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Abstract In this article we study the embeddability of cones in a Banach space
X . First we prove that c0 is embeddable in X if and only if its positive cone c+

0 is
embeddable in X and we study some properties of Banach spaces containing c0 in the
light of this result. So, unlike with the positive cone of �1 which is embeddable in any
non-reflexive space, c+

0 has the same behavior as the whole space c0. In the second
part of this article we give a characterization of Grothendieck spaces X according to
the geometry of cones of X∗. By these results we give a partial positive answer to a
problem of J.H. Qiu concerning the geometry of cones.
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1

Mathematics Subject Classification (2000) 46B03 · 46B40

1 Introduction

The study of Banach spaces in terms of the geometry of their cones seems to have
some interesting and surprising applications in the theory of Banach spaces. The first
important result of this kind is based on the articles of Singer [20] and Pelczynski [13],
from where we have that X is non-reflexive if and only if X contains a basic sequence
of �+-type. Note that the positive cone of a basic sequence of �+-type is isomorphic
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to the positive cone �+
1 of �1 [21, Chap. II, Theorem 10.2]. In 1964, D. Milman and

V. Milman stated, see in [12, Theorem 2.9], that a Banach space X is non-reflexive if
and only if �+

1 is embeddable in X . Polyrakis proved in [16], the following dichotomy
theorem for cones: If 〈E, F〉 is a dual system where E, F are normed spaces and P
is a σ(E, F)-closed cone of E and the positive part U+

E = P ∩ UE of the unit ball of
E is σ(E, F)-compact, then any base for P defined by an element of F is bounded
or any such a base is unbounded. So if X is reflexive, all the bases of a closed cone P
are of the same type with respect to the boundness and an analogous result holds for
the bases of the weak-star closed cones in dual spaces whenever the bases are defined
by elements of the predual.

In [5, Lemma 3.4], Casini and Miglierina proved that if a closed cone P of a Banach
space X has a base defined by a vector of X∗ and any such a base of P is bounded, then
any base defined by a vector of X∗ is weakly compact, or equivalently the positive
part U+

X of the unit ball of X is weakly compact. This result is essential for the proof
of Theorem 6.

As we have noted in the abstract, we prove that c+
0 is embeddable in X if and only

if c0 is embeddable in X . This catholic property of c+
0 convert the problem of the

embeddability of c0 in Banach spaces to a problem of geometry of cones of X . In
Theorem 6 we show that if a closed cone P of a Banach space X is isomorphic to
�+

1 and a standard closed cone defined by P is normal, then c0 is embeddable in X .
Proposition 5, is a cone analogue of the Theorem of James [8], for the embeddability
of c0 in Banach spaces with Schauder bases.

Continuing the study of cones we define a seminorm topology on X induced by a
cone P of X∗, weaker than the norm topology of X . We use this topology in order
to define a generalized type of quasi-interior points of X . In the sequel we prove that
a Banach space X is non-Grothendieck if and only if there exists a well-based cone
(see in the notations) P of X∗ such that int (P0) = ∅ and P0 has quasi-interior points
with respect to the seminorm topology of X defined by P . Qiu proved in [17], that a
Banach space X is non-reflexive if and only if there exists a well-based cone K of X∗
such that int (K0) = ∅ where K0 is the dual cone of K in X and in the same paper Qiu
posed the problem: Does any non-reflexive Banach space X contain a closed cone P
so that int (P) = ∅ and P0 is well based? In this article we give a positive answer to
this problem in the case where X is non-reflexive and separable or more general if X
has a non-reflexive, separable complemented subspace.

For cone characterizations of reflexivity see also in [5,16].

2 Notations

Let X be a normed space. Denote by X∗ the topological dual and by X ′ the algebraic
dual of X . Also denote by UX the closed unit ball and by SX the unit sphere of X . For
any A ⊆ X denote by A, A

w
the closure of A in the norm, weak, topology of X and

if A ⊆ X∗ denote by A
w∗

, the closure of A in the weak-star topology of X∗.
Suppose that P is a cone of X i.e. P is a non-empty convex subset of X and λP ⊆ P ,

for each λ ∈ R+. If moreover P ∩ (−P) = {0}, the cone P is proper or pointed.
The cone P ⊆ X induces the partial ordering ≥ in X so that x ≥ y if and only if
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x − y ∈ P , for any x, y ∈ X . If P − P = X the cone P is generating. The cone P
gives an open decomposition of X if there exists ρ > 0 so that ρUX ⊆ U+

X − U+
X ,

where U+
X = UX ∩ P . This is equivalent with the property: there exits a real con-

stant α so that for any x ∈ X there exist x1, x2 ∈ P so that x = x1 − x2 and
||x1||, ||x2|| ≤ α||x ||(in fact α = 1

ρ
). The cone P is normal if there exists c ∈ R so

that for any x, y ∈ X, 0 ≤ x ≤ y implies ‖x‖ ≤ c ‖y‖. Then c is a constant of the
normal cone P .

