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1. Introduction

The study of extreme, strongly exposed points of closed, convex and bounded sets in
Banach spaces has been developed especially by the interconnection of the Radon-
Nikodym property with the geometry of closed, convex and bounded subsets of Banach
spaces [S], [2]. In the theory of ordered Banach spaces as well as in the Choquet
theory, [4], we are interested in the study of a special type of convex sets, not
necessarily bounded, namely the bases for the positive cone. In [7] the geometry
(extreme points, dentability) of closed and convex subsets K of a Banach space X with
the Radon—-Nikodym property is studied and special emphasis has been given to the
case where K is a base for a cone P of X. In [6, Theorem 1], it is proved that an
infinite-dimensional, separable, locally solid lattice Banach space is order-isomorphic to
[, if, and only if, X has the Krein-Milman property and its positive cone has a bounded
base.

In this paper (Section 3) we study the existence of strongly exposed points in a base B
for a cone P of a Banach space X and we characterize the strongly exposing functionals.
It is proved (Theorem 3.1) that the existence of strongly exposed points in a base B for
P is closely connected with the existence of a bounded base for the cone P.

In Section 4 we prove a similar result to [6, Theorem 1] for the space [;(I'), (Theorem
4.1). Afterwards we prove that if a Banach space X ordered by the closed, generating
cone P has the R.D.P. then X is order-isomorphic to [,(I') if, and only if, P has the
Krein—Milman property and sep{B) #0, for at least one base B for P, (Proposition 4.2).

2. Notations and definitions

Let X be a normed space, K a convex subset of X and x,e K. We say that x, is an
exposed point of K if there exists a continuous linear functional g of X (ge X*) such
that g(x,)>g(x),V xe K\{x,}. In this case we say that g exposes x, in K. We say that
X, is a strongly exposed point of K if there exists ge X* which exposes x, in K and for
each sequence (x,) of K, g(x,)—g(x,) implies x,—x,. In this case we say that g strongly
exposes x, in K. We denote by ep(K), sep(K) the set of extreme, strongly exposed
points of K. For each A < X we denote by A the closure of 4 and by ¢6 A the closed
convex hull of 4. Let X be ordered by the cone P. xe P\{0} is an external point of P.
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272 IOANNIS A. POLYRAKIS

xe EP(P), if for each ye P, 0<y<x implies y=Ax. A subset B of P is a base for P if
there exists a strictly positive linear functional f of X such that B={xeP|f(x)=1}.
Then we say that the base B is defined by the functional f. The cone P is generating if
X =P—P. We say that P is well-based if there exists a bounded base B for P and 0¢B.
The space X is a locally solid linear lattice if X is a linear lattice and there exists a real
number a>0 such that for each x,ye X, |x|<[y|, implies ||x||<al|y|| A lincar functional
f of X is uniformly monotonic if there exists a real number a>0 such that
f(x)= a”x[‘, YxeP.

It is easy to show that g strongly exposes O in P if, and only if, —g is uniformly
monotonic and therefore that Oesep(P) if, and only if, P is well-based. X is order-
isomorphic to an ordered normed space Y if there exists an isomorphism T of X onto Y
and T, T~ ! are positive. An ordered linear space X has the Riesz decomposition
property (R.D.P.} if for any three positive elements x,y,z of X with x<y+z there exist
x;,x,€X such that 0<x, <y, 0<x,£z and x=x,+x,. Each linear lattice has the
R.D.P.

3. Strongly exposed points in a base for a cone
Proposition 3.1, Let X be a normed space and K be an unbounded, convex subset of X.
If g strongly exposes the point x, in K, then g(x,)— — o0, for each sequence (x,) of K

with ||x,||— + oc.

Proof. Let peR such that ||[x.||<p and (x,) be a sequence of K with lim,_, ||x,||=
+ co. Then there exists a sequence (y,) of K, such that

”yv” =p and W= ;'vx0+(1 —iv)xv’ 'lv E(O, 1)

Then

2

Ay

p=|lnllz[hlxo ]| (1= 2)||x.]|

and therefore A,—1.
If (g(x, ) is a bounded subsequence of (g(x,)), then

g(yx,)—8(xo)

and therefore y, —x,. This is a contradiction. Hence g(x,)— — oo because g(x,) = g(x,).
Let X be a normed space, K a convex subset of X, ue X* such that u(K)={1} and
Ae R. By a simple computation we have:

(S;) A functional ge X* strongly exposes x, in K if, and only if, g—Au strongly
exposes X, in K. .

