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Cones and Geometry of Banach Spaces 

Abstract. This is a survey article on cones and geometry of Ba
nach spaces. It is shown that the geometry of cones and especially 
the geometry of their bases (strongly exposed points, dentability 
and also the existence of bounded bases) are related with impor
tant properties of the whole space. Recall that a base for a cone 
P is an intersection of P with an affine hyperplane defined by 
a strictly positive linear functional. Especially in this article the 
above properties of bases for cones are studied and some important 
properties of cones in reflexive spaces and also properties of cones 
of dual spaces are proved. In the sequel characterizations of the 
positive cone of £1 and also characterizations of reflexive Banach 
spaces based on the above properties of cones are given. Finally it 
is shown that ifT is an one-to-one, continuous, linear operator of 
an £1 (f.l) space into the topological dual E' of a Banach space E, 
the geometry of the images of the positive cone of £1 (f.l) and its 
subcones in E' is connected with the geometry of the space £1 (f.l) 
and also with the geomet·ry of the space E. In the last section 
an application of the geometry of cones in vector optimization is 
given. 
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1. Introduction 

One of the first results connecting cones and geometry of Banach 
spaces is that of D. and V. Milman, 1964, that a Banach space is non
reflexive iJ and only iJ it does not contain the positive cone oj f 1. This re-
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sult shows also the importance of characterizations of the positive cone .et 
of .e I for the theory of Banach spaces. In this article it is shown that prop
erties of cones as the existence of bounded bases, the existence of dentable 
bases and also the existence of strongly exposed points in the bases for 
cones, are related with the geometry of the whole space. We start with 
the study of the strongly exposed points. An important property for this 
study is the continuous projection property. This property of cones was 
defined in [29], and for any extreme point of a base for a cone, it assumes 
the existence of a positive, continuous, order contractive projection onto 
the one dimensional subspace generated by this point. It is shown that in 
many cases, the continuous projection property is weaker than the lattice 
property and also than the Riesz decomposition property. For example if 
p is a closed, generating cone of a Banach space E and E ordered by the 
cone P has the Riesz decomposition property, then E has the continuous 
projection property. Also note that although the lattice property and the 
Riesz decomposition property are global properties of ordered spaces, the 
continuous projection property can be defined only for an extreme point of 
a base for a cone. It is shown that in cones with the continuous projection 
property, an extreme point of a base for a cone is a strongly exposed point 
if and only if the cone has a bounded base. In the sequel the existence of 
dentable bases is studied. It is shown that a reflexive space cannot have a 
closed cone with an unbounded, closed, deniable base. This is an important 
property of reflexive spaces. As it is shown in Section 5, the converse is 
also true and the following characterization of reflexive Banach spaces in 
terms of the geometry of the bases of cones is given: a Banach space E is 
reflexive if and only if E does not have a closed cone with an unbounded, 
closed, dentable base. Also the following property of the bases for cones 
of dual spaces is proved: a dual Banach space cannot have a weak-star 
closed cone with an unbounded, weak-closed and weak-star deniable base. 
In Section 4 some characterizations of the positive cone of of.e l based on 
the geometry of the bases of cones are given. Especially it is shown that if 
a closed cone P of a Banach space E has the Radon-Nikodym property and 
E, ordered by the cone P, has the the continuous projection property, the 
following statements are equivalent: (i) P is isomorphic to .et (r), (ii) P 
has a closed, bounded base, (iii) a base for P defined (the base) by a con
tinuous linear functional, has at least one strongly exposed point, (iv) the 
zero is a strongly exposed point of P, (v) the cone P has a dentable base, 
defined by a continuous linear functional, (vi) the cone P is deniable, (vii) 
each closed and convex subset of P has at least one strongly exposed point. 

The next result of Section 5, shows also the importance of cones in 
the geometry of Banach spaces: a Banach lattice E, is a non-reflexive 
KB-space if and only if the positive cone oj E, is embeddable in E+ and 
the positive cone of Co is not embeddable in E+. In Section 6 it is supposed 
that (n,~, It) is a measure space and T an one-to-one, linear, continuous 
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operator of LI(It) into the norm dual E' of a Banach space E. It is shown 
that the geometry of the images of the positive cone of L I (Il) and its 
sub cones in E' is closely connected with the geometry of the space L I (It) 
as well as with the geometry of E. Especially necessary conditions based 
on the geometry of these cones are given so that the measure It to be 
purely atomic and LI(ll) to be lattice isometric to .e1(A), where A is the 
set of atoms of 11. Also a new characterization of co(r) based on the above 
properties of cones is given. 

