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GROTHENDIECK ORDERED BANACH SPACES

WITH AN INTERPOLATION PROPERTY
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(Communicated by Thomas Schlumprecht)

Abstract. In this paper we prove that if E is an ordered Banach space with
the countable interpolation property, E has an order unit and E+ is closed
and normal, then E is a Grothendieck space; i.e. any weak-star convergent
sequence of E∗ is weakly convergent. By the countable interpolation property
we mean that for any A,B ⊆ E countable, with A ≤ B, we have A ≤ {x} ≤ B
for some x ∈ E.

1. Introduction and notation

A. Grothendieck proved in [8] that if E = C(K), where K is a compact and
Hausdorff Stonian space, any weak-star convergent sequence of E∗ is weakly con-
vergent; therefore, according to the current terminology, E is a Grothendieck space.
By the Kakutani Representation Theorem the above result can be formulated as
follows: Any Dedekind complete AM-space with an order unit is a Grothendieck
space.

G. Seever proved in [15] (see Theorem B and Theorem 1.1) that if K is a compact
and Hausdorff F-space, then E = C(K) is a Grothendieck space or equivalently that
any AM-space E with the countable interpolation property and an order unit is a
Grothendieck space. The countable interpolation property (see below) has been
defined in [15], where it is referred to as property (I). So Seever improved the result
of Grothendieck by replacing the Dedekind completeness of the space by the weaker
one of the countable interpolation property.

P. G. Dodds studied in [7] the sequential convergence in the order dual E∼ of
a Riesz space E in the case where E has the countable interpolation property.
Specifically in Theorem 4.5, it is proved that if a sequence of E∼ is σ(E∼, E)
convergent, then it is convergent in the σ(E∼, Id(E)) topology of E∼, where Id(E)
is the ideal generated by E in the second order dual (E∼)∼ of E.

H. P. Lotz, in an old article of 1986 which has appeared recently, replaced the
existence of an order unit in the result of Seever by a number of weaker conditions,
[12], Theorem 1.

In this article, Theorem 9, we show that the result of Seever is true without the
lattice condition. Specifically we show that if E is an ordered Banach space with
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2 IOANNIS A. POLYRAKIS AND FOIVOS XANTHOS

the countable interpolation property, E has an order unit and E+ is closed and
normal, then E is a Grothendieck space.

As an application of our theorem, in Corollary 11, we show that if the space
of regular operators Lr(E,F ), where E,F are Banach lattices, has the countable
interpolation property, then any order convex subspace IT of E generated by a
positive operator T ∈ Lr(E,F ), equipped with the order unit norm || · ||T , is a
Grothendieck space.

In [17], Theorem 3.1, A. Wickstead proved that the space of regular operators
Lr(c, F ), where c is the space of convergent real sequences and F is a Banach
lattice, has the countable interpolation property if and only if F has the monotone
countable interpolation property. Based on this result and on the Example 3.2 of
the same article we give an example of an ordered Banach space that satisfies the
conditions of our theorem, but it isn’t a vector lattice.

In [6], N. Danet proved that if E is a separable Banach lattice and F is a
Banach lattice with the countable interpolation property, then Lr(E,F ) has the
interpolation property. In this article (for the exact details, see Theorem 13) we
prove that Lr(E,F ) has the countable interpolation property in the case where
E,F are ordered Banach spaces, E has a positive basis and F has the countable
interpolation property.

We present below different notions of order interpolation. In this article we use
the term monotone countable interpolation property and countable interpolation
property instead of the different ones which have been used in the literature because
they express better the underlying properties. Let E be a (partially) ordered vector
space with positive cone E+. Note that a convex subset P �= ∅ of a vector space is
a cone if λP = P for any real number λ > 0 and P ∩(−P ) = {0}. E has the (finite)
interpolation property if for all finite subsets A,B of E with A ≤ B, (i.e. a ≤ b
for each a ∈ A, b ∈ B) there exists x ∈ E such that A ≤ {x} ≤ B. We say that E
has the Cantor property or the monotone countable interpolation property
if for any increasing sequence {xn} and any decreasing sequence {yn} of E with
xn ≤ yn for each n, there exists x ∈ E such that xn ≤ x ≤ yn for each n. E has
the countable interpolation property if for any {xn}, {yn} sequences of E with
xn ≤ ym for each n,m, there exists x ∈ E such that xn ≤ x ≤ yn for each n. If E is
a vector lattice (Riesz space), the monotone countable interpolation property and
the countable interpolation property are equivalent, but in general these notions
are not equivalent. Vector lattices do not always have the countable interpolation
property. Indeed by [15] we have that C(K), where K is a compact and Hausdorff
topological space, has the monotone countable interpolation property if and only if K
is an F-space. C. Huijsmans and B. de Pagter proved in [9], Theorem 9.15, that if E
is an Archimedean vector lattice, then E has the monotone countable interpolation
property if and only if E is uniformly complete and {x+}d + {x−}d = E, for any
x ∈ E. If E+ is generating and E has the interpolation property, the Riesz-
Kantorovich formula is valid for the vectors of the order dual E∼ of E. Recall that
E∼ is the set of ordered bounded linear functionals of E and that the interpolation
property and the Riesz decomposition property are equivalent.