Since (g —g(xq)u)(x,) =0, we have that

(S;) xo is a strongly exposed point of K if, and only if, there exists ge X* such that g
strongly exposes x, in K and g(x,)=0.
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If g is as in (S,), then g(x) <0 for each xe K and we shall say that g is a negative-
strongly exposing functional of x, in K. Let X be ordered by the cone P and x, be an
extremal point of P. We shall say that x, has a continuous projection P, (or that x, is
an extremal point of P with continuous projection P, ) if, and only if, P, is a linear,
continuous, positive projection of X onto [x,] such that P, (x) =x, for each xeP.

Let x, be an extremal point of P with continuous projection P,. We denote by
p(xo,") the continuous linear functional of X, defined by the formula

P (x)=p(Xq, X)X, x€X.
Also for each he X* we denote by h,  the functional
hy (x)=h(P, (x)—x), xeX.

If B is a base for P defined by fe X* and x;=Ax, € B, then we have:

(P,) P (x)<xp, for each xe B\{x5},

(P,) for each sequence (x,) of B, f(P, (x,))—1 implies P, (x,)—Xo,

(P3) for each strictly positive, continuous linear functional h of X, h, exposes x; in B
and h, (xo)=0.

The statement (P;) is true because x;, < P, (x) < x implies f(x—x()=0 hence x=x,.

Definition 3.1. A normed space X ordered by the cone P has the continuous
projection property (C.P.P.), if xe EP(P) implies that x has a continuous projection.

Proposition 3.2. Let X be a normed space ordered by the cone P. Then:

(1) X has the C.P.P. if, and only if, Y=P— P has the C.P.P.,
(i} if X is a locally solid linear lattice then X has the C.P.P.,

(i) if X is a Banach space, X has the R.D.P. and the cone P is closed and generating,
then X has the C.P.P.

Proof. If X has the C.P.P. then Y, ordered by the cone P, has the C.P.P. Let Y have
the C.P.P. If x,e EP(P), there exists a continuous positive projection P, (x)=p(xo,x)xg
defined on Y. Let p'(x,,-) be a Hahn—Banach extension of p(x,,-) on X. Then p'(x,,"),
is positive and P’ (x)=p'(xg, X)X, is a continuous projection of x, defined on X. Hence
the statement (i) is true. To prove (ii) and (iii)) we assume that the cone P is closed and
generating and that X has the R.D.P. Since P is closed X is Archimedean. If x,e EP(P),
by [8, Theorem 1.2], there exists a positive linear functional f of X such that

f(x)=sup{teR, |txo<x}, VxeP.
(In [8, Theorem 1.2], the existence of f is deduced from the fact that X is Archimedean

and X has the RD.P)).
Let P, (x)=f(x)xg, VxeX. Then P, is a linear positive projection and
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P, (x)SxVxeP because the cone P is closed. To show that P, is continuous it is
enough to show that f is continuous. By [3, 3.5.6.], the statement (iii) 18 true.

If X is a locally solid linear lattice then X has the R.D.P. and the cone P is
generating and closed. Since 0= f(x)x, < x, Vxe P, there exists ae R, such that

}f(x)|§Hf|| ||\ , VxeP.

Xg

[f xe X then
. ;L 2a% 2a°
SN NN E g (o 1D = el ey [l »
O B B A B [N B

Hence the statement (i1) is true.

Lemma 3.1. Let X be a normed space ordered by the cone P, B a base for P defined
by feX* Y=RxX be ordered by the cone Y,=R, xP and B be the base for Y,
defined by the functional f'(& xy=E+ f(x). Then

(1) each extremal point (£,0) of Y, has a continuous projection,
(1) xq€esep(B) if, and only if. (0, x,) e sep(B’),
(i) for each aeR {0} and geX* we have: g is a negative-strongly exposing
functional of xq in B if. and only if, g(&,x)= —al+g(x) is a negative-strongly
exposing functional of (0, x) in B

Proof. 1t is clear that the statement (i) is true.

