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1. Introduction 

The study of extreme, strongly exposed points of closed, convex and bounded sets in 
Banach spaces has been developed especially by the interconnection of the Radon
Nikodyrn property with the geometry of closed, convex and bounded subsets of Banach 
spaces [5], [2]. In the theory of ordered Banach spaces as well as in the Choquet 
theory, [4], we are interested in the study of a special type of convex sets, not 
necessarily bounded, namely the bases for the positive cone. In [7] the geometry 
(extreme points, dentability) of closed and convex subsets K of a Banach space X with 
the Radon-Nikodym property is studied and special emphasis has been given to the 
case where K is a base for a cone P of X. In [6, Theorem 1], it is proved that an 
infinite-dimensional, separable, locally solid lattice Banach space is order-isomorphic to 
II if, and only if, X has the Krein-Milman property and its positive cone has a bounded 
base. 

In this paper (Section 3) we study the existence of strongly exposed points in a base B 
for a cone P of a Banach space X and we characterize the strongly exposing functionals. 
It is proved (Theorem 3.1) that the existence of strongly exposed points in a base B for 
P is closely connected with the existence of a bounded base for the cone P. 

In Section 4 we prove a similar result to [6, Theorem 1] for the space 11 (r), (Theorem 
4.1). Afterwards we prove that if a Banach space X ordered by the closed, generating 
cone P has the R.D.P. then X is order-isomorphic to /1 (T) if, and only if, P has the 
Krein-Milman property and sep (B) j 0, for at least one base B for P, (Proposition 4.2). 

2. Notations and definitions 


• 

Let X be a normed space, K a convex subset of X and X o E K. We say that X o is an 
exposed point of K if there exists a continuous linear functional g of X (gEX*) such 
that g(xo»g(x),'ixEK\{xo}. In this case we say that g exposes Xo in K. We say that 
X o is a strongly exposed point of K if there exists g E x* which exposes X o in K and for 
each sequence (x.] of K, g{x.)->g(xo) implies Xv->X o' In this case we say that g strongly 
exposes Xo in K. We denote by ep(K), sep (K) the set of extreme, strongly exposed 
points of K. For each A c:; X we denote by A the closure of A and by co A the closed 
convex hull of A. Let X be ordered by the cone P. x E P\ {O} is an external point of P. 
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XE EP( P), if for each YEP, 0 < Y < x implies y = h. A subset B of P is a base for P if 
there exists a strictly positive linear functional f of X such that B={xEP!f(x)=I}. 
Then we say that the base B is defined by the functional f. The cone P is generating if 
X = P - P. We say that P is well-based if there exists a bounded base B for P and 0 ¢ B. 
The space X is a locally solid linear lattice if X is a linear lattice and there exists a real 
number a>O such that for each X,YEX, Ixl~lyl, implies Ilxll~allyll. A linear functional 
f of X is uniformly monotonic if there exists a real number a> 0 such that 
f(x) ~ allxll,If x E P. 

It is easy to show that g strongly exposes 0 in P if, and only if, - g is uniformly 
monotonic and therefore that 0 E sep (P) if, and only if, P is well-based. X is order
isomorphic to an ordered normed space Y if there exists an isomorphism T of X onto Y 
and T, T -I are positive. An ordered linear space X has the Riesz decomposition 
property (R.D.P.) if for any three positive elements x, y, z of X with x ~ Y+ z there exist 
x1,x2 EX such that O~XI ~y, 0~X2~Z and X=X 1 +x2 • Each linear lattice has the 
R.D.P. 

3. Strongly exposed points in a base for a cone 

Proposition 3.1. Let X be a normed space and K be an unbounded, convex subset of X. 
If g strongly exposes the point Xo in K, then g(x v )-+ - x), for each sequence (x.] of K 
with Ilxvl/-+ + 00. 

Proof. Let PE~ such that Ilxoll<p and (xv) be a sequence of K with limv_C(Jllxvl/= 
+ 00. Then there exists a sequence (Yv) of K, such that 

Then 

and therefore ,.tv -+1.
 
If (g(Xk) is a bounded subsequence of (g(x v )) , then
 

and therefore Yk,-+Xo. This is a contradiction. Hence g(x v ) -+ - 00 because g(x.) ~g(xo). 