The cone P0 = {x∗ ∈ X∗ : x∗(x) ≥ 0 for each x ∈ P} is the dual cone of P
in X∗. If P is a cone of X∗, the set P0 = {x ∈ X : x∗(x) ≥ 0 for each x∗ ∈ P}
is the dual cone of P in X or the predual cone of P . A linear functional f of X is
positive on P if f (x) ≥ 0 for each x ∈ P and strictly positive on P if f (x) > 0 for
each x ∈ P, x 
= 0. A convex subset B of P is a base for the cone P if for each
x ∈ P, x 
= 0 a unique real number f (x) > 0 exists such that x

f (x)
∈ B. Then the

functional f is additive and positively homogeneous on P and f can be extended to a
linear functional on P − P by the formula f (x1 − x2) = f (x1) − f (x2), x1, x2 ∈ P ,
and in the sequel this linear functional can be extended to a linear functional on X . So
we have: B is a base for the cone P if and only if a strictly positive (not necessarily
continuous) linear functional f of X exists so that, B = {x ∈ P | f (x) = 1}. Then
we say that the base B is defined by the functional f and we write B = B f . It is
known, [9, Theorem 3.8.4], that a cone P of a normed space X has a bounded base
B with 0 /∈ B if and only if the dual cone P0 of P in X∗ has interior points.

We have: the base B defined by the functional f is norm bounded if and only if f is
uniformly monotonic on P , i.e. a real constant a > 0 exists so that f (x) ≥ a||x || for
each x ∈ P [16, Proposition 2]. We say that P is well-based if P has a bounded base
B, defined (the base B) by a continuous linear functional of X . Suppose that X is a
Banach space and {xn} is a sequence of X . Denote by [xn] the closed linear span of the
sequence {xn}. If any x ∈ X is of the form x = ∑∞

i=1 λi xi and this expansion is unique,
we say that {xn} is a Schauder basis or simply a basis of X . {xn} is a basic sequence if it
is a basis of [xn]. If {xn} is a basic sequence, P = {∑∞

i=1 ai xi ∈ X |ai ≥ 0 for each i}
is the positive cone of {xn}. The sequence yn = ∑kn+1−1

i=kn
λi xi , where {kn} is a strictly

increasing sequence of N with k1 = 1 and λi ∈ R for any i is a block sequence
of {xn}.

3 Conic isomorphisms

Suppose that X, Y are normed spaces and P, Q, are closed cones of X, Y respec-
tively. We say that the cone P is isomorphic to the cone Q if there exits an one-to-one,
map T of P onto Q so that T (λx + μy) = λT (x) + μT (y) for any x, y ∈ P and
λ,μ ∈ R+ and also the maps T, T −1 are continuous with respect to the induced topol-
ogies of P, Q. By the continuity of T and T −1 at zero, two real constants A, B > 0
exist, so that

A||x || ≤ ||T (x)|| ≤ B||x ||, (1)

for any x ∈ P .
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Proposition 1 Suppose that X, Y are normed spaces ordered by the cones P, Q,
respectively. If the cones P, Q are isomorphic, we have: P is normal if and only if Q
is normal.

Proof Suppose that T : P → Q is an isomorphism of P onto Q and that P is normal
with constant c. T can be extended to a linear operator from P − P onto Q − Q via
the formula

T (x − y) = T (x) − T (y),

for any x, y ∈ P . Suppose that T (x), T (y) ∈ Q such that

0 ≤ T (x) ≤ T (y).

Then 0 ≤ x ≤ y therefore ||x || ≤ c||y||. So by (1) we have

||T (x)|| ≤ B‖x‖ ≤ B c‖y‖ ≤ B c

A
||T (y)||,

therefore Q is normal. ��
Proposition 2 If a cone P of a normed space X is isomorphic to the positive cone �+

1
of �1 and Y = P − P, we have: P gives an open decomposition of Y if and only if Y ,
ordered by the cone P, is order-isomorphic to �1.

Proof Suppose T : �+
1 → P is an isomorphism of �+

1 onto P . Then there exist A, B >0
such that

A||ξ || ≤ ||T (ξ)|| ≤ B||ξ ||,

for each ξ ∈ �+
1 . T can be extended to a linear and one to one operator from �1 onto

P − P by the formula T (ξ) = T (ξ+) − T (ξ−). Then for each ξ ∈ �1 we have

||T (ξ)|| = ||T (ξ+ − ξ−)|| ≤ ||T (ξ+)|| + ||T (ξ−)|| ≤ B(||ξ+|| + ||ξ−||) = B||ξ ||.

P is normal, with constant c, because it is isomorphic to �+
1 . By our assumptions

P gives an open decomposition of Y , therefore there exists a real constant a > 0 such
that for each x ∈ Y there exist x1, x2 ∈ P so that x = x1−x2 and ‖x1‖, ‖x2‖ ≤ a‖x‖.
So for any ξ ∈ �1, there exist η1, η2 ∈ �+

1 so that T (ξ) = T (η1) − T (η2) with

||T (η1)||, ||T (η2)|| ≤ a||T (ξ)||.

By the lattice structure of �1 we have ξ+ ≤ η1 and ξ− ≤ η2, therefore

||T (ξ+)|| ≤ c||T (η1)|| and ||T (ξ−)|| ≤ c||T (η2)||.
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Therefore for any ξ ∈ �1 we have

||ξ || = || |ξ | || ≤ 1

A
(||T (|ξ |)||) = 1

A
(||T (ξ+) + T (ξ−)||)

≤ 1

A
(||T (ξ+)|| + ||T (ξ−)||) ≤ c

A
(||T (η1)|| + ||T (η2)||) ≤ 2ca

A
||T (ξ)||,

hence T is an order-isomorphic of �1 onto Y . The converse is obvious. ��
Theorem 3 In any Banach space X the following statements are equivalent:

(i) the positive cone c+
0 of c0 is embeddable in X,

(ii) the space c0 is embeddable in X.