Let x,esep(B) and ge X* be a negative-strongly exposing functional of x, in B. Then
foreachae R\ {0}, the functional g'(&, x) = — al + g(x), exposes (0, x,) in B"and g'(0, x,) =0.
Let (£,,x,) € B' be such that g'(&,,x,) = —aé, +g(x,)—0. Since g(x,) £0 we have that

&,—0 and g(x,)—-0.
Since f'(&,,x,)=¢&,+ f(x,)=1 we have that
fx)—1.

Then g(x,/( f(x,)))—0, hence x,—x, and (&,,x,)—>(0,x,). So (0,x,)esep(B’) and g’ is a
negative-strongly exposing functional of (0. x,) in B'.

Let (0,x,)esep(B’) and he Y* be a negative-strongly exposing functional of (0, x4) in
B'. Then there exist ae R, \{0} and ge X* such that A(, x)= —al +g(x). It is clear that
g(x)<0V¥xeP. If x,€B and g(x,)—g(x,)=0, then (0,x,)e B" and h(0,x,)=g(x,)>0=

#(0, x,), hence x,—x,. So the statements (1i} and (iii) are true.

Theorem 3.1. Let X be a normed space ordered by the cone P, B be a base for P
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defined by feX*, xqesep(B), g a negative-strongly exposing functional of x, in B and
h=f—g. Then:

(i) if B' is a base for P defined by f'e X*, and y, is an extreme point of B’ with

continuous projection P, , then y,esep(B') and h, strongly exposes y, in B'.

(i1) the functional h is uniformly monotonic and the cone P is well-based.

Proof. Since g is a negative-strongly exposing functional of x;, we have that —g is
positive. Hence 4 is strictly positive.

Proof of (i). By (P3), h,, exposes y, in B" and h, (y,)=0. Let (x,) be a sequence of B’
such that

hyo(xv) = h(PyO(xv) - xv) —0.
If y,=x,—P, (x,), then y,€ P and
—h, (x,)=h(y,) = f(y,) —&(y,) 0.

Since f(v,), —g(v,) =0, we have that

fy)—-0 and g(y,)-0.
We put
Zv=(1 _f(yv))xo +yv
Then there exists voe N such that z,e B for each v=v,. Since g(z,)=g(y,)—0 we have
that z,-x,, hence y,—0. Since f(x,)=/"(y,)+ (P, (x,))=1, we have that
S'(Py(x,))>1, hence, by (P;), Py (x,)>ye. So x,=P, (x,)+y,~yo, hence h, strongly
exposes y, in B'.

Proof of (i1). Let Y=R x X be ordered by the cone Y, =R, x P and B” be the base
for Y, defined by the functional f"(£,x)=¢&+ f(x). Then (0,x,)esep(B”) and the
functional g'(&, x) = — £+ g(x) is a negative-strongly exposing functional of (0, x,) in B”.

If W=f"—g', then K’ is strictly positive and

H(&, x} =28+ h(x).
Let
C={(&eY, |H(Ex)=1}.

Then zy=(1/2, 0) is an extreme point of C with continuous projection P, (&, x)=(¢,0).
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By (i), h7, strongly exposes z, in C. Moreover, for each (¢, x)e C we have

[, (&, X)| SH (&, x)=1.

By Proposition 3.1, C is bounded. So the base for P defined by h is bounded. Hence P
is well-based and the functional k is uniformly monotonic.

Proposition 3.3. Let X be a normed space ordered by the cone P and B be a base for
P defined by feX*. If h is a continuous uniformly monotonic linear functional of X, then
for each extreme point x, of B with continuous projection P, , the functional h,  strongly
exposes x, in B.

Proof. Since h is uniformly monotonic, there exists ae R, \{0} such that h(x)=a]|x]|,
for each xeP. Let C:{xeP|h(x)=1} and xo=4Ax,€C. To prove that h, strongly
exposes X, in B, by Theorem 3.1, it is enough to prove that 4, strongly exposes x; in
C. Now h, exposes x, in C and h, (x,)=0. Let (x,) be a sequence of C such that

hxo(xv) = h(Pxo(xv) —xv)—’o'
Then A(P, (x,))~ 1, hence
P (x,)—x5.
If y,=x,—P,(x,), then y,e P and
h(x,) =h(P . (x,))+h(y,) =1,
hence h(y,)—0. So we have that y,—0, because a

v.|| £ h(y,). Hence x,—xy.

