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ABSTRACT 

We give necessary and sufficient conditions in order for an infinite-dimensional, 
closed cone P of a Banach space X to be locally isomorphic to the positive cone 
1:(r) of z,(r). 

1. INTRODUCTION 

In [4, Theorem 4.11, it is proved that if an infinite-dimensional Banach 
space X, ordered by the closed generating cone P, has the Riesz decomposi- 
tion property, then X is order-isomorphic to Z,(r) iff P has a closed, 
bounded base with the Krein-Milman property. In the same paper the 
concept of the continuous projection property (CPP) is introduced for an 
ordered Banach space, by means of which the existence of strongly exposed 
points in a base for the positive cone of X is studied. 

In the present paper (Theorem 4.1) we prove that if P is an infinite 
dimensional closed cone of a Banach space X and the cone P has the CPP, 
then the cone P is locally isomorphic to 2: (I) iff P has a closed, bounded 
base with the Krein-Mihnan property. As an application we obtain a general- 
ization of [4, Theorem 4.11 by replacing the Riesz decomposition property 
with the CPP (Corollary 4.1). Also, in Proposition 4.1, we give various 
conditions in order for an infinitedimensional closed cone P with the 
Radon-Nikodym property to be locally isomorphic to 2: (P). Finally, we note 
that the hypotheses of Theorem 4.1 do not assure the closedness of the 
subspace Y = P - P of X, and therefore that we cannot conclude, by virtue of 
[4, Theorem 4.11, that Y is order-isomorphic to Zi( I). 
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2. NOTATION 

Let X be a Banach space. We denote by X * the topological dual of X, 
and for each convex subset K of X we denote by ep(K) [respectively, by 
sep(K)] the set of extreme [respectively, strongly exposed] points of K. A 
point x of K is a strongly exposed point of K iff there exists g E X * such 
that g(x) > g(y) V’y E K \ {x} and for each sequence (x,) of K, 

@L-m g(x,) = g(x) implies limv_m x, = x. For each A c X we denote by 
A the closure of A and by GA the closed convex hull of A. 

Let X be ordered by the cone I’. A point x of P is an extremal point of P 
iff for each y E X, 0 < y < x implies y = hx where h E [w +. We denote by 
EP( P) the set of extremal points of P. We say that the cone P is generating if 
X = P - P. A linear functional f of X is strictly positive if f(x) > 0 for each 
x E P \ (0). A subset B of P is a base for P if there exists a strictly positive 
linear functional f of X such that B = { 1c E P 1 f(x) = l}. Then we say that 
the base B for P is defined by the functional 5 Each base for P is convex. 
The cone P is well based if P has a bounded base B and 0 G B. 

For notions not defined here, see [l] and [2]. 

3. CONES WITH THE CONTINUOUS PROJECTION PROPERTY 

Let X be a normed space ordered by the cone P. In order to study the 
existence of strongly exposed points in a base B for the cone P, in [4], the 
continuous projection property for the space X has been defined as follows: 
We say that an extremal point x,, of P has continuous projection if there 
exists a linear continuous, positive projection P,., of X onto [x0] such that 
P,,<x) G x Vx E P. We say that X has the continuous projection property 
(CPP) if x0 E EP(P) implies that x,, has continuous projection. 

If X has the CPP, then for each x,, E EP(P) we denote by Px, the 
continuous positive projection of X onto [x,], and by p(x,, .) the continuous 
linear functional of X defined by the formula 

Let Y = P - P. If X has the CPP, then Y, ordered by the cone P, has the 
CPP. If Y has the CPP, then for each x0 E EP(P) there exists a continuous 
positive projection, P,.,(x) = p(x,, x)x,, of x,, defined on Y. If $(x0;) is a 
Hahn-Banach extension of p(x,;) on X, then P:,<x) =$(x0, x)x,, is a 
continuous, positive projection of x0 defined on X. So we have that X has 
theCPPiff Y=P-P hastheCPP. 
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Let the cone P be closed, and Y have the Riesz decomposition property 
(i.e., Vx, y, z E P with x < y + z, there exist xi, xs E P such that 0 < xi < y, 
0 < x2 < z, and x = x1 + ra). Then Y is Archimedean, and by [5, Theorem 
1.21, for each x0 E EP(P) there exists a linear functional f(x,;), defined on 
Y=P-Pbytheformulas 

f(xcu x) = sup{ t E Iw + Jtx, < x} VXEP, 

(1) 
fh x-Y)= f&+f6%~ Y> vx, y E P. 

