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NONREPLICATION OF OPTIONS
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In this paper, we study the replication of options in security markets X with a
finite number of states. Specifically, we prove that in security markets without binary
vectors, for any portfolio, at most m − 3 options can be replicated where m is the
number of states. This is an essential improvement of the result of Baptista where it is
proved that the set of replicated options is of measure zero. Additionally, we extend
the results of Aliprantis and Tourky on the nonreplication of options by generalizing
their condition that markets are strongly resolving. Our results are based on the theory
of lattice-subspaces and positive bases.
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1. INTRODUCTION

The replication of options plays a crucial role in standard option pricing models because
the price of a replicated option is equal to the price of the portfolio of primitive securities
that replicates the option. In this paper, we examine the problem of replication of options
by considering a two-period security market X with a finite number of states, denoted by
m, and a finite number of primitive securities (assets) with payoffs in Rm.

The completion F1(X) of X by options is the subspace of Rm generated by all options
written on the elements of X and as it is natural this subspace is very important for the
study of the problem of replication of options. Ross (1976) in his seminal work proved
that F1(X) is the whole space Rm if and only if X has an efficient fund. Recall that a
vector e of Rm is an efficient fund if e separates the states, i.e., e(i ) �= e( j ) for any i �= j .
After the paper of Ross, many authors contributed to this problem. Arditti and John
(1980) proved that if X has an efficient fund, then almost any portfolio, in the sense of the
Lebesgue measure of X , is an efficient fund. John (1981) studied the case where the Ross
assumption for the existence of an efficient fund in X is not satisfied and the completion
by options of X is a proper subspace of Rm. John defined the notion of the maximally
efficient fund and proved that F1(X) is generated by the call and put options written on a
maximally efficient fund. As it is observed in Ross (1976), Green and Jarrow (1987), and
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Brown and Ross (1991), any call and put option written on elements of X is replicated,
if and only if X is a sublattice of Rm.

Kountzakis and Polyrakis (2006) solved completely the problem of the determination
of the completion by options of X by giving a method which determines a positive basis
of F1(X). This method, which is also presented in Section 3, is actually based on the
theory of lattice subspaces and positive bases developed by Polyrakis (1996, 1999).

In Bajeux-Besnainou and Rochet (1996) and also in a more general framework in
Baptista (2005), the results of Ross (1976) are generalized in multiperiod markets. In
Galvani (2009) the results of Ross are studied in Lp spaces. In Detemple and Selden
(1991), an equilibrium price analysis on a financial market in which investors trade a
primitive security and options written on this security is provided. In this economy any
nontrivial option is nonreplicated and it is shown that there is an interaction between
the prices of the stock and the different exercise prices of the option. Nachman (1988)
studies the completion of primitive security markets with options in the case where the
set of states is infinite.

Aliprantis and Tourky (2002) proved that in any strongly resolving security market
with n ≤ m+1

2 where n is the number of primitive securities and m the number of states,
any nontrivial option is nonreplicated. In Baptista (2007), the replication of options is
studied in the case where the asset span X does not contain binary vectors. Baptista
proves that for any x ∈ X the set of nonreplicated exercise prices of x is a subset of the
set Kx of the nontrivial exercise prices of x of full measure, or equivalently, for any x ∈ X
the set of nontrivial, replicated exercise prices of x is a subset of Kx of measure zero. Also
as it is remarked in Baptista (2007), the class of markets without binary vectors is dense
in Rm, in the sense of the Lebesgue measure.

In this paper, we continue the study of Baptista (2007) and Aliprantis and Tourky
(2002). First, we prove that if 1 ∈ X, then X does not contain binary vectors if and only
if for any nonconstant vector x ∈ X at least one nontrivial option of x is nonreplicated.
After this characterization of the markets without binary vectors we prove, Theorem 4.3,
that in these markets, for any x ∈ X the set Kx contains at most k − 3 replicated exercise
prices where k is a real number k ≤ m. Also we determine a partition of Kx consisting of
k − 3 intervals, each of which contains at most one replicated exercise price. Since there
are subsets of Kx of measure zero with infinite many elements, our theorem is an essential
improvement of the result of Baptista. In the proof of this theorem, the idea that any
of the above subintervals of Kx cannot contain two different replicated exercise prices is
from the corresponding proof of Baptista and this is important for our proof.

In the sequel we generalize the definition and the results of strongly resolving markets
of Aliprantis and Tourky (2002). Specifically, we consider the payoff matrix of primitive
securities xi with respect to the positive basis {bi } of F1(X) and we define the notion of
strongly resolving markets with respect to the basis {bi }. As it is shown in Example 5.5,
this new class of markets is strictly bigger than the one of strongly resolving markets. In
Theorem 5.3, we extend the result of Aliprantis and Tourky (2002) for strongly resolving
markets with respect to the basis {bi }. Our proof is analogous to the excellent proof of
Aliprantis–Tourky.

Finally note that, although in markets without binary vectors we do not make any
assumption concerning the number of primitive securities, in strongly resolving markets
we have a restrictive assumption about the number of primitive securities. Also in markets
without binary vectors the number of nontrivial replicated options is at most finite, but in
markets without binary vectors which satisfies the restriction on the number of primitive
securities, the market replicates only trivial options.
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2. THE MODEL

In this paper we study a two-period security market with a finite number of states
� = {1, 2, . . . , m} during the date 1, a finite number of primitive securities (assets) with
payoffs given by the linearly independent vectors x1, x2, . . . , xn of the payoff space Rm.

A portfolio is a vector θ = (θ1, θ2, . . . , θn) of Rn where θi is the number of units of
security i. Then T(θ ) = ∑n

i=1 θi xi ∈ Rm is the payoff of θ . Since the operator T is one-
to-one, it identifies portfolios with their payoffs. So the vectors x1, x2, . . . , xn will be
mentioned as primitive securities, the subspace

X = [x1, x2, . . . , xn ],

of Rm, generated by the vectors xi as the space of marketed securities or the asset span
and the vectors of X will be also referred as portfolios. A vector x ∈ Rm is marketed or x
is replicated if it is the payoff of some portfolio θ , or equivalently if x ∈ X.