Corollary 3.1. Let X be a Banach space ordered by the closed, generating cone P, B be
a base for P and X have the RD.P. If ep(B)#0 then the following statements are
equivalent:

(i) sep(B)+#9,
(i) ep(B)=sep(B),
(iii) P is well-based.

Proof. By Proposition 3.2 X has the C.P.P. Also by [3, 3.5.6], each base for P is
defined by a continuous linear functional. By Theorem 3.1 we have that (i)=(ii) and
(i)=(iii). It is clear that (ii)=(i). If the cone P is well-based, by [3, 3.8.12], there exists a
uniformly monotonic, continuous linear functional of X and by Proposition 3.3 we have
that (iii)=(i).

Proposition 3.4. Let X be a normed space ordered by the cone P and B be a base for
P defined by fe X*. If x, is an extreme point of B with continuous projection P, , then
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(1) g is a negative-strongly exposing functional of x, in B if, and only if, there exists a
uniformly monotonic, continuous linear functional h of X such that g =h{xg)p{xq,")— h.

(i) g strongly exposes xq in B if, and only if, there exists a uniformly monotonic,
continuous, linear functional h of X and A€ R such that g=h(xq)p(xg, ) —h+ Af.

Proof. Let he X* be uniformly monotonic. By Proposition 3.3, g=h, =h(x,)p(xo,")—h
is a negative-strongly exposing functional of x, in B. Let g strongly exposes x, in B and
8(x¢)=0. By Theorem 3.1, h= f —g is uniformly monotonic. Let

W:h_f+p(x0")'
Then w(x,)=1 because f(xq)— h(x,)=g(x,)=0. So

g=w(xo)p(xo,") —W.

To show that w is uniformly monotonic it is enough to show that w(x)=y>0,
VxeB ={xeP|h(x)=1}, because then w(x)=yh(x)=ya|x||VxeP. Let w(x,)—0 for a
sequence (x,) of B". Then w(x,)= —g(x,)+ p(x,, x,)—0 and therefore

g(x,)=0 and  p(xe,x,)—0.

Moreover, f(x,)—1 because h(x,)= f(x,)—g(x,)=1 If y,=x,/(f(x,)) then y,e B and
g(y,)—0. So y,—x,, hence x,—x, and therefore p(xq,x,)—1. This is a contradiction,
hence w is uniformly monotonic and the proof of (i) is complete. The statement (ii)
follows by (i) because g strongly exposes x, in B if, and only if, g+ Af strongly exposes
Xo in B.

Proposition 3.5. Let X be a normed space ordered by the cone P and B be a base for
P defined by f e X*. If x, is an extreme point of B with continuous projection P, then the
following statements are equivalent:

(i) B is bounded,

(1) for each sequence (x,) of B, x,—X, if, and only if, P, (x,)—X,.

Proof. Let B be bounded. Then f is uniformly monotonic and by Proposition 3.3,
fx, strongly exposes x, in B. Let (x,) be a sequence of B. If x,—-x,, then
Pxo(xv)_'Pxo(xO)sz' If Pxo(xv)ﬂxo’ then

Sro(X¥) = F(Pry(x,) =x,) = f(P,(x,)) =1 f(x0) = 1 =0= £, (x0)-

Hence x,—x,. So (i)=(ii).
Let the statement (il) be true. To show that B is bounded, it is enough to show that
the functional f, which is bounded on B strongly exposes x, in B. (Proposition 3.1.).
Let (x,) be a sequence of B such that

fxo(xv)ﬂfxo(xo) - 0
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Then f, (x,)=f (P, (x,))—1-0, hence P, (x,)—>xo and x,—Xx,. So f, strongly exposes
Xq In B.

4. Characterizations of [, (I)

Let G be a closed and convex subset of a Banach space X. The set G has the Krein—
Milman property (K.M.P)) if K =coep(K), for each closed, convex and bounded subsct
K of G. It is known, [2, 3.5.7], that the set G has the Radon—-Nikodym property
(R.N.P) if, and only if, K =cosep(K), for each closed, convex and bounded subset K of
G. Moreover we know, [1], that in locally solid lattice Banach spaces the R.N.P. and
the K.M.P. are equivalent. Let I' be any set. We denote by !,(I") the Banach space of
all functions &:T—R, &=(&(i))icr, such that ¥ ;. r|&()| < + o0, with norm [|&]|=Y.r|&0)].
The space [;(I) has the RNP. [2, 419] and ordered by the cone [;(I)=
(el (I)]&(H20Viel'} is a Banach lattice. The set B={¢el;(D|||¢][=1} is a closed
bounded base for the cone I] (I'). We denote by I, space I;(N).