If E is a vector lattice, the solid hull, Sol(A), of a subset A of E is the smallest
solid set that contains A. A subset B of E is solid if x ∈ B, |y| ≤ |x| implies y ∈ B.

Suppose that E is an ordered normed space. Denote by E∗ the topological dual
of E. If a real number c > 0 exists so that 0 ≤ x ≤ y implies ||x|| ≤ c||y||, then
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GROTHENDIECK ORDERED BANACH SPACES WITH INTERPOLATION 3

the cone E+ is normal and c is a constant of the normal cone E+. If e is an order
unit of E, the norm ||x||e = inf{λ > 0 | x ∈ [−λe, λe]} is the order unit norm of
E induced by e. If E has the interpolation property and E+ is closed, generating
and normal, then E∗ is a Banach lattice with respect to an equivalent norm; see for
example [4], Theorem 2.47, and the comments in Exercise 17, page 98. A Banach
space X is a Grothendieck space if any weak-star convergent sequence of X∗

is weakly convergent. Trivial examples of Grothendieck spaces are the reflexive
spaces and of non-Grothendieck the non-reflexive, separable spaces. For some recent
results on Grothendieck spaces, independent from this article, we refer to [10], [2]
and [14]. In [14], Theorem 15, the following cone characterization is proved, which
unfortunately cannot be applied, at least directly in this article. A Banach space
X is non-Grothendieck if and only if there exists a well-based cone P of X∗ such
that int(P0) = ∅ and the set of quasi-interior points of P0 with respect to the
seminorm dP (x) = sup{|x∗(x)| | x∗ ∈ P, ||x∗|| ≤ 1} of X is nonempty, where
P0 = {x ∈ X | x∗(x) ≥ 0, for any x∗ ∈ P} is the dual cone of P in X.

Note that the cone P is well-based if a strictly positive and continuous linear
functional f of X∗ exists so that the set B = {x∗ ∈ P | f(x∗) = 1} is bounded.
Note also in the above theorem that X is ordered by the dual cone P0 of P in X and
also that x0 ∈ P0 is a quasi-interior point of P0 with respect to the seminorm
dP if the subspace

⋃∞
n=1[−nx0, nx0] is dP -dense in X. Of course, if x0 is a quasi-

interior point with respect to the norm of X, then it is also a quasi-interior point
with respect to the seminorm dP .

2. The results

In this section we will denote by E an ordered vector space. The notion of an
l1-sequence of E and the notion of the equi-l1-continuous subset of E∼ have been
defined by O. Burkinshaw in [5], where the weakly compact sets in the order dual
E∼ of E are studied, in the case where E is a vector lattice. In this article we use
these definitions in ordered vector spaces.

Definition 1. A sequence {xn} ⊆ E is an l1-sequence if there exists x ∈ E+ and
a sequence {bn} ⊆ E+ such that −bn ≤ xn ≤ bn and

∑n
i=1 bi ≤ x for each n.

For any σ(E∼, E)-bounded subset A of E∼, denote by ρA the following semi-
norm on E:

ρA(x) = sup{|y(x)| | y ∈ A}, for each x ∈ E.

Definition 2. A subset A of E∼ is equi-l1-continuous if A is σ(E∼, E)-bounded
and lim

n→∞
ρA(xn) = 0 for any l1-sequence {xn} of E.