Let X be a normed space, K a convex subset of X, u E X* such that u(K) = {l} and 
,.t E R By a simple computation we have: 

(Sd	 A functional gEX* strongly exposes Xo in K if, and only if, g-Au strongly
 
exposes Xo in K.
 

Since (g-g(xo)u)(xo)=0, we have that 

(S2)	 Xo is a strongly exposed point of K if, and only if, there exists g e X* such that g
 
strongly exposes Xo in K and g(x o) =0.
 -
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If g is as in (S2), then g(x) ~ 0 for each x E K and we shall say that g is a negative
strongly exposing functional of Xo in K. Let X be ordered by the cone P and Xo be an 
extremal point of P. We shall say that X o has a continuous projection Pxo (or that X o is 
an extremal point of P with continuous projection Pxo) if, and only if, PXo is a linear, 
continuous, positive projection of X onto [xoJ such that Pxo(x)~ x, for each x E P. 

Let X o be an extremal point of P with continuous projection P Xo' We denote by 
p(xo,') the continuous linear functional of X, defined by the formula 

Also for each hE X* we denote by hxo the functional 

If B is a base for P defined by f EX* and Xo = AXo EB, then we have: 

(Pi) Pxo(x) <xo, for each xEB\{xo}, 

(P 2 )	 for each sequence (xJ of B, f(Pxo(xJ)-d implies Pxo(xJ~xo, 

(P 3)	 for each strictly positive, continuous linear functional h of X, hxo exposes Xo in B 
and hxo(xo) = O. 

The statement (Pd is true because xo~Pxo(x)~x implies f(x-xo)=O hence X=X o' 

Definition 3.1. A normed space X ordered by the cone P has the continuous 
projection property (C.P.P.), if x E EP(P) implies that x has a continuous projection. 

Proposition 3.2. Let X be a normed space ordered by the cone P. Then: 

(i) X has the c.P.P. if, and only if, Y = P - P has the c.P.P., 

(ii)	 if X is a locally solid linear lattice then X has the c.P.P., 

(iii)	 if X is a Banach space, X has the R.D.P. and the cone P is closed and generating, 
then X has the c.P.P. 

Proof. If X has the c.P.P. then Y, ordered by the cone P, has the c.P.P. Let Y have 
the c.P.P. If X o E EP(P), there exists a continuous positive projection Pxo(x)= p(x o, x)xo 
defined on Y. Let p'(xo,') be a Hahn-Banach extension of p(xo,') on X. Then p'(xo,'), 
is positive and P~o(x)=p'(xo,x)xo is a continuous projection of Xo defined on X. Hence 
the statement (i) is true. To prove (ii) and (iii) we assume that the cone P is closed and 
generating and that X has the R.D.P. Since P is closed X is Archimedean. If X o E EP(P), 
by [8, Theorem 1.2J, there exists a positive linear functional f of X such that 

f(X)=SUp{tE ~+ Itxo~x}, VXEP. 

(In [8, Theorem 1.2J, the existence of f is deduced from the fact that X is Archimedean 
and X has the R.D.P.). 

Let Pxo(x) = f(x)x o, VXEX. Then is a linear positive projection and 

•
-	

Pxo 
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Px,,(x) ~ x 'Ix E P because the cone P is closed. To show that PXo is continuous it IS 

enough to show that I is continuous. By [3, 3.5.6.J, the statement (iii) is true. 
If X is a locally solid linear lattice then X has the R.D.P. and the cone P IS 

generating and closed. Since 0 ~ f(x)x o ~ x, vx E P, there exists a E ~ + such that 

If XE X then 

Hence the statement (ii) is true. 

Lemma 3.1. Let X be a normed space ordered by the cone P, B a base [or P defined 
by IE X*, Y = ~ x X be ordered by the cone Y+ = ~+ X P and B' be the base for Y+ 
defined by the junctional f'(¢,x)=¢+ f(x). Then 

(i) each extremal point (~, 0) of Y+ has a continuous projection,
 

(ii] xoEsep(B) if; and only if; (O,xo)Esep(B'),
 

(iii)	 for each aE ~+ \{O} and gEX* we have: g is a negative-strongly exposing 
junctional of Xo in B it: and only if; g'(¢, x) = - a~ +g(x) is a negatioe-st rongly 
exposing [unctional of (0, xo) in B'. 

Proof. It is clear that the statement (i) is true. 

