proposition is true for $\mu=1$ and continuing, we have that the proposition is true for any μ.
(ii) Since $x-y \leq u-y$ and $\inf _{X_{+}}\{y, u-y\}=0$ we have that $\inf _{X_{+}}\{y, x-y\}=0$, therefore y is not a quasi-interior point of I_{+}by Proposition 5 .
(iii) Suppose that $x \in m_{\kappa}$. Since the sequence $\left\{i_{\nu}\right\}$ is strictly increasing, there exists $\nu \in \mathbb{N}$ with $\nu>\kappa$ and $i \leq i_{\nu}$. Then f_{i} is strictly positive or equal to zero on any closed solid subspace of X generated by an element of m_{ν}. But $x=\sum_{j=1}^{r} x_{j}$ where x_{1}, \ldots, x_{r} are the successors of x in m_{ν} and $f_{i}(x)>0$ because $i \in \operatorname{supp}(x)$, therefore f_{i} is strictly positive on at least one of the closed solid subspaces of X generated by x_{1}, \ldots, x_{r} and the proposition is true.

If $x \in \delta(u)$ and $x \in m_{\nu}$ for each $\nu \geq \nu_{0}$, then we will say that the process of decomposition stops at the point x of $\delta(u)$. In other words, the process of decomposition stops at x if there exists $\nu_{0} \in \mathbb{N}$ so that $x \in m_{\nu_{0}}$ and for each $i \in M$ with $i>i_{\nu_{0}}$, the functional f_{i} is strictly positive or equal to zero on the closed solid subspace I of X generated by x. Then for each $i \in M$ with $i \leq i_{\nu_{0}}, f_{i}$ is strictly positive or equal to zero on I, $\operatorname{Proposition} 26$, therefore $\operatorname{supp}(z)=\operatorname{supp}\left(I_{+}\right)$for any $z \in I_{+}, z \neq 0$, hence any nonzero vector of I_{+}is a quasi-interior point of I which implies that $\operatorname{dim}(I)=1$. So x is an extremal point of X_{+}and we have proved the following:

Proposition 28. If the process of decomposition of u stops at an element $x_{0} \in \delta(u)$ then x_{0} is an extremal point of X_{+}.

A sequence $\left\{x_{\nu}\right\}$ of $\delta(u)$ is a branch of $\delta(u)$, if $x_{\nu}>x_{\nu+1}$ for each $\nu \in \mathbb{N}$.
Proposition 29. Each branch of $\delta(u)$ converges to zero.
Proof. It is enough to show that any branch $\left\{x_{\nu}\right\}$ of $\delta(u)$ with $x_{0}=u$ converges to zero. Let $z_{\nu}=x_{\nu-1}-x_{\nu}$, for each $\nu \geq 1$. Then for each ν, μ, we have

$$
\begin{equation*}
u=z_{1}+z_{2}+\ldots+z_{\nu}+x_{\nu} \text { and } x_{\nu}=z_{\nu+1}+\ldots+z_{\nu+\mu}+x_{\nu+\mu} \tag{2}
\end{equation*}
$$