In this article we will denote by E a normed space and by E' the 
topological dual of E. Suppose that P is a wedge of E, i.e. P is a convex 
subset of E with AX E P for each x E P and each A E IR+, where IR+ is 
the set of real numbers A ~ O. If E = P - P the wedge P is generating. 
P defines the following, not necessarily antisymmetric, linear ordering in 
E: x :S y if and only if y - x E P. Then we say that E is ordered by the 
wedge P and we denote P by E+. A linear functional f of E is order 
bounded if it maps order intervals of E into order intervals of IR, positive 
if f(x) ~ 0 for each x E P and f is strictly positive if f(x) > 0 for each 
x E P, x =I- O. The set po = {f E E'lf(x) ~ 0 for each x E P} is the 
dual wedge of Pin E'. The wedge P is a cone if P n (-P) = {O}. The 
linear ordering defined by a cone is antisymmetric. A nonzero element Xo 
of P is an extremal point of P if for any x E E, Xo ~ x ~ 0 implies that 
x = AXo for some real number A E IR+. 

Suppose now that E is ordered by the cone P. We say that E is a 
vector lattice if for any x, y E E the supremum and infimum of {x, y} in 
E exist. Then we denote by x V y and x /\ y the supremum and infimum 
of {x, y} respectively and also we denote by [z I the supremum of {x, -x}. 
The space E has the Riesz Decomposition Property if for any x, y, z E 

E E+, X :S y + z implies that x = Xl + X2 where Xl, X2 E E+ with Xl :S 
:S y, X2 :S z. Remind that every vector lattice has the Riesz Decomposi
tion Property but the converse is not always true. The cone P is normal 
if there exists a real number a such that: for any x, y E E, 0 :S x :S y 
implies that Ilxll :S allyll. Also we say that the cone P gives an open de
composition in E if U+ - U+ is a neighborhood of 0, where U+ = Un P 
is the positive part of the closed unit ball U of E. Finally note that the 
cone P is a lattice cone if the subspace X = P - P, ordered by the cone P 
is a vector lattice. 

The following are important results of the theory of ordered normed 
spaces. For their proof see in [15], Proposition 3.5.2, 3.5.6, 3.5.11 and 
Theorem 4.1.5. 

THEOREM 1. If E is complete and the cone P is closed and generating, 
then P gives an open decomposition of E. 

THEOREM 2. If E is complete and the cone P is closed and generating, 
then each order bounded linear functional of E is continuous. 
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THEOREM 3. If the cone P gives an open decomposition of E and each 
increasing Cauchy sequence of P has a limit (in E), then E is complete. 

THEOREM 4. If E is a vector lattice, the following statements are 

equivalent: 

(i) E is locally solid 

(ii) the cone P is normal and gives an open decomposition of E. 

For notions not defined here we refer to the books [26], [15], [2], [1] 

and [22]. 

2. Bases for cones 

In this article we will denote by E a linear space ordered by the 
cone P. A subset B of P is a base for the cone P if a strictly positive 
linear functional f of E exists such that B is the intersection of the cone 
P with the affine hyperplane {x EEl f(x) = I}, i.e. 

B = {x E P I f(x) = I}. 

Then we say that the base B is defined by the functional f and it is 
easy to show that the base B is a convex subset of P. The following is an 
example of an ordered space E without strictly positive linear functionals. 
Therefore does not exists a base for the cone E+. 

EXAMPLE 5. Suppose that E = co(f) where I' is an uncountable 
set, ordered by the pointwise ordering. Then the set of positive linear 
functional of E is the positive cone tt (f) of €j (f). Since the support of any 
element of €j (f) is at most countable we have that the space E does not 
have strictly positive linear functionals. This holds because if we suppose 
that f is a strictly positive linear functional of E then fi = f (e.) > 0 for 
each i, therefore the support of f is uncountable. 

In the above example the space E is not separable. In the case where 
the space E is separable the following result is true. 

PROPOSITION 6. If E is a separable normed space ordered by the 
cone P and pO - pO is weak star dense in E then E has strictly positive,' 
continuous, linear [unctionals. 
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The proof is the following: po is weak-star closed and the positive 
part u~ = UOnpo of the closed unit ball UO of E ' is weak-star metrizable. 
Since each compact metric space is separable we have that U~ is separable 
in the weak-star topology and therefore pO = U:=l nU~ is weak-star 
separable. Suppose that {x;,} is a weak-star dense sequence of pO. Then 
we can show that 

oc x' 

x~ = L 2nll~~II' 
i=j 

is a strictly positive linear functional of E as follows: since po - po is 
weak-star dense in E', the sequence {:::x~} is weak-star dense in E'. Also 

I 

o< x~ = 2nllx;,t.~~", < 2nllx;,llx~,II 

therefore if we suppose that x~(x) = 0 for some x E P, x i= 0, we have 
that X;, (x) = 0 for any n and therefore x = 0, contradiction. Therefore x~ 

is strictly positive. We give also the following result: 

PROPOSITION 7. A point Xo of a base B for P is an extreme point 
of B if and only if Xo is an extremal point of P. 