Proof Only the direct proof is needed. So we suppose that X is ordered by the cone
P and also that T : c+

0 → P is an isomorphism of c+
0 onto P with bi = T (ei ) for

each i . Then there exist A, B > 0 so that

A‖ξ‖ ≤ ‖T (ξ)‖ ≤ B‖ξ‖,
for any ξ ∈ c+

0 . Therefore
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Since the sequence
∑n

i=1 x∗(bi ) is increasing we have
∑∞

i=1 x∗(bi ) ∈ R+. Also the
cone P is isomorphic to c+

0 therefore it is normal. By Krein’s Theorem, see for exam-
ple [3] Theorem 2.26, the dual cone P0 of the normal cone P is generating. So for
any x∗ ∈ X∗ we have x∗ = x∗

1 − x∗
2 with x∗

1 , x∗
2 ∈ P0. Therefore

∑∞
i=1 |x∗(bi )| ≤∑∞

i=1 x∗
1 (bi ) + ∑∞

i=1 x∗
2 (bi ), hence

∑∞
i=1 |x∗(bi )| ∈ R. Therefore c0 is embeddable

in X , see in [2], Theorem 4.49. ��
To complete our study on the embeddability of c0 in Banach spaces in connection

with the embeddability of c+
0 , we give an equivalent formulation of the classical result

of Bessaga–Pelczynski [4], for positive ai .

Theorem 4 (Bessaga–Pelczynski) The Schauder basis {xn} of a Banach space X is
equivalent to the standard unit vector basis {en} of c0 if and only if in fn∈N ‖xn‖ > 0
and there exists a real constant c > 0 such that
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In [4], the above result is formulated with the condition
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Conditions (2) and (3) are equivalent. Indeed if we suppose that (2) is true and {ai }
is a real sequence, then for any n we put F+ = {i = 1, . . . , n | ai ≥ 0}, F− = {i =
1, . . . , n | ai < 0} and we have
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≤ 2c max{|ai | : i = 1, . . . , n},

therefore (2) implies (3).
Let {xn} be basic sequence of a Banach space X and let P be the positive cone of

{xn}. If for any real sequence a = (ai ) we have

supn∈N
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{xn} is boundedly complete and if the above condition is true for any positive real
sequence a = (ai ), then {xn} is boundedly complete on the cone P .

James proved in [8] that if X is a Banach space with an unconditional and non-
boundedly complete Schauder basis {xn} then c0 is embeddable in X. It is known that
a Schauder basis {xn} of a Banach space X is unconditional if and only if the positive
cone P of the basis is generating and normal [21, Chap. II, Theorem 16.3]. In the next
result we weaken the first assumption of James that the basis {xn} is unconditional by
assuming that the positive cone P of {xn} is normal, but our second assumption that
{xn} is non-boundedly complete on P is stronger than the one of James (the summing
basis {bn} of c0 is not boundedly complete but it is boundedly complete on it’s positive
cone). In the next result, our proof is the cone analogue of the one of James.

Proposition 5 Suppose that X is a Banach space with a Schauder basis {xn}. If the
positive cone P of {xn} is normal and the basis {xn} is non-boundedly complete on P,
there exists a block basic sequence {yn} of {xn} consisting of positive linear combina-
tions of the vectors of {xn}, equivalent to the standard basis of c0.

Proof Since {xn} is non-boundedly complete on P , there exists a sequence {ai } of
positive real numbers such that
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and the series
∑∞

i=1 ai xi is not convergent. So there exists a strictly increasing sequence

{qn} of N such that inf ||∑qn+1−1
i=qn

ai xi || = d > 0. If c is a constant of the normal cone
P we have
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therefore we may assume that q1 = 1. Then the sequence yn = ∑qn+1−1
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ai xi , as a
block sequence of {xn}, is basic with
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for each n ∈ N. So for any n ∈ N and β1, . . . , βn ∈ R+ we have
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and by Theorem 4, {yn} is equivalent to the standard basis of c0. ��

Let {xn} be a sequence of a Banach space X . The set

cone{xn} =
{

n∑

i=1

λi xi | n ∈ N, λi ∈ R+

}

,

is the cone generated by {xn} and the closed hull cone{xn}, of cone{xn} is the
closed cone generated by {xn}. It is easy to show that cone{xn} is the smallest cone
and cone{xn} is the smallest closed cone of X which contains the sequence {xn}.
The sequence y1 = x1 and yn+1 = xn+1 − xn for any n ≥ 1 is the difference
sequence of the sequence {xn}. Suppose that {xn} is a basic sequence. {xn} is of type
p if in fn∈N‖xn‖ > 0 and supn∈N || ∑n

i=1 xi || < +∞, and {xn} is of type p∗ if the
sequence of the coefficient functionals {x∗

n } of {xn} is a basis of [x∗
n ], of type p, see

in [21, p. 308]. If supn∈N‖xn‖ < ∞, then {xn} is of type p∗ if and only if the differ-
ence sequence {yn} of {xn} is a basic sequence of type p [21, Chap. II, Theorem 9.2],
(1) ⇔ (7). {xn} is strongly summing if it is weakly Cauchy and for any sequence of
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scalars {ci } we have:

supn∈N
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Note that any strongly summing basic sequence {xn} is of type p∗, because the dif-
ference sequence {yn} of {xn} is of type p, see [19, Proposition 2.1, Definitions 2.1
and 2.2].