The vectors $z_{1}, z_{2}, \ldots, z_{\nu}, x_{\nu}$ are pairwise disjoint in X_{+}. Indeed, $\inf _{X_{+}}\left\{x_{\nu}, u-\right.$ $\left.x_{\nu}\right\}=0$, hence $\inf _{X_{+}}\left\{x_{\nu}, \sum_{i=1}^{\nu} z_{i}\right\}=0$, therefore $\inf _{X_{+}}\left\{x_{\nu}, z_{i}\right\}=0$ for each $i \leq \nu$, because $z_{i} \leq \sum_{j=1}^{\nu} z_{j}$. Suppose that $j>i$. Then $z_{j} \leq x_{i}$ and $\inf _{X_{+}}\left\{z_{i}, x_{i}\right\}=0$, therefore $\inf _{X_{+}}\left\{z_{j}, z_{i}\right\}=0$. Hence $\inf _{X_{+}}\left\{z_{j}, z_{i}\right\}=0$ for any $i \neq j$. Let $u_{0}=\sum_{\nu=1}^{\infty} \frac{z_{\nu}}{2^{\nu}}$. We shall show that $\operatorname{supp}\left(u_{0}\right)=\operatorname{supp}\left(X_{+}\right)$. For each $i \in \operatorname{supp}\left(X_{+}\right) \backslash M$ we have that $x(i)>0$ for each $x \in X_{+}, x \neq 0$, hence $i \in \operatorname{supp}\left(u_{0}\right)$. Suppose that $i \in M$ and that x_{ν} is decomposed at the κ_{ν} th decomposition. Since the sequence $\left\{i_{\kappa_{\nu}}\right\}$ is strictly increasing, there exists
$\mu \in \mathbb{N}$ with $i<i_{\kappa_{\mu}}$. By statement (ii) of Proposition 26, f_{i} is strictly positive or equal to zero on $I=\overline{I_{x_{\mu}}(X)}$. We shall show that in both cases $i \in \operatorname{supp}\left(u_{0}\right)$. If f_{i} is strictly positive on I we have $z_{\mu+1}(i)>0$ because $0<z_{\mu+1}<x_{\mu}$ therefore $i \in \operatorname{supp}\left(u_{0}\right)$. If f_{i} is equal to zero on I then $x_{\mu}(i)=0$, therefore $f_{i}\left(z_{1}+\ldots+z_{\mu}\right)=f_{i}\left(z_{1}+\ldots+z_{\mu}+x_{\mu}\right)=f_{i}(u)>0$, hence $f_{i}\left(z_{j}\right)>0$ for at least one j, therefore $i \in \operatorname{supp}\left(u_{0}\right)$. Therefore $\operatorname{supp}\left(X_{+}\right)=\operatorname{supp}\left(u_{0}\right)$ and u_{0} is a quasi-interior point of X. By Theorem 4, there exists an increasing sequence $\phi_{n} \in[0, u]_{X} \cap\left[0, r_{n} u_{0}\right]_{X}$, where $\left\{r_{n}\right\}$ is a strictly increasing sequence of natural numbers with $\lim _{n \longrightarrow \infty} \phi_{n}=u$. Let $h_{\nu}=\sum_{\mu=1}^{\infty} r_{\nu} \frac{z_{r_{\nu}+\mu}}{2^{r}+\mu}$. Since $0 \leq \phi_{n} \leq r_{n} u_{0}$ we have $0 \leq \phi_{n} \leq r_{n} z_{1}+\ldots+r_{n} z_{r_{n}}+h_{n}$ and by Proposition $9, \phi_{n}$ has a unique decomposition $\phi_{n}=\phi_{n}^{1}+\ldots+\phi_{n}^{r_{n}}+H_{n}$ with $0 \leq \phi_{n}^{i} \leq r_{n} z_{i}$ for each i and $0 \leq H_{n} \leq$ h_{n}. The last inequality implies that $\lim _{n \longrightarrow \infty} H_{n}=0$ because $\lim _{n \longrightarrow \infty} h_{n}=0$ and the cone X_{+}is normal. Also we have $0 \leq \phi_{n}^{i} \leq u, r_{n} z_{i}$ for $i=1,2, \ldots, r_{n}$, therefore $\phi_{n}^{i}=a_{1}+a_{2}+\ldots+a_{r_{n}}+b_{n}$ with $0 \leq a_{j} \leq z_{j}$, for each j and $0 \leq b_{n} \leq x_{r_{n}}$. Since the vectors $z_{1}, z_{2}, \ldots, z_{r_{n}}, x_{r_{n}}$ are pairwise disjoint in X_{+} we have that $\phi_{n}^{i}=a_{i}$, therefore $0 \leq \phi_{n}^{i} \leq z_{i}$ for each $i=1,2, \ldots, r_{n}$. Since $H_{n} \leq u$, we have that $H_{n}=\gamma_{1}+\gamma_{2}+\ldots+\gamma_{r_{n}}+c_{n}$ with $0 \leq \gamma_{j} \leq z_{j}$, for each $j=1,2, \ldots, r_{n}$ and $0 \leq c_{n} \leq x_{r_{n}}$. Since $H_{n} \leq h_{n}$ we have also that $\gamma_{j} \leq h_{n}$, for each j. Since the vectors $z_{j}, j=1,2, \ldots, r_{n}$ and h_{n} are pairwise disjoint in X_{+}we have $\gamma_{j}=0$ for each $j=1,2, \ldots, r_{n}$, hence $H_{n}=c_{n}$, therefore $H_{n} \leq x_{r_{n}}$. So we have that $\lim _{n \longrightarrow \infty}\left(u-\left(\phi_{n}^{1}+\ldots+\phi_{n}^{r_{n}}+H_{n}\right)\right)=0$, therefore