Theorem 4.1. Let X be an infinite-dimensional Banach space ordered by the closed,
generating cone P and X have the R.D.P. Then:

(i) X is order-isomorphic to 1,(T) if, and only if, P has a closed, bounded base with the
KM.P,;

(i) X is order-isomorphic to 1 if, and only if, P has a separable, closed, bounded base
with the K.M.P. ;

Proof. Let T be an order-isomorphism of X onto /,(I). Since B={celf (|||&]|=1}
is a closed and bounded base for I (I') with the K.M.P. we have that T '(B) is a
closed, bounded base for P with the KM.P. Let B be a closed, bounded base for P
defined by the functional /" and let B have the KM.P. By [3, 3.5.6], the functional f is
continuous. Let

ep(B)={b]iel}.

By Proposition 3.2 we have that X has the C.P.P.
We shall prove that
x=73 plb,x)b; and Y p(b,x)<+ o, VxeP. (1)
iel iell
At first we shall show that

L={xeP|P,(x)=0, Viel'}={0}.

The set L is a cone and it is closed because P, is continuous VieI'. If L+ {0}, the set B' =
B~ L 1s a non-empty, closed and bounded base for L. So EP(L)#9 because ep(B’) #0.
Also EP{L)< EP(P) because for each xe L and yeP, 0< y<x implies that ye L. Hence
b;e EP(L) for at least one jeI This contradicts the definition of L because P, (b;)=b;.
Hence L= {0}.
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We denote by F the set of finite subsets of I' and for each xe P and d¢ F we denote
by x; the sum

Xg= Z Py (x).

fed

Let xe B. Then (x;) . is an upward-directed net of P (if 8,, 6, € F we say that &, <9, if,
and only if; §,<9,). We shall show that x,5=sup{P,,i(x)[ie<5}. If zzP,(x)Vied, then
w=z—P,(x)20.1f jed and j+#i, then wngj(w) = ij(z) = ij(x) and therefore z 2 P, (x) +
P,,j(x). By a similar process we have that z = x;, hence

x;zsup{P,,i(x)lieé}gx, VoeF.

By [3, 3.8.8], we have

y=limx;=sup(x,;) <x.
SeF

This implies that P, (x)<y<xViel and therefore that P,(x—y)=0Viel because
P, (x) £P,(y) <P, (x)Viel. Hence x=y and therefore

x=Y plb,x)b,

iel”
Since fe X* and f define the base B we have that

J)=Y plbi,x)=1.

iell

So (1) is true because it is true for each xe B.
We define the map T:P—I; (I') as follows:

T(x):(p(bi’x))ier9 VxeP,

It is clear that T(Ax+uy)=AT(x)+uT(y), Yx,yeP and A ueR,. T is one-to-one
because

x=Y p(b,x)b;, VxeP.

iel
Since the set B is bounded there exists M e R, such that
xl<M, vxeB.

We shall show that the map T is onto.
Let E=(&(1));erel (. For each & F we put

Xs= Z Eb; and L= T(x,).

ied
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Let £>0. Since lim ;= ¢ there exists §, € F such that

&5 — &5 <8 V8,,0,> 3.

If 61=0,\0, and 6,=0,\6, then {;, —&5,=¢;
that

| —¢s, Since &y, &5, are disjoint we have

}éol - éaz‘ = }Cva'l - éa'z| = éai + 56'2
and therefore
165, = Eaull =1y + Easll=ai [+ 1€ | e
So
s, = s, | = lxes; = xs, /| < Ml ||+ [|€5,]) < M.

