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Abstract

In this article we suppose thatE is an ordered Banach space the positive
cone of which is defined by a countable familyF={fi|i ∈ N} of positive con-
tinuous linear functionals ofE, i.e. E+ = {x ∈ E | fi(x) ≥ 0, for eachi}
and we study the existence of positive (Schauder) bases in the ordered sub-
spacesX of E with the Riesz decomposition property. So we consider the
elementsx of E as sequencesx = (fi(x)) and we develop a process of
successive decompositions of a quasi-interior point ofX+ which in any step
gives elements with smaller support. So we obtain elements ofX+ with
minimal support and we prove that these elements define a positive basis of
X which is also unconditional. In the first section of this article we study
ordered normed spaces with the Riesz decomposition property.

1 Introduction and notations

The most typical examples of ordered Banach spacesE with a rich class of ordered
subspaces are the universal spacesC[0, 1] and`∞. As it is shown in [8], Theorem
4.11 each separable ordered Banach space with closed and normal positive cone is

∗We would like to thank an anonymous referee for his helpful remarks and comments.
1This result it is shown by a slight modification of the classical proof of the universality ofC[0, 1].
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order-isomorphic to an ordered subspace ofC[0, 1], therefore the existence of pos-
itive bases in the separable ordered Banach spaces is equivalent with the study of
positive bases in the closed ordered subspacesX of C[0, 1]. In this article we study
the general problem of the existence of positive bases in the ordered subspacesX
of E, as it is formulated in the abstract, by developing a method of decompositions
of a quasi-interior point ofX. To develop this method we study the subspacesX of
E with themaximum support property. In this kind of subspaces the quasi-interior
points ofX and in its closed principal solid subspaces, are characterized as the
positive vectors of these subspaces with maximum support. We show that in this
kind of subspaces the extremal points ofX+ are the nonzero elements ofX+ with
minimal support and this is an important property for the study of positive bases.
Also this class of subspaces is a large one. Indeed as it is shown in [7], Lemma 5.1,
each Banach lattice with a positive basis is order isomorphic to a closed, ordered
subspace of̀∞ with the maximum support property with respect to the familyF
of the Dirac measuresδi supported at the natural numbersi and a similar result
is also true for the spaceC[0, 1], see in [8], Theorem 5.1. Therefore the class of
ordered subspaces of`∞ or C[0, 1] with the maximum support property is a large
one and contains, in the sense of an order isomorphism, the class of Banach lattices
with a positive basis.
To develop our method of decompositions we study also the ordered subspacesX
of E with the following property which we callws-property: for anyx ∈ X+ and
any fi ∈ F the setK = {y ∈ X+

∣∣y ≤ x and fi(y) = 0} has at least one
maximal element. According to the terminology of vector optimization,X has the
ws-property if and only if the setK has Pareto efficient points with respect toX+.
If E is a Banach lattice with order continuous norm or ifE is a dual space, we
show, Corollary 20 and 21, that the ordered subspaces ofE have the ws-property.
In the main result of this article, Theorem 32, we prove that the maximum support
property and the ws-property are sufficient conditions for the existence of positive
bases in the ordered subspaces ofE with the Riesz decomposition property. As
an application we show, Theorem 36, that the maximum support property and the
ws-property are necessary and sufficient in order a positive biorthogonal system
of an ordered Banach spaceE with the Riesz decomposition property to define a
positive basis ofE.
This article is a generalization of [7] where the same problem is studied in the
lattice-subspaces ofE. So in the first section of this paper we study ordered normed
spaces with the Riesz decomposition property and we prove some results necessary
for our method of decompositions. Specifically we study quasi-interior points and
we generalize the existing results for normed lattices to ordered normed spaces
with the Riesz decomposition property, Theorem 4 and 6.
Finally note that each Banach space with an unconditional basis, ordered by the
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positive cone of the basis, is a Banach lattice with respect to an equivalent norm.
Also note that the problem of the existence of unconditional basic sequences in
Banach spaces, known as the unconditional basic sequence problem, was one of
the famous open problems of Functional Analysis till 1993 when W.T. Gowers and
B. Maurey gave a negative answer to it, [3]. Our results give necessary conditions
for the existence of unconditional basic sequences in ordered Banach spaces.
LetY be a (partially) ordered normed space with positive coneY+. If Y = Y+−Y+

the coneY+ is generatingor reproducingand if a real numbera > 0 exists so that
x, y ∈ Y+ with x ≤ y implies that||x|| ≤ a||y||, the coneY+ is normal . Recall
that a convex setP of a linear space is aconeif λx ∈ P for any real numberλ ≥ 0
and anyx ∈ P andP ∩ (−P ) = {0}. The set[x, y] = {z ∈ Y | x ≤ z ≤ y}
is the order intervalxy, wheneverx, y ∈ Y with x ≤ y. A point x ∈ Y+, x 6= 0
is anextremal pointof Y+ if for any y ∈ Y with 0 < y < x there existsλ ∈ R+

such thaty = λx. Denote byEP (Y+) the set of extremal points ofY+. Y has the
Riesz decomposition property (RDP)if for eachx, y1, y2 ∈ Y+ with x ≤ y1 + y2

there existx1, x2 ∈ Y+ such thatx = x1 + x2 and0 ≤ x1 ≤ y1 , 0 ≤ x2 ≤ y2.
A subspaceZ of Y is solid if for any x, y ∈ Z with x ≤ y, the order interval
[x, y] = {z ∈ Y | x ≤ z ≤ y} is contained inZ. We say that the coneY+ gives
an open decompositionof Y or thatY+ is non-flatif U+ − U+ is a neighborhood
of zero, whereU+ = U ∩ Y+, is the positive part of the closed unit ballU of Y ,
or equivalently, if anyx ∈ Y has a representationx = x1 − x2 with x1, x2 ∈ Y+

and‖x1‖, ‖x2‖ ≤ M‖x‖, whereM is a constant real number. A linear functional
f of Y is positive iff(x) ≥ 0 for eachx ∈ Y+ and strictly positive iff(x) > 0
for eachx ∈ Y+, x 6= 0. Denote byY ∗ the set of continuous, linear functionals of
Y and byY ∗

+ the set of positive ones. Suppose thatY is an ordered Banach space.
A sequence{en} of Y is a (Schauder)basisof Y if eachx ∈ Y has a unique
expansionx =

∑∞
n=1 λnen, with λn ∈ R for eachn. If moreoverY+ = {x =∑∞

n=1 λnen | λn ≥ 0 for eachn }, then{en} is apositive basisof Y . A positive
basis is unique in the sense that if{bn} is another positive basis ofY , then each
element of{bn} is a positive multiple of an element of{en}. If {en} is a positive
basis ofY then, by [9], Theorem 16.3, and [4], Theorem 3.5.2. and Theorem
4.1.5, the following statements are equivalent:(i) the basis{en} is unconditional,
(ii) the coneY+ is generating and normal, (iii)Y is a Banach lattice with respect
to an equivalent norm.
A linear operatorT of Y onto an ordered normed spaceZ is anorder-isomorphism
of Y ontoZ if T is one-to-one,T andT−1 are continuous and for eachx ∈ Y we
have:x ∈ Y+ if and only if T (x) ∈ Z+. For notions and terminology on ordered
spaces not defined here we refer to [4], [5], [1], [6] and [10]. For Schauder bases
we refer to [9].
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2 Quasi-interior points in spaces with the Riesz decompo-
sition property

In this section we will denote byY an ordered normed space with the Riesz de-
composition property whose positive coneY+ is closed, normal and gives an open
decomposition ofY . Then, by the Riesz-Kantorovich Theorem, the set of order
bounded linear functionalsY b of Y is an order complete linear lattice. For any
x ∈ Y+, Ix = ∪n∈N[−nx, nx] is the solid subspace ofY generated byx and
the closure ofIx is theclosed solid subspace ofY generated byx. As we prove
below the closure ofIx is again solid. Recall the following properties of an ordered
Banach spaceW which we use in this article: (i) IfW+ is closed and generating,
thenW+ gives an open decomposition ofW (Krein-Smulian) and also any order
bounded linear functional ofW is continuous and (ii) the coneW+ is normal if
and only ifW ∗ = W ∗

+ −W ∗
+ (M. Krein), see for example in [4], Theorems 3.5.2,

3.5.6. and 3.4.8. We start with the next obvious result.