$$
\lim _{n \longrightarrow \infty}\left[\left(z_{1}-\phi_{n}^{1}\right)+\left(z_{2}-\phi_{n}^{2}\right)+\ldots+\left(z_{r_{n}}-\phi_{n}^{r_{n}}\right)+\left(x_{r_{n}}-H_{n}\right)\right]=0
$$

Since the members in the above limit are positive and the cone of X_{+}is normal we have that $\lim _{n \longrightarrow \infty}\left(x_{r_{n}}-H_{n}\right)=0$. As we have shown above $\lim H_{n}=0$ therefore $\lim x_{r_{n}}=0$. Since the sequence $\left\{x_{n}\right\}$ is decreasing it converges to zero and the proposition is true.

Proposition 30. For each $x \in \delta(u)$ at least one of the successors of x is an extremal point of X_{+}.

Proof. Let $x \in \delta(u)$. If at least one of the successors x^{\prime} of x does not belong to a branch of $\delta(u)$, then the process of decompositions stops after a finite number of steps at any successor of x^{\prime}, therefore any successor of x^{\prime} is an extremal point of X_{+}dominated by x and the proposition is true. So we suppose that any successor of x belongs to a branch of $\delta(u)$. Also we may suppose that $x<u$ because in the case where $x=u$, it is enough to show the proposition for one of its successors. Let I be the closed solid subspace of X generated by x and suppose that $L=\{i \in$ $\operatorname{supp}(x) \mid f_{i}$ is not strictly positive on $\left.I_{x}(X)\right\}$. Then $L \subseteq M$. Also $\operatorname{supp}(x)=$ $\operatorname{supp}\left(I_{+}\right)$. If L is finite, then after a finite number of steps the decomposition stops
at any successor of x and the proposition is true. So we suppose that the set L is infinite. Let $j_{1}=\min L$. Then by statement (iii) of Proposition 27, there exists $x_{1} \in \delta(u)$ such that $x_{1} \leq x$ and $f_{j_{1}}$ is strictly positive on $\overline{I_{x_{1}}(X)}$. Since x_{1} is an element of a branch of $\delta(u)$ dominated by x and any such a branch of $\delta(u)$ converges to zero, we may suppose that there exists an element $y_{1} \in \delta(u)$ such that $y_{1}<x_{1} \leq x,\left\|y_{1}\right\| \leq 2^{-1} \varepsilon$, where ε is a constant real number with $0<\varepsilon<\|x\|$. Note also that $f_{j_{1}}$ is strictly positive on $\overline{I_{y_{1}}(X)}$ because it is strictly positive on $\overline{I_{x_{1}}(X)}$ and $0<y_{1}<x_{1}$. By Proposition 27 we have that $\inf _{X_{+}}\left\{y_{1}, x-y_{1}\right\}=$ 0 hence y_{1} is not a quasi-interior point of I. Therefore $\operatorname{supp}\left(y_{1}\right) \neq \operatorname{supp}\left(I_{+}\right)$, hence there exists at least one $i \in \operatorname{supp}\left(I_{+}\right)$with $i \notin \operatorname{supp}\left(y_{1}\right)$, therefore there exists $i \in L$ with $y_{1}(i)=0$. We put $j_{2}=\min \left\{i \in L: y_{1}(i)=0\right\}$. Then $j_{1}<j_{2}$ and as before we can find a vector $y_{2} \in \delta(u)$ so that $y_{2}<x,\left\|y_{2}\right\| \leq$ $2^{-2} \varepsilon$ and $f_{j_{2}}$ is strictly positive on $\overline{y_{y_{2}}(X)}$. Then $\inf _{X_{+}}\left\{y_{1}, y_{2}\right\}=0$, because for any $h \in X$ with $0 \leq h \leq y_{1}, y_{2}$ we have that $0 \leq h\left(j_{2}\right) \leq y_{1}\left(j_{2}\right)=0$, therefore $h=0$ because $f_{j_{2}}$ is strictly positive on $\overline{I_{y_{2}}(X)}$. By the way we have selected y_{2} (as a sufficiently small member of a branch which converges to zero) we may also suppose that $y_{1} \in m_{\nu_{1}}$ and $y_{2} \in m_{\nu_{2}}$ with $\nu_{1}<\nu_{2}$. We may also suppose that ν_{2} is sufficiently large so that $m_{\nu_{2}}$, except the successors of x and the element y_{2}, contains at least one extra element