In the proof of the next theorem we use the classical �1 and c0 dichotomy theorems
of Rosenthal [18,19] and also the following recent result of Casini and Miglierina
[5, Theorem 4.5]: If a closed cone P of a Banach space is isomorphic to �+

1 , then P is
a mixed base cone, i.e. P has both bounded and unbounded bases defined (the bases)
by continuous linear functionals on X.

Theorem 6 Suppose that T is an isomorphism of �+
1 onto a closed cone P of a Banach

space X and xn = T (en) for each n. If the closed cone generated by the difference
sequence {yn} of the sequence {xn} is normal, c0 is embeddable in X.

Proof Suppose that T : �+
1 → P is an isomorphism of �+

1 onto P with xn = T (en)

for each n. Then there exist real numbers A, B > 0 so that

A||ξ || ≤ ||T (ξ)|| ≤ B||ξ ||, for any ξ ∈ �+
1 ,

therefore A ≤ ||xn|| ≤ B for each n. We will show first that the sequence {xn} is not
weakly convergent. So we suppose that xn

w−→ x0. Then x0 ∈ cow{xn} = co{xn}, so
T −1(x0) ∈ co{en} and co{en} is the positive part of the unit sphere of �1, hence x0 
= 0.
By [5, Theorem 4.5], there exists a functional x∗ ∈ X∗ which defines an unbounded
base for P . Since x∗(xn) → x∗(x0) > 0, we have x∗(xn) ≥ a > 0 for each n because
x0 ∈ P, x0 
= 0 and x∗ is strictly positive on P . For each x = T (ξ) ∈ P where
ξ = (ξi ) ∈ �+

1 we have x = ∑∞
i=1 ξi xi , therefore

x∗(x) = x∗
( ∞∑

i=1

ξi xi

)

≥ a
∞∑

i=1

ξi = a||ξ || ≥ a

B
||x ||.

Hence x∗ is uniformly monotonic on P , therefore by [16, Proposition 2], x∗ defines
a bounded base for P , a contradiction. Therefore xn is not weakly convergent. By
Rosenthal �1 and c0 Theorem, one of the following is true: (i) {xn} has a subsequence
equivalent to the standard basis of �1, or (ii) {xn} has a strongly summing subsequence,
or (iii) {xn} has a convex block basis equivalent to the summing basis. In case (iii)
the theorem is trivially true. If (i) or (ii) is true, there exists a subsequence xkn of xn

which is of type p∗. If zn is the difference sequence of xkn then zn is a basic sequence
of type p. Also the positive cone K of {zn} is contained in cone{yn} because

zn = xkn − xkn−1 =
kn∑

i=kn−1+1

yi ∈ cone{yn},
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for each n, therefore K as a subcone of the normal cone, cone{yn} is normal. {zn} is
equivalent to the standard basis of c0. Indeed, in fn∈N‖zn‖ > 0 and

∣
∣
∣
∣
∑n

i=1 zi
∣
∣
∣
∣ ≤ M ,

for each n because {zn} is a basic sequence of type p. So for each n ∈ N and
a1, . . . , an ≥ 0 we have

0 ≤
n∑

i=1

ai zi ≤ max{a1, . . . an}
n∑

i=1

zi ,

where ≤ is the ordering defined by K , therefore

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n∑

i=1

ai zi

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤ cM max{a1, . . . , an},

because K is normal. By Theorem 4, {zn} is equivalent to the standard basis of c0. ��

4 Cone-seminorms

Let X be a normed space, P be a cone of X∗, U+
X∗ = UX∗ ∩ P be the positive part of

the closed unit ball UX∗ of X∗ and let V = co(U+
X∗ ∪ (−U+

X∗)) be the convex hull of
U+

X∗ ∪ (−U+
X∗). For any x ∈ X we put

dP (x) = supx∈V x∗(x).

Since V is a subset of the closed unit ball UX∗ of X∗, dP (x) exists and we have

dP (x) ≤ ‖x‖, for any x ∈ X.

It is easy to show that

dP (x) = supx∗∈U+
X∗ |x∗(x)| = supx∗∈S+

X∗ |x∗(x)|,

where S+
X∗ = SX∗ ∩ P is the positive part of the unit sphere SX∗ of X∗. The function

dP is a seminorm on X . It is clear that the seminorm depends on the cone P . We will
say that dP is the seminorm defined by the cone P . Also dP can be referred as a
cone-seminorm. If dP is a norm of X we will denote this norm by || · ||P .

Proposition 7 If dP is the seminorm of X defined by the cone P ⊆ X∗, the following
are equivalent:

(i) dP is a norm of X,
(ii) the subspace Y = P − P of X∗ separates the points of X.

Proof For any x ∈ X , we have:

dP (x) = 0 ⇔ x∗(x) = 0 for any x∗ ∈ U+
X∗ ⇔

⇔ x∗(x) = 0 for any x∗ ∈ P ⇔ x∗(x) = 0 for any x∗ ∈ Y,
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therefore statements (i) and (ii) are equivalent. ��
Recall that if 〈E, F〉 is a dual system, where E, F are normed spaces, we say that

F is norming to E , if ||x || = sup{|y(x)| | y ∈ UF } for each x ∈ E .