Let Xo Esep(B) and gE X* be a negative-strongly exposing functional of Xo in B. Then 
for each a E ~ +\ {OJ,the functional g'(~, x) = - ai; +g(x), exposes (0, xo) in B' and g'(O, xo) = O. 
Let (~v,xvJEB' be such that g'(~"xvJ= ~a~v+g(x,}->O. Since g(xJ~O we have that 

~,->O and g(x.)->O. 

Since f'(~"x,}=~v+ f(x,) = I we have that 

f(x,)-> 1. 

Then g(x'/(f(xv)))->O, hence Xv->Xu and (~"x,}->(O,xo). So (O,xo)Esep(B') and g' is a 
negative-strongly exposing functional of (0. xo) in B'. 

Let (0, xo) E sep(B') and hE y* be a negative-strongly exposing functional of (0, x o) in 
B'. Then there exist a e ~+ \{O} and gEX* such that h(¢,x)= -a~+g(x). It is clear that 
g(X)~OVXEP. If xvEB and g(x,}->g(xo)=0, then (O,xv)EB' and h(O,xv)=g(x,}->O= 
h(O,xo), hence xv->xo' So the statements (ii) and (iii) are true. 

Theorem 3.1. Let X be a normed space ordered by the cone P, B be a base for P 
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defined by fEX*, xoEsep(B), g a negative-strongly exposing functional of Xo in Band 
h=f -g. Then: 

(i)	 if B' is a base for P defined by j' E X*, and Yo is an extreme point of B' with 
continuous projection PyO ' then Yo E sep(B') and hyOstrongly exposes Yo in B'. 

(ii)	 the functional h is uniformly monotonic and the cone P is well-based. 

Proof. Since g is a negative-strongly exposing functional of x o, we have that - g is 
positive. Hence h is strictly positive. 

Proof of (i). By (P 3 ) , hyOexposes Yo in B' and hyo(Yo) =0. Let (x.) be a sequence of B' 
such that 

• 

I 

Since f(yv), -g(y.);:';:;O, we have that 

We put 

Then there exists voEN such that ZvEB for each v;:,;:;vo. Since g(zv)=g(yv)---+O we have 
that Zv---+ Xo, hence Yv ---+0. Since j'(x.) = j'(Yv) + j'(Pyo(x.))= 1, we have that 
j'(PYo(x.))---+1, hence, by (P z), PYo(x.)---+Yo. So xv=PYo(xv)+Yv---+Yo, hence hyO strongly 
exposes Yo in B'. 

Proof of (ii). Let Y= IR x X be ordered by the cone Y+ = IR+ x P and B" be the base 
for Y+ defined by the functional f"(~, x) = ~ + f(x). Then (0, xo) Esep(B") and the 
functional g'(~, x) = - ~ +g(x) is a negative-strongly exposing functional of (0, xo) in B". 

If h' = f" - g', then h' is strictly positive and 

h'(~, x) = 2~ + hex). 

Let 

c= {(~,x) E Y+ Ih'(~,x) =1}. 

Then zo=(1/2, 0) is an extreme point of C with continuous projection pzJ~,x)=(~,O). 
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By (i), h~o strongly exposes Zo in C. Moreover, for each (~, x) E C we have 

By Proposition 3.1, C is bounded. So the base for P defined by h is bounded. Hence P 
is well-based and the functional h is uniformly monotonic. 

Proposition 3.3. Let X be a normed space ordered by the cone P and B be a base for 
P defined by f E X*. If h is a continuous uniformly monotonic linear functional of X, then 

for each extreme point X o of B with continuous projection P Xo' the functional hxo strongly 
exposes X o in B. 

Proof. Since h is uniformly monotonic, there exists aEIR+\{O} such that h(x)~allxll, 
for each XEP. Let C={xEPlh(x)=l} and X~=,hoEC. To prove that stronglyhxo 
exposes X o in B, by Theorem 3.1, it is enough to prove that h strongly exposes x~ inxo 
C. Now hxo exposes x~ in C and hxo(x~) = O. Let (x.) be a sequence of C such that 

Then h(Pxo(x.))-> 1, hence 

• 

• 

h(xv) = h(Pxo(xv))+h(yv) = 1, 

hence h(y.)->O. So we have that Yv->O, because allyvll ~h(yv)' Hence xv->x~. 