Recall that the vector space Rm = {x = (x(1), x(2), . . . , x(m))|x(i ) ∈ R for each i }, is
ordered by the pointwise ordering, i.e., for any x, y ∈ Rm we have: x ≥ y if x(i ) ≥
y(i ) for each i. Rm

+ = {x ∈ Rm|x(i ) ≥ 0 for each i } is the positive cone of Rm. For
any x, y ∈ Rmx ∨ y = (

x(1) ∨ y(1), x(2) ∨ y(2), . . . , x(m) ∨ y(m)
)

is the supremum and
x ∧ y = (

x(1) ∧ y(1), x(2) ∧ y(2), . . . , x(m) ∧ y(m)
)

is the infimum of {x, y} in Rm. x+ =
x ∨ 0 = (

x(1) ∨ 0, x(2) ∨ 0, . . . , x(m) ∨ 0
)

and x− = (−x) ∨ 0 are the positive and the
negative part of x. Note also that for any two real numbers a, b, a ∨ b is the supre-
mum and a ∧ b is the infimum of {a, b}. A linear subspace Z of Rm is a sublattice
or a Riesz subspace of Rm if for any x, y ∈ Z, x ∨ y and x ∧ y belong to Z. Also for
any x = (x(1), x(2), . . . , x(m)) ∈ Rm, the set supp(x) = {i = 1, 2, . . . , m|x(i ) �= 0} is the
support of x.

For any subset B of Rm, the sublattice S(B) of Rm generated by B is the intersection of
the sublattices of Rm which contain B. The riskless bond 1 is the vector of Rm whose every
coordinate is equal to 1. Suppose that x ∈ Rm and a ∈ R. The call option written on the
vector x ∈ Rm with exercise price a is the vector c(x, a) = (x − a1)+ of Rm. The put option
written on the vector x ∈ Rm with exercise price a is the vector p(x, a) = (a1 − x)+. We
have the identity x − a1 = c(x, a) − p(x, a), which is called put-call parity.

If both c(x, a) > 0 and p(x, a) > 0, we say that call option c(x, a) and put option
p(x, a) are nontrivial. In this case we say that a is a nontrivial exercise price of x. We
denote by Kx the set of nontrivial exercise prices of x. If c(x, a) ∈ X we say that a is
a call-replicated exercise price of x and if p(x, a) ∈ X, we say that a is a put-replicated
exercise price of x. If both c(x, a), p(x, a) are in X we say that a is a replicated exercise
price of x. If 1 ∈ X, we have: c(x, a) ∈ X if and only if p(x, a) ∈ X. If the riskless bond
is not contained in X it is possible only one of the call and put options to be replicated.
In this paper, we do not suppose always that the riskless bond 1 belongs to X . Of course
1 belongs to the completion by options of X .

The completion by options of X is the subspace of Rm which arises inductively by adding
in the market the call and put options of the marketed securities and by taking again call
and put options which are added again in the market. In Kountzakis and Polyrakis (2006)
a mathematical definition of the completion by options in infinite securities markets is
given. Specifically in the above article, a more general study of the completion by options
of the market is presented by Kountzakis and Polyrakis (2006) where the options are not
taken with respect to the riskless bond 1 but with respect to risky vectors from a standard
subspace U of Rm and the completion by options of X is denoted by FU(X). This study in
Kountzakis and Polyrakis (2006) is very general and includes the case of exotic options.
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In the classical case where the options are taken with respect to the riskless bond 1, the
completion by options of X is denoted in Kountzakis and Polyrakis (2006) by F1(X) and
we will preserve this notation in this paper. In the above article it is proved that if the
payoff space is a general vector lattice E then FU(X) is the sublattice of E generated by
the set X ∪ U. In our case where the payoff space is the space Rm and the call and put
options are taken with respect to the riskless bond 1, the completion by options F1(X)
of X is the sublattice of Rm generated by the set X ∪ {1}. In the case where 1 ∈ X, F1(X)
is the sublattice of Rm generated by the set X .

For more details on lattice-subspaces and positive bases see the Appendix. For an
introduction to two-period security markets we refer to LeRoy and Werner (2001) and
Lengwiler (2004).

3. DETERMINATION OF THE COMPLETION F1(X) OF X

In this section we describe the method of determination of the completion by options of
X as it is presented in Kountzakis and Polyrakis (2006). According to this method we
consider the set

A = {
x+

1 , x−
1 , x+

2 , x−
2 , . . . , x+

n , x−
n , 1

}
.

Any maximal subset {y1, y2, . . . , yr } of linearly independent vectors of A is a basic set
of the market. Note that a basic set is not necessarily unique. In general it is possible to
find different basic sets of the market but all these sets have the same cardinal number r.
Specifically r is the dimension of the linear subspace of Rm generated by A and a basic
set is a basis of it.

THEOREM 3.1 (Kountzakis and Polyrakis 2006, theorem 11). F1(X) is the sublattice of
Rm generated by a basic set {y1, y2, . . . , yr } of the market.

After this result we use the theory of lattice-subspaces and positive bases developed
by Polyrakis (1996, 1999) for the determination of F1(X). Since F1(X) is a sublattice
of Rm which contains 1, we have that F1(X) has a positive basis {b1, b2, . . . , bμ} which
is a partition of the unit, i.e., the vectors bi have disjoint supports and

∑μ

i=1 bi = 1, see
Theorem A.2 of the Appendix. This basis is unique. So we have:

THEOREM 3.2. F1(X) has a positive basis {b1, b2, . . . , bμ} which is a partition of the unit.