Proposition 8 Suppose that P is a cone of X∗. If Y = P − P is norming to X and
P gives an open decomposition of Y , then the seminorm of X defined by P is a norm
which is equivalent to the norm of X.

Proof Y separates the points of X because Y is norming to X , therefore dP is a norm.
If ρUY ⊆ U+

Y − U+
Y , then for any x ∈ X we have

ρ supx∗∈UY
x∗(x) ≤ supx∗∈U+

Y
x∗(x) + supx∗∈(−U+

Y ) x∗(x) ≤ 2 supx∗∈U+
Y

|x∗(x)|,

where U+
Y = P ∩ UY is the positive part of UY . Therefore ρ||x || ≤ 2||x ||P . Also

||x ||P ≤ ||x ||, therefore the norms are equivalent. ��
In [20], Singer introduces the notion of the basic sequence of �+-type. A basic

sequence {xn} of a Banach space X is of �+-type if it is bounded and there exists a
real constant C > 0 such that for any n and every finite real numbers a1, . . . , an ≥ 0,
we have ||∑n

i=1 ai xi || ≥ C
∑n

i=1 ai . Let {xn} be a basic sequence of a Banach space
X . It is known that if sup{||xn||} < +∞ then {xn} is of �+-type if and only if there
exists x∗ ∈ X∗ so that x∗(xn) ≥ 1 for each n ∈ N [21, Chap. II, Theorem 10.1].

If {xn} is of �+-type, there exists an isomorphism T of �+
1 onto the positive cone

P of {xn} with T (en) = xn for each n, where {en} is the standard unit basis of �1 [21,
Chap. II, Theorem 10.2].

In the next example the norms ‖ · ‖ and ‖ · ‖P are not equivalent.

Example 9 Suppose that X = �1. Then X∗ = �∞, the sequence bn = ∑n
i=1 ei is

a basic sequence of �+-type in �∞ and suppose that P is the positive cone of {bn}.
The set

B =
{

x∗ =
∞∑

i=1

ξi bi | ξ ∈ �+
1 , ||ξ || = 1

}

,

is a bounded base of P and we remark that B = S+ is the positive part of the closed
unit sphere in X∗. Also we remark that Y = P − P separates the points of X , therefore
dP is a norm of X , which we denote by || · ||P . Then ||x || ≥ ||x ||P , for any x ∈ �1.
Suppose that these norms are equivalent. Then there exists A > 0 so that

||x ||P > A||x ||, for any x ∈ �1.

For any x∗ = ∑∞
i=1 ξi bi ∈ B we have x∗ = (∑∞

i=n ξi
)

n∈N
∈ c+

0 . Also for any x =
(xi ) ∈ �1 we have

x∗(x) =
∞∑

n=1

( ∞∑

i=n

ξi

)

xn =
( ∞∑

i=1

ξi

)

x1 +
( ∞∑

i=2

ξi

)

x2 + · · ·
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Since
∑∞

i=1 ξi = 1 we have

x∗(x) = x1 + (1 − ξ1)x2 + (1 − (ξ1 + ξ2))x3 + · · ·

=
∞∑

i=1

xi −
( ∞∑

i=2

xi

)

ξ1 −
( ∞∑

i=3

xi

)

ξ2 − · · ·

=
( ∞∑

i=1

xi ,

∞∑

i=2

xi ,

∞∑

i=3

xi , . . .

)

· (1,−ξ1,−ξ2, . . .) = z(η)

where z ∈ c0 and η ∈ �1. Therefore |x∗(x)| = |z(η)| ≤ ||z||||η|| = 2||z||, therefore

|x∗(x)| ≤ 2 supn∈N

{∣
∣
∣
∣
∣

∞∑

i=n

xi

∣
∣
∣
∣
∣

}

.

By the definition of || · ||P , for any x ∈�1, there exits x∗ =∑∞
i=1 ξi bi , where ξ ∈�+

1 ,

||ξ || = 1, so that

2 supn∈N

{∣
∣
∣
∣
∣

∞∑

i=n

xi

∣
∣
∣
∣
∣

}

≥ |x∗(x)| ≥ A||x ||.

Suppose that x =
(

(−1)i+1

ωi

)

i∈N
= (xi )i∈N ∈ �1, where ω ∈ (1, 2). Then ||x || = 1

ω−1

and for each n ∈ N we have
∣
∣
∣
∣
∣

∞∑

i=n

xi

∣
∣
∣
∣
∣
=

∣
∣
∣
∣
∣

∞∑

i=n

x+
i −

∞∑

i=n

x−
i

∣
∣
∣
∣
∣
= 1

ωn−1(ω + 1)
.

So we have that supn∈N

{∣
∣
∑∞

i=n xi
∣
∣
} = ∑∞

i=1 xi = 1
ω+1 . So we have

2
1

ω + 1
≥ A

1

ω − 1
⇒ 2

A
≥ ω + 1

ω − 1
for any ω ∈ (1, 2).

Therefore 2
A = +∞, a contradiction. Therefore the norms || · ||P and || · || are not

equivalent.

Suppose that X is ordered by the cone K . x0 ∈ K is a quasi interior point of K
with respect to the seminorm dP , if the set

⋃∞
n=1[−nx0, nx0] is dP -dense in X . We

denote by Q P (K ) the set of quasi interior points of K with respect to dP .