PROOF. Suppose that Xo is an extremal point of P and Xo = AX + 
+(1 - A)y with x, y E B. Then 0 ~ AX, (1 - A)y ~ Xo, therefore x, y 
are positive multiples of Xo and by the fact that x, yare elements of B 
we have that x = y = Xo. For the converse, suppose that the base B is 
defined by the linear functional I, Xo is an extreme point of B and that 
0< x ~ Xo· Then Xo = f(x) fr~) + f(xo - x) ft'}O~~L) and by the fact that 
Xo is an extreme point of B we have that x is a positive multiple of Xo, 
therefore Xo is an extremal point of P. • 

The next theorem characterizes a lattice cone in terms of the geometry 
of it's bases. For the proof see in [18] or [26]. 

THEOREM 8 (Choquet-Kendall). Suppose that E is a linear space 
ordered by the generating cone P and suppose that B is a base for the 
cone P. Then E is a vector lattice if and only if B is a linearly compact 
simplex. 

Let E be a normed space. A linear functional f of E is uniformly 
monotonic if a real number a> 0 exists such that f(x) 2 allxll for each 
XEP. 

PROPOSITION 9. Let E be a normed space ordered by the cone P and 
suppose that B is a base for P defined by the functional f. The base B is 
bounded if and only if the functional f is uniformly monotonic. 
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PROOF. If we suppose that lixll ::; M for each x E B, then for each 
x E P, x =f. °we have \I /[~) II ::; M, therefore Ilxll ::; M f(x), for each x E P, 

hence f is uniformly monotonic. For the converse suppose that f (x) ;::: 
;::: allxll for each x E P. Thcn for each x E B we have 1 = f(x) ;::: allxll, 
therefore the base B is bounded. 

Note also that if P is a finite dimensional closed cone then each base 
B for P is bounded. This holds because if we suppose that the base B 
is defined by the linear functional f and x-, E B with [Ixn II ----> 00, then 
f( II~~II) ----> O. Since the set pn U, where U is the closed unit ball of E is 

compact, a subsequence of {II~~,II} exists which converges to an element Xo 

of P. Then we have that Ilxoll = 1 and f(xo) = 0, contradiction because 
f is strictly positive on P. 

EXAMPLE 10. Let E = LIlO,l]. Then each element y E Lt,[O, 1] 
with y(t) ;::: a > a for any t E [0,1] is a strictly positive linear functional 

of E and defines the base 

B = {x EE+ I r x(t)y(t)dt = I}'
JrO,I] 

for the cone R+. This base is bounded because y(x) ;::: allxll for any 
x E E+. Suppose that to is a point of [0,1]. Then any y E C[O, 1] 
with y(to) = °and y(t) > 0, for each t =f. to is a strictly positive linear 
functional of E and it is easy to show that y defines an unbounded base 

for the cone E+. 

For	 the proof of the following result see in [15], Theorem 3.8.4. 

PROPOSITION 11. If E is a normed space ordered by the cone P, the 
following statements are equivalent: 

(i)	 the cone P has a bounded base B with °~ B, 
(ii)	 the dual wedge po of P in E' has interior points. 

3. Geometry of the bases for cones 

In [28], [30] and [33] the geometry (dentability, extreme points) of 
the bases for cones is studied. From these articles we refer below some 
basic notions and results. Note also that some results of [28] for normal 
cones, have been generalized in [33] without the assumption that the cone 
is normal. We start with the notion of the continuous positive projection 
which has been defined in [30], as follows: let :ro be an extremal point 
of P. If there exists a continuous, order contractive projection TI of E 
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onto the one-dimensional subspace generated by xn i.e. TI : E ----> [xo] is 
a continuous projection such that 

0::; TI(x) ::; x for each x E P, 

then we say that the point Xo has (admits) a continuous, positive 
projection. Then it is easy to show that a positive continuous linear 
functional 1f of E exists such that 

TI(x) = 1f(x)xo for each x E E, with 1f(:ro) = 1. 

In other words, if we suppose that Xo admits a continuous, positive pro
jection TI, then 

E = [xo]®Y, 

where Y is the kernel of TI and for any x E E we have: 

x E E+ if and only if II(x) E E+ and x - II(x) E E+. 