For the determination of the positive basis {bi } of F1(X) which is a partition of the unit
we follow the steps of Polyrakis algorithm, see Theorem A.5 in the Appendix, where a
positive basis of the sublattice of Rm generated by a finite set of positive and linearly inde-
pendent vectors is determined. We start by the determination of a basic set {y1, y2, . . . , yr }
of the market. In the sequel we determine the basic function of y1, y2, . . . , yr which is
very important for the theory of lattice-subspaces and positive bases. This function has
been defined by Polyrakis (1996) and is the following:

β(i ) =
(

y1(i )
y(i )

,
y2(i )
y(i )

, . . . ,
yr (i )
y(i )

)
, for each i = 1, 2, . . . , m, with y(i ) > 0,

where y = y1 + y2 + · · · + yr . This function takes values in the simplex �r = {ξ ∈
Rr

+| ∑r
i=1 ξi = 1} of Rr

+.
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Denote by R(β) the range (i.e., the set of values) of β and by card R(β) the cardinal
number of R(β) (i.e., the number of the different values of β).

We continue the algorithm and we obtain a positive basis {d1, d2, . . . , dμ} of F1(X).
The elements of this basis have disjoint supports and each di is constant on its support.
By a normalization of the basis {di } we obtain the positive basis {bi } of F1(X) which is a
partition of the unit. This basis is very important for this paper.

By using Theorem A.5, the dimension of F1(X) is equal to the cardinal number of
R(β). So if R(β) has n elements, then F1(X) = X and any option is replicated. If R(β) has
m elements, then F1(X) = Rm and the options fill the whole space Rm. This is expressed
in the next result.

THEOREM 3.3. The dimension of F1(X) is equal to the cardinal number of the range
R(β), therefore we have:

(i) F1(X) = X if and only if card R(β) = n,
(ii) F1(X) = Rm if and only if card R(β) = m,

(iii) F1(X) � Rm if and only if card R(β) < m.

4. MARKETS WITHOUT BINARY VECTORS

Throughout this paper we will denote by {b1, b2, . . . , bμ}, or for simplicity by {bi },
the positive basis of F1(X) which is a partition of the unit. For any x = ∑μ

i=1 λi bi ∈
F1(X), λ1, λ2, . . . , λμ are the coefficients of x in the basis {bi }. We put

a1 = min{λi |i = 1, 2, . . . , μ} and �1 = {i |λi = a1},
a2 = min{λi |λi > a1} and �2 = {i |λi = a2},

and by continuing this process we take the real numbers a1, a2, . . . , ak and the subsets
�1, �2, . . . , �k of {1, 2, . . . , μ}. The numbers a1, a2, . . . , ak will be referred as the essential
coefficients and the sets �1, �2, . . . , �k as the essential sets of states of x, with respect to
the basis {bi }.

The essential coefficients are in increasing order, i.e., ai < a j for any i < j . Of course
for the number k of the essential coefficients of x we have: k ≤ μ ≤ m.

If for example μ = 5 and x = 2b1 − 3b2 + 2b3 + b4 + b5, then a1 = −3, a2 = 1, a3 = 2
are the essential coefficients and �1 = {2}, �2 = {4, 5}, �3 = {1, 3} the essential sets of
states of x. We have x = a1

∑
i∈�1

bi + a2
∑

i∈�2
bi + a3

∑
i∈�1

bi .

PROPOSITION 4.1. For any x = ∑μ

i=1 λi bi ∈ F1(X) we have:

(i) c(x, a) = ∑μ

i=1(λi − a)+bi and p(x, a) = ∑μ

i=1(a − λi )+bi ,

(ii) if a1, a2, . . . , ak are the essential coefficients of x, the interval Kx = (a1, ak) is the
set of nontrivial exercise prices of x.

Proof. (i): The basis {bi } is a partition of the unit, therefore the vectors bi have
disjoint supports and

∑μ

i=1 bi = 1. Therefore bi ( j ) = 1 for any j ∈ supp(bi ). So we
have c(x, a) = (x − a1)+ = (

∑μ

i=1 λi bi − a
∑μ

i=1 bi )+ = (
∑μ

i=1(λi − a)bi )+. Since the ba-
sis {bi } is a partition of the unit, for any j ∈ supp(bi ) we have that the j-coordinate
of c(x, a) in the usual basis {ei } of Rm is (λ j − a)+, therefore it is easy to show that
c(x, a) = ∑μ

i=1(λi − a)+bi . The proof for the put option is analogous.
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(ii): If a ≤ a1 then (a − λi )+ = 0 for any i, therefore p(x, a) = 0 because a1 is the
minimum of the coefficients λi of x. Therefore a is a trivial exercise price of x. If a ≥ ak,
similarly we have that (λi − a)+ = 0 for any i, therefore c(x, a) = 0 and a is a trivial
exercise price. For any a ∈ (a1, ak) we have that (λi − a)+ > 0 for at least one i and also
(a − λ j )+ > 0 for at least one j. Since the elements bi of the basis are positive we have
that c(x, a) > 0 and p(x, a) > 0, hence a is a nontrivial exercise price of x. �

We give below a characterization of the markets without binary vectors. We say that a
vector x ∈ Rm is a nonconstant vector if x is not a multiple of 1, i.e., x �= λ1 for any λ ∈ R.
According to this definition, 0 is a constant vector of Rm.

THEOREM 4.2. If 1 ∈ X, we have: X does not contain binary vectors if and only if for
any nonconstant vector x ∈ X at least one nontrivial option of x is nonreplicated.