Proposition 3. Suppose that A is a σ(E∼, E)-bounded subset of E∼. If lim
n→∞

ρA(xn)

= 0 for each positive l1-sequence {xn} of E, then A is equi-l1-continuous.

Proof. Suppose that {xn} is an l1-sequence of E. Then there exists {bn} ⊆ E+,
x ∈ E+ such that −bn ≤ xn ≤ bn and

∑n
i=1 bi ≤ x. Note that {bn} is a posi-

tive l1-sequence. Also {xn + bn} is a positive l1-sequence, because
∑n

i=1(xi + bi)
≤

∑n
i=1 bi + x ≤ 2x, for each n. Therefore ρA(xn) = ρA((xn + bn) − bn) ≤

ρA(xn + bn) + ρA(bn), and from our hypothesis we have that lim
n→∞

ρA(xn) = 0. �

Licensed to University of Alberta. Prepared on Mon Oct 29 13:02:56 EDT 2012 for download from IP 129.128.206.170.

License or copyright restrictions may apply to redistribution; see http://www.ams.org/journal-terms-of-use



4 IOANNIS A. POLYRAKIS AND FOIVOS XANTHOS

Proposition 4. Suppose that E+ is generating and E has the interpolation prop-
erty. If A is a subset of E∼ and the solid hull, Sol(A), of A in E∼ is σ(E∼, E)-
bounded, we have: The set A is equi-l1-continuous if and only if Sol(A) is equi-l1-
continuous.

Proof. If the set B = Sol(A) is equi-l1-continuous, A is equi-l1-continuous. Suppose
that A is equi-l1 continuous. If B is not equi-l1-continuous, by Proposition 3, there
exists ε > 0 and a positive l1-sequence {xn}, such that ρB(xn) > ε for each n ∈ N,
so there exists a sequence {zn} ⊆ B such that |zn(xn)| > ε for each n. Since
B = Sol(A) there exists a sequence {yn} of A such that |zn| ≤ |yn|; therefore

|yn|(xn) ≥ |zn|(xn) ≥ |zn(xn)| > ε,

and by the Riesz-Kantorovich formula we have

|yn|(xn) = sup{yn(u) | − xn ≤ u ≤ xn}.
So there exists a sequence {un} of E such that −xn ≤ un ≤ xn and yn(un) ≥ ε,
for each n. This is a contradiction because {un} is an l1-sequence and A is equi-l1-
continuous. �

Proposition 5. If A ⊆ E∼, and A is σ(E∼, E)-bounded the following are equiva-
lent:

(i) A is equi-l1-continuous.
(ii) Every order bounded increasing sequence of E is ρA-Cauchy.

Proof. (i) ⇒ (ii) : Suppose that (ii) is not true. Then there exists an order bounded
increasing sequence {xm} of E which is not ρA-Cauchy. So there exists ε > 0 and
a strictly increasing sequence {mn} of N such that

(1) ρA(xmn+1
− xmn

) > ε for each n ∈ N.

If {xm} is dominated by x, the sequence yn = xmn+1
−xmn

is an l1-sequence because
0 ≤

∑n
i=1 yi = xmn+1

− xm1
≤ x− xm1

, for each n. By (1) we have ρA(yn) > ε for
each n, which contradicts (i).

(ii) ⇒ (i) : Suppose that {xn} is a positive l1-sequence. Then the sequence
yn =

∑n
i=1 xi is order bounded and increasing; therefore by (ii), it is ρA-Cauchy.

So we have lim ρA(xn) = lim ρA(yn − yn−1) = 0. Therefore A is equi-l1-continuous,
by Proposition 3. �

The topological dual �∗∞ of �∞ is the direct sum

�∗∞ = �1 ⊕ �d1,

where �d1 is the disjoint complement of �1 in �∗∞. So each x ∈ �∗∞ is the sum
x = x1+x2, where x1 and x2 are the components of x in �1 and �d1. By the Phillips
Lemma (see for example [3], Theorem 4.67), for any sequence {xn} of �∗∞ such that

xn
w∗
−−→ 0, we have x1

n

||·||−−→ 0; i.e., the sequence of the �1-components of the sequence
{xn} converges to zero. Recall also that by Lozanovsky’s theorem (see for example
[4], Theorem 2.32), if X, Y are ordered Banach spaces with closed positive cones
and X+ is generating, then every linear, positive operator T : X → Y is continuous.