If each extremal point of P (whenever such points exist) admits a con
tinuous positive projection then we say that E has the continuous pro
jection property. The following result gives necessary conditions in 
order an ordered normed space to have the continuous projection prop
erty. Recall that E is a locally solid lattice if it is a lattice and for each 
x, y E E, Ixl ::; Iyl implies that Ilxll ::; alIYII, for some constant real number 
a >0. 

PROPOSITION 12 ([30]' Proposition 3.2). Let E be a normed space 
ordered by the cone P. If 

(i) E is a locally solid lattice, or 
(ii)	 E is a Banach space, the cone P is closed and generating and E has 

the Riesz decomposition property, 

then E has the continuous projection property. 

Therefore in many cases the continuous projection property is weaker 
than the lattice property and also than the Riesz decomposition property. 
Indeed in a Banach space ordered by a closed generating cone, the Riesz 
decomposition property implies the continuous projection property. Also 
note that although the Riesz decomposition property is a global property 
of ordered spaces, the continuous projection property can be defined only 
for one extremal point of the cone. Therefore the continuous projection 
property is more useful for the study of the extreme points of a base for 
a cone. Recall also that a continuous linear functional f of E strongly 
exposes the point x in 1J if xED <;;; E, f(x) > f(y) for each y E D 
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and for any sequence {xn} of 1) we have: f(x n ) -----? f(x), implies that 

Ilxn- xii -----? O. 

THEOREl\! 13 ([30], Proposition 3.4). Suppose that B is a base for 
a cone P of a uormed space E, defined (the base) by a continuous linear 
functional fEE' and suppose that Xo is an extreme point of B which 
admits a continuous positive projection. Then we have: 

(i)	 Xo is a strongly exposed point of B if and only if there exists a uni
formly monotonic, continuous linear functional of E. 

(ii)	 If TI(x) = 7f(x)xo, X E E is a continuous positive projection of E 
onto [xo] and h is a uniformly monotonic, continuous linear functional 
of E, then the functional g = h(xo)7f - h, strongly exposes the point 

Xo in B with g(xo) = O. 

From the above result we have: 

COROLLARY 1 ([30], Corollary 3.1). Let E be a Banach space ordered 
by the closed, generating cone P and let B be a base for P and suppose 
that Xo is an extreme point of B. If Xo admits a continuous positive pro
jection (especially if E has the Riesz decomposition property) the following 

statements are equivalent: 

(i)	 Xo is a strongly exposed point of B, 
(ii)	 the cone P has a closed, bounded base. 

The following examples are applications of the above results in the 
geometry of cones. 

EXAMPLE 14. (i) Suppose that E = f r and that ft is the positive 
cone of f i- It is easy to see that each element en of the usual Schauder 
basis {en} of 1\ is an extremal point of ft which admits the continuous, 
positive projection 

TIn(x) = 7fn(x)en, where 7fn(x) = Xn for each x = (xr,X2,"') E fr. 

Suppose that y E £00 with Yn=~, for each n. Then y defines the base 

B = {x E ft I y(x) = I}, 

for the cone n and we remark that B is unbounded because ne., E B for 
each n E N. Also the element h E £00 with hi = 1 for each i is a uniformly 
monotonic, continuous linear functional of f r , therefore by the previous 
theorem each extreme point nen of B is a strongly exposed point of Band 
also the functional gn = h( nen)7fn - h strongly exposes the point nen in B 
with g(ne ) = O. Especially for the point er we have that the functionaln 

gr = (0, -1, -1, -1, ... ) strongly exposes ei with g(er) = O. (ii) Suppose 
that E = f p with 1 < P < +00, £~ is the positive cone of f p and {en} 
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is the usual Schauder basis of E. Then B = {z E f: I f (x) = I}, is the 
base for f: which is defined by the linear functional f = (Jr, 12, ... ) E f g • 

Since f is strictly positive we have that fi > 0 for each i. Also f~ is an 
extreme point of B which admits a continuous positive projection and by 
the above theorem f~ is a strongly exposed point of B if and only if there 
exists a uniformly monotonic and continuous linear functional of E. If we 
suppose that h is a uniformly monotonic and continuous linear functional 
of E with h(x) ~ allxll for each x E E+, then h n = h(en) ~ allenll = a for 
each n, therefore a = 0, contradiction. So we have that E does not have a 
uniformly monotonic and continuous linear functional, therefore the cone 
F;- does not have a bounded base and ef n is not a strongly exposed point

I	 n 

of B. Hence the base B does not have strongly exposed points. 

We continue now with the results of [31J and [33]. We start with a 
general definition of dentable sets. 