Proposition 1. Any solid subspace ofY has the Riesz decomposition property.

Proposition 2. Suppose thatx ∈ Y+, x 6= 0 andI is the closure ofIx. Then,
(i) for anyy ∈ I+, there exists an increasing sequence{yn} of Ix which converges
to y, with 0 ≤ yn ≤ y, for eachn,
(ii) I is a solid subspace ofY ,
(iii) the positive coneI+

x of Ix is generating,
(iv) if we suppose moreover thatY is a Banach space then each positive, continu-
ous, linear functional ofI has a positive, continuous, linear extension onY .

Proof. Let y ∈ I+, y 6= 0. At first we shall show that there exists a sequence{y′n}
of Ix ∩ [0, y] convergent toy. Sincey ∈ I, we have thaty = limn−→+∞tn where
tn ∈ [−κnx, κnx] and{κn} is an increasing sequence of natural numbers. Hence
tn − y −→ 0, therefore by [4] Theorem 3.3.5, there exist sequences{wn}, {vn}
of Y+ with tn− y = wn− vn andwn, vn −→ 0. Then we have thattn + vn− y =
wn ≥ 0, therefore

y ≤ tn + vn ≤ κnx + vn. (1)

By the RDP we have thaty = y′n + y′′n where0 ≤ y′n ≤ κnx and0 ≤ y′′n ≤ vn.
Since the coneY+ is normal and the sequencevn converges to zero, the sequence
y′′n converges also to zero, hencey′n −→ y, therefore our assertion is true. So for
any positive real numberε, we have‖y−y′n‖ < ε

2 , for a propern. We putr1 = y′n.
Similarly there existsr2 ∈ Ix, r2 ∈ [0, y − r1] with ‖y − r1 − r2‖ < ε

22 and
continuing this process we find a sequence{rn} of Ix with rn ∈ [0, y −∑n−1

i=1 ri]
and‖y −∑n

i=1 ri‖ < ε
2n , for eachn. Therefore the sequenceyn =

∑n
i=1 ri is an

increasing sequence of[0, y] which converges toy, therefore statement(i) is true.
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For the proof of(ii) it is enough to show that[0, y] ⊆ I+, for anyy ∈ I+. So we
suppose thaty ∈ I+ and thatz ∈ [0, y]. As in the proof of(i) we find again that
y satisfies (1) and by the RDP we have thatz = z′n + z′′n where0 ≤ z′n ≤ κnx,
0 ≤ z′′n ≤ vn and as before we have that the sequencez′′n converges also to zero.
Hencez′n −→ z, thereforez ∈ I and statement(ii) is true.
Statement(iii) is obvious because for anyy ∈ [−nx, nx] we have0 ≤ y + nx ≤
2nx, thereforey + nx = a + b wherea, b ∈ Y+ with a ≤ nx, b ≤ nx, therefore
y = a− (nx− b).
Suppose thatf is a positive, continuous linear functional ofI. For anyy ∈ Y+ we
put Ly = {z ∈ I+

x | z ≤ y}. Ly is bounded because the coneY+ is normal. For
anyy ∈ Y+ we putg(y) = sup{f(z) | z ∈ Ly}. By the RDP and by the fact that
Ix is solid we have thatLy + Lw = Ly+w. Thereforeg is positively homogeneous
and additive onY+. Henceg has a linear and positive extension onY which we
will denote again byg, i.e. g(x) = g(x1) − g(x2) for anyx = x1 − x2 ∈ Y with
x1, x2 ∈ Y+. By [4], Corollary 3.5.6,g is continuous. By the definition ofg and
by the fact thatIx is solid, we have thatg(y) = f(y), for anyy ∈ I+

x , thereforeg
coincides withf onIx becauseIx = I+

x − I+
x . SinceIx is dense inI we have that

g is also equal tof on I, thereforeg is an extension off from I to Y . ¥

Definition 3. An elementu ∈ Z+, of an ordered topological linear spaceZ is a
quasi-interior point ofZ+ (or a quasi-interior positive element ofZ) if the solid
subspace∪n∈N[−nu, nu] of Z generated byu is dense inZ.

The above definition extends the notion of the quasi-interior point (see in [1], page
259) from normed lattices to ordered topological linear spaces. It is clear that if
u is a quasi-interior point ofZ+ thenf(u) > 0 for any positive, continuous, and
nonzero linear functionalf of Z. In [5], page 24, the pointsu of an ordered Banach
spaceZ with the propertyf(u) > 0 for any positive, continuous, nonzero linear
functionalf of Z are called quasi-interior points ofZ+. In Theorem 6 we show
that in ordered Banach spaces with the RDP, these two definitions are equivalent.
By Proposition 2 we get the following result:

Theorem 4. An elementu ∈ Y+ is a quasi-interior point ofY+ if and only if for
eachx ∈ Y+ there exists an increasing sequence{xn} of Iu which converges tox,
with 0 ≤ xn ≤ x, for eachn.

Proposition 5. If u is a quasi-interior point ofY+, then[0, x] ∩ [0, u] 6= {0}, for
eachx ∈ Y+, x 6= 0.

Proof. By the above theorem there exists an increasing sequence{xn} of Iu with
0 < xn ≤ x which converges tox, therefore the proposition is true. ¥

5



Theorem 6. If we suppose moreover thatY is a Banach space andu ∈ Y+, then
the following statements are equivalent:
(i) u is a quasi-interior point ofY+,
(ii) f(u) > 0, for eachf ∈ Y ∗

+ , f 6= 0.

Proof. The direct is obvious becausef(u) = 0 implies thatf = 0 on Y . For
the converse suppose that statement(ii) is true and that the closureI of Iu is a
proper subspace ofY . So there existsg ∈ Y ∗, g 6= 0 which is equal to zero on
I. Then|g| ∈ Y ∗ becauseY is a Banach space and|g| is positive. It is known
that |g|(y) = sup g([−y, y]) for anyy ∈ Y+. Sinceg 6= 0 and the positive cone
of Y is generating we have thatg(y) 6= 0, for at least oney ∈ Y+ which implies
that |g| 6= 0. Therefore|g|(u) > 0. Since|g|(u) = sup g([−u, u]) we have that
g is nonzero on the interval[−u, u], a contradiction becauseg is equal to zero on
I and[−u, u] ⊆ I. Thereforeu is a quasi-interior point ofY+ and the converse is
true. ¥

Proposition 7. Suppose thatZ is an ordered normed space and suppose that its
positive coneZ+ is complete. Then the following statements are equivalent:
(i) Everyy ∈ Z+, y 6= 0, is a quasi-interior point ofZ+,
(ii) dimZ = 1.