so we may suppose that $m_{\nu_{2}}=\left\{y_{2}, a_{1}, a_{2}, \ldots, a_{k}, b_{1}, b_{2}, \ldots, b_{r}, c_{1}, c_{2}, \ldots, c_{l}\right\}$, where $a_{1}, a_{2}, \ldots, a_{k}$ are the successors of y_{1} and $y_{2}, a_{1}, a_{2}, \ldots, a_{k}, b_{1}, b_{2}, \ldots, b_{r}$ are the successors of x. We put $s_{1}=y_{1}, s_{2}=y_{1}+y_{2}$. Then $s_{1}<x$ and $s_{2}<x$. The first inequality is obvious and the second holds because x is the sum of its successors in $m_{\nu_{2}}$. Also $s_{1}\left(j_{1}\right)>0$ and by the definition of j_{2}, we have that $s_{2}(i)>0$ for each $i \in L$ with $i \leq j_{2}$. By Proposition $9, \inf _{X_{+}}\left\{s_{i}, x-s_{i}\right\}=0$, for each $i=1,2$ because the successors of x in $m_{\nu_{2}}$ are pairwise disjoint. Since $\inf _{X_{+}}\left\{s_{2}, x-s_{2}\right\}=0$ we have that s_{2} is not quasi-interior point of I_{+}, hence there exists $i \in L$ with $s_{2}(i)=0$. Let $j_{3}=\min \left\{i \in L: s_{2}(i)=0\right\}$. Then $j_{2}<j_{3}$ and as before we can find $y_{3} \in m_{\nu_{3}}$ such that $\nu_{2}<\nu_{3},\left\|y_{3}\right\| \leq 2^{-3} \varepsilon, f_{j_{3}}$ is strictly positive on $\overline{I_{y_{3}}(X)}$ and the set of the successors of x in $m_{\nu_{3}}$ contains the successors of y_{1}, the successors of y_{2}, the element y_{3} and at least one extra element. As before we can show that $\inf _{X_{+}}\left\{y_{1}, y_{3}\right\}=\inf _{X_{+}}\left\{y_{2}, y_{3}\right\}=0$. We put $s_{3}=s_{2}+y_{3}$. Continuing this process we obtain a sequence $\left\{j_{\nu}\right\}$ of L and the sequences $\left\{y_{\nu}\right\},\left\{s_{\nu}\right\}$ of X_{+} such that $s_{1}=y_{1}, s_{\nu}=s_{\nu-1}+y_{\nu}$, for each $\nu=2,3, \ldots$, with the following properties:
(i) $0<s_{\nu}<s_{\nu+1}<x$,
(ii) $\left\|s_{\nu+1}-s_{\nu}\right\|=\left\|y_{\nu+1}\right\| \leq 2^{-\nu-1} \varepsilon$ and $y_{\nu} \in m_{k_{\nu}}$ with $k_{\nu}<k_{\nu+1}$, for each ν,
(iii) $\inf _{X_{+}}\left\{s_{\nu}, x-s_{\nu}\right\}=0$ for each ν,
(iv) $\left\{j_{\nu}\right\}$ is a strictly increasing sequence of L and for each $i \in L$ with $i<j_{\nu+1}$
we have $s_{\nu}(i)>0$.
By (ii), the sequence $\left\{s_{\nu}\right\}$ is Cauchy and suppose that $s=\lim _{\nu \longrightarrow \infty} s_{\nu}$. Then $0 \leq s_{\nu} \leq s \leq x$, for each ν. Since $\left\|s_{\nu}\right\| \leq \sum_{i=1}^{\nu}\left\|y_{i}\right\| \leq \varepsilon<\|x\|$, we have that $s<x$. Also by (iv) and by the fact that the sequence $\left\{s_{\nu}\right\}$ is increasing we have that $s(i)>0$ for each $i \in L$, therefore $\operatorname{supp}(s)=\operatorname{supp}\left(I_{+}\right)$. Hence s is a quasi-interior point of I_{+}. We will show that $\inf _{X_{+}}\{s, x-s\}=0$. To this end we suppose that $0 \leq h \leq s, x-s$. Since $s=s_{\nu}+\left(s-s_{\nu}\right)$ we have that $h=h_{\nu}+h_{\nu}^{\prime}$ with $0 \leq h_{\nu} \leq s_{\nu}, 0 \leq h_{\nu}^{\prime} \leq\left(s-s_{\nu}\right)$. Since the cone is normal and $\lim \left(s-s_{\nu}\right)=0$ we have that $\lim h_{\nu}^{\prime}=0$, therefore $h=\lim h_{\nu}$. Since $0 \leq h_{\nu} \leq s_{\nu}$ and $h_{\nu} \leq x-s \leq x-s_{\nu}$ we have that $h_{\nu}=0$ for each ν, by (iii). Therefore $h=0$, hence $\inf _{X_{+}}\{s, x-s\}=0$. Since I is solid we have also that $\inf _{I_{+}}\{s, x-s\}=0$ which contradicts the fact that s is a quasi-interior point of I_{+}, Proposition 5. Hence at least one of the successors x^{\prime} of x does not belong to a branch of $\delta(u)$, therefore at least one of the successors x_{0} of x is an extremal point of X_{+}and the proposition is true.