Hence the net (x;);.p is Cauchy. If x=Ilimx,, then xeP and p(b,x)=¢()Viel. So

T(x)=¢ and the map T is onto /f(I). By [3, 1.5.6] T can be extended to a linear map

T of X into [,(I") as follows: T(x)=T(y)— T(z), where x=y—z and y,ze P. Since [{ (I

is generating the map T is onto [,(I'). Also T is one-to-one because T(x)=0 implies

T(y)= T(z) and therefore y=z. By the definition of T we have that T and T ~! are positive.
Let &=T(x)=(p(b;, X));er €11 (T'). Then

7= =l =I5, ptbu 00| < Tptb 0= M|

Since the map T ! is linear and [,(') is a Banach lattice we have that T ! is
continuous. By the open mapping theorem, T is continuous. So T is an order-
isomorphism of X onto (') and the statement (i) is true.

Let B be a separable, closed and bounded base for P and let B have the K.M.P. Then
X is order-isomorphic to !, (T') and the base C=T(B) for I (I') is separable. Also there
exists Ae R, such that ||| 4>0 for each e C. Let ep(C)={¢&;|iel'}. Then

G- el=lell+ ez 2% Vi

So the set I" is countable because C is separable and ||&,—¢,||=24, Vi# j. Hence X is
ordered isomorphic to I, and the statement (ii) is true.
Let K be a closed, convex, unbounded subset of a Banach space X. For each real

number p >0 we denote by K, K, ,, the sets

{xeK]| [x|=p}, {xeK] |x]|=p}

respectively, whenever these sets are non-empty. In [7, Propositions 1 and 3] it is
proved:

(i) if X has the K.M.P. then K,#coK, , for at least one pe R, implies ep(K) +0;
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(i) if X has the RN.P, then: K,#coK;, for at least one peR,<K is
dentable<>sep(K) #§.

It is easy to show that the proof of these results can be accepted for the case where K is
a subset of a closed, convex and unbounded subset A of X and A has the K.M.P,, the
R.N.P. respectively.

In [7, Corollary 3], it is shown that each closed and convex subset of [, has at least
one strongly exposed point. In the following proposition we prove a similar result for
well-based cones.

Proposition 4.1. Let X be a Banach space ordered by the closed, well-based cone P
and K a closed and convex subset of P. If P has the K.M.P. (respectively, the R.N.P.) then
ep(K) # 0 (respectively, sep(K) # D).

Proof. If the set K is bounded the proposition is true. Let K be unbounded. To
show that ep(K)# 0 (respectively, sep(K) #9) it is enough to show that coK, ,#K,, for
at least one peR,. Let a uniformly monotonic, continuous linear functional f of
X(f(x)2a4|lx||) Vxe P, xoe K and a real number ¢>0. If p>|[x,|| and ap > f(x,) +e, then
xp € K, and for each convex combination x =} 7., 4;x; of elements of K, , we have

F)= Y. 4f(x)2 ¥ Zalel|=ap> f(xo) +2

Hence for each yecoK, , we have that
S 2 f(x0)+2> f(x0)
and therefore coK; , # K,.

Proposition 4.2. Let X be an infinite-dimensional Banach space ordered by the closed,
generating cone P and X have the R.D.P.

If P has the K.M.P. the statements (i), (i1), (iii), (iv) and (v) are equivalent.
If P has the R.N.P. all the following statements are equivalent:

(1) X is order-isomorphic to I,(I),

(1) P is well-based,

(i) sep(B) # 9, for at least one base B for P,

(iv) Oesep(P),

(v) sep(K)#0 for each closed and convex subset K of P,

(vi) B is dentable, for at least one base B for P,

(vii) P is dentable,
(viii) K is dentable, for each closed and convex subset K of P.

Proof. Let P have the K. M.P. If P is well-based, there exists a uniformly monotonic
continuous linear functional f of X. This functional defines a closed and bounded base
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C for P and C has the K.M.P. Hence, by Theorem 4.1, (ii)<>(i). Since ep(C)#®, by
Corollary 3.1, we have that (ii)<>(iii). It is easy to show that (ii)<(iv). Also
(v)=>(ii1)=>(11). Since (ii)<>(i), the statement (ii) implies that P has the R.IN.P. and by
Proposition 4.1 we have that (ii)=>(v).

Let P have the R.IN.P. Then for each closed and convex subset 4 of P we have:
sep(A4) # 0 if and only if, 4 is dentable. Hence (iii)<>(vi), (iv)<>(vii) and (v)<>(viii).
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