Proof. Suppose that statement(i) is true. At first we shall show that the boundary
ϑZ+ of Z+ is equal to{0}. By the Bishop-Phelps Theorem (see for example in
[4] Theorem 3.8.14) the support points ofZ+ are dense inϑZ+. Suppose thatr is
a support point ofZ+ which is supported by the functionalx∗ ∈ Z∗, x∗ 6= 0, i.e.
x∗(r) = min{x∗(t) | t ∈ Z+}. Thenx∗(r) ≤ 0 because0 ∈ Z+. If we suppose
thatx∗ is not positive, there existsa ∈ Z+ with x∗(a) < 0. Thenx∗, restricted
on the halfline defined bya, takes any negative real value, thereforex∗(r) = −∞,
contradiction. Thereforex∗ is positive. If we suppose thatr 6= 0, thenr is a
quasi-interior point ofZ+, thereforex∗(r) > 0, a contradiction, because as we
have found beforex∗(r) ≤ 0, hencer = 0 andϑZ+ = {0}. We shall show now
thatZ = Z+ ∪ (−Z+). So we suppose thatw ∈ Z \ Z+ and thaty ∈ Z+, y 6= 0.
Suppose also thatz is a point of the line segmentyw with z ∈ ϑZ+. Thenz = 0,
thereforew ∈ (−Z+), henceZ = Z+ ∪ (−Z+). Suppose now thatw is a fixed
point ofZ \ Z+. As we have shown before, for any pointy ∈ Z+, y 6= 0, the line
segmentyw contains0, thereforey belongs to the line defined byw and0, hence
Z+ is a halfline anddimZ = 1. So(i) implies(ii). The converse is clear. ¥

Definition 8. Suppose thatZ is an ordered space andx, y ∈ Z+ with x, y 6= 0.
If [0, x] ∩ [0, y] = {0}, we will say thatx, y are disjoint inZ+ and we will write
infZ+{x, y} = 0.
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The next result will be used later for the study of positive bases. Statement (i) is an
easy consequence of the Riesz decomposition property.

Proposition 9. Suppose thatZ is an ordered normed space with the Riesz decom-
position property. Then the following statements are true:

(i) If the vectorsy1, y2, ..., yn are pairwise disjoint inZ+ and x ∈ Z+ with
x ≤ y1 + y2 + ...,+yn, we have:
(a) x has a unique decompositionx = x1 + x2 + ... + xn with 0 ≤ xi ≤ yi,
for eachi = 1, 2, ..., n, and
(b) if x ≥ yi for eachi = 1, 2, ..., n, thenx = y1 + y2 + ...,+yn,
(c) if Φ1, Φ2 are subsets of{1, 2, ..., n}, yΦ1 =

∑
i∈Φ1

λiyi, yΦ2 =
∑

i∈Φ2
µiyi,

whereλi andµi are positive real numbers andh ≤ yΦ1 , h ≤ yΦ2 thenh has
a unique decompositionh =

∑
i∈(Φ1∩Φ2) hi where0 ≤ hi ≤ min{λi, µi}yi,

for eachi ∈ Φ1 ∩ Φ2. If Φ1 ∩ Φ2 = ∅ thenyΦ1 , yΦ2 are disjoint inZ+.

(ii) If the positive coneZ+ of Z is normal, the vectorsyi, i ∈ IN are pairwise
disjoint inZ+ and the sum

∑∞
i=1 yi exists, then

(a) infZ+{
∑n

i=1 yi,
∑∞

i=n+1 yi} = 0 for each n, and
(b) each elementx of Z+ with 0 ≤ x ≤ ∑∞

i=1 yi has a unique expansion
x =

∑∞
i=1 xi, with 0 ≤ xi ≤ yi for eachi.

Proof. The proof of (i) is the following: By the RDP we have thatx = x1 + x2 +
... + xn with 0 ≤ xi ≤ yi, for eachi. Suppose thatx = x′1 + x′2 + ... + x′n
with 0 ≤ x′i ≤ yi, for eachi. Then0 ≤ x′j ≤ x1 + x2 + ... + xn, therefore
x′j = x′′1 + x′′2 + ... + x′′n with 0 ≤ x′′i ≤ xi ≤ yi, for eachi, thereforex′′i = 0 for
eachi 6= j becauseyi andyj are disjoint. So we have thatx′j ≤ xj and similarly
xj ≤ x′j , thereforexj = x′j , for eachj, and the expansion ofx is unique. If we
suppose thatyj ≤ x for eachj, we have thatyj = yj1 + yj2 + ... + yjn, with
0 ≤ yji ≤ xi ≤ yi for eachi, therefore0 ≤ yji ≤ yj , henceyji = 0 for each
i 6= j. So we have thatyj = yjj ≤ xj ≤ yj , thereforeyj = xj for eachj and
(b) is true. To prove(c) we remark that0 ≤ h ≤ yΦ1 implies thath =

∑
i∈Φ1

hi

with 0 ≤ hi ≤ λiyi for eachi ∈ Φ1. Sinceh ≤ yΦ2 we have thathi =
∑

j∈Φ2
hj

i

with 0 ≤ hj
i ≤ µjyj , for anyj ∈ Φ2. Since the vectorsyi are disjoint we have that

hj
i = 0 for eachj 6= i, thereforehi = hi

i ≤ min{λi, µi}yi and(c) is true.
To prove statement(a) of (ii) we suppose that0 ≤ h ≤ ∑n

i=1 yi,
∑∞

i=n+1 yi.
Thenh =

∑n
i=1 hi, with 0 ≤ hi ≤ yi for eachi = 1, 2, ..., n. Also hi ≤ yn+1 +∑∞

i=n+2 yi, thereforehi = hn+1+h′n+1 where0 ≤ hn+1 ≤ yn+1 and0 ≤ h′n+1 ≤∑∞
i=n+2 yi. Sinceyi and yn+1 are disjoint we have thathn+1 = 0, therefore

0 ≤ hi = h′n+1 ≤
∑∞

i=n+2 yi and by induction we have that0 ≤ hi ≤
∑∞

i=n+m yi

for eachm ∈ N. Since the cone is normal and the sequence
∑∞

i=n+m yi converges
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to zero, we have thathi = 0, for eachi = 1, 2, ..., n. Thereforeh = 0 and(a)
is true. To prove(b) suppose that0 ≤ x ≤ ∑n

i=1 yi +
∑∞

i=n+1 yi. Thenx has a
unique decompositionx =

∑n
i=1 xi + x′n with 0 ≤ xi ≤ yi for eachi = 1, 2, ..., n

and0 ≤ x′n ≤
∑∞

i=n+1 yi. If we suppose thatm > n andx =
∑m

i=1 vi + v′m,
with 0 ≤ vi ≤ yi for i = 1, 2, ..., m and 0 ≤ v′m ≤ ∑∞

i=m+1 yi, thenx =∑n
i=1 vi + (

∑m
i=n+1 vi + v′m) thereforexi = vi for eachi = 1, 2, ...n. Hence the

vectorsxi, i ∈ N are uniquely determined and the expansionx =
∑∞

i=1 xi, with
0 ≤ xi ≤ yi for eachi, of x is unique. ¥

For a further study of the Riesz decomposition property on the space of operators
between Banach lattices we refer to [2] and the references inside.

3 Ordered subspaces

In this section we will denote byE an infinite dimensional ordered Banach space
whose positive coneE+ is defined by a countable familyF= {fi|i ∈ N}, of
positive, continuous linear functionals ofE, i.e. E+ = {x ∈ E | fi(x) ≥
0, for each i}. Also we will denote byX an ordered subspaceof E, i.e. X is
a subspace ofE ordered by the induced ordering. It is clear thatE+ is closed
and thatX+ = X ∩ E+ is the positive cone ofX. For anyx, y ∈ X, denote by
supX{x, y} the supremum and byinfX{x, y} the infimum of{x, y} in X when-
ever exist. IfsupX{x, y} andinfX{x, y} exist for anyx, y ∈ X, we say thatX
is a lattice-subspaceof E. According to our notations, for anyx, y ∈ X we have:
[x, y]X = {z ∈ X | x ≤ z ≤ y}, is theorder intervalxy in X wheneverx ≤ y,
if x, y ∈ X+ with [0, x]X ∩ [0, y]X = {0}, we say thatx, y aredisjoint in X+

and we will write infX+{x, y} = 0. Also for anyx ∈ X+, x 6= 0, we denote
by Ix(X) =

⋃∞
n=1[−nx, nx]X thesolid subspace ofX generated byx. The clo-

sureIx(X) of Ix(X) in X is the closed solid subspace ofX generated byx. If
Ix(X) = X, x is a quasi-interior point ofX+.