Proposition 10 Suppose that X is a normed space, P is a cone of X∗ and that X is
ordered by the cone P0. If x0 ∈ Q P (P0), then x0 is strictly positive on P.

Proof Suppose that x∗(x0) = 0 for at least one x∗ ∈ U+
X∗ , x∗ 
= 0. Then for any x ∈ X

and ε>0, there exists y ∈ [−nx0, nx0] so that dP (x−y)<ε, therefore |x∗(x−y)|<ε,
by the definition of dP . So we have that |x∗(x)| ≤ |x∗(x − y)| + |x∗(y)|. x∗ as a
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point of P is positive on P0. Since −nx0 ≤ y ≤ nx0 and x∗(x0) = 0 we have that
x∗(y) = 0. Therefore |x∗(x)| ≤ ε for any ε > 0, hence x∗(x) = 0. So x∗(x) = 0 for
any x ∈ X , a contradiction therefore x0 is strictly positive on P . ��

5 Cones in Grothendieck spaces

A Banach space X is Grothendieck if every weak-star convergent sequence in X∗ is
weakly convergent. Trivial examples of Grothendieck spaces are the reflexive spaces
and of non-Grothendieck the non-reflexive, separable spaces. �∞(�) was the first
example of a non reflexive, Grothendieck space [14]. Also for any Stonian space 
,
C(
) is a Grothendieck space [7]. In Banach-lattices we have: any σ -Dedekind com-
plete AM-space with a unit is a Grothendieck space, see in [2, Theorem 4.44]. For a
study of Grothendieck spaces and different equivalent definitions we refer to [6] and
for some resent results on Grothendieck spaces we refer to [1,10].

The following is a simple generalization of a well known result, see in [9, Theorem
3.8.4] with a similar proof.

Theorem 11 Suppose that 〈E, F〉 is a dual system where E, F are normed spaces. If
P is a cone of E, P0 = {g ∈ F | g(x) ≥ 0 for each x ∈ P}, is the dual cone of P in
F and f ∈ P0, we have:

(i) If E is norming to F and B f is a bounded base of P then f ∈ int (P0).
(ii) If F is norming to E and f ∈ int (P0) then B f is a bounded base of P.

In this article we use the next result:

Corollary 12 Suppose that X is a normed space, P is a cone of X∗ and P0 is the dual
cone of P in X. If x ∈ P0 we have: x ∈ int (P0) if and only if x defines a bounded
base Bx for P.

Proposition 13 Suppose that P is the positive cone of a basic sequence {x∗
n } of X∗.

If x∗
n

w∗−→ 0 and infn∈N ||x∗
n || > 0, the dual cone P0 of P in X has empty interior.

Proof Suppose that x ∈ int (P0). By Corollary 12, Bx is a bounded base of P and
x , as a linear functional of X∗, is uniformly monotonic on P . So there exists a real
number a > 0 such that x∗

n (x) ≥ a||x∗
n || ≥ a infn∈N ||x∗

n || > 0 for each n ∈ N. This

contradicts the fact that x∗
n

w∗−→ 0, therefore int (P0) = ∅. ��
We recall now two fundamental theorems of the theory of Schauder bases due to

A. Pelczynski and W.B. Johnson–H.P. Rosenthal which we will use below.
Suppose that X is a Banach space. If the subspace G of X∗ is norming to X, and

{xn} is a sequence of SX such that xn
σ(X,G)−−−−→ 0, then there exists a subsequence {yn}

of {xn}, which is a basic sequence [13].

Let X be a separable Banach space. If {x∗
n } is a sequence of X∗, so that x∗

n
w∗−→ 0

and infn∈N ||x∗
n || > 0, then there exists a subsequence {b∗

n} of {x∗
n } which is a w∗-basic

sequence [11].
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Suppose that X is a Banach space. The sequence {(xn, yn)} where xn ∈ X and
yn ∈ X∗ is a biorthogonal system if yn(xm) = δnm for each n, m ∈ N. A sequence
{b∗

n} of X∗ is a w∗-basic sequence if a sequence {cn} of X exists so that {(cn, b∗
n)} is

a biorthogonal system and for each x∗ ∈ [b∗
n]w∗

we have
∑n

i=1 x∗(ci )b∗
i

w∗−→ x∗. The
notion of the w∗-basic sequence has been defined in [11].

It is known that if {b∗
n} is a w∗- basic sequence then {b∗

n} is a basic sequence in X∗,
[11, Proposition II.1].

Theorem 14 Suppose that X is a non-Grothendieck space. Then there exists a bior-
thogonal system {(cn, b∗

n)} where cn ∈ X, b∗
n ∈ X∗, so that {b∗

n} is a basic sequence

in X∗ of �+-type with ‖b∗
n‖ = 1 for each n and b∗

n
w∗−→ 0. If we suppose moreover that

X is separable, the sequence {b∗
n} can be chosen so that {b∗

n} is in addition a w∗-basic
sequence.

Proof Let X be a non-Grothendieck space. Then there exists a sequence {x∗
n } of X∗,

such that x∗
n

w∗−→ 0 and x∗
n 
 w−→ 0. Therefore there exists a subsequence of {x∗

n } which
we denote again by {x∗

n } and a functional f ∈ X∗∗, such that f (x∗
n ) ≥ 1 for each

n, so ||x∗
n || ≥ 1

|| f || > 0 for each n. The sequence {x∗
n } is w∗- convergent, therefore

supn∈N ||x∗
n || = d < +∞.