Proof. Suppose that X does not contain binary vectors. Suppose also that there exists
a nonconstant vector x ∈ X so that c(x, α) ∈ X for each α ∈ Kx. Also for any α /∈ Kx

we have that c(x, α) = 0 or p(x, α) = 0, therefore c(x, α) and p(x, α) are elements of X
because x − α1 = c(x, α) − p(x, α). Therefore if L = [x] is the one-dimensional subspace
generated by x, then by Kountzakis and Polyrakis (2006, theorem 21), the completion
by options F1(L) of L is the subspace generated by the set of call options written on the
elements of the subspace Y of Rm generated by the set L ∪ {1}. Each vector y of Y is of the
form y = λx + ξ1 therefore c(y, a) = (y − a1)+ = (λx − (a − ξ )1)+ = c(λx, (a − ξ )). So
we have that any call option written on an element of Y is a call option written on
an element of L, therefore it belongs to X as we have remarked before. So we have
that F1(L) ⊆ X. Since x, 1 ∈ F1(L) we have that F1(L) is an at least two-dimensional
sublattice, therefore F1(L) has a positive basis which is also a partition of the unit. The
elements of this basis are binary vectors, and these elements belong to X , contradiction.
So for any x ∈ X at least one nontrivial option of x is nonreplicated.

For the converse suppose that for any nonconstant vector x ∈ X at least one nontrivial
option of x is nonreplicated. If we suppose that x is a binary vector of X , then it is easy
to show that the essential coefficients of x in the basis {bi } of F1(X) are a1 = 0, a2 = 1,
therefore Kx = (0, 1) and x = ∑

i∈�2
bi ∈ X. For any α ∈ (0, 1) we have that c(x, α) =

(1 − α)x ∈ X which is a contradiction. Therefore, X does not contain binary vectors. �

THEOREM 4.3. Suppose that the asset span X does not contain binary vectors and x is a
nonconstant vector of X . If a1, a2, . . . , ak are the essential coefficients of x with respect to
the basis {bi }, then:

(i) If k = 2, each nontrivial call option of x is nonreplicated. If k > 2, each of the in-
tervals (a1, a2), [a2, a3), . . . , [ak−2, ak−1) contains at most one call-replicated exercise
price, therefore there are at most k − 2 call-replicated exercise prices of x.

(ii) If k = 2, each nontrivial put option of x is nonreplicated. If k > 2, each of the intervals
(a2, a3], . . . , (ak−2, ak−1], (ak−1, ak) contains at most one put-replicated exercise price,
therefore there are at most k − 2 put-replicated exercise prices of x.

(iii) If we suppose moreover that 1 ∈ X, we have: If k = 3, each nontrivial option of
x is nonreplicated. If k > 3, each of the intervals (a2, a3), [a3, a4), . . . , [ak−2, ak−1)
contains at most one replicated exercise price, therefore there are at most k − 3
replicated exercise prices of x.

Proof. Suppose that x ∈ X, x �= λ1, x = ∑μ

i=1 λi bi is the expansion of x in the basis
{bi } and suppose that a1, a2, . . . , ak are the essential coefficients and �1, �2, . . . , �k are
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the essential sets of states of x with respect to the basis {bi }. Since we have supposed
that x is not a multiple of the riskless bond we have that x has at least two essential
coefficients, hence k ≥ 2.

Then

x = a1

∑
i∈�1

bi + a2

∑
i∈�2

bi + . . . + ak

∑
i∈�k

bi .(4.1)

We put b j = ∑
i∈� j

bi , j = 1, 2, . . . , k and we remark that every such vector is a binary
vector. Also, we have

x =
k∑

j=1

a j b j .

The set of nontrivial exercise prices of x is the interval Kx = (a1, ak). For any a ∈ (a1, ak)
we have

c(x, a) =
k∑

j=r+1

(a j − a)b j ,

where r = 1 if a ∈ (a1, a2) and r = ν if a ∈ [aν, aν+1) for ν = 2, 3, . . . , k − 1.
If a ∈ [ak−1, ak) then c(x, a) = (ak − a)bk is a positive multiple of a binary vector,

therefore c(x, a) /∈ X. So for any a ∈ [ak−1, ak), c(x, a) is nonreplicated. This means also
that if k = 2, i.e., if a1, a2 are the essential coefficients of x, then any call option of x is
nonreplicated.

Suppose now that a, a′ are different exercise prices belonging to the same subinterval
of (a1, ak), i.e., a, a′ ∈ (a1, a2) or a, a′ ∈ [ar , ar+1) for some r = 2, 3, . . . , k − 2. Then we
have

c(x, a) − c(x, a′) =
k∑

j=r+1

((a j − a) − (a j − a′))b j = (a′ − a)
k∑

j=r+1

b j .

If we suppose that c(x, a) and c(x, a′) belong to X we have that

(a′ − a)
k∑

j=r+1

b j ∈ X,

which is a contradiction because
∑k

j=r+1 b j is a binary vector. This implies that at most
one of c(x, a), c(x, a′) belongs to X .

So any of the subintervals (a1, a2), [a2, a3), . . . , [ak−2, ak−1) of (a1, ak) contains at most
one call-replicated exercise price, therefore there are at most k − 2 call-replicated exercise
prices and statement (i) is true. The proof of statement (ii) is analogous.

If we suppose that 1 ∈ X and at least one of c(x, a), p(x, a) is replicated, then both
of them are replicated by put-call parity, therefore an exercise price a is call-replicated if
and only if a is put-replicated. So, if 1 ∈ X, by (i) and (ii) we have that there are at most
k − 3 replicated exercise prices because strike prices in the intervals (a1, a2] and [ak−1, ak)
are excluded. So in the case where 1 ∈ X, each interval (a2, a3), [a3, a4), . . . , [ak−2, ak−1)
has at most one replicated exercise price for x, therefore there are at most k − 3 replicated
exercise prices. �
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If the dimension of F1(X) is at most three, then the basis {bi } of X has at most three
elements and for any x ∈ X the essential coefficients of x are at most three real numbers
a1, a2, a3 and the next corollary is obvious:

COROLLARY 4.4. Suppose that the asset span X does not contain binary vectors.

(i) If dimF1(X) = 2, any nontrivial option written on some element of X is nonrepli-
cated.

(ii) If dimF1(X) = 3 and 1 ∈ X, any nontrivial option written on some element of X is
nonreplicated.