3.1 The minimal and the maximum support property

The minimal and maximum support property have been introduced in [7]. For
any pointx ∈ E we will denote byx(i) the real numberfi(x) and bysupp(x) =
{i ∈ N∣∣x(i) 6= 0}, thesupport ofx (with respect toF). The setsupp(X+) =⋃

x∈X+
supp(x), is thesupportof X+ (with respect toF ). An elementx of X+

has minimal supportin X+ (with respect toF ) if for any y ∈ X+, supp(y) $
supp(x) impliesy = 0.
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Definition 10. The ordered subspaceX of E has the minimal support property (
with respect toF ) if for eachx ∈ X+ \ {0} we have :x is an extremal point of
X+ if and only ifx has minimal support inX+.

Proposition 11. SupposeI is the closed solid subspace ofX generated by a
nonzero, positive elementx of X+. Thensupp(u) = supp(I+) for any quasi-
interior pointu of I+. (The converse is not always true).

Proof. It is clear thatsupp(u) ⊆ supp(I+). If we suppose thatfi(u) = 0 for
somei ∈ supp(I+), thenfi is equal to zero onIu(X) and therefore also onI,
a contradiction because we have supposed thati ∈ supp(I+). Hencefi(u) > 0
andsupp(u) = supp(I+). By Example 15, (ii), we have that the converse is not
always true. ¥

Definition 12. The ordered subspaceX of E has the maximum support property
(with respect toF) if each subspaceF of X which is equal toX or F is a closed
solid subspace ofX generated by a nonzero element ofX+ has the property: an
elementx ∈ F+ is a quasi-interior point ofF+ if and only ifsupp(x) = supp(F+).

Proposition 13. If X+ is closed andX has the maximum support property, then
X+ has quasi-interior points.

Proof. For eachi ∈ supp(X+) there existsxi ∈ X+ with fi(xi) > 0. Sou =∑
i∈supp(X+)

xi

2i‖xi‖ , is a quasi-interior point ofX+ becauseX has the maximum

support property andsupp(u) = supp(X+). ¥

The proof of the next proposition is the same with the proof of Proposition 3.4 of
[7]. The extra assumption here thatX+ is closed is posed in order to use Proposi-
tion 7.

Proposition 14. If X+ is closed andX has the maximum support property, then
X has the minimal support property.

Example 15. (i) The sequence spacesc0 and`p for 1 ≤ p < +∞ have the max-
imum support property with respect to the familyF={δi} of the Dirac measures
δi(x) = x(i) supported at the natural numbersi. The spacè∞ of bounded real
sequences does not have the maximum support property with respect toF . In-
deed the vectorx with x(i) = 1

i for any i has maximum support and the closed
solid subspace generated byx is c0. `∞ has the minimal support property because
the extermal points of̀+∞, as positive multiples of the vectorsei, have minimal
support.
(ii) The family {δri

∣∣i ∈ N} of the Dirac measuresδri supported at the rational
numbersri of [0, 1] and also the familyG= {µi

∣∣i ∈ N} of the Lebesgue measures
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µi supported atIi where{Ii} is a sequence of subintervals of[0, 1] so that each
interval (a,b) of[0, 1] contains at least oneIi, define the positive cone of the space
E = C[0, 1] of continuous, real valued functions defined of[0, 1]. E does not
have the maximum support with respect to these families. Indeed, ifx ∈ E+ with
x(t0) = 0 for some irrational numbert0 and x(t) > 0 for eacht 6= t0, then
supp(x) = N butx is not a quasi-interior point ofE+.

Theorem 16. ([8], Proposition 2.5.) IfX is closed andX has a positive basis
{bn}, the following statements are equivalent:
(i) X has the maximum support property with respect toF ,
(ii) there exists a sequence{in} of N such thatfin(bn) > 0 andfin(bm) = 0, for
eachm 6= n, i.e. the coefficient functionals of the basis{bn} can be extended on
E to positive multiples of elements ofF .

The next is an example of an ordered subspace with a positive basis, without the
maximum support property.

Example 17. Let {bn} be a sequence ofl∞ so thatb1(4n) = 1
2n , b1(4n + 1) = 1

3n

andb1(i) = 0 in the other cases,b2(4n) = 1
3n , b2(4n + 1) = 1

2n andb2(i) = 0
in the other cases andbn = e4n+2, for n ≥ 3. Then{bn} is a positive basis of the
closed subspaceX of l∞ generated by it.X does not have the maximum support
property with respect to the familyF of the Dirac measuresδi supported at the
natural numbersi. Indeed,supp(b1) = supp(b2) thereforeδi(b1) > 0 if and only
if δi(b2) > 0, and by Theorem 16,X does not have the maximum support property.

3.2 The ws-property

The notion of the s-property (supremum property) has been introduced in [7]. We
define here a weaker property, which we call ws-property (weak s-property) as
follows:

Definition 18. An ordered subspaceX of E has the ws-property (with respect to
F) if for eachx ∈ X+, x 6= 0 and for eachi ∈ supp(X+) the set{y ∈ [0, x]X |
y(i) = 0} has at least one maximal element.

If in the above definition the set{y ∈ [0, x]X | y(i) = 0} has a maximum element,
thenX has the s-property. IfX has the ws-property, each solid subspaceZ of X
has this property. In the theory of vector optimization the maximal elements of a
subsetK of a normed spaceZ with respect to an ordering coneP of Z are the
Pareto efficient pointsof K. In our case, the ws-property ensures the existence of
Pareto efficient points with respect toX+. We start with the following easy result.
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Theorem 19. Suppose thatτ is a linear topology ofE. If
(i) X+ is τ -closed,
(ii) each increasing net ofX+ order bounded inX, has aτ -convergent subnet, and
(iii) for each i the positive partK+

i = {y ∈ X+ | fi(y) = 0} of the kernel offi in
X is τ -closed,
thenX has the ws-property.

Proof. Suppose thatx ∈ X+ and thatA is a totaly ordered subset of theτ -closed
set[0, x]X ∩K+

i . For each finite subsetΦ of A denote byxΦ the maximum ofΦ.
Then{xΦ}, as an increasing, order bounded net of[0, x]X ∩K+

i , is convergent to
x0 ∈ [0, x]X ∩ K+

i which is an upper bound ofA and by Zorn’s lemma the set
[0, x]X ∩K+

i has maximal elements. ¥

Corollary 20. If E is a Banach lattice with order continuous norm andX+ is
closed, thenX has the ws-property.

Proof. Each order interval ofE weakly compact. SinceX+ is weakly closed, each
order interval ofX is weakly compact, henceX has the ws-property. ¥

Corollary 21. If E is a dual space, the functionalsfi are weak-star continuous
andX+ is weak-star closed and normal, thenX has the ws-property.

Proof. For eachx ∈ X+ the order interval[0, x]X is weak-star closed and bounded
becauseX+ is normal, therefore[0, x]X is weak-star compact. HenceX has the
ws-property. ¥

Corollary 22. If X is closed with a positive basis, thenX has the ws-property.