Consider the sequence y∗
n = x∗

n||x∗
n || . It is clear that y∗

n
w∗−→ 0 and y∗

n 
 w−→ 0. By
[13], there exists a basic subsequence {b∗

n} of {y∗
n }. Since f (x∗

n ) ≥ 1 we have that

f (b∗
n) ≥ 1

d for each n, therefore the sequence {b∗
n} is of �+-type. Also b∗

n
w∗−→ 0.

Let Y be the closed subspace of X∗ generated by {b∗
n} and let Z be a closed, separa-

ble subspace of X with the property ‖y∗‖ = sup{y∗(x) | x ∈ UZ }. (Such a subspace
Z exists). Then by [11], there exists a subsequence of {b∗

n} which we denote again by
{b∗

n} which is σ(Z , Z∗)-basic sequence in Z∗. Hence there exists a sequence {cn} of Z
so that {(cn, b∗

n)} is a biorthogonal system and also for any x∗ in the σ(Z , Z∗)-closure
of [b∗

n] in Z∗ we have x∗ = ∑∞
i=1 x∗(ci )b∗

i in the σ(Z , Z∗)-topology of Z∗. If we
assume that X is separable, then we may assume that Z = X and we conclude that
{b∗

n} is a w∗-basic sequence of �+-type. ��
In the next result we give a cone characterization of Grothendieck spaces. For the

direct we use the method developed in [15, Theorem 3.1], and for the converse we use
the previous theorem.

Theorem 15 A Banach space X is non-Grothendieck if and only if there exists a
well-based cone P of X∗ such that

int (P0) = ∅ and Q P (P0) 
= ∅.

Proof Suppose that there exists a well-based cone P of X∗ such that int (P0) = ∅
and Q P (P0) 
= ∅. Since P is well-based, there exists f ∈ int (P0). Then the base

B f of P defined by f is bounded. We shall show that 0 ∈ B f
w∗

. If we suppose that

0 
∈ B f
w∗

, there exists x ∈ X which, as a linear functional of X∗, separates 0 and B f .
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It is easy to show that x is strictly positive on P and also that the base of P defined by x
is bounded, therefore by Corollary 12, x ∈ int (P0), a contradiction and our assertion

is true. We will show now that there exists a sequence {x∗
n } in B f such that x∗

n
w∗−→ 0.

Let x0 ∈ Q P (P0). Since 0 ∈ B f
w∗

we have that 0 ∈ nB f
w∗

for each n ∈ N, therefore
there exists y∗

n ∈ nB f with y∗
n (x0) < 1.

Then x∗
n = y∗

n
n ∈ B f . We will show that x∗

n
w∗−→ 0. Let x ∈ X and ε > 0. Since

x0 ∈ Q P (P0) there exists n0 ∈ N and z ∈ [−n0x0, n0x0] such that dP (z − x) < ε.
Then we remark that for each n ∈ N we have that |x∗

n (z)| ≤ n0x∗
n (x0) ≤ n0

n . So, we
conclude that

|x∗
n (x)| ≤ |x∗

n (x − z)| + |x∗
n (z)| ≤ dP (x − z) + n0

n

< ε + n0

n
for each n ∈ N.

Hence x∗
n

w∗−→ 0. Since f (x∗
n ) = 1 we have that X is non-Grothendieck.

Suppose now that X is non-Grothendieck. Then by Theorem 14, there exists a
biorthogonal system {(cn, b∗

n)} with cn ∈ X, b∗
n ∈ X∗, so that {b∗

n} is a basic

sequence in X∗ of �+-type with ‖b∗
n‖ = 1 for each n and b∗

n
w∗−→ 0. Let P be the

closed cone of X∗ generated by b∗
n . By Proposition 13, int (P0) = ∅. Since {b∗

n} is of
�+-type, there exists an isomorphism T of �+

1 onto P with T (ei ) = b∗
i and suppose

that A‖ξ‖ ≤ ‖T (ξ)‖ ≤ M‖ξ‖ for any ξ ∈ �+
1 . Then B = T (S+), where S+ is the

positive part of the unit sphere of �1, is a closed, bounded base for the cone P with
the property A ≤ ‖x∗‖ ≤ M for any x∗ ∈ B. Let

x0 =
∞∑

i=1

ci

2i ||ci || .

We will show that x0 ∈ Q P (P0). So suppose that x ∈ X and ε > 0. For each y∗ =∑∞
i=1 ai b∗

i ∈ B we have that y∗ = T (
∑∞

i=1 ai ei ), therefore a = (ai ) ∈ �+
1 with

∑∞
i=1 ai = 1. Since b∗

n
w∗−→ 0, there exists n0 ∈ N such that |b∗

n(x)| < ε for each
n ≥ n0. We put

y =
n0∑

i=1

b∗
i (x)ci .