Theorem 6. Let E be an ordered Banach space with closed, normal and generating
positive cone E+. If E has the countable interpolation property and {x∗

n} is a

sequence of E∗ so that x∗
n

w∗
−−→ 0, then the set A = {x∗

n} is equi-l1-continuous.
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GROTHENDIECK ORDERED BANACH SPACES WITH INTERPOLATION 5

Proof. Note that E∼ = E∗ and also that A is bounded. Suppose that A = {x∗
n} is

not equi-l1-continuous. Then by Proposition 3, there exists a positive l1-sequence
{xn} of E with ρA(xn) > ε, for each n. Since {xn} is a positive l1-sequence, there
exists x ∈ E+ so that

(2) 0 ≤
n∑

i=1

xi ≤ x, for each n.

Also by the relation ρA(xn) > ε, for each n there exists a real number kn,
so that |x∗

kn
(xn)| > ε. We assert that the set K = {kn | n ∈ N} is infinite

because if we suppose that this set is finite we have a contradiction as follows:
0 ≤ |x∗

kn
|(
∑n

i=1 xi) ≤ |x∗
kn
|(x); therefore limi−→∞ |x∗

kn
|(xi) = 0, for each kn. Hence

there exists i0 ∈ N so that |x∗
kn
(xi)| ≤ |x∗

kn
|(xi) < ε for each i ≥ i0 and each

kn ∈ K.
So the set K is infinite. Therefore there exists a subsequence of {x∗

n} which we
denote again with {x∗

n} such that

(3) |x∗
n(xn)| > ε, for each n.

Let

φ =

∞∑

i=1

|x∗
i |
2i

,

Iφ =
⋃∞

n=1[−nφ, nφ] be the ideal of E∗ generated by φ and M = {x ∈ E | x∗(x) =
0, for any x∗ ∈ Iφ} be the annihilator of Iφ in E.

We define below a positive operator T : �∞ → E/M . For each a = (ai) ∈ �+∞ we
put fa

n =
∑n

i=1 aixi, for each n ∈ N. By (2), fa
n ≤ ||(ai)||x; hence the set of upper

bounds

Ua = {w ∈ E | fa
n ≤ w, for each n}

of {fa
n}, is nonempty. We show below that φ restricted on Ua takes a minimum on

a subset Sa of Ua and that for each A ⊆ Ua finite there exists v ∈ Sa with A ≥ {v}.
Indeed, if {gn} ⊆ Ua such that

inf{φ(gn) | n ∈ N} = inf{φ(w) |w ∈ Ua},
by the countable interpolation property there exists u ∈ E with fa

n ≤ u ≤ gn for
each n; therefore u ∈ Sa. Also for any A ⊆ Ua we have A ∪ {u} ≥ {fa

n}, where
u ∈ Sa. Hence there exists v ∈ E such that A∪{u} ≥ {v} ≥ {fa

n}; therefore v ∈ Sa.
Let π : E → E/M with π(x) = x+M be the quotient map. For any a = (ai) ∈

�+∞ we put

T (a) = π(u), where u ∈ Sa.

We will show that π(u) = π(v) for any u, v ∈ Sa. Therefore T is well defined.
First we note that Ker(φ) ∩ E+ = M ∩ E+ and Sa ⊆ E+. Since u, v ∈ Ua there
exists w ∈ Sa with u, v ≥ w. So u − w, v − w ∈ Ker(φ) ∩ E+ ⊆ M ; therefore
u − v = (u − w) − (v − w) ∈ M and T is well defined. We will show that T is
positive homogeneous and additive, so we suppose that

a = (ai), b = (bi) ∈ �+∞, T (a) = π(u), T (b) = π(v) and T ((a+ b)) = π(z).

It is easy to show that Uλa = λUa for any λ > 0; therefore T is positive homoge-
neous. Since Ua+Ub ⊆ Ua+b, we have u+v ∈ Ua+b; therefore φ(u+v) ≥ φ(z). Also
z ≥ fa

n +f b
m for each n,m because if n ≥ m, z ≥ fa+b

n = fa
n +f b

n ≥ fa
n +f b

m. There-
fore there exists h ∈ E such that z−fa

n ≥ h ≥ f b
m for each n,m. So h ∈ Ub; therefore
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6 IOANNIS A. POLYRAKIS AND FOIVOS XANTHOS

there exists w ∈ Sb such that z − fa
n ≥ h ≥ w for each n. So we have z − w ≥ fa

n

for each n. Therefore z − w ∈ Ua; hence there exists p ∈ Sa such that z − w ≥ p.
So we have φ(z) ≥ φ(w) + φ(p) = φ(u+ v). Therefore T (a+ b) = T (a) + T (b).