Proof. By [11] Theorem 5, each order interval ofX is compact. ¥

Example 23. (i) The spacesc0 and `p with 1 ≤ p < +∞ and also the spaces
L+

p (µ) 1 ≤ p < +∞, as Banach lattices with order continuous norm have the ws-
property with respect to any countable family which defines their positive cone.
Also their closed ordered subspaces have the ws-property.
(ii) By Corollary 21,`∞ and its weak-star closed ordered subspaces have the ws-
property with respect to the family of the Dirac measuresδi supported at the natural
numbersi.
(iii) C[0, 1] does not have the ws-property with respect to the family of the Dirac
measuresδri supported at the rational numbersri of [0, 1]. It is easy to show that
the set{y ∈ C[0, 1]

∣∣0 ≤ y ≤ x and y(1
2) = 0}, wherex ∈ C+[0, 1] with

x(1
2) > 0, does not have maximal elements .

If P, Q,R are subcones ofX+ with R = P + Q andP ∩ Q = {0}, we will say
thatR is thedirect sumof P, Q and we will writeP ⊕Q = R.

11



Proposition 24. Suppose thatX is closed,X+ is generating and normal and also
that X has the Riesz decomposition property and the ws-property with respect to
F . Letx ∈ X+, x 6= 0, i ∈ supp(X+) and we denote byzi a maximal element of
the set{y ∈ [0, x]X | y(i) = 0}. Thenz′i = x − zi is a minimal element of the
set{y ∈ [0, x]X | y(i) = x(i)}. If I, J,W are the closed solid subspaces ofX
generated respectively by the elementsx, zi, z

′
i, then

(i) infX+{zi, z
′
i} = 0,

(ii) the functionalfi is equal to zero onJ . If fi(x) > 0 thenfi is strictly positive
on W . If fi(x) = 0, thenzi = x and if fi is strictly positive onI, thenz′i = x. If
fi is nonzero and non-strictly positive onI then0 < zi < x and0 < z′i < x,
(iii) if fi(x) > 0, thenI+

zi
(X)⊕ I+

z′i
(X) = I+

x (X) andJ+ ⊕W+ = I+.

Proof. Suppose thatz ∈ A = {y ∈ [0, x]X | y(i) = x(i)} with z′i > z. Then
x− z > zi andfi(x− z) = 0, which contradicts the definition ofzi. Thereforez′i
is a minimal element ofA.
(i) Let h ∈ X with 0 < h ≤ zi, z

′
i. Then0 ≤ h(i) ≤ zi(i) = 0, henceh(i) = 0.

So we have thath + zi ≤ x and(h + zi)(i) = 0, a contradiction. Thereforeh = 0
andinfX+{zi, z

′
i} = 0.

(ii) Sincezi(i) = 0, fi is equal to zero onIzi and therefore also onJ . Suppose
that fi(x) > 0. Thenzi < x, hencez′i > 0 and W+ 6= {0}. Suppose that
w ∈ W+, w > 0 with w(i) = 0. Then by Theorem 4,w is the limit of an increasing
sequence of elements ofI+

z′i
(X), thereforey(i) = 0 for at least oney ∈ X with

0 < y ≤ z′i. Theny + zi ≤ x and(y + zi)(i) = 0, a contradiction, thereforefi

is strictly positive onW . If we suppose thatfi(x) = 0, then by the definition of
zi we have thatzi = x and if we suppose thatfi is strictly positive onI we have
thatzi = 0, thereforez′i = x. Suppose now thatfi is nonzero and also non strictly
positive onI. Thenx(i) > 0 and alsov(i) = 0, for at least one nonzero pointv
of I+. Sincev is the limit of an increasing sequence of elements ofI+

x (X), we
have thaty(i) = 0 for at least one nonzero elementy ∈ [0, x]X . This implies that
zi > 0 because if we suppose thatzi = 0 we have thatzi < y, which contradicts
the definition ofzi. Hence0 < zi. Also zi < x becausex(i) > 0. So we have
0 < zi < x and0 < z′i < x.
(iii) Let fi(x) > 0. Suppose thath ∈ J+ ∩W+. Thenh ∈ J+ thereforeh(i) = 0.
Since the functionalfi is strictly positive onW we have thath = 0, therefore
J+ ∩ W+ = {0}. Suppose thaty ∈ [0, x]X . Theny ≤ zi + z′i and by the RDP
we have thaty = y1 + y2 with y1 ∈ [0, zi]X andy2 ∈ [0, z′i]X . By the above
remarks we have that the first assertion of(iii) is true. Suppose now thaty ∈ I+.
By Theorem 4,y is the limit of an increasing sequenceyn of I+

x (X), with yn ≤ y
for eachn. Henceyn+1−yn ∈ I+

x (X), thereforeyn+1−yn ≤ knx = kn(zi +z′i),
and by the RDP we have thatyn+1 − yn = an+1 + bn+1 with an+1 ∈ I+

zi
(X) and

12



bn+1 ∈ I+
z′i

(X). If y1 = a1 + b1 with a1 ∈ I+
zi

(X) andb1 ∈ I+
z′i

(X), we have that

yn = (a1 + a2 + ... + an) + (b1 + b2 + ... + bn). If sn = a1 + a2 + ... + an and
rn = b1 + b2 + ... + bn we have thatsn+1 − sn = an+1 ≤ yn+1 − yn, therefore
the sequence{sn} is convergent because{yn} is convergent and the coneX+ is
normal. Similarly we have that{rn} is convergent thereforey = y′ + y′′ with
y′ ∈ J+ andy′′ ∈ W+. HenceI+ = J+ ⊕W+. ¥

Definition 25. LetX be a closed ordered subspace ofE as in the previous propo-
sition, and suppose thatx is a nonzero element ofX+ andfi ∈ F . If fi is nonzero
and non-strictly positive onIx(X) andx = x1+x2 wherex1 is a maximal element
of the set{y ∈ [0, x]X | y(i) = 0}, then we will say thatx = x1 + x2 is a decom-
position ofx with respect tofi (or with respect toi) and also thatx is decomposed
with respect tofi in the elementsx1, x2. If fi is equal to zero onIx(X) or if fi is
strictly positive onIx(X), we will say thatx is not decomposed with respect tofi

(or with respect toi).

3.3 Existence of positive bases

In what follows we will denote byX a closed, ordered subspace ofE so that: (i)
X has the Riesz decomposition property, (ii) the positive coneX+ of X is closed,
normal and generating and (iii)X has the maximum support property and the ws-
property with respect toF . As we have noted in the beginning of the previous
section, (i) and (ii) imply thatX+ gives an open decomposition ofX and thatX∗

is an order complete linear lattice. We will also denote byM the following subset
of N: M = {i ∈ supp(X+) | fi is non strictly positive onX}. Therefore for
eachx ∈ X+, x 6= 0 we have thatx(i) > 0, for each i ∈ supp(X+) \M. Also
M 6= ∅ because if we suppose thatM = ∅, we have thatsupp(x) = supp(X+)
for eachx ∈ X+, x 6= 0, therefore dimX = 1 by Proposition 7. In order to
prove the existence of extremal points ofX+ we develop a process of successive
decompositions of a quasi-interior point ofX+. So we suppose thatu is a quasi-
interior point ofX+ (such a point exists by Proposition 13) and we decomposeu
as follows:
Step 1:We puti1 = min M and we decomposeu with respect toi1 in the elements
x1, x2. Thenu = x1 + x2 and infX+{x1, x2} = 0. Also fi1 is equal to zero
on I1 and strictly positive onI2 whereI1, I2 are the closed solid subspaces ofX
generated byx1, x2 respectively. The setm1 = {x1, x2} is thefront and the natural
numberi1 is theindexof the first decomposition.
Stepν + 1 : Suppose that we have accomplished theνth step and suppose that
mν is the front andiν the index of theνth decomposition. Then at least one of
the elements ofmν is decomposed with respect to ani ∈ M . Indeed if we sup-
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pose that any elementx of mν is not decomposed with respect to anyi ∈ M then
for any i ∈ M , fi is strictly positive or equal to zero on the closed solid sub-
spaceI of X generated byx and it is easy to show thatsupp(y) = supp(I+) for
any y ∈ I+, y 6= 0 thereforey is a quasi-interior point ofI. HencedimI = 1
andX is finite-dimensional becausemν is finite. We putiν+1 = min{i ∈ M |
at least one element ofmν is decomposed with respect toi}. Theniν+1 > iν and
we decompose with respect toiν+1 the elements ofmν which allow such a decom-
position. We denote bymν+1 the set which contains the elements ofmν which are
not decomposed with respect toiν+1 and also the elements that arise from the de-
composition of the elements ofmν with respect toiν+1. The setmν+1 is the front
andiν+1 is the indexof the (ν + 1)th decomposition. The setδ(u) = ∪∞ν=0mν

wherem0 = {u}, is thetree of decompositionsof u.