Suppose that (E, F) is a dual system where E is a normed space and 
-	 -a(EF) 

suppose also that K ~ E. Denote by K, K . the closure of K in 
the norm, a(E, F)-topology of E, respectively. Also denote by coK the 
convex hull of K, and by coK, coa(E,F) K the closed convex hull of K in 
the norm, a(E, F)-topology of E, respectively. The set K is F-dentable 
if for each real number f > 0 there exists y E K (depending on f) such 
that the a(E,F)-closed convex hull of the set {x E K Illy-xii ~ e] does 
not contain y, i.e. y ~ COa(E,F) {x E K Illy - xii ~ d. A point Xo of K is 
an F -strongly exposed point of K if there exists f E F such that: 

(i)	 (xo,1) > (x,1) for each x E K, x =I- xo, and 
(ii) for	 each sequence {xv} of K, limv~oo(xv,1) (xo, f) implies that 

limv~oo IIxv - Xo II = o. 
Then we say that f F-strongly exposes Xo in K. If F = E' and 

(x, 1) = f(x) for each x E E and each fEE' then, instead to say that 
the set K is E'-dentable or that Xo is an E'-strongly exposed point of K, 
we say that K is dentable and that Xo is a strongly exposed point 
of K, respectively. Note that if a subset K of E is not F-dentable then 
K does not have F-strongly exposed points. Indeed if we suppose that 
f, F-strongly exposes the point Xo of K then for any real number e > 0, 
f separates Xo and the set {x E KI Ilx - xoll ~ e} which is impossible 
because the set K is not F-dentable. Consider the dual system (E', E) 
with (J,x) = f(x), for each fEE' and each x E E. Then instead to 
say that a subset K of E' is E-dentable we say that K is weak-star 
dentable and instead to say that a point Xo of K is an E-stronly exposed 
point we say that Xo is a weak-star stronly exposed point. Therefore 
an element x~ E K is a weak-star strongly exposed point of K if 
there exists x E E which, as a linear functional on E, strongly exposes 
the point x~ in K. 
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For a further study of the geometry of convex sets (dentability, ex
treme points) we refer to the book of J. Diestel and J. J. Uhl, [8]. In [28], 
the geometry of the bases of cones is studied where for any subset K of E 
and for any real number p > 0 they are denoted by K p and Ks,p the 
following subsets of K: 

K p = {:r E K [llxll :s; p}, Ks. p = {:r E K 111.'1:11 = p}, 

whenever these sets are nonempty. 

THEOREM 15 ([28], Theorem 1). Let E be a Banach space ordered by 
the closed, normal cone P and let B be a base for P. If K is an unbounded, 
convex subset of B and for each p the set K; is weakly compact, then 

' ) } T _}.r -Kf7(E,E') f h
( Z	 \.p=co\.s,p= S,p , or eac p. 

(ii)	 The set K is non-dentable (therefore K does not have strongly exposed 
points). 

From this result we obtain the following important property of reflex
ive spaces: 

COROLLARY 2. A reflexive Banach space E does not have a closed, 
normal cone with an unbounded, closed, dentable base. 

In 2001, the above result was generalized for non normal cones as 
follows: 

THEOREM 16 ([33], Theorem 1). Suppose that (E, F) is a dual system, 
where E is a normed space, and suppose that P is a ([(E, F)-closed cone 
of E. 
If we suppose that B is a base for the cone P and K a convex, unbounded 
subset of B, then the following statements hold: 

(i)	 If the set K~::·F) is a ([(E, F) -compact subset of B, then 

K C K f7( E ,F ) . 
p - S,p , 

(ii)	 If tc, ~ co f7(E ,F ) Ks,p for each p, the set K is not F -dentable. 

From the above result we have the following corollaries: 

COROLLARY 3 ([33], Corollary 1). Let P be a closed cone of a reflexive 
Banach space E and suppose that B is an unbounded base for the cone P. 
Then each unbounded, closed and convex subset K of B is not dentable. 

COROLLARY 4 ([33], Corollary 2). Let P be a weak-star closed cone 
of the dual E' of a normed space E and let B be a base for the cone P. 
Then each unbounded, weak-star closed and convex subset K of B is not 
weak-star dentable. 
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EXAMPLE 17. Suppose that E = Co and suppose that B = {.'1: E gt I 
I y(x) = I} is the base for the positive cone r: of E' defined by the linear 
functional y = (~) E gCX). The cone gt is weak-star closed and the base B 
is unbounded and weak-star closed, therefore by the previous theorem, B 
is not weak-star dentable, therefore B does not have weak-star strongly 
exposed points. As we have remarked in Example 14, ne is a stronglyn 
exposed point of B for each n, therefore ne., is strongly exposed by an 
element of gCX) \ co· In fact as we have shown in Example 14, the point el E 
E B is strongly exposed by the linear functional 9 = (0, -1, -1, -1, ... ) E 
E gCX) \ co· 