(In [5, Theorem 1.21, the existence of f(x,;) is deduced from the fact that Y 
is Archimedean and Y has the Riesz decomposition property.) 

Let TJx) = f(x,, x)x0 Vx E Y. Then TX, is a linear, positive projection 
of Y onto [x,]. Since the cone P is closed, we have that TJx) < x V’x E P. If 
f(x,;) is continuous Vx, E EP(P), then x,, has continuous projection and 
the space Y has the CPP. If Y has the CPP, then for each x0 E EP(P), there 
exists a continuous positive projection P,,(x) = p(x,, x)x0 of Y onto [x0]. 
This projection is unique, and therefore f(x,;) = p(x,;) is continuous. So, if 
the cone P is closed and X has the Riesz decomposition property, then X 
has the CPP iff Y = P - P has the CPP iff for each x,, E EP(P) the linear 
functional f(x,;) defined by the formula (1) is continuous. For example, if 
Y = P - P is a Banach space, P is closed, and Y has the Riesz decomposition 
property, then we have that f(x,, a) is continuous because each positive 
linear functional of a Banach space ordered by a closed, generating cone is 
continuous [2, 3.5.61 and therefore that Y has the CPP. 

Also, if Y = P - P is a locally solid linear lattice, then we can show that 
the functional f(x,;) is continuous for each x0 E EP(P) and therefore that 
Y has the CPP [4, Proposition 3.21. Since the CPP in a normed space X, 
ordered by the cone P, depends only on P, in this paper we shall say “P has 
the CPP” instead of “X has the CPP.” 

4. CONES LOCALLY ISOMORPHIC TO 1: (I) 

Let G be a closed and convex subset of a Banach space X. The set G has 
the Krein-Milman property (KMP) if K =&p(K) for each closed, convex 
and bounded subset K of G. It is known [l, 3.5.71 that the set G has the 
Radon-Nikodym property (RNP) iff K = Esep(K) for each closed, convex, 
and bounded subset K of G. 

Let l? be any set. We denote by Z,(I) the Banach space of all real 
functions E: I+W, [=([(i))i,r, such that Zi,&(i)] < +oo, with norm 
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11511 = &,,l((i)l. The space Z,(P) has the RNP [l, 4.1.91, and the space Z,(P), 
ordered by the cone Z:(~)={~EZ~(~)I~(~)>/O Viol?}, is a Banach 
lattice. The set B = { [ E Z:(P) ( 11-$11= l} is a closed, bounded base for the 
cone Z:(r). We denote by 1, the space Zl(N). 

A closed cone P of a Banach space X is locally isomorphic to a closed 
cone Q of a Banach space Y if there exists a map T of P onto Q such that 
T(Xx + py) = AT(x)+ pT(y) Vx, y E P, A, p E Iw + and if for each sequence 
x, of P we have limv_+m x, = r iff limV,,T(x,) = T(x). In this case we say 
that T is a local isomorphism of P onto Q. An ordered Banach space X is 
order-isomorphic to an ordered Banach space Y iff there exists an isomor- 
phism T of X onto Y and T, T- ’ are positive. 

THEOREM 4.1. Let X be a Banuch space ordered by the infinitedimen- 
sionul, cbsed cone P. If P has the CPP, then: 

(i) P is ZocaZZy isomorphic to Z:(r) iff P has a closed, bounded base 
with the KMP. 

(ii) P is locally isomorphic to 1, iff P has a separable, closed, bounded 
base with the KMP. 

Proof. Let T be a local isomorphism of P onto Z:(P). Since B = { 5 E 

Z:(r) 1 ii511 = 11 is a closed, bounded base for Z:(P) with the KMP, we have 
that T- ‘(B) is a closed, bounded base for P with the KMP. 

Let B be a closed, bounded base for P with the KMP. By [2,3.8.12] there 
exists a uniformly monotonic continuous linear functional f of X. 