Proposition 26. In the above process of decompositions ofu we have:
(i) the sequence of indices of decompositions{iν} is strictly increasing,
(ii) for each i ∈ M with i ≤ iν and for eachx ∈ mν , x is not decomposed with
respect toi, thereforefi is strictly positive or equal to zero onI = Ix(X),
(iii) the elements ofmν are nonzero with sum equal tou. Also infX+{x, y} =
0, for eachx, y ∈ mν , with x 6= y,
(iv) infX+{x, u− x} = 0, for eachx ∈ δ(u).

Proof. Statements (i),(ii) and (iii) are obvious. To prove (iv) we suppose thatx ∈
mν for someν and suppose thatmν = {x, y1, y2, ..., yk}. Since the elements of
mν are pairwise disjoint inX+ with sum equal tou we have thatu−x =

∑k
i=1 yi

and (iv) is true by Proposition 9. ¥

For anyx ∈ mν with ν ≥ 1 it is easy to show that there exists a unique vector
y ∈ mν−1 with y ≥ x. Also for anyx ∈ mν there exists at least oney ∈ mν+1

with x ≥ y. So if we suppose thatx, y ∈ δ(u) with x ∈ mν , y ∈ mν+µ andy ≤ x,
we will say thatx is thepresuccessorof y in mν , or thaty is asuccessorof x in
mν+µ. If moreovery ∈ mν+1 we will say thatx is thefirst presuccessorof y or
thaty is afirst successorof x.

Proposition 27. The following are true:
(i) for anyx ∈ mν the sum of the successors ofx in mν+µ is equal tox,
(ii) if y is a successor ofx with x > y and I is the closed solid subspace ofX
generated byx, theninfX+{y, x − y} = 0 andy is not a quasi-interior point of
I+,
(iii) for eachx ∈ δ(u) and eachi ∈ M ∩ supp(x), there exists a successory of x
such that the functionalfi is strictly positive on the closed solid subspaceI of X
generated byy.

14



Proof. (i) Any element ofδ(u) is the sum of its first successors, therefore the
proposition is true forµ = 1 and continuing, we have that the proposition is true
for anyµ.
(ii) Sincex−y ≤ u−y andinfX+{y, u−y} = 0 we have thatinfX+{y, x−y} = 0,
thereforey is not a quasi-interior point ofI+ by Proposition 5.
(iii) Suppose thatx ∈ mκ. Since the sequence{iν} is strictly increasing, there
existsν ∈ N with ν > κ andi ≤ iν . Thenfi is strictly positive or equal to zero on
any closed solid subspace ofX generated by an element ofmν . But x =

∑r
j=1 xj

wherex1, ..., xr are the successors ofx in mν andfi(x) > 0 becausei ∈ supp(x),
thereforefi is strictly positive on at least one of the closed solid subspaces ofX
generated byx1, ..., xr and the proposition is true. ¥

If x ∈ δ(u) andx ∈ mν for eachν ≥ ν0, then we will say thatthe process of
decomposition stopsat the pointx of δ(u). In other words, the process of decom-
position stops atx if there existsν0 ∈ N so thatx ∈ mν0 and for eachi ∈ M with
i > iν0 , the functionalfi is strictly positive or equal to zero on the closed solid
subspaceI of X generated byx. Then for eachi ∈ M with i ≤ iν0 , fi is strictly
positive or equal to zero onI, Proposition 26, thereforesupp(z) = supp(I+) for
anyz ∈ I+, z 6= 0, hence any nonzero vector ofI+ is a quasi-interior point ofI
which implies thatdim(I) = 1. Sox is an extremal point ofX+ and we have
proved the following:

Proposition 28. If the process of decomposition ofu stops at an elementx0 ∈ δ(u)
thenx0 is an extremal point ofX+.

A sequence{xν} of δ(u) is abranch ofδ(u) , if xν > xν+1 for eachν ∈ N.

Proposition 29. Each branch ofδ(u) converges to zero.

Proof. It is enough to show that any branch{xν} of δ(u) with x0 = u converges
to zero. Letzν = xν−1 − xν , for eachν ≥ 1. Then for eachν, µ, we have

u = z1 + z2 + ... + zν + xν andxν = zν+1 + ... + zν+µ + xν+µ. (2)

The vectorsz1, z2, ..., zν , xν are pairwise disjoint inX+. Indeed,infX+{xν , u −
xν} = 0, henceinfX+{xν ,

∑ν
i=1 zi} = 0, thereforeinfX+{xν , zi} = 0 for

eachi ≤ ν, becausezi ≤
∑ν

j=1 zj . Suppose thatj > i. Thenzj ≤ xi and
infX+{zi, xi} = 0, thereforeinfX+{zj , zi} = 0. HenceinfX+{zj , zi} = 0 for
any i 6= j. Let u0 =

∑∞
ν=1

zν
2ν . We shall show thatsupp(u0) = supp(X+).

For eachi ∈ supp(X+) \ M we have thatx(i) > 0 for eachx ∈ X+, x 6= 0,
hencei ∈ supp(u0). Suppose thati ∈ M and thatxν is decomposed at the
κν th decomposition. Since the sequence{iκν} is strictly increasing, there exists
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µ ∈ N with i < iκµ . By statement(ii) of Proposition 26,fi is strictly positive
or equal to zero onI = Ixµ(X). We shall show that in both casesi ∈ supp(u0).
If fi is strictly positive onI we havezµ+1(i) > 0 because0 < zµ+1 < xµ

thereforei ∈ supp(u0). If fi is equal to zero onI thenxµ(i) = 0, therefore
fi(z1 + ... + zµ) = fi(z1 + ... + zµ + xµ) = fi(u) > 0, hencefi(zj) > 0 for
at least onej, thereforei ∈ supp(u0). Thereforesupp(X+) = supp(u0) andu0

is a quasi-interior point ofX. By Theorem 4, there exists an increasing sequence
φn ∈ [0, u]X ∩ [0, rnu0]X , where{rn} is a strictly increasing sequence of natural
numbers withlimn−→∞ φn = u. Let hν =

∑∞
µ=1 rν

zrν+µ

2rν+µ . Since0 ≤ φn ≤ rnu0

we have0 ≤ φn ≤ rnz1+...+rnzrn +hn and by Proposition 9,φn has a unique de-
compositionφn = φ1

n+...+φrn
n +Hn with 0 ≤ φi

n ≤ rnzi for eachi and0 ≤ Hn ≤
hn. The last inequality implies thatlimn−→∞Hn = 0 becauselimn−→∞ hn = 0
and the coneX+ is normal. Also we have0 ≤ φi

n ≤ u, rnzi for i = 1, 2, ..., rn,
thereforeφi

n = a1 + a2 + ... + arn + bn with 0 ≤ aj ≤ zj , for eachj and
0 ≤ bn ≤ xrn . Since the vectorsz1, z2, ..., zrn , xrn are pairwise disjoint inX+

we have thatφi
n = ai, therefore0 ≤ φi

n ≤ zi for eachi = 1, 2, ..., rn. Since
Hn ≤ u, we have thatHn = γ1 + γ2 + ... + γrn + cn with 0 ≤ γj ≤ zj , for each
j = 1, 2, ..., rn and0 ≤ cn ≤ xrn . SinceHn ≤ hn we have also thatγj ≤ hn, for
eachj. Since the vectorszj , j = 1, 2, ..., rn andhn are pairwise disjoint inX+ we
haveγj = 0 for eachj = 1, 2, ..., rn, henceHn = cn, thereforeHn ≤ xrn . So we
have thatlimn−→∞

(
u− (φ1

n + ... + φrn
n + Hn)

)
= 0, therefore

lim
n−→∞

[
(z1 − φ1

n) + (z2 − φ2
n) + ... + (zrn − φrn

n ) + (xrn −Hn)
]

= 0.