For any a ∈ �∞ we put T (a) = T (a+) − T (a−). π(E+) is closed because the
quotient map is open. Also π(E+) is a cone because if we suppose that ±w ∈ π(E+)
we have w = π(x),−w = π(y), where x, y ∈ E+; therefore π(x+ y) = π(0). So we
have x+ y ∈ M ∩ E+; therefore φ(x+ y) = 0, which implies that φ(x) = φ(y) = 0
because x, y ∈ E+. Hence x, y ∈ Ker(φ) ∩ E+ = M ∩ E+ and w = π(x) = 0. By
the Lozanovsky Theorem, T is continuous. Also for any n we have T (en) = π(xn),
where en is the vector of �∞ with the value one in the n-position and zero elsewhere.

The spaces (E/M)∗ and M⊥ = {x∗ ∈ E∗ | x∗(x) = 0, for eachx ∈ M} are
isometric with x∗(π(x)) = x∗(x) for each x∗ ∈ M⊥. Note that x∗

n ∈ M⊥ because
|x∗

n|
2n ≤ φ for each n and Iφ ⊆ M⊥. Also T ∗(x∗

n)
w∗
−−→ 0 because T ∗ is w∗ to w∗

continuous. By the Phillips Lemma (and the notation before the theorem) we have

(4) (T ∗(x∗
n))

1 ||·||−−→ 0;

therefore

x∗
n(xn) = T ∗(x∗

n)(en) = (T ∗(x∗
n))

1(en) + (T ∗(x∗
n))

2(en) = (T ∗(x∗
n))

1(en),

because (T ∗(x∗
n))

2(en) = 0 for each n. By (3) we have that |(T ∗(x∗
n))

1(en)| >
ε, which contradicts (4) and the theorem is true. �

Lemma 7. Suppose that E is an ordered vector space with the countable interpo-
lation property and {xn} is a sequence of E+.

(i) If the sequence {xn} is dominated by x ∈ E, there exists an increasing
sequence {un} of E+, such that

(5) x1, ..., xn ≤ un ≤
n∑

i=1

xi, x, for each n.

(ii) If {yn} is a sequence of E such that {x1, ..., xn} ≥ {ym | m ≥ n} for each
n, there exists a decreasing sequence {wn} of E+, such that

(6) {x1, ..., xn} ≥ {wn} ≥ {ym |m ≥ n}, for each n.

Proof. (i) We put u1 = x1. Then x1, x2 ≤ x1+x2, x and by the interpolation prop-
erty, there exists u2 ∈ E so that x1, x2 ≤ u2 ≤ x1 + x2, x. We have x1, x2, x3, u2 ≤
x1 + x2 + x3, x so there exists u3 ∈ E so that x1, x2, x3, u2 ≤ u3 ≤ x1 + x2 + x3, x,
and continuing this process we have that (5) is true for each n.

(ii) {0} ∪ {ym | m ≥ 1} ≤ x1, so there exists w1 with {0} ∪ {ym | m ≥ 1} ≤
{w1} ≤ {x1}. Therefore {0}∪{ym | m ≥ 2} ≤ {w1}∪{x1, x2} and by the countable
interpolation property, there exists w2 ∈ E so that {0} ∪ {ym | m ≥ 2} ≤ {w2} ≤
{w1} ∪ {x1, x2}, and continuing we have that (6) is true for each n. �

Theorem 8. Let E be an ordered Banach space with closed, normal and generating
positive cone E+. If E has the countable interpolation property, then for any equi-
l1-continuous A ⊆ E∗, for any x ∈ E+ and for any ε > 0, there exists y∗ ∈ E∗

+

such that

(|x∗| − y∗)+(x) < ε,

for each x∗ ∈ A.
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GROTHENDIECK ORDERED BANACH SPACES WITH INTERPOLATION 7

Proof. It is enough to show the theorem with the extra assumption that A is solid
because by Proposition 4, A is equi-l1-continuous if and only if Sol(A) is equi-l1-
continuous. So we suppose that A is solid. Suppose that the theorem is not true.
Then there exists ε > 0 and x ∈ E+ such that for each y∗ ∈ E∗

+ there exists x∗ ∈ A
such that

(7) (|x∗| − y∗)+(x) > 2ε.