Then it is easy to see that y ∈ ∪∞
n=1[−nx0, nx0] and also that |b∗

i (x − y)| < ε for each
i ∈ N. For any y∗ = ∑∞

i=1 ai b∗
i ∈ B we have

|y∗(x − y)| =
∣
∣
∣
∣
∣

∞∑

i=1

ai b
∗
i (x − y)

∣
∣
∣
∣
∣
≤

∞∑

i=1

ai |b∗
i (x − y)| < ε

∞∑

i=1

ai = ε,

therefore supy∗∈B |y∗(x − y)| ≤ ε.
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Since A ≤ ‖y∗‖ for any y∗ ∈ B for any x∗ ∈ AU+
X∗ there exists y∗ ∈ B so that

x∗ = λy∗ with 0 < λ ≤ 1, therefore dP (x − y) < ε
A , and x0 ∈ Q P (P0). ��

Corollary 16 Let E be an AM-space. If int (E+) = ∅ and E+ has quasi interior
points with respect to the norm topology, then E is non-Grothendieck.

Proof The positive cone P = E∗+ of E∗ is well-based because E∗ is an AL-space.
Then P0 = E+. By Proposition 8, the norms ‖.‖ and ‖.‖P of E are equivalent, there-
fore E+ has quasi interior points with respect the norm ‖.‖P and by Theorem 15, E
is non-Grothendieck. ��
Remark 17 In Theorem 15 we have proved that in any non-Grothendieck space X
there exists a well-based cone P of X∗ such that int (P0) = ∅ and Q P (P0) 
= ∅. If
x ∈ Q P (P0) then x , as a linear functional of X∗, is strictly positive on P therefore
x defines a base for P . This base is unbounded because int (P0) = ∅. So P has a
bounded and an unbounded base defined (the bases) by elements of X∗∗, therefore P
is a mixed base cone.

6 The problem of Qiu

As we have noted in the introduction, in this section we give a positive answer to the
problem of Qiu in the case where X is separable. Specifically we show something
stronger, i.e. we show that if X is separable there exists a closed cone P of X with
empty interior so that P0 is isomorphic to the positive cone of �+

1 . So in non-reflexive
dual spaces with separable predual, we find a cone P isomorphic to �+

1 with some
extra properties, i.e. P is weak-star closed and int (P0) = ∅.

Theorem 18 Any separable, non-reflexive Banach space X, contains a closed cone
P such that int (P) = ∅ and P0 is isomorphic to the positive cone of �1.

Proof Let X be a separable non-reflexive Banach space. Then X is non-Grothendieck,
therefore by Theorem 14, there exists a sequence {b∗

n} of X∗ so that b∗
n ∈ SX∗ for each

n, b∗
n

w∗−→ 0 and {b∗
n} is a basic sequence of �+-type. Also {b∗

n} a w∗-basis of X∗.
Denote by K the positive cone of {b∗

n}. Then K is well-based and K0 is norm closed.
Also int (K0) = ∅ by Proposition 13. We will show that K is w∗-closed. First we

remark that K
w∗ = (K0)

0. Let x∗ ∈ K
w∗

. Since {b∗
n} is a w∗-basic sequence there

exits a biorthogonal system (cn, x∗
n ) ∈ X × X∗ such that

∑n
i=1 x∗(ci )b∗

i
w∗−→ x∗. The

sequence
{∑n

i=1 x∗(ci )b∗
i

}
is w∗-convergent, therefore norm-bounded. Let M > 0,

such that
∣
∣
∣
∣∑n

i=1 x∗(ci )b∗
i

∣
∣
∣
∣ ≤ M for each n ∈ N. We remark that ci ∈ K0 for each

i ∈ N and since x∗ ∈ K
w∗ = (K0)

0 we have that x∗(ci ) ≥ 0 for each i ∈ N. So∑n
i=1 x∗(ci )b∗

i ∈ K for each n ∈ N. Since {b∗
n} is a basic sequence of �+-type, there

exits an isomorphism T of �+
1 onto K with T (en) = b∗

n for each n and suppose that

A‖ξ‖ ≤ ‖T (ξ)‖ ≤ N‖ξ‖
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for any ξ ∈ �+
1 . Therefore

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n∑

i=1

x∗(ci )ei

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤ 1

A

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣

n∑

i=1

x∗(ci )b
∗
i

∣
∣
∣
∣
∣

∣
∣
∣
∣
∣
≤ M

A
for each n ∈ N.

Since the basis {ei } of �1 is boundedly complete, we have that
∑∞

i=1 x∗(ci )ei ∈ �+
1 ,

therefore x∗ = ∑∞
i=1 x∗(ci )b∗

i ∈ K . So the cone P = K0 is closed, int (P) = ∅,

P0 = K
w∗ = K and K is isomorphic to �+

1 . ��
The next result was suggested to us by E. Casini and E. Miglierina in a communi-

cation we had during the preparation of this article. This extends the above theorem
in the case where X has a non-reflexive, separable complemented subspace.

Proposition 19 If a Banach space X has a non-reflexive, separable, complemented
subspace, then there exists a closed cone P of X so that int (P) = ∅ and P0 is
isomorphic to �+

1 .

Proof Suppose that X = Y ⊕ Z , where Y is non-reflexive and separable. Then there
exists a closed cone K of Y so that int (K ) = ∅ and K 0 is isomorphic to �+

1 . If
P = K ⊕ Z , then P is a closed cone with empty interior and P0 = K 0 ⊕ {0} is
isomorphic to �+

1 . ��
By Theorem 18 we have as a corollary, the following characterization of reflexivity

for separable Banach spaces.

Theorem 20 A separable Banach space X is reflexive if and only if int (P) 
= ∅, for
any closed cone P of X whose dual P0 is well-based.
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