The next example is an application in a three-dimensional subspace X of R8 without
binary vectors. We determine the completion F1(X) and a positive basis {b1, b2, b3, b4}
which is a partition of the unit. We find a vector x ∈ X with four essential coefficients
(k = 4) and one replicated exercise price. So we have that the estimation k − 3 of the
possibly replicated exercise prices in Theorem 4.3 cannot be improved.

EXAMPLE 4.5. Suppose that x1 = (1, 1, 2, 2, 0, 0, 0, 0), x2 = (0, 0, 0, 0, 3, 3, 4, 4), x3 =
(1, 1, 1, 1, 1, 1, 1, 1) are the primitive securities and X = [x1, x2, x3] is the marketed space.
It is easy to show that X does not contain binary vectors.

According to the methodology of the determination of F1(X) we start by the determi-
nation of a basic set and we find that {y1, y2, y3} = {x1, x2, x3} is a basic set of the market.
In order to determine a positive basis of F1(X) we follow the algorithm of Theorem A.5.
So we determine the basic function β of y1, y2, y3, β = 1

y (y1, y2, y3), where y is the sum
of yi and we find that

β(1) = β(2) = 1
2

(1, 0, 1) = P1, β(3) = β(4) = 1
3

(2, 0, 1) = P2

β(5) = β(6) = 1
4

(0, 3, 1) = P3, β(7) = β(8) = 1
5

(0, 4, 1) = P4.

So we have that card(R(β)) = 4 therefore the completion F1(X) is a four-dimensional
sublattice of R8.

The three first vectors P1, P2, P3 of R(β) are linearly independent, so we preserve
the enumeration of R(β). According to the algorithm, I4 = β−1(P4) = {7, 8} and we
define the new vector y4 = (0, 0, 0, 0, 0, 0, 5, 5). We determine the basic function γ =
1
y′ (y1, y2, y3, y4) where y′ is the sum of these vectors. We find that

γ (1) = γ (2) = 1
2

(1, 0, 1, 0) = P′
1, γ (3) = γ (4) = 1

3
(2, 0, 1, 0) = P′

2

γ (5) = γ (6) = 1
4

(0, 3, 1, 0) = P′
3, γ (7) = γ (8) = 1

10
(0, 4, 1, 5) = P′

4.

A positive basis of F1(X) is given by the formula (d1, d2, d3, d4)T = A−1(y1, y2, y3, y4)T

where A is the matrix whose columns are the vectors P′
i , i = 1, . . . , 4. We find that the

vectors

d1 = (2, 2, 0, 0, 0, 0, 0, 0), d2 = (0, 0, 3, 3, 0, 0, 0, 0),

d3 = (0, 0, 0, 0, 4, 4, 0, 0), d4 = (0, 0, 0, 0, 0, 0, 10, 10),



NONREPLICATION OF OPTIONS 9

define a positive basis of F1(X). By a normalization of this basis we have that the vectors

b1 = (1, 1, 0, 0, 0, 0, 0, 0), b2 = (0, 0, 1, 1, 0, 0, 0, 0),

b3 = (0, 0, 0, 0, 1, 1, 0, 0), b4 = (0, 0, 0, 0, 0, 0, 1, 1),

define the positive basis of F1(X) which is a partition of the unit.
Consider the portfolio x = −x1 + x2 = (−1, −1, −2, −2, 3, 3, 4, 4). The expansion of

x in the basis {bi } is x = −b1 − 2b2 + 3b3 + 4b4 and according to the above theorem
a1 = −2, a2 = −1, a3 = 3, a4 = 4 are the essential coefficients of x. For any α ∈ (−2, −1]
or α ∈ [3, 4), any option is nonreplicated. By statement (iii) of Theorem 4.2, x has at most
one replicated exercise price α ∈ (−1, 3). If we suppose that a ∈ (−1, 3) is a replicated
exercise price, we have

c(x, α) = (3 − α)b3 + (4 − α)b4 ∈ X.

Then

c(x, α) = ρ1x1 + ρ2x2 + ρ3x3 = ρ1(b1 + 2b2) + ρ2(3b3 + 4b4) + ρ3(b1 + b2 + b3 + b4).

We find that ρ1 = ρ3 = 0, 3ρ2 = 3 − α, 4ρ2 = 4 − α, therefore α = 0. Indeed, c(x, 0) =
3b3 + 4b4 = x2 ∈ X and p(x, 0) = b1 + 2b2 = x1 ∈ X.

5. STRONGLY RESOLVING MARKETS

The replication of options in strongly resolving markets has been studied by Aliprantis
and Tourky (2002). If we expand the vectors xi in the usual basis {e1, . . . , em} of Rm we
have the m × n matrix

A(xi , ei ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

x1(1) x2(1) . . . xn(1)

x1(2) x2(2) . . . xn(2)

· · ·
· · ·
· · ·

x1(m) x2(m) . . . xn(m)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

which is the payoff matrix of vectors xi . The notion of a strongly resolving market is
defined in the above article as follows. If any n × n submatrix of A(xi , ei ) is nonsingular,
the asset span X = [x1, . . . , xn ] (or the market) is called strongly resolving. As we have
noted in the introduction, Aliprantis and Tourky proved that if 1 ∈ X, n ≤ m+1

2 and the
asset span is strongly resolving, any nontrivial option written on some element of X is
nonreplicated.

In this paper, we extend the definition of strongly resolving markets by taking the
payoff matrix of the payoff vectors in the basis {bi } of F1(X). So if {b1, . . . , bμ} is the
positive basis of F1(X) which is a partition of the unit, we expand each xi in this basis
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and suppose that xi = ∑μ

j=1 xb
i ( j )b j . The μ × n matrix

A(xi , bi ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xb
1 (1) xb

2 (1) . . . xb
n (1)

xb
1 (2) xb

2 (2) . . . xb
n (2)

· · ·
· · ·
· · ·

xb
1 (μ) xb

2 (μ) . . . xb
n (μ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

is the payoff matrix of the basic securities xi in the basis {bi }.