As we show below, a sequence {x∗
n} of A+ = A ∩ E∗

+ exists so that

(8) (x∗
n+1 − 2n−1

n∑

i=1

x∗
i )

+(x) > 2ε, for each n.

Indeed, if we suppose in (7) that y∗ ∈ A+ and we put x∗
1 = y∗ and x∗

2 = |x∗|, then
x∗
2 ∈ A+ because x∗ ∈ A and A is solid and the relation is true for n = 1. If in

(7) we put y∗ = 2(x∗
1 + x∗

2) and x∗
3 = |x∗|, we have that x∗

3 ∈ A+. Therefore (8) is
true for n = 2, and continuing this process we have that (8) is true for each n. By
the Riesz-Kantorovich formula, (z∗)+(x) = sup{z∗(y) | y ∈ [0, x]} for any z∗ ∈ E∗.
Therefore by (8), a sequence {yn} of [0, x] exists such that

(9) (x∗
n+1 − 2n−1

n∑

i=1

x∗
i )(yn) > 2ε, for each n.

For each n ∈ N, {yn+k|k ∈ N} is a sequence of the interval [0, x] of E. Therefore
by Lemma 7, an increasing sequence {unk|k ∈ N} of E+ exists so that

(10) yn, yn+1, ..., yn+k ≤ unk ≤
n+k∑

i=n

yi, x, for each k.

Since {unk} is an increasing sequence of the interval [0, x], by Proposition 5, it is
ρA-Cauchy. Therefore a natural number kn exists so that

(11) ρA(unk − unkn
) < 2−nε for each k ≥ kn.

Suppose that m ≥ n. Then for each k ≥ m, kn we have ym ≤ unk. Therefore

ym − unkn
≤ unk − unkn

and unk − unkn
≥ 0.

So there exists znm ∈ E+ so that

(12) {0, ym − unkn
} ≤ {znm} ≤ {unk − unkn

| k ≥ m, kn}.
So we have defined a double sequence {znm | n ∈ N,m ≥ n} of E+ for which we
have

(13) x∗
n+1(zin) ≤ ρA(uik − uiki

) ≤ 2−iε,

for each i ≤ n and each k ≥ n, ki. By (12), for any j = 1, 2, ..., n and m ≥ n, we
have

ujkj
≥ ym − zjm; therefore ujkj

≥ ym −
m∑

i=1

zim.

By (ii) of Lemma 7, a decreasing sequence {wn} of E+ exists so that

(14) {ym −
m∑

i=1

zim | m ≥ n} ≤ {wn} ≤ {u1k1
, u2k2

, ..., unkn
}, for each n ∈ N.
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8 IOANNIS A. POLYRAKIS AND FOIVOS XANTHOS

Then {w1 − wn} is an increasing sequence dominated by w1 and according to
Proposition 5, {w1 −wn}, is ρA-Cauchy. This is a contradiction because as we will
show below, {w1 − wn} is not ρA-Cauchy; therefore the theorem is true.

We prove this assertion as follows: For each n we have wn ≥ yn −
∑n

i=1 zin.
Therefore

x∗
n+1(wn) ≥ x∗

n+1(yn)− x∗
n+1(

n∑

i=1

zin).

By (9) we have

(15) x∗
n+1(yn) > 2ε

and by (13),
∑n

i=1 x
∗
n+1(zin) ≤ ε

∑n
i=1 2

−i. Therefore we have

(16) x∗
n+1(wn) ≥ 2ε− ε

n∑

i=1

2−i > ε, for each n.

Also, for any wr we have x∗
n+1(wr) ≤ x∗

n+1(urkr
) and by (10) we have urkr

≤∑r+kr

i=r yi. Therefore

x∗
n+1(wr) ≤ x∗

n+1(

r+kr∑

i=r

yi) ≤
∞∑

i=r

x∗
n+1(yi).