Proposition 31. Any extremal point x_{0} of X_{+}is a positive multiple of a unique element of $\delta(u)$.

Proof. Suppose that x_{0} is an extremal point of X_{+}. By proposition 5 and by the fact that x_{0} is an extremal point of X_{+}a real number $r>0$ exists with $r x_{0} \leq u$. Hence $r \leq a \frac{\|u\|}{\left\|x_{0}\right\|}$, where a is the constant of the normal cone X_{+}. Therefore $\sup \left\{r \in \mathbb{R}_{+}: r x_{0} \leq u\right\}=\lambda \in \mathbb{R}_{+}$, with $\lambda>0$. Let $z_{0}=\lambda x_{0}$. Then $0<z_{0} \leq u$. Since $u=\sum_{z \in m_{\nu}} z$ and the elements of m_{ν} are pairwise disjoint, there exists a unique $y_{\nu} \in m_{\nu}$ so that $z_{0} \leq y_{\nu}$. Then $\inf _{X_{+}}\left\{z_{0}, x\right\}=0$ for each $x \in m_{\nu}, x \neq y_{\nu}$. Also $y_{\nu} \geq y_{\nu+1} \geq z_{0}$ for each ν. Since each branch of $\delta(u)$ converges to zero, the process of decompositions stops at a point y_{μ} which is an extremal point of X_{+}with $z_{0} \leq y_{\mu}$. Hence $y_{\mu}=\lambda^{\prime} x_{0}$. Also $y_{\mu} \leq u$ and by the definition of λ we have that $\lambda^{\prime} \leq \lambda$, therefore $y_{\mu} \leq z_{0}$ which implies that $y_{\mu}=z_{0}$ and $z_{0} \in \delta(u)$. If we suppose that $z_{0}^{\prime}=k x_{0} \in \delta(u)$, then $k x_{0} \leq u$, therefore $k \leq \lambda$ and $z_{0}^{\prime} \leq z_{0}$. Hence z_{0}^{\prime} is a successor of z_{0}. If we suppose that $z_{0}^{\prime}<z_{0}$ we get a contradiction because z_{0} as an extremal point of X_{+}is undecomposable. Therefore $z_{0}^{\prime}=z_{0}$ and the proposition is true.