DEFINITION 5.1. If any n × n submatrix of A(xi , bi ) is nonsingular, the market X is
strongly resolving with respect to the basis {bi }.

In the next theorem we prove that if F1(X) �= Rm, the market cannot be strongly
resolving. So if the market is strongly resolving, then F1(X) = Rm and the two definitions
coincide because the basis {bi } of F1(X) is the usual basis {ei } of Rm and therefore
A(xi , bi ) = A(xi , ei ). As we show in Example 5.5, it is possible for a market to be strongly
resolving with respect to the basis {bi } but not strongly resolving. Therefore, our notion
of a market being strongly resolving with respect to a basis generalizes the notion of a
market being strongly resolving of Aliprantis and Tourky (2002).

THEOREM 5.2. If n ≥ 2 and the completion by options F1(X) of X is a proper subspace
of Rm, then the market is not strongly resolving.

Proof. The assumption that F1(X) �= Rm, implies μ < m, where {b1, b2, . . . , bμ} is the
positive basis of F1(X) which is also a partition of the unit. Since μ < m, the support
of at least one of the elements of the basis is not a singleton. So we may suppose that
i1, i2 ∈ supp(br ) for some r. For any xi we have xi = ∑μ

j=1 xb
i ( j )b j , therefore xi (i1) =

xb
i (r )br (i1) = xb

i (r ) because br (i1) = 1. Similarly xi (i2) = xb
i (r ), therefore for any vector

xi we have xi (i1) = xi (i2). This implies that the i1 and i2-row of the matrix A(xi , ei )
coincide and the theorem is true. �

For any x ∈ F1(X) we expand x in the basis {bi } of F1(X) which is a partition of the
unit and suppose that x = ∑μ

i=1 λi bi . Then suppb(x) = {i |λi �= 0} is the support of x and
zerosb(x) = {i |λi = 0} is the set of zeros of x with respect to the basis {bi }. Also #suppb(x)
and #zerosb(x) is the cardinal number of the sets suppb(x) and zerosb(x).

THEOREM 5.3. Suppose that the riskless bond 1 is contained in X. If the market is
strongly resolving with respect to the basis {bi } and n ≤ μ+1

2 then any nontrivial option
written on some element of X is nonreplicated.

Proof. Let x = ∑μ

i=1 λi bi ∈ X and suppose that y = c(x, α) = ∑μ

i=1(λi − α)+bi is a
nontrivial call option. Then y > 0 and also the corresponding put option z = p(x, α) =∑μ

i=1(α − λi )+bi is also greater than zero, z > 0. Let

#suppb(y) = β, #zerosb(y) = γ, #suppb(z) = β ′, #zerosb(z) = γ ′.
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We shall show that

max{γ, γ ′} ≥ μ

2
.

It is clear that i ∈ suppb(y) ⇒ i ∈ zerosb(z) and i ∈ suppb(z) ⇒ i ∈ zerosb(y), therefore
γ ′ ≥ β and γ ≥ β ′.

Also β + γ = β ′ + γ ′ = μ. If β ≥ γ then β ≥ μ

2 , therefore γ ′ ≥ μ

2 . If γ ≥ β then γ ≥ μ

2
and the assertion is true. Since the risklesss bond belongs to X we have that both y, z are
replicated or not. Suppose that y, z are replicated. Then as we have proved above at least
one of them, for example the call option y has a number of zero coordinates in the basis
{bi } greater or equal to μ

2 , i.e., γ ≥ μ

2 .
Since y ∈ X, it can be expanded in the basis {x1, . . . , xn} of X and suppose that

y = ∑n
i=1 ρi xi . Then we have

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(λ1 − α)+

(λ2 − α)+

·
·
·

(λμ − α)+

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xb
1 (1) xb

2 (1) . . . xb
n (1)

xb
1 (2) xb

2 (2) . . . xb
n (2)

· · ·
· · ·
· · ·

xb
1 (μ) xb

2 (μ) . . . xb
n (μ)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1

ρ2

·
·
·

ρn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.(5.1)

By our assumption that n ≤ μ+1
2 we have that n ≤ μ

2 + 1
2 ≤ γ + 1

2 , therefore we have
that n ≤ γ because n, γ are natural numbers. Therefore at least n coordinates of y in the
basis {bi } are equal to zero and suppose that (λi1 − α)+ = (λi2 − α)+ = · · · = (λin − α)+ =
0. Then

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xb
1 (i1) xb

2 (i1) . . . xb
n (i1)

xb
1 (i2) xb

2 (i2) . . . xb
n (i2)

· · ·
· · ·
· · ·

xb
1 (in) xb

2 (in) . . . xb
n (in)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

ρ1

ρ2

·
·
·

ρn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

·
·
·
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,(5.2)

where (ρ1, ρ2, . . . , ρn) �= (0, 0, . . . , 0) because ρi are the coordinates of y in the basis {xi }
and y > 0. This is a contradiction because the matrix of the system is nonsingular. So
none of y, z belong to X and the theorem is true. �

Suppose that x ∈ X and suppose that a1, a2, . . . , ak and �1,�2, . . . , �k are the essen-
tial coefficients and the essential sets of states of x in the basis {bi }. For any r = 1, 2, . . . , k
we define cx(r ) = card(�1 ∪ . . . ∪ �r ) and px(r ) = card(�r+1 ∪ . . . ∪ �k), i.e., cx(r ) and
px(r ) are the cardinal numbers of �1 ∪ . . . ∪ �r and �r+1 ∪ . . . ∪ �k.