Corollary 3.1. Let X be a Banach space ordered by the closed, generating cone P, B be 
a base for P and X have the R.D.P. If ep(B)+0 then the following statements are 
equivalent: 

(i) sep(B) +0, 

(ii) ep (B) = sep (B), 

(iii) P is well-based. 

Proof. By Proposition 3.2 X has the c.P.P. Also by [3, 3.5.6], each base for P is 
defined by a continuous linear functional. By Theorem 3.1 we have that (i)=(ii) and 
(i)=(iii). It is clear that (ii)=(i). If the cone P is well-based, by [3, 3.8.12], there exists a 
uniformly monotonic, continuous linear functional of X and by Proposition 3.3 we have 
that (iii)=(i). 

Proposition 3.4. Let X be a normed space ordered by the cone P and B be a base for 
P defined by f E X*. If X o is an extreme point of B with continuous projection P Xo' then 
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(i)	 g is a negative-strongly exposing junctional of X o in B if, and only if, there exists a 
uniformly monotonic, continuous linearfunctional h ofX such that g = h(xo)p(xo,·) - h. 

(ii)	 g strongly exposes X o in B if; and only if, there exists a uniformly monotonic, 
continuous, linear functional h of X and AE IR such that g = h(xo)p(xo,· ) - h +Af 

Proof. Let he X* be uniformly monotonic. By Proposition 3.3, g = hxo = h(xo)p(xo,·) - h 
is a negative-strongly exposing functional of Xo in B. Let g strongly exposes Xo in Band 
g(xo) = O. By Theorem 3.1, h = f - g is uniformly monotonic. Let 

To show that w is uniformly monotonic it is enough to show that w(x) ~ y > 0, 
Vx E B' = {x E P Ih(x) = I}, because then w(x) ~ yh(x) ~ yallxll Vx E P. Let w(xv)---+O for a 
sequence (xv) of B'. Then w(x v) = - g(x v) +p(x o, x.)---+O and therefore 

Moreover, f(x v)---+ 1 because h(x.) = f(x v) - g(xJ = 1. If Yv = xj(f(xJ) then Yv E Band 
g(y.)---+O. So yv---+Xo, hence Xv---+Xo and therefore p(xo,xJ---+1. This is a contradiction, 
hence w is uniformly monotonic and the proof of (i) is complete. The statement (ii) 
follows by (i) because g strongly exposes Xo in B if, and only if, g + Af strongly exposes 
X o in B. 

Proposition 3.5. Let X be a normed space ordered by the cone P and B be a base for 
P defined by f E X*. If X o is an extreme point of B with continuous projection PXo then the 
following statements are equivalent: 

(i)	 B is bounded, 

(ii)	 for each sequence (xv) of B, Xv---+X o if, and only if, Pxo(xv)---+xo. 

Proof. Let B be bounded. Then f is uniformly monotonic and by Proposition 3.3, 
fxo strongly exposes X o in B. Let (x.) be a sequence of B. If Xv---+X o, then 
Pxo(x.)---+Pxo(xo) =Xo. If Pxo(xv)---+xo, then 

-
I 

-

Hence xv---+xo. So (i)=(ii). 
Let the statement (ii) be true. To show that B is bounded, it is enough to show that 

the functional fxo which is bounded on B strongly exposes X o in B. (Proposition 3.1.). 
Let (xv) be a sequence of B such that 
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Then j~o(xJ = f(P xo(xJ) - 1-+0, hence Pxo(xJ -+Xo and Xv-+Xo. So fxo strongly exposes 
X o in B. 

4. Characterizations of /( (r) 

Let G be a closed and convex subset of a Banach space X. The set G has the Krein
Milman property (K.M.P.) if K =coep(K), for each closed, convex and bounded subset 
K of G. It is known, [2, 3.5.7J, that the set G has the Radon-Nikodym property 
(R.N.P.) if, and only if, K =cosep(K), for each closed, convex and bounded subset K of 
G. Moreover we know, [IJ, that in locally solid lattice Banach spaces the R.N.P. and 
the K.M.P. are equivalent. Let r be any set. We denote by /1(f) the Banach space of 
all functions ~:r -+IR, ~=(~(i»)iEr, such that LierlW)1 < + 00, with norm 11(11 = Lier!W)!. 
The space /1(f) has the R.N.P., [2, 4.1.9J and ordered by the cone li(f)= 
{( E I((f) IWl ~ 0 Vi E f} is a Banach lattice. The set B = {( E / i(f)III(11 = I} is a closed 
bounded base for the cone /i (f). We denote by /1 space /1(N). 