4. Cones isomorphic to the positive cone of 1'1 

Suppose that E, X are normed spaces ordered by the cones P, Q re
spectively. The linear operator T : E -----+ X is an order-isomorphism of 
E into X if T is an isomorphism of E into X and for any .'1: E E we have: 
x E P if and only if T(x) E Q. We say that the cone P is isomorphic 
(or locally-isomorphic) to the cone Q of X if there exists an additive, 
positively homogeneous, one-to-one, map T of Ponto Q such that T and 
T- 1 are continuous in the induced topologies. Then we say also that the 
cone P is embeddable in X and that T is an isomorphism of Ponto Q. 
Suppose that T is an isomorphism of Ponto Q. If we suppose that E, X 
are Banach spaces, the cone P gives an open decomposition of E and that 
P - P is a closed subspace of E and also that Q - Q is a closed subspace 
of F, then T is an order-isomorphism of P - Ponto Q - Q. SO in order 
to show that a Banach lattice E is order-isomorphic to 1'1 it is enough to 
show that the positive cone E+ of E is order-isomorphic to the positive 
cone of 1'1. The next theorem is a result of this type. For the proof see 
in [37], II, Corollary 10.1. 

THEOREM 18. A bounded Schauder basis {en} of a Banach space E 
is equivalent to the unit vector basis of II if and only if the positive cone 
P = {L~1 Aiei E E !Ai :::: 0, for each i} of the basis {en} is generating 
and the cone P has a bounded base. 

The following is the main result of [27]. The existence of a bounded 
base for the positive cone of E is the crucial hypothesis in this theorem. 
Note also that the existence of a bounded base is a crucial property for 
the characterizations of the positive cone of 1'1. 

THEOREM 19 ([27], Theorem 1). An infinite-dimensional separable 
Banach lattice E is order-isomorphic to 1'1 if and only if E has the Krein
Milman property and E+ has a bounded base. 

L __
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The following characterizations of the positive cone of £1 are based 
on existence of a bounded base for the cone and also on the results of [30], 
where the geometry of the bases for cones is studied. These results can 
be considered also as characterizations of the Banach lattice £1 because as 
we have remarked above a Banach space E ordered by a generating cone 
P is order-isomorphic to £1 if and only if P is isomorphic to {{

THEOREM 20 ([29], Proposition 4.1). Let E be a Banach space ordered 
by the infinite dimensional, closed cone P and let E have the continuous 
projection property. If the cone P has the Krein-Milman property, state
ments (i), (ii), (iii) and (iv) are equivalent. If P has the Radoii-Nikodsrm 
property, all the following statements are equivalent: 

(i)	 the cone P is isomorphic to £t (f), 
(ii)	 the cone P has a closed, bounded base, 

(iii)	 a base for P defined (the base) by a continuous linear functional, has 
at least one strongly exposed point, 

(iv)	 the zero is a strongly exposed point of P, 
(v)	 the cone P has a dentable base, defined by a continuous linear func

tional, 
(vi)	 the cone P is dentable, 

(vii)	 each closed and convex subset of P has at least one strongly exposed 
point. 

It is easy to show that if the cone P is isomorphic to £t, then P is a
 
lattice cone and that P has the Radon-Nikoyrne property.
 

The following is an important property of the theory of cones.
 

PROPOSITION 21. The positive cone of£1 is embeddable in the positive
 
cone of co·
 

The proof is the following: suppose that {en} is the usual Shauder
 
basis of Co and consider the summing basis {bn = L;~l e.] of co. Recall
 
that for each x = (x;) E Co and each n we have
 

11.	 11. 

2:)Xi - xi+db; = L x.e, - Xn +1bn+1' 
·;=1	 ;=1 

The positive cone 

c = {~Aibi E Co I x, E ~+, for each i}, 
of the basis {bn}, is isomorphic to the positive cone of £1, see in [31]. 

/oIL. L
 

5. Bases for cones and reflexivity 

The next result was proved in 1964 and it is one of the first applica
tions of cones in the geometry of Banach spaces. For it's proof see in [23], 
Theorem 2.9. 

THEOREM 22 (D. and V. Milman). A Banach space E is non-reflexive 
if and only if the positive cone of £1, is embeddable in E. 