Let C be the closed and bounded base for P defined by f. Then 
ep(C) # 0 because ep( B) # 0 and the extreme points of C coincides, up to a 
scalar multiple, with the extreme points of B. Let 

ep( C) = { b,ji E r} . 

We shall prove that 

X= C p(bi,x)bi ad C P(bi,x)<+m VXEP. (1) 
iET iCr 

First we shall show that 

L= {xEPIPb,(x)=OViEr} = (0). 

The set L is a cone, and it is closed, because P,, is continuous Vi E P. If 
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L # { 0}, the set B’ = B n L is a nonempty, closed, and bounded base for L. 
So EP( L) # 0 because ep( B’) # 0. Also EP( L) c EP( P), because for each 
x E L and y E P, 0 < y < x implies that y E L. Hence bj E EP( L) for at 
least one j E I. This contradicts the definition of L, because P,,(bj) = bj. 
Hence L = (0). 

We denote by F the set of finite subsets of I, and for each x E P and 
6 E F we denote by xg the sum 

Let x EC. Then (x~)*~~ is an upward-directed net of P (if 6,, 6, E F, we 
say that 6, < 6, iff 6, c 6,). We shall show that xg = sup{ PB,(x) 1 i E 6). If 
zap,(x) Vi=&, then w=z--P,(x)>O. If ~GS and j#i, then w> 
P, (wi = P,, (z) > Phi(x) and therefore z > P, (x) + P, (x). Similarly we have 
that x > x,;‘hence 

I , 

x* = sup{P,,(x)~i E 6) G x VIE F. 

By [2, 3.8.81, we have that 

y=limxs< sup (X8) < x. 
6EF 

This implies that PB,(x) < y < x Vi E I and therefore that P,f(x - y) = 0 
Vi E r, because Ph,(x) G Pb,( y) G Pb,(x) Vi E r. Hence x = y, and therefore 

x = c p(b,, x)bi. 
iET 

Since f E X * and f define the base C, we have that 

f(x)= C p(bi>x) ~1. 
iEr 

So (1) is true because it is true for each x E C. We shall prove that the map 

is a local isomorphism of P onto 1: (I). 
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It is clear that T(Xx + py) = XT(r)+ pT(y) Vx, y E P and A, p E R +. T 
is one-to-one, because if T(r) = T(y) then p(bi, X) = p(bi, y) Vi E I; hence 
by (1) we have that x = y. 

Since the set C is bounded, there exists M E R + such that 

We shall show that the map T is onto. 

Let 5 = (I(i))i E r E Z:(r). For each 6 E F we put 

x8= C .$(i)bi and ,&=T(r,). 
is6 

Let E > 0. Since lim Es = 6, there exists 6, E F such that 

115*, - 58,ll < E V6,,6, > 6,. 

If 8; = 6, \ 6, and 8; = 6, \ 6,, then 5si - tsh = Es, - Es,* Since tsiy (8; are 
disjoint, we have that 

and therefore 

IlE8,- tS,ll = lIEsi + 5S;ll = Ilt8ill+ lltSJl ’ ” 

so 

Hence the net (~~)~=r is Cauchy. If x = limr,, then x E P and p(bi, r) = 
t(i) V’i E I. So T(x) = 5 and the map T is onto. 

Let (x,) be a sequence of P, and x E P. We shall show that 

lim x,=x - 
Y’M 

Vl$m T(r,) = T(x). 
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Let lim v_mT(x,) = T(x). Then 

Then for each Y E N we have that 

andthereforelim,,,x,=x. 
Let lim y _ m X, = r. We shall show that T(x,) + T(x). To show this it is 

enough to show that for each E > 0 there exists y0 E N such that 

Let E > 0. Since T(x) E Z:(r), there exists 6, E F such that 

c &,X)<& V8’>,6,. 
iE6’\& 

(2) 

Now X, + X, so there exists v1 E N such that 

11% - XII < E vu > vl. (3) 

Since 6, is finite and lim, _ m p(bi, x,) = p(bi, x) Vi E r’, there exists v2 EN 
such that 

c Ip(bi,xv-x)l<E vv>v2. (4) iCS, 

Let a constant v EN, and v > v0 = max{ vl, v~}. By (3), there exists 6, E F 
such that 

II c p(l+, x, - X)bi < 2E II V6 > 6,. 
is6 

(5) 
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Let 6, > a,, 8, and 6 > S,. Then 