In our main result below we prove that X has a positive basis. For the sake of completeness we repeat the standard assumptions for E and X. In the next results the positive basis of X is also unconditional because X_{+}is generating and normal.

Theorem 32. Suppose that E is an ordered Banach space and that E_{+}is defined by the family $\mathcal{F}=\left\{f_{i} \mid i \in \mathbb{N}\right\}$ of E_{+}^{*}. Let X be a closed ordered subspace of E with the Riesz decomposition property and suppose that X_{+}is normal and generating.

If X has the maximum support property and the ws-property with respect to \mathcal{F}, then X has a positive basis.

Proof. Let B be the set of extremal points of X_{+}with norm 1. By proposition $30, B \neq \varnothing$ and by the previous proposition the map $T: B \longrightarrow \delta(u)$ so that $T(x)=\lambda x \in \delta(u)$ is one-to-one. Since $\delta(u)$ is countable B is also countable. Suppose that $B=\left\{u_{i}: i \in \mathbb{N}\right\}$ and $b_{i}=\lambda_{i} u_{i} \in \delta(u)$. Let $u_{0}=\sum_{i=1}^{\infty} \frac{b_{i}}{2^{i}}$. For each $i \in M$ there exists $z \in \delta(u)$ so that f_{i} is strictly positive on $I=\overline{I_{z}(X)}$. By Proposition $30, z \geq b_{j}$ for at least one j, therefore $b_{j}(i)>0$. Hence $\operatorname{supp}\left(u_{0}\right)=$ $\operatorname{supp} X_{+}$and u_{0} is a quasi-interior point of X_{+}. Let $x \in X_{+}$. Then there exists an increasing sequence $x_{n} \in[0, x] \cap\left[0, k_{n} u_{0}\right]$ where the sequence k_{n} is strictly increasing with $\lim _{n \longrightarrow \infty} x_{n}=x$. Since $0 \leq x_{n} \leq k_{n} u_{0}$, each x_{n} has a unique expression $x_{n}=\sum_{i=1}^{\infty} \sigma_{n i} u_{i}$, with $\sigma_{n i} \in \mathbb{R}_{+}$, by Proposition 9. The sequence $\left\{\sigma_{n i} \mid n \in \mathbb{N}\right\}$ is increasing. Indeed, for each $m>n$ we take again the expansion $x_{m}-x_{n}=\sum_{i=1}^{\infty} a_{i} u_{i}$ and we have that $\sigma_{m i}=\sigma_{n i}+a_{i} \geq \sigma_{n i}$. Suppose that $\sigma_{i}=\lim _{n \longrightarrow \infty} \sigma_{n i}$. Then $0 \leq \sigma_{i} u_{i} \leq x$ because $0 \leq \sigma_{n i} u_{i} \leq x$, for each i. For each $m \in \mathbb{N}$ we have $\sum_{i=1}^{m} \sigma_{n i} u_{i} \leq x_{n} \leq x$ and by taking limits as $n \longrightarrow+\infty$ we have that $\sum_{i=1}^{m} \sigma_{i} u_{i} \leq x$. Since the sequence $\left\{x_{n}\right\}$ converges to x there exists a strictly increasing sequence m_{n} of natural numbers so that the sequence $y_{n}=$ $\sum_{i=1}^{m_{n}} \sigma_{n i} u_{i}$ converges to x. Then $\sum_{i=1}^{m_{n}} \sigma_{n i} u_{i} \leq \sum_{i=1}^{m_{n}} \sigma_{i} u_{i} \leq x$, from where we get that $x=\sum_{i=1}^{\infty} \sigma_{i} u_{i}$. Let $\bar{u}_{j}=\sum_{i \neq j} \frac{b_{i}}{2^{i}}$. Then \bar{u}_{j} is not a quasi-interior point of X_{+}, because $\inf _{X_{+}}\left\{b_{j}, \bar{u}_{j}\right\}=0$, Proposition 9. Therefore $\operatorname{supp}\left(\bar{u}_{j}\right)$ is a proper subset of $\operatorname{supp}\left(X_{+}\right)$, hence there exists $k_{j} \in M$ with $f_{k_{j}}\left(\bar{u}_{j}\right)=0$. Therefore $f_{k_{j}}\left(u_{i}\right)=0$, for each $i \neq j$. Also $f_{k_{j}}\left(u_{j}\right)>0$ because $f_{k_{j}}\left(u_{0}\right)>0$. Let $g_{j}=$ $\frac{f_{k_{j}}}{f_{k_{j}}\left(u_{j}\right)}$. Then for each $x \in X_{+}$we have $g_{j}(x)=\sigma_{j}$, therefore $x=\sum_{i=1}^{\infty} g_{i}(x) u_{i}$. Since the cone X_{+}is generating we have that $x=\sum_{i=1}^{\infty} g_{i}(x) u_{i}$ for each $x \in X$ and this expansion is unique. Therefore $\left\{u_{n}\right\}$ is a positive basis of X.