Since the members in the above limit are positive and the cone ofX+ is normal
we have thatlimn−→∞(xrn − Hn) = 0. As we have shown abovelimHn = 0
thereforelimxrn = 0. Since the sequence{xn} is decreasing it converges to zero
and the proposition is true. ¥

Proposition 30. For eachx ∈ δ(u) at least one of the successors ofx is an ex-
tremal point ofX+.

Proof. Let x ∈ δ(u). If at least one of the successorsx′ of x does not belong to a
branch ofδ(u), then the process of decompositions stops after a finite number of
steps at any successor ofx′, therefore any successor ofx′ is an extremal point of
X+ dominated byx and the proposition is true. So we suppose that any successor
of x belongs to a branch ofδ(u). Also we may suppose thatx < u because in the
case wherex = u, it is enough to show the proposition for one of its successors.
Let I be the closed solid subspace ofX generated byx and suppose thatL = {i ∈
supp(x) | fi is not strictly positive onIx(X)}. ThenL ⊆ M . Also supp(x) =
supp(I+). If L is finite, then after a finite number of steps the decomposition stops
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at any successor ofx and the proposition is true. So we suppose that the setL is
infinite. Let j1 = minL. Then by statement(iii) of Proposition 27, there exists
x1 ∈ δ(u) such thatx1 ≤ x and fj1 is strictly positive onIx1(X). Sincex1

is an element of a branch ofδ(u) dominated byx and any such a branch ofδ(u)
converges to zero, we may suppose that there exists an elementy1 ∈ δ(u) such that
y1 < x1 ≤ x, ‖y1‖ ≤ 2−1ε, whereε is a constant real number with0 < ε < ‖x‖.
Note also thatfj1 is strictly positive onIy1(X) because it is strictly positive on
Ix1(X) and0 < y1 < x1. By Proposition 27 we have thatinfX+{y1, x − y1} =
0 hencey1is not a quasi-interior point ofI. Thereforesupp(y1) 6= supp(I+),
hence there exists at least onei ∈ supp(I+) with i 6∈ supp(y1), therefore there
existsi ∈ L with y1(i) = 0. We putj2 = min{i ∈ L : y1(i) = 0}. Then
j1 < j2 and as before we can find a vectory2 ∈ δ(u) so thaty2 < x, ‖y2‖ ≤
2−2ε andfj2 is strictly positive onIy2(X) . Then infX+{y1, y2} = 0, because
for any h ∈ X with 0 ≤ h ≤ y1, y2 we have that0 ≤ h(j2) ≤ y1(j2) = 0,
thereforeh = 0 becausefj2 is strictly positive onIy2(X). By the way we have
selectedy2 (as a sufficiently small member of a branch which converges to zero)
we may also suppose thaty1 ∈ mν1 and y2 ∈ mν2 with ν1 < ν2. We may
also suppose thatν2 is sufficiently large so thatmν2 , except the successors ofx
and the elementy2, contains at least one extra element so we may suppose that
mν2 = {y2, a1, a2, ..., ak, b1, b2, ..., br, c1, c2, ..., cl}, wherea1, a2, ..., ak are the
successors ofy1 and y2, a1, a2, ..., ak, b1, b2, ..., br are the successors ofx. We
put s1 = y1, s2 = y1 + y2. Thens1 < x ands2 < x. The first inequality is
obvious and the second holds becausex is the sum of its successors inmν2 . Also
s1(j1) > 0 and by the definition ofj2, we have thats2(i) > 0 for eachi ∈ L
with i ≤ j2. By Proposition 9,infX+{si, x − si} = 0, for eachi = 1, 2 because
the successors ofx in mν2 are pairwise disjoint. SinceinfX+{s2, x − s2} = 0
we have thats2 is not quasi-interior point ofI+, hence there existsi ∈ L with
s2(i) = 0. Let j3 = min{i ∈ L : s2(i) = 0}. Thenj2 < j3 and as before we
can findy3 ∈ mν3 such thatν2 < ν3, ‖y3‖ ≤ 2−3ε, fj3 is strictly positive on
Iy3(X) and the set of the successors ofx in mν3 contains the successors ofy1, the
successors ofy2, the elementy3 and at least one extra element. As before we can
show thatinfX+{y1, y3} = infX+{y2, y3} = 0. We puts3 = s2 + y3. Continuing
this process we obtain a sequence{jν} of L and the sequences{yν}, {sν} of X+

such thats1 = y1, sν = sν−1 + yν , for eachν = 2, 3, ..., with the following
properties:
(i) 0 < sν < sν+1 < x,
(ii) ‖sν+1 − sν‖ = ‖yν+1‖ ≤ 2−ν−1ε andyν ∈ mkν with kν < kν+1, for eachν,
(iii) infX+{sν , x− sν} = 0 for eachν,
(iv) {jν} is a strictly increasing sequence ofL and for eachi ∈ L with i < jν+1
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we havesν(i) > 0.
By (ii), the sequence{sν} is Cauchy and suppose thats = limν−→∞sν . Then
0 ≤ sν ≤ s ≤ x, for eachν. Since‖sν‖ ≤

∑ν
i=1 ‖yi‖ ≤ ε < ‖x‖, we have

that s < x . Also by (iv) and by the fact that the sequence{sν} is increasing
we have thats(i) > 0 for eachi ∈ L, thereforesupp(s) = supp(I+). Hences
is a quasi-interior point ofI+. We will show thatinfX+{s, x − s} = 0. To this
end we suppose that0 ≤ h ≤ s, x − s. Sinces = sν + (s − sν) we have that
h = hν + h′ν with 0 ≤ hν ≤ sν , 0 ≤ h′ν ≤ (s − sν). Since the cone is normal
and lim(s − sν) = 0 we have thatlim h′ν = 0, thereforeh = limhν . Since
0 ≤ hν ≤ sν andhν ≤ x − s ≤ x − sν we have thathν = 0 for eachν, by (iii).
Thereforeh = 0, henceinfX+{s, x − s} = 0. SinceI is solid we have also that
infI+{s, x − s} = 0 which contradicts the fact thats is a quasi-interior point of
I+, Proposition 5. Hence at least one of the successorsx′ of x does not belong to a
branch ofδ(u), therefore at least one of the successorsx0 of x is an extremal point
of X+ and the proposition is true. ¥

Proposition 31. Any extremal pointx0 of X+ is a positive multiple of a unique
element ofδ(u).