In 1984 it was proved in [28], that each closed, unbounded base for a 
closed, normal cone of a reflexive Banach space is non-dentable, therefore 
it was proved that reflexivity is related with the geometry (dentability) 
of the unbounded, closed bases for cones. Later, in 1987, V. M. Kadets 
proved that the converse of the previous result is also true. Especially he 
proved that the positive cone of £1 has a closed, unbounded base which 
is not dentable, therefore by the theorem of Milman it follows that each 
non-reflexive Banach space, has a closed, normal cone with an unbounded, 
closed, dentable base. (This follows also immediately by Theorem 20 of 
the present article.) So Kadets stated in [16] the following characterization 
of non-reflexive Banach spaces: 

THEOREM 23. A Banach space E is non-reflexive if and only if E 
has a closed, normal cone with an unbounded, closed, dentable base. 

Recently it was also proved in [33], that each closed, unbounded base 
for a closed cone of a reflexive Banach space is non-dentable, and the 
following characterization of reflexivity is obtained: 

THEOREM 24 ([33], Theorem 7). A Banach space E is non-reflexive if 
and only if E has a closed cone with an unbounded, closed, dentable base. 

In 2001 Jing Hui Qiu, [36], proved the following characterization of 
reflexive spaces: 

THEOREM 25. A Banach space E is reflexive if and only if for each 
cone Q of the norm dual E' of E with a closed, bounded base, the dual 
wedge Qo = {x EEl x' (x) 2:: 0 for each x' E Q} of Q in E has interior 
points. 

In 1968 G. Lozanovskii proved the following characterization of re
flexive Banach lattices in terms of the lattice-embeddability of Co and £1 
in the space. 

THEOREM 26 ([21], G. Ya. Lozanovskii). A Banach lattice E is re
flexive if and only if neither £1 nor Co are lattice embeddable in E. 
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The next result was stated in [31] with the extra assumption in state
ment (iii) that the cone is normal and in its present form in [33]. Its proof 
is based on the fact that each closed, unbounded base for a closed cone of 
a reflexive Banach space is non-dentable and on Lozanovskii's theorem. 

THEOREM 27 ([33], Theorem 9). For a Banach lattice E, the following 
statements are equivalent: 

(i)	 E is non-reflexive, 
(ii)	 fit is embeddable in E+, 

(iii) E+ contains a closed cone with an unbounded, closed, dentable base. 

Also in [31] the following characterization of non-reflexive KB-spaces 
in terms of the embeddability of the positive cones of fi 1 and Co is proved. 
Recall that a Banach lattice E is a KB-spaces if each increasing, norm 
bounded sequence of E is norm-convergent. 

THEOREM 28 ([31], Theorem 3). A Banach lattice E, is a non
reflexive KB-space if and only if the positive cone fit of fi 1 is embeddable 
in E+ and the positive cone ct of Co is not embeddable in E+. 

As the first result of characterization of reflexive Banach lattices 
in terms of the embeddability of fi, and Co can be considered that of 
James, [14], in which it is proved that a Banach space E with an uncon
ditional basis is reflexive if and only if neither fi1 nor Co are embeddable 
in E. Note that any Banach space E with an unconditional basis, ordered 
by the positive cone of the basis, is a Banach lattice with respect to an 
equivalent norm. The proof of this result follows by [37], Theorem 16.3 
and by [15], Theorem 3.5.2 and Theorem 4.1.5. Kalton, [17], proved the 
following significant generalization of the result of James: a complete bar
relled space E with an unconditional basis is reflexive if and only if neither 
fi, nor Co are contained in E as complemented subspaces. 

S. Dias and A. Fernandez proved in [10] that in Banach lattices, 
Lozanowskii's theorem is true with the extra assumption that one of the 
spaces fi, and Co is not embeddable in E as a sublattice and the other is 
not contained in E as a complemented subspace. 

6.	 Geometry of cones and embeddability of L 1(f.l) in dual spaces 

Suppose that (O,~, f.l) is a measure space and that T is an one-to
one, linear, continuous operator of L, (tL) into the dual E' of a Banach 
space E. In this section it is shown that the geometry of the images of 
the positive cone of L, (fl.) and its subcones in E' affect drastically the 
geometry of the space L, (f.l) as well as the geometry of E. Especially for 
each measurable subset A of 0 which is not the union of a finite number 