Theorem 4.1. Let X be an infinite-dimensional Banach space ordered by the closed, 
generating cone P and X have the R.D.P. Then: 

(i)	 X is order-isomorphic to 11 (f) if, and only if, P has a closed, bounded base with the 
K.M.P.; 

(ii)	 X is order-isomorphic to II if, and only if, P has a separable, closed, bounded base 
with the K.M.P. 

Proof. Let T be an order-isomorphism of X onto /1 (f). Since B = g E/i (f)I'II(11 = 1} 
T- 1(B)is a closed and bounded base for li(f) with the K.M.P. we have that is a 

closed, bounded base for P with the K.M.P. Let B be a closed, bounded base for P 
defined by the functional f and let B have the K.M.P. By [3, 3.5.6J, the functional f is 
continuous. Let 

ep(B) = {bdiEf}. 

By Proposition 3.2 we have that X has the c.P.P. 

We shall prove that 

x=LP(bj,x)b j and LP(bj,x)<+oo, VXEP.	 (1) 
iEr	 iEr 

At first we shall show that 

The set L is a cone and it is closed because Pbi is continuous Vi Ef. If Lj {O}, the set B' = 

Bn L is a non-empty, closed and bounded base for L. So EP(L)j0 because ep(B')j0. 
Also EP(L)£;EP(P) because for each XEL and YEP, O;2;y;2;x implies that yEL. Hence 

• bjEEP(L) for at least one jEf. This contradicts the definition of L because Pb/bJ=b j • 

Hence L={O}. 

I 
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We denote by F the set of finite subsets of I" and for each x EP and 15 EF we denote 
by X o the sum 

XO = ~ Pb,(x). 
tEO 

Let x EB. Then (Xb)bEF is an upward-directed net of P (if 15 1 , 15 2 EF we say that 15 1 ~ 15 2 if, 
and only if, 15 1 <;:(5 2 ) , We shall show that xb=SUp{Pb,(x)!iEI5}. If z~Pb/x)ViEc'5, then 
W=Z-Pb,(X)~O.If jEc'5 and j-/-i, then W~Pb/W)=Pbj(Z)?;Pbj(xland therefore Z~Pb,(X)+ 

P, (x). By a similar process we have that Z ~ Xb' hence 
j -

By [3, 3.8.8J, we have 

y = lim Xb= sup (x o) ~ X. 
OEF 

This implies that Pblx)~y~xViE[' and therefore that Pb,(x-y)=OViEr because 
Pb,(x) ~ Pb,(Y) ~ Pb,(x)ViE r. Hence x = y and therefore 

Since f E X* and f define the base B we have that 

f(x) = L p(bi , x) = 1. 
fEr 

So (1) is true because it is true for each xEB. 
We define the map T:P-+l:(r) as follows: 

T(x) = (p(b;, X»iEr, "IxE P. 

It is clear 
because 

that T(h+J1Y)=AT(xl+,uT(y), VX,yEP and A,,uEIR+. T IS one-to-one 

X= L p(b;,x)b;, 
iEr 

VXEP. 

Since the set B is bounded there exists ME IR+ such that 

Ilxll ~ M, Vx E B. 

-
• 

We shall show that the map T is onto. 
Let (=(~(i)brEl:(r). For each I5EF we put 

x o= L ~(i)bi and 
ies 

(0= T(xo)' 
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Let G > O. Since lim ~b = ~ there exists 15 0 EF such that 

If 15'[=15[\151 and 15~=151\15[ then ~bi-~b2=~bl-~b2' Since ~bi' ~b2 are disjoint we have 
that 

and therefore 

So 

Hence the net (Xb)bEF is Cauchy. If x=limxb, then XEP and p(bi,x)=W)ViEr. So 
T(x) = ~ and the map T is onto Ii (T). By [3, 1.5.6] T can be extended to a linear map 
T of X into I[(r) as follows: T(x)=T(y)-T(z), where x=y-z and y,ZEP. Since li(r) 
is generating the map T is onto I[(r). Also T is one-to-one because T(x)=O implies 
T(y) = T(z) and therefore y = z. By the definition of T we have that T and T -[ are positive. 