By (9) we have x∗
i (yn) ≤ 2−n+1x∗

n+1(yn) for each n ≥ i. Therefore, if M is a norm
bound of A and c a constant of the normal cone E+, we have

x∗
i (yn) ≤ Mc||x||2−n+1, for each n ≥ i,

because {yn} is a sequence of [0, x]. Therefore
(17)

x∗
n+1(wn+1) ≤

∞∑

i=n+1

x∗
n+1(yi) ≤

∞∑

i=n+1

2−i+1M ||x||c = 2−n+1Mc||x|| for each n.

So, by the definition of ρA and by (16) and (17) we have

ρA(wn − wn+1) ≥ x∗
n+1(wn − wn+1) ≥ ε− 2−n+1M ||x||c,

for each n. Therefore {w1 − wn} is not ρA-Cauchy and the theorem is true. �

Theorem 9. Let E be an ordered Banach space with closed and normal positive
cone E+. If E has an order unit e and E has the countable interpolation property,
then E is a Grothendieck space.

Proof. By [4], Theorem 2.63, the order unit norm and the initial norm of E are
equivalent, and suppose that E is equipped with the order unit norm, which we

denote by ||.||. Suppose that A = {x∗
n} ⊆ E∗ and x∗

n
w∗
−−→ 0. By Theorem 6, A is

equi-l1-continuous. Therefore by Theorem 8, for any ε > 0, there exists y∗ ∈ E∗
+ so

that

||(|x∗| − y∗)+|| = (|x∗| − y∗)+(e) < ε, for each x∗ ∈ A.

Then we have

|x∗| = |x∗| ∧ y∗ + (|x∗| − y∗)+ ∈ [0, y∗] + εUE∗ ,

where UE∗ is the unit ball of E∗; therefore

A ⊆ [−y∗, y∗] + εUE∗ .
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By the Dunford-Pettis Theorem, [13], Theorem 2.5.4, A is a relative weakly compact

subset of the AL-space E∗. If we suppose that x∗
n � w−→ 0, there exists a subsequence

{x∗
kn
} of {x∗

n} and f ∈ E∗∗ such that inf{f(x∗
kn
)} > 0. This leads to a contradiction

as follows: The set {x∗
kn
} has a weakly convergent subsequence to a point x∗

0 ∈ E∗.

Since x∗
n

w∗
−−→ 0 we have that x∗

0 = 0, but this is impossible because inf{f(x∗
kn
)} > 0.

Therefore x∗
n

w−→ 0 and E is a Grothendieck space. �

Let K be a nonempty, compact and convex subset of a locally convex Hausdorff
topological vector space. Then the space A(K) of affine continuous real-valued
functions on K with the pointwise ordering and the supremum norm is an ordered
Banach space and the constant function 1 is an order unit of A(K), but A(K) is
not necessarily a lattice. By [11], Theorem 6, page 16 and [4], Theorem 2.63, any
ordered Banach space E, with a closed and normal positive cone E+ and an order
unit is order isomorphic with an A(K) space, where K is as above. Hence, under
the above notation, Theorem 9 can be stated equivalently as follows:

Theorem 10. Any A(K) space with the countable interpolation property is a
Grothendieck space.

Recall that if E,F are ordered normed spaces, denote by L(E,F ) the space of
bounded operators of E into F and by Lr(E,F ) the space of regular operators, i.e.
the space of bounded operators of E into F which are the difference of two positive
operators. Also for any e ∈ E+ denote by Ie =

⋃
n∈N

[−ne, ne], the order convex
subspace of E generated by e. Then ||x||e = inf{λ > 0 | x ∈ [−λe, λe]} is the
order unit norm of Ie.

If E,F are Banach lattices, then Lr(E,F ), equipped with the regular operator
norm ||T ||r = inf{||S|| | S ∈ L+(E,F ), |T (x)| ≤ S(|x|) ∀x ∈ E+}, is a Banach
space and its positive cone L+(E,F ) is generating, || · ||r-closed and || · ||r-normal.

Corollary 11. Suppose that E,F are Banach lattices. If the space of regular
operators Lr(E,F ) of E into F has the countable interpolation property, then for
every T ∈ L+(E,F ), the order convex subspace IT of Lr(E,F ) generated by T ,
equipped with the order unit norm || · ||T , is a Grothendieck space.

Proof. First we note that IT , as an order convex subspace of Lr(E,F ), has the
countable interpolation property. By [4], Theorem 2.55 and Theorem 2.60, the pos-
itive cone I+T = IT ∩L+(E,F ) of IT is ||·||T -closed and (IT , ||·||T ) is a Banach space.