By the previous result and Corollary 20 and 21 we have:
Corollary 33. Suppose that E is a Banach lattice with order continuous norm and suppose that E_{+}is defined by a countable family \mathcal{F} of E_{+}^{*}. Let X be a closed ordered subspace of E with the Riesz decomposition property and generating positive cone X_{+}. If X has the maximum support property with respect to \mathcal{F}, then X has a positive basis.

Corollary 34. Let E be an ordered Banach space whose positive cone is defined by the family $\mathcal{F}=\left\{f_{i} \mid i \in \mathbb{N}\right\}$ of E_{+}^{*}. Suppose also that E is a dual space and that the functionals f_{i} are weak-star continuous. If X is a closed ordered subspace of E with the Riesz decomposition property, X_{+}is weak-star closed, normal and
generating and X has the maximum support property with respect to \mathcal{F}, then X has a positive basis.

Remark 35. In the special case where $E=\ell_{\infty}$ and X is a weak-star closed ordered subspace of ℓ_{∞} with the RDP and generating positive cone X_{+}we have: If X has the maximum support property with respect to the family of the Dirac measures δ_{i} supported at the natural numbers i, then X has a positive basis.

4 Biorthogonal systems

The results of the previous section can be applied to the problem: under what conditions a biorthogonal system defines a positive basis? So in this section we suppose that E is an ordered Banach space with a positive biorthogonal system $\left\{\left(e_{i}, f_{i}\right) \mid i \in \mathbb{N}\right\}$, i.e. $e_{i} \in E$ and $f_{i} \in E_{+}^{*}$ for each i so that $f_{i}\left(e_{i}\right)=1, f_{i}\left(e_{j}\right)=0$, for each $j \neq i$ and the family $\mathcal{F}=\left\{f_{i} \mid i \in \mathbb{N}\right\}$ defines the positive cone of E. In the next results the positive basis of E is also unconditional.

Theorem 36. Suppose that E is an ordered Banach space with a positive biorthogonal system $\left\{\left(e_{i}, f_{i}\right) \mid i \in \mathbb{N}\right\}$. If E_{+}is normal and generating and E has the Riesz decomposition property, the following statements are equivalent:
(i) The sequence $\left\{e_{i}\right\}$ of the biorthogonal system is a positive basis of E,
(ii) E has the maximum support property and the ws-property with respect to the family $\mathcal{F}=\left\{f_{i} \mid i \in \mathbb{N}\right\}$.