Let ~=T(x)=(p(bi,x))iErEli(r). Then 

IIT-[(~)II=llxll=11I p(bi,x)bill;£M Ip(bi,X)=MII~II· 
ier ier 

Since the map T -[ is linear and I[ (T) is a Banach lattice we have that T- 1 is 
continuous. By the open mapping theorem, T is continuous. So T is an order
isomorphism of X onto I[ (T) and the statement (i) is true. 

Let B be a separable, closed and bounded base for P and let B have the K.M.P. Then 
X is order-isomorphic to I[(r) and the base C= T(B) for li(r) is separable. Also there 
exists AEIR+ such that II~II~)">O for each ~EC. Let ep(C)=giliEr}. Then 

So the set I' is countable because C is separable and II~i - ~jll ~ 2..1., Vi=f- j. Hence X is 
ordered isomorphic to I[ and the statement (ii) is true. 

Let K be a closed, convex, unbounded subset of a Banach space X. For each real 
number p>O we denote by Kp,Ks.p, the sets 

respectively, whenever these sets are non-empty. In [7, Propositions 1 and 3] it is 
proved:

• 
(i) if X has the K.M.P. then Kp=f-coKs,p for at least one pEIR+ implies ep(K)=f-0: 

I 

-
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(ii) if	 X has the R.N.P., then: Kp=/=coKs.p for at least one pE~+~K is 
dentable-e-seprK] =/=0. 

It is easy to show that the proof of these results can be accepted for the case where K is 
a subset of a closed, convex and unbounded subset A of X and A has the K.M.P., the 
R.N.P. respectively. 

In [7, Corollary 3J, it is shown that each closed and convex subset of I t has at least 
one strongly exposed point. In the following proposition we prove a similar result for 
well-based cones. 

Proposition 4.1. Let X be a Banach space ordered by the closed, well-based cone P 
and K a closed and convex subset of P. If P has the K.M.P. (respectively, the R.N.P.) then 
ep(K) =/= 0 (respectively, sep(K) =/= 0). 

Proof. If the set K is bounded the proposition is true. Let K be unbounded. To 
show that ep(K)=/=0 (respectively, sep(K) =/=0) it is enough to show that coKs.p=/=Kp, for 
at least one p E ~ +. Let a uniformly monotonic, continuous linear functional f of 
X(f(x)~allxll)\fxEP, xoEK and a real number £>0. If p>llxoll and ap>{(x o)+£, then 
X oE K; and for each convex combination x = L7= 1 AiXi of elements of K s• p we have 

f(x)= L 
n 

).J(xJ~ I
n 

)'ia!!xill=ap>f(xo)+£. 
j= 1 i= 1 

Hence for each yEcoKs.p we have that 

Proposition 4.2. Let X be an infinite-dimensional Banach space ordered by the closed, 
generating cone P and X have the R.D.P. 

If P has the K.M.P. the statements (i), (ii), (iii), (iv) and (v) are equivalent. 
1f P has the R.N.P. all the following statements are equivalent: 

(i) X is order-isomorphic to 11 (r),
 

(ii] P is well-based,
 

(iii) sep(B) =/= 0,for at least one base B for P, 

(iv) 0 E sep(P), 

(v) sep(K) =/=0 for each closed and convex subset K of P, 

(vi) B is dentable,for at least one base B for P, 

(vii) P is dentable, 

(viii) K is dentable,for each closed and convex subset K of P. 

• 
Proof. Let P have the K.M.P. If P is well-based, there exists a uniformly monotonic 

continuous linear functional f of X. This functional defines a closed and bounded base 
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C for P and C has the K.M.P. Hence, by Theorem 4.1, (ii)=-(i). Since ep(c)f0, by 
Corollary 3.1, we have that (ii)=-(iii). It is easy to show that (ii)=-(iv). Also 
(v)=>(iii)=>(ii). Since (ii)=-(i), the statement (ii) implies that P has the R.N.P. and by 
Proposition 4.1 we have that (ii)=>(v). 

Let P have the R.N.P. Then for each closed and convex subset A of P we have: 
sep(A) f 0 if and only if, A is dentable. Hence (iii)=-(vi), (iv)=-(vii) and (v)=-(viii). 
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