Proof. Suppose thatx0 is an extremal point ofX+. By proposition 5 and by the
fact thatx0 is an extremal point ofX+ a real numberr > 0 exists withrx0 ≤ u.
Hencer ≤ a ‖u‖

‖x0‖ , wherea is the constant of the normal coneX+. Therefore
sup{r ∈ R+ : rx0 ≤ u} = λ ∈ R+, with λ > 0. Let z0 = λx0. Then
0 < z0 ≤ u. Sinceu =

∑
z∈mν

z and the elements ofmν are pairwise disjoint,
there exists a uniqueyν ∈ mν so thatz0 ≤ yν . TheninfX+{z0, x} = 0 for each
x ∈ mν , x 6= yν . Also yν ≥ yν+1 ≥ z0 for eachν. Since each branch ofδ(u)
converges to zero, the process of decompositions stops at a pointyµ which is an
extremal point ofX+ with z0 ≤ yµ. Henceyµ = λ′x0. Also yµ ≤ u and by the
definition ofλ we have thatλ′ ≤ λ, thereforeyµ ≤ z0 which implies thatyµ = z0

andz0 ∈ δ(u). If we suppose thatz′0 = kx0 ∈ δ(u), thenkx0 ≤ u, therefore
k ≤ λ andz′0 ≤ z0. Hencez′0 is a successor ofz0. If we suppose thatz′0 < z0

we get a contradiction becausez0 as an extremal point ofX+ is undecomposable.
Thereforez′0 = z0 and the proposition is true. ¥

In our main result below we prove thatX has a positive basis. For the sake of
completeness we repeat the standard assumptions forE andX. In the next results
the positive basis ofX is also unconditional becauseX+ is generating and normal.

Theorem 32. Suppose thatE is an ordered Banach space and thatE+ is defined
by the familyF= {fi|i ∈ N} of E∗

+. LetX be a closed ordered subspace ofE with
the Riesz decomposition property and suppose thatX+ is normal and generating.
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If X has the maximum support property and the ws-property with respect toF ,
thenX has a positive basis.

Proof. Let B be the set of extremal points ofX+ with norm 1. By proposition
30, B 6= ∅ and by the previous proposition the mapT : B −→ δ(u) so that
T (x) = λx ∈ δ(u) is one-to-one. Sinceδ(u) is countableB is also countable.
Suppose thatB = {ui : i ∈ N} andbi = λiui ∈ δ(u). Let u0 =

∑∞
i=1

bi

2i . For

eachi ∈ M there existsz ∈ δ(u) so thatfi is strictly positive onI = Iz(X). By
Proposition 30,z ≥ bj for at least onej, thereforebj(i) > 0. Hencesupp(u0) =
suppX+ andu0 is a quasi-interior point ofX+. Let x ∈ X+. Then there exists
an increasing sequencexn ∈ [0, x] ∩ [0, knu0] where the sequencekn is strictly
increasing withlimn−→∞ xn = x. Since0 ≤ xn ≤ knu0, eachxn has a unique
expressionxn =

∑∞
i=1 σniui, with σni ∈ R+, by Proposition 9. The sequence

{σni | n ∈ N} is increasing. Indeed, for eachm > n we take again the expansion
xm − xn =

∑∞
i=1 aiui and we have thatσmi = σni + ai ≥ σni. Suppose that

σi = limn−→∞σni. Then0 ≤ σiui ≤ x because0 ≤ σniui ≤ x, for eachi. For
eachm ∈ N we have

∑m
i=1 σniui ≤ xn ≤ x and by taking limits asn −→ +∞

we have that
∑m

i=1 σiui ≤ x. Since the sequence{xn} converges tox there exists
a strictly increasing sequencemn of natural numbers so that the sequenceyn =∑mn

i=1 σniui converges tox. Then
∑mn

i=1 σniui ≤
∑mn

i=1 σiui ≤ x, from where we
get thatx =

∑∞
i=1 σiui. Let uj =

∑
i6=j

bi

2i . Thenuj is not a quasi-interior point
of X+, becauseinfX+{bj , uj} = 0, Proposition 9. Thereforesupp(uj) is a proper
subset ofsupp(X+), hence there existskj ∈ M with fkj (uj) = 0. Therefore
fkj

(ui) = 0, for eachi 6= j. Also fkj
(uj) > 0 becausefkj

(u0) > 0. Let gj =
fkj

fkj
(uj)

. Then for eachx ∈ X+ we havegj(x) = σj , thereforex =
∑∞

i=1 gi(x)ui.

Since the coneX+ is generating we have thatx =
∑∞

i=1 gi(x)ui for eachx ∈ X
and this expansion is unique. Therefore{un} is a positive basis ofX. ¥

By the previous result and Corollary 20 and 21 we have:

Corollary 33. Suppose thatE is a Banach lattice with order continuous norm and
suppose thatE+ is defined by a countable familyF of E∗

+. Let X be a closed
ordered subspace ofE with the Riesz decomposition property and generating pos-
itive coneX+. If X has the maximum support property with respect toF , thenX
has a positive basis.

Corollary 34. Let E be an ordered Banach space whose positive cone is defined
by the familyF= {fi|i ∈ N} of E∗

+. Suppose also thatE is a dual space and
that the functionalsfi are weak-star continuous. IfX is a closed ordered subspace
of E with the Riesz decomposition property,X+ is weak-star closed, normal and
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generating andX has the maximum support property with respect toF , thenX
has a positive basis.

Remark 35. In the special case whereE = `∞ and X is a weak-star closed
ordered subspace of`∞ with the RDP and generating positive coneX+ we have:
If X has the maximum support property with respect to the family of the Dirac
measuresδi supported at the natural numbersi, thenX has a positive basis.

4 Biorthogonal systems

The results of the previous section can be applied to the problem:under what
conditions a biorthogonal system defines a positive basis?So in this section we
suppose thatE is an ordered Banach space with apositive biorthogonal system
{(ei, fi)

∣∣i ∈ N}, i.e. ei ∈ E andfi ∈ E∗
+ for eachi so thatfi(ei) = 1, fi(ej) = 0,

for eachj 6= i and the familyF = {fi|i ∈ N} defines the positive cone ofE. In
the next results the positive basis ofE is also unconditional.

Theorem 36.Suppose thatE is an ordered Banach space with a positive biorthog-
onal system{(ei, fi)

∣∣i ∈ N}. If E+ is normal and generating andE has the Riesz
decomposition property, the following statements are equivalent:
(i) The sequence{ei} of the biorthogonal system is a positive basis ofE,
(ii) E has the maximum support property and the ws-property with respect to the
familyF= {fi

∣∣i ∈ N}.
Proof. Suppose that{ei} is a positive basis ofE. Since{(ei, fi)} is a positive
biorthogonal system ofE we have thatfi(ei) = 1 andfi(ej) = 0, for eachj 6= i
therefore, by Theorem 16,E has the maximum support property with respect to
F . Since{ei} is a positive basis ofE, by Corollary 22,E has the ws-property,
therefore (i) implies (ii). Suppose now that statement (ii) is true. ThenE has a
positive basis{bn}. SinceE has the maximum support property with respect toF ,
E has the minimal support property, therefore an elementx0 of E+ is an extremal
point of E+ if and only if x0 has minimal support inE+. Therefore the extremal
points ofE+ are the positive multiples of the elementsen (supp(en) = {n}). Since
the elements of the positive basis define the extremal rays ofE+ we have that the
basis{bn} coincides, in the sense of a scalar multiple and a proper enumeration,
with the sequence{en}. ¥

Corollary 37. Suppose thatE is an ordered Banach space with a positive biorthog-
onal system{(ei, fi)

∣∣i ∈ N} and suppose also thatE has the Riesz decomposition
property. If
(a) E is a Banach lattice with order continuous norm, or
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(b) E is a dual space, the positive coneE+ of E is weak-star closed, normal and
generating and the functionalsfi are weak-star continuous,
then the following statements are equivalent:
(i) The sequence{ei} of the biorthogonal system is a positive basis ofE,
(ii) E has the maximum support property with respect to the family{fi

∣∣i ∈ N}.
Remark 38. According to the Corrolary, the sequence{ei} of the usual biorthog-
onal system{ei, δi} of `∞ is not a positive basis of̀∞ because it does not have the
maximum support property with respect to the family{δi}, Example 15.
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