+ C P(bi>x)+ 1 P(biaxp) ““2, (6) 

Xv-X)bi + C P(bl>Xu-x)bi II II is8 /I 

(7) 

By (4), (5), and (2) we have that 

+liiEg,, P(hl~‘)h,~l). 
0 

C P(bi, xy> G ‘4fll(M + 1). 
iE6\So 

By (6), (4), (2), and (7) we have 

i~~~~~~~~~~~~~I~~~+~~lIfll~~+~~ “>‘P.* 

Since (8) is true for each u > v”, we have that 

(8) 

II%)-TM= *zJP@i, xv- x)1< 2Et-2Ellfll(M+l) vu > V”, 

and therefore T( r,) + T(X). 
Hence P is locally isomorphic to Z:(r) and statement (i) is true. 
Let P be locally isomorphic to Z,(r). Then P has a separable closed and 

bounded base iff 1: (r) has a separable closed and bounded base. If D is 
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y;&;base for 1:(r), then ep(D)= {cili~r} #0 and O<p,<Jltjl<p, 

Since I[, - tjl = [, + tj Vi # j, we have that 

ll(i - tjll = IlEi + Ejll = lIEill+ IlEjll ’ 2P1 Vi # j. 

So the set r is countable, because i) is separable and 115, - E,ll >, 2p, V’i f j. 
Hence P is locally isomorphic to 1:) and the statement (ii) is true. H 

COROLLARY 4.1. Let X be u Ranach space ordered by the closed, 
generating cone P, and P have the CPP. Then: 

(i) X is order-isomorphic to Z,(r) iff P has a closed, bounded base with 
the KMP. 

(ii) X is order-isomorphic to 1, iff P has a separable, closed, bounded 
base with the KMP. 

Proof. The “only if” part of (i) is obvious. Let P have a closed, bounded 
base with the KMP. Then there exists a local isomorphism T of 1: (I?) onto P. 
If 

G(t) = T(5+ > - T(t- > VE E w, 

then G is linear, and G is onto because P is generating. G is one-to-one, 
because if G([,) = G(t,), then T(6: + 5; ) = T(t; + <,’ ) and therefore 
t1 = t2. By the definition of G we have that G and G-’ are positive. The 
local isomorphism T is defined by the formula 

T(5) = c t(i>h v’E=(t(i))iE~El:(r), 
isr 

where { bi I i E r } is the set of extreme points of a bounded base C for P. If 
IJxJJ < M V’r E C, then for each E E I,(r) we have 

llG(t> II G llT(t+ > 11 + IIT@ 1 II G M(ll5’ II+ IIt- II) = Wl5ll. 

So the map G is continuous. By the closed-graph theorem we have that G ’ 
is continuous and therefore statement (i) is true. 

Statement (ii) follows from (i) and from statement (ii) of Theorem 4.1. n 
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Let X be a Banach space ordered by the cone P, P have the CPP, and B 
be a base for P defined by the functional f E X *. In [4] it is proved that: 

(i) If sep( B) # 0 then P is well based [4, Theorem 3.11. 
(ii) If ep( B) # 0 and P is well based, then sep(B) f 0 [4, Proposition 

3.31. 
(iii) If the cone P is well based and the cone P has the RNP, then 

sep( K) # 0 for each closed and convex subset K of P [4, Proposition 4.11. 

Let K be a closed and convex subset of a Banach space X. For each 
p E R + we denote by K,, K,,, the sets {x E K 1 llxll d p}, {x E K I llrll = p}, 
whenever these sets are nonempty. In [3] the following result is proved: If the 
space X has the RNP and K is a closed, convex and unbounded subset of X, 
then K, =EK,,, for at least one p E Iw + iff sep( K) # 0 iff K is dentable 
[3, Proposition 31. The proof of this statement is simple for the case where K 
is a closed, convex, unbounded subset of a closed, convex subset A of X and 
the set A has the RNP. 

By means of these results, in the following proposition we give necessary 
and sufficient conditions in order for a cone P to be locally isomorphic to 

V(P). 