PROPOSITION 5.4. Suppose that the security market X is strongly resolving with respect
to the basis {bi } of F1(X), x ∈ X and a1, a2, . . . , ak are the essential coefficients of x with
respect to the basis {bi }.
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(i) If cx(r ) ≥ n, the interval [ar , ar+1) does not contain call-replicated exercise prices of
x,

(ii) If px(r ) ≥ n, the interval (ar , ar+1] does not contain put-replicated exercise prices of
x,

(iii) if 1 ∈ X and max{cx(r ), px(r )} ≥ n, the interval [ar , ar+1] does not contain replicated
exercise prices of x.

Proof. Suppose that cx(r ) ≥ n and that a ∈ [ar , ar+1) is a call-replicated exercise price.
Then

y = c(x, a) =
k∑

j=r+1

(a j − a)b̄ j ∈ X,

where b j = ∑
i∈� j

bi for any j = 1, 2, . . . , k.
We expanded y in the basis {x1, . . . , xn} of X and suppose that y = ∑n

i=1 λi xi and sup-
pose also that xi = ∑μ

j=1 xb
i ( j )b j . By our hypothesis we have that #zerosb(y) = cx(r ) ≥ n,

therefore at least n of the coordinates ξi of y in the basis {bi } are equal to zero and suppose
that ξi1 , ξi2 , . . . , ξin are n such coordinates. This leads to the system

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xb
1 (i1) xb

2 (i1) . . . xb
n (i1)

xb
1 (i2) xb

2 (i2) . . . xb
n (i2)

. . .

. . .

. . .

xb
1 (in) xb

2 (in) . . . xb
n (in)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

λ1

λ2

·
·
·

λn

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

=

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

0

·
·
·
0

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

The fact that X is strongly resolving implies that the system has the unique solution
λ1 = λ2 = · · · = λn = 0, therefore y = c(x, a) = 0, which is a contradiction because a is
a nontrivial exercise price of x. Hence [ar , ar+1) does not contain call-replicated exercise
prices and statement (i) is true.

The proof of statement (ii) is analogous and (iii) follows by (i) and (ii) and by the fact
that 1 ∈ X. �

EXAMPLE 5.5. Let x1 = (4, 4, 3, 3, 2, 2, 1, 1), x2 = (1, 1, 2, 2, 3, 3, 4, 4), and X =
[x1, x2]. 1 is contained in X because x1 + x2 = 51. The payoff matrix

A(xi , ei ) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

4 1

4 1

3 2

3 2

2 3

2 3

1 4

1 4

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

has singular 2 × 2 submatrices, therefore the market is not strongly resolving.
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In order to apply our theorem, we determine the positive basis of F1(X) which is a
partition of the unit and we find that the vectors

b1 = (1, 1, 0, 0, 0, 0, 0, 0), b2 = (0, 0, 1, 1, 0, 0, 0, 0),

b3 = (0, 0, 0, 0, 1, 1, 0, 0), b4 = (0, 0, 0, 0, 0, 0, 1, 1),

define this basis. We expand the vectors xi in the basis {bi } and we find that

A(xi , bi ) =

⎡
⎢⎢⎢⎢⎢⎣

4 1

3 2

2 3

1 4

⎤
⎥⎥⎥⎥⎥⎦

,

is the payoff matrix with respect to this basis and we remark that the market is strongly
resolving with respect to the basis {bi }. Since n = 2 ≤ μ+1

2 = 5
2 we have that any nontrivial

option written on elements of X is nonreplicated.

APPENDIX: LATTICE-SUBSPACES AND POSITIVE BASES IN C(�)

In this section we give the basic mathematical notions and results, which are needed for
this paper. C(�) is the space of real valued functions defined on a compact Hausdorff
topological space �. C(�) is ordered by the pointwise ordering, i.e., for any x, y ∈
C(�) we have: x ≥ y if and only if x(t) ≥ y(t) for each t ∈ �.C+(�) = {x ∈ C(�)

∣∣x(t) ≥
0 for each t ∈ �} is the positive cone of C(�). Recall that if the set � is finite, for example
if � = {1, 2, . . . , m}, then C(�) is the vector space Rm, therefore the results presented
below hold also for the space Rm which we use in this paper. But we present the results
in C(�) as they are formulated in Polyrakis (1996, 1999). The results of these articles are
presented below.

The space C(�), ordered by the pointwise ordering is a vector lattice, i.e., for any
x, y ∈ C(�) the supremum x ∨ y and the infimum x ∧ y of {x, y} in C(�) exists. Suppose
that L is an ordered subspace of C(�), i.e., L is a linear subspace of C(�) ordered again by
the pointwise ordering. Then L+ = C+(�) ∩ L is the positive cone of L. If L is a vector
lattice, i.e., if for any x, y ∈ L the supremum supL{x, y} and the infimum in fL{x, y} of
{x, y} in L exist, then L is a lattice-subspace of C(�). Then we have

supL{x, y} ≥ x ∨ y ≥ x ∧ y ≥ in fL{x, y}.

If for any x, y ∈ L, x ∨ y ∈ L and x ∧ y ∈ L, L is a sublattice of C(�). It is clear that
any sublattice of C(�) is a lattice-subspace but the converse is not true. In general an
ordered subspace L of C(�) is not a lattice-subspace and also a lattice-subspace is not
always a sublattice.

For any subset B of C(�), the intersection of all sublattices of C(�) which contain B
is a sublattice of C(�) and it is the minimum sublattice of C(�) which contains B. This
subspace is the sublattice of C(�) generated by B.

Suppose that L is finite-dimensional. A basis {b1, b2, . . . , br } of L is a positive basis
of L if L+ = {x = ∑r

i=1 λi bi | λi ∈ R+for each i}. In other words, the basis {bi } of L is
positive if for any x ∈ L we have: x(t) ≥ 0 for any t ∈ � if and only if the coefficients λi
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of x in the basis {bi } are positive. Although L has infinitely many bases the existence of
a positive basis of L is not always ensured.