Proof. Suppose that $\left\{e_{i}\right\}$ is a positive basis of E. Since $\left\{\left(e_{i}, f_{i}\right)\right\}$ is a positive biorthogonal system of E we have that $f_{i}\left(e_{i}\right)=1$ and $f_{i}\left(e_{j}\right)=0$, for each $j \neq i$ therefore, by Theorem 16, E has the maximum support property with respect to \mathcal{F}. Since $\left\{e_{i}\right\}$ is a positive basis of E, by Corollary $22, E$ has the ws-property, therefore (i) implies (ii). Suppose now that statement (ii) is true. Then E has a positive basis $\left\{b_{n}\right\}$. Since E has the maximum support property with respect to \mathcal{F}, E has the minimal support property, therefore an element x_{0} of E_{+}is an extremal point of E_{+}if and only if x_{0} has minimal support in E_{+}. Therefore the extremal points of E_{+}are the positive multiples of the elements $e_{n}\left(\operatorname{supp}\left(e_{n}\right)=\{n\}\right)$. Since the elements of the positive basis define the extremal rays of E_{+}we have that the basis $\left\{b_{n}\right\}$ coincides, in the sense of a scalar multiple and a proper enumeration, with the sequence $\left\{e_{n}\right\}$.

Corollary 37. Suppose that E is an ordered Banach space with a positive biorthogonal system $\left\{\left(e_{i}, f_{i}\right) \mid i \in \mathbb{N}\right\}$ and suppose also that E has the Riesz decomposition property. If
(a) E is a Banach lattice with order continuous norm, or
(b) E is a dual space, the positive cone E_{+}of E is weak-star closed, normal and generating and the functionals f_{i} are weak-star continuous,
then the following statements are equivalent:
(i) The sequence $\left\{e_{i}\right\}$ of the biorthogonal system is a positive basis of E,
(ii) E has the maximum support property with respect to the family $\left\{f_{i} \mid i \in \mathbb{N}\right\}$.

Remark 38. According to the Corrolary, the sequence $\left\{e_{i}\right\}$ of the usual biorthogonal system $\left\{e_{i}, \delta_{i}\right\}$ of ℓ_{∞} is not a positive basis of ℓ_{∞} because it does not have the maximum support property with respect to the family $\left\{\delta_{i}\right\}$, Example 15.

References

[1] C. D. Aliprantis and O. Burkinshaw, Positive Operators, Academic Press, New York \& London, 1985.
[2] N. Danet, The Riesz decomposition property for the space of regular operators, Proceedings of AMS 129 (2000), 539-542.
[3] W.T. Gowers and B. Maurey, The unconditional basic sequence problem, Journal of AMS 6 (1993), 851-874.
[4] G. J. O. Jameson, Ordered Linear Spaces, Lecture Notes in Mathematics 141, Springer-Verlag, Heidelberg \& New York, 1970.
[5] M.A. Krasnosel’skij, Je. A. Lifshits, and A.V. Sobolev, Positive Linear Systems -The Method of Positive Operators-, Sigma Series in Applied Mathematics, 5, Heldermann Verlag, 1989.
[6] P. Meyer-Nierberg, Banach lattices, Springer-Verlag, 1991.
[7] I. A. Polyrakis, Schauder bases in locally solid lattice Banach spaces, Math. Proceedings Cambridge Philosophical Society 101 (1987), 91-105.
[8] \qquad , Lattice-subspaces of $C[0,1]$ and positive bases, Journal of Mathematical Analysis and Applications 184 (1994), 1-15.
[9] I. Singer, Bases in Banach spaces - I, Springer-Verlag, Heidelberg \& New York, 1970.
[10] B.Z. Vulikh, Introduction to the Theory of Cones in Normed Spaces (Russian), Kalinin, 1977.
[11] A.W. Wickstead, Compact subsets of partially ordered Banach spaces, Math. Annalen 212 (1975), 271-284.

[^0]: ${ }^{*}$ We would like to thank an anonymous referee for his helpful remarks and comments.
 ${ }^{1}$ This result it is shown by a slight modification of the classical proof of the universality of $C[0,1]$.