PROPOSITION 4.1. Let X be a Banach space ordered by the infinite- 
dimensional closed cone P, and P have the CPP. If P has the KMP, 
statements (i), (ii), (iii) and (iv) b e Zo w are equivalent. Zf P has the RNP, all 
the following statements are equivalent: 

(i) P is locally isomorphic to Z:(r). 
(ii) P has a closed, bounded base. 

(iii) sep( B) # 0 for at least one base B for P defined by f E X *. 
(iv) 0 E sep( P). 
(v) P has a dentable base defined by f E X*. 

(vi) P is dentable. 
(vii) sep( K) # 0 for each closed and convex subset K of P. 

Proof. Let P have the KMP. Then each closed base for P has the KMP, 
and by Theorem 4.1 we have that (i) = (ii). By [4, Theorem 3.1 and 
Proposition 3.31 we have that (ii) e (iii). If P has a closed bounded base, 
there exists a uniformly monotonic, continuous linear functional g of X 
[2, 3.8.121. The functional - g strongly exposes 0 in P. So (ii) j (iv). Also if 
g strongly exposes the 0 in P then it is easy to show that - g is uniformly 
monotonic; hence the base B for P defined by - g is closed and bounded. So 
(iv) a (ii). Let P have the RNP. Then for each closed and convex subset A of 
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P we have that sep(A) # 0 iff A is dentable. Hence (v) = (iii) and (vi) a (v). 
By [4, Proposition 4.11 we have that (ii) *(vii). Also (vii) * (iii) * (ii), and 
the proof is complete. n 

In Theorem 4.1 we proved that if P is an infinite-dimensional, closed 
cone of a Banach space X, B is a base for P, and 

(Sl) P has the CPP, 
(S2) B is closed and bounded, 
(S3) B has the KMP, 

then P is locally isomorphic to Z:(P). We shall show that none of the above 
conditions can be omitted. 

The positive cone I; of 1, with 1 < p < + 00 is not locally isomorphic to 
Z:, and I; has the CPP. The space 1, has strictly positive, continuous linear 
functionals; hence Zp’ has a closed base B. This base has the KMP, because 
I,, as a reflexive Banach space, has the RNP. Hence condition (S2) cannot be 
omitted. 

The positive cone L: [0, l] of L,[O, l] is not locally isomorphic to Z:(r). 
The cone L: [0, l] has the CPP, and the set B = {x E L: [0, l] 1 llxjl= l} is a 
closed and bounded base for P. Hence statement (S3) cannot be omitted. In 
the following example we show the existence of an infinite-dimensional, 
closed cone P of a Banach space X that is not locally isomorphic to Z:(r) 
and that has a closed, bounded base with the KMP. So condition (Sl) cannot 
be omitted. 

EXAMPLE 4.1. Let B be a closed, unbounded base for the positive cone 
I; of the Banach space I, with l<p<+co. Let x,EB, PEW+ with 
p>l]x,]], B,={~EB(]]x]]G~}, B,,,={~~B]IIxI]=~}, and P be the 
cone P = { Ax I A E R + and 1c E B, }. The cone P is closed, because B, is a 
closed bounded base for P [2, 3.8.31. The base BP has the KMP. 

For each x E B \ B,, the line segment xar cuts Bs,p at a point, and we 
shall denote this point of Bs,p by F(x). Then, for each x E B \ B,,, we have 
that x=x,+h[F(x)-x,] with AER, and therefore BcP-P. Hence 
1, = P - P, and the cone P is infinite-dimensional. (This shows that the cone 
P has not the CPP-see Corollary 4.1-and that Z,, ordered by the cone P, 
has not the Biesz decomposition property [4, Theorem 4.11.) 

Let T be a local isomolphism of P onto Z:(l). The base B, of P is 
separable; hence, as in the proof of statement (ii) of Theorem 4.1, we have 
that the set of extreme points of BP is countable. Since the closed unit ball of 
I, is strictly convex, we have that B,, p _ c ep( B,) and therefore that the set 
B is countable. Let y, z E B, y # z, and ]]y]] = ]]z]] = 4p. Then for each 
p%t x of the line segment yz we have that ]]xJ( > 2p and therefore that 
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F(x) exists in Bs,p. Since the map F is a one-to-one map of the line segment 

yz into Bs,p, we have that the set B,,, is uncountable and therefore that the 

cone P is not locally isomorphic to l:(r). 
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