Suppose that {b1, b2, . . . , br } is a positive basis of L. Then it is easy to show that for any
x = ∑r

i=1 λi bi , y = ∑r
i=1 μi bi ∈ L we have x ≥ y if and only if λi ≥ μi for each i. This

property implies that supL{x, y} = ∑r
i=1(λi ∨ μi )bi and inf L{x, y} = ∑r

i=1(λi ∧ μi )bi ,
therefore L is a lattice-subspace. The converse is also true. One can prove it directly or
by using the Choquet–Kendall theorem, see in Polyrakis (1999), proposition 1.1. So we
have the following:

THEOREM A.1. A finite-dimensional ordered subspace L of C(�) is a lattice-subspace if
and only if L has a positive basis.

Also each vector bi of the positive basis of L is an extremal point of L+. (A vector
x0 ∈ L+, x0 �= 0 is an extremal point of L+ if for any x ∈ L, 0 ≤ x ≤ x0 implies x = λx0

for some real number λ.) This property implies that a positive basis of L is unique in the
sense of positive multiples.

THEOREM A.2 (Polyrakis 1999, proposition 2.2). A finite-dimensional ordered subspace
L of C(�) is a sublattice of C(�) if and only if L has a positive basis {b1, b2, . . . , br } with
the property: b−1

i (0, +∞) ∩ b−1
j (0, +∞) = ∅ for any i �= j .

As an application of the above result we have:

THEOREM A.3. Suppose that L is a sublattice of Rm. If the constant vector 1 =
(1, 1, . . . , 1) is an element of L, then L has a positive basis {b1, b2, . . . , br } which is a
partition of the unit, i.e., the vectors bi have disjoint supports and 1 = ∑r

i=1 bi . This basis
is unique.

Indeed, by Theorem A.2, L has a positive basis {d1, d2, . . . , dr } with disjoint supports.
Since 1 ∈ L we have 1 = ∑r

i=1 λi di and for each j ∈ supp(di ) we have 1 = 1( j ) = λi di ( j ),
therefore di ( j ) = 1

λi
for any j ∈ supp(di ). So each di is constant on its support, therefore

the basis {bi = λi di } is a positive basis of L which is a partition of the unit.
We suppose now that z1, z2, . . . , zr are fixed, linearly independent, positive vectors of

C(�) and that

L = [z1, z2, . . . , zr ],

is the subspace of C(�) generated by the vectors zi . We study the problem: under what
conditions L is a lattice-subspace or a sublattice of C(�)? In the case where L fails to
be a lattice-subspace we study if L is contained in a finite-dimensional minimal lattice-
subspace of C(�) or if the sublattice generated by L is finite-dimensional.

The function

β(t) =
(

z1(t)
z(t)

,
z2(t)
z(t)

, . . . ,
zr (t)
z(t)

)
, for each t ∈ �, with z(t) > 0,

where z = z1 + z2 + · · · + zr , is the basic function of z1, z2, . . . , zr . This function is very
important for the study of lattice-subspaces and positive bases and has been defined in
Polyrakis (1996). The set R(β) = {β(t)

∣∣t ∈ � with z(t) > 0}, is the range of β and the
cardinal number card R(β) of R(β) is the number of the (different) elements of R(β).
Under the above notations we have, see in Polyrakis (1999) theorem 3.6:
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THEOREM A.4 (Polyrakis). L is a sublattice of C(�) if and only if card R(β) = r .
If R(β) = {P1, P2, . . . , Pr }, a positive basis {b1, b2, . . . , br } of L is given by the formula:

(b1, b2, . . . , br )T = A−1(z1, z2, . . . , zr )T,(A.1)

where A is the r × r matrix whose the i th column is the vector Pi , for each i =
1, 2, . . . , r , and (b1, b2, . . . , br )T, (z1, z2, . . . , zr )T are the matrices with rows the vectors
b1, b2, . . . , br , z1, z2, . . . , zr .

A.1. The Algorithm for the Sublattice Generated by L

The next result gives an algorithm for the construction of the sublattice Z of C(�)
generated by a finite set {z1, z2, . . . , zr } of linearly independent and positive vectors, in the
case where Z is finite-dimensional. In this case a positive basis of Z is determined. As in
the previous theorem, β is the basic function of z1, z2, . . . , zr . Statement (d) determines
the positive basis of Z. In fact (d) is an application of the previous theorem for the
determination of a positive basis of Z. For more details, see in Polyrakis (1999), Theorem
3.7.

THEOREM A.5 (Polyrakis). Let Z be the sublattice of C(�) generated by {z1, z2, . . . , zr }
and let μ ∈ N. Then the statements (i) and (ii) are equivalent:

(i) dim(Z) = μ.
(ii) R(β) = {P1, P2, . . . , Pμ}.

If statement (ii) is true then Z is constructed as follows:

(a) Enumerate R(β) so that its r first vectors to be linearly independent (such an enu-
meration always exists). Denote again by Pi , i = 1, 2, . . . , μ the new enumeration
and we put Ir+k = {t ∈ �

∣∣β(t) = Pr+k}, for each k = 1, 2, . . . , μ − r .
(b) Define the vectors zr+k, k = 1, 2, . . . , μ − r as follows:

zr+k(i ) = z(i ) ifi ∈ Ir+k and zr+k(i ) = 0 ifi �∈ Ir+k,

where z = z1 + z2 + · · · + zr is the sum of the vectors zi .
(c) Z = [z1, z2, . . . , zr , zr+1, . . . , zμ].
(d) A positive basis {b1, b2, . . . , bμ} of Z is constructed as follows:

Consider the basic function γ of z1, z2, . . . , zr , zr+1, . . . , zμ and suppose that
{P′

1, P′
2, . . . , P′

μ} is the range of γ (the range of γ has exactly μ points). Then

(b1, b2, . . . , bμ)T = D−1(z1, z2, . . . , zμ)T,

where D is the μ × μ matrix with columns the vectors P′
1, P′

2, . . . , P′
μ.
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