Also I+T is || · ||T -normal. Therefore by Theorem 9, (IT , || · ||T ) is a Grothendieck
space. �

We complete this study with an example of an order convex subspace IT gen-
erated by a positive vector T of an Lr(E,F ) space which (the space IT ) is not a
vector lattice. Hence IT is an example of an ordered Banach space that satisfies
the conditions of Theorem 9, but is not a vector lattice. In Example 3.2 of [17], it
is noted that if F = C(K), where F has the countable interpolation property but
F is not σ-Dedekind complete, then, by [1], Theorem 3.10, Lr(c, C(K)) is not a
lattice but it satisfies the countable interpolation property, by Theorem 3.1 of [17],
which we have referred to in the introduction. If K = β(N) \ N, where β(N) is the
compactification of N, then the space F = C(K) has the countable interpolation
property but it is not σ-Dedekind complete; see [15].
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Example 12. Suppose that E = Lr(c, C(K)), where K = β(N) \ N. Then there
exists T ∈ E, so that the supremum of {T, 0} does not exist in E. If T = T1 − T2,
where T1, T2 ∈ E+ and L = T1 + T2 and I = IL is the order convex subspace of
E generated by L, the supremum {T, 0} in I does not exist. Indeed if we suppose
that G is the supremum of {T, 0} in I, then this is the supremum of {T, 0} in E,
because for any T ′ ∈ E, T ′ ≥ T, 0, we have that T ′, L ≥ T, 0 and by the countable
interpolation property there exists G′ ∈ E, so that

T ′, L ≥ G′ ≥ T, 0.

By the definition of I we have that G′ ∈ I; hence T ′ ≥ G′ ≥ G. So we have that G
is also the supremum of {T, 0} in E, a contradiction.

A sequence {xn} of an ordered Banach space E is a positive basis of E if
{xn} is a Schauder basis of E and E+ = {

∑∞
n=1 anxn | an ≥ 0}. Note that by [16],

Theorem 16.3, page 473, if E is an ordered Banach space with a positive basis {xn},
then {xn} is unconditional (or equivalently E is a Banach lattice with respect to
an equivalent norm) if and only if E+ is generating and normal.

Theorem 13. Let E be an ordered Banach space with a positive basis {xn} and
generating positive cone E+. If F is an ordered Banach space with closed and
normal positive cone F+ and if F has the countable interpolation property, then
Lr(E,F ) has the countable interpolation property.

Proof. Suppose that {Vp}, {Wq} are sequences of Lr(E,F ) such that Vp ≤ Wq for
each p, q ∈ N. Then Vp(xn) ≤ Wq(xn) for each p, q ∈ N and by the countable
interpolation property of F , a sequence {yn} of F exists so that

(18) Vp(xn) ≤ yn ≤ Wq(xn) for each p, q and each n.

For any x =
∑∞

n=1 anxn ∈ E+, the sequence {an} is positive and we have

u = V1(
n∑

i=m

aixi) ≤ v =
n∑

i=m

aiyi ≤ w = W1(
n∑

i=m

aixi).

If c is a constant of the normal cone F+ we have 0 ≤ v − u ≤ w − u; therefore
||v − u|| ≤ c||w − u|| from where we get that ||v|| ≤ 2(c + 1)max{||w||, ||u||}.
Therefore we have

||
n∑

i=m

aiyi|| ≤ 2(c+ 1)max{||V1||, ||W1||}||
n∑

i=m

aixi||

and we have that
∑∞

n=1 anyn exists in F . For any x =
∑∞

n=1 anxn ∈ E+ we put

T (x) =

∞∑

n=1

anyn.

Then T is positive homogeneous and additive in E+ and we extend T in E by the
formula T (x) = T (x1)−T (x2), where x = x1−x2, x1, x2 ∈ E+. Note that T is well
defined because if x = y1−y2, y1, y2 ∈ E+, we have T (x1)−T (x2) = T (y1)−T (y2).
By (18), we have that

Vp ≤ T ≤ Wq

for any p, q. Since Wq − T ≥ 0, by the Lozanovsky theorem, Wq − T is continuous
and therefore regular. So T is regular and Lr(E,F ) has the countable interpolation
property. �
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