of atoms we study the geometry of the cone T(Lt(f.lA)) of E', where f.lA 
is the restriction of f.l on A and it is shown that the geometry of these 
cones is closely connected with the geometry of the space L 1(tL) and also 
with the geometry of E. The results of this section can be found in [34]. 
Note also that the basic idea and also the basic proof of [34] are based 
on the following property (Corollary 4 of the present article) of cones 
in dual spaces: any weak-star closed cone of a dual space cannot have a 
norm-unbounded, weak-star closed and weak-star dentable base. For each 
infinitely decomposable subset A of 0 (i.e. for any measurable subset A 
of 0 which is not the union of a finite number of atoms) we denote by Q(A) 
the weak-star closure of the cone T(Lt(f.lA)), where f.lA is the restriction 
of f.l on A. The basic hypothesis of [34] is the following: for each infinitely 
decomposable subset A of 0, we suppose that a measurable subset D of A 
and an element y E E exist such that the element y, as a linear functional 
on E', defines an unbounded base for the cone Q(D). In other words, for 
each infinitely decomposable subset A of 0, a measurable subset D of A 
and an element y E E exist such that y(x') > a for each x' E Q(D) with 
x' =1= a and the set {x' E Q(D) : y(x') = I} is unbounded. 

THEOREM 29 ([34], Theorem 12 and Corollary 13). Let T be an one
to-one, continuous, linear operator of L 1 (f.l) into the norm dual E' of a 
Banach space E. If the weak-star closure of the set T(Lt(f.l)) is a cone 
and for each measurable subset A of 0 which is not the union of a finite 
number of atoms, there are a measurable subset D of A and an element 
y E E such that the element y defines an unbounded base for the cone 
Q(D), then the following statements are true: 

(i)	 L 1(f.l) is lattice isometric to fi1(A), where A is the set of equivalence 
classes of atoms of f.l and the image T'(E) of E via the adjoint T' : 
: E" ---> LOCJ(f.l) ofT is a subset of ca(A). 

(ii)	 If moreover T is an isomorphism of L,(f.l) into E' and the range 
T( L 1 (f.l)) of T is weak-star dense in E', then the adjoint T' of T is 
an isomorphism of E onto co(A). 

Recall that the empeddability of L 1 (f.l) in dual spaces is an old prob
lem of Functional Analysis. In 1938, Gelfand [12], proved that LIfO, 1] is 
not isomorphic to a conjugate Banach space and in 1959 Dieudonne [9], 
raised the problem: characterize the L, (f.l) spaces which are isomorphic 
to a dual Banach space. In 1961 Pelczynski, [24], proved that LIfO, 1] is 
not isomorphic to a subspace of a separable, dual Banach space and in 
the sequel the problem was studied by many authors. We refer to the 
papers of Pelczynski [25], Lewis and Stegall [20), Stegall [38), Fonf [11), 
Bourgain and Delbaen [7], but we can refer also to many other significant 
Works. For an extensively study of Zr-predual spaces we refer to the book 
of Lacey [19]. In 1981, Bourgain and Delbaen [7], gave an example of a 

L
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Banach space E whose dual E' is isomorphic to £] but E does not contain 
any copy of Co. Moreover E is a separable, £00 space with the Radon
Nikodym property and E is somewhat reflexive. So the Banach spaces 
whose dual is isomorphic to £1 seems to be a big class of spaces and an 
interesting problem is the characterization of Co among the elements of 
this class of spaces. 

As a corollary of Theorem 29 we obtain the following characterization 
of co(r): 

THEOREM 30 ([34], Corollary 14). An infinite-dimensional Banach 
space E is isomorphic to co(f) if and only if there exists an isomorphism 
T of £1 (I") into the dual space E' of E with weak-star dense range in E' 
such that: the weak-star closure ofT(tt(r)) is a cone and for each infinite 
subset A of I', there are a countable subset D of A and an element y E E 
such that the element y defines an unbounded base for the weak-star closure 
of the cone {T(~XD) I~ E £t(f)}, where XD is the characteristic function 
of D. 

The following theorem is proved in [32]. The basic steep for it's proof 
is the existence of a positive Schauder basis in the dual E' of E. Also 
note that the methods and the results of [32J are quite different from the 
methodology and the results of [34J. Therefore the next theorem and the 
previous one are quite different. 

THEOREM 31 ([32], Theorem 1). An ordered Banach space E is order 
isomorphic to Co if and only if E is a a-Dedekind complete vector lattice 
and its dual E' is order isomorphic to £1. 

7.	 Bases for cones and Vector optimization 

The geometry of cones and mainly the geometry of their bases has 
significant applications in Vector optimization. For a further study of this 
theory we refer to the articles [4], [5], [6], [13], [35], [3] and also to the 
references of these papers. Suppose that C is a subset of a normed space 
E and suppose that E is ordered by the cone P and that Xo E C. We 
say that Xo is a Pareto efficient point of C with respect to the cone 
P if (C - xo) n (-P)) = {O}, Xo is a positive proper efficient point 
of C (with respect to the cone P) if a strictly positive, continuous linear 
functional f of E exists such that f(x) 2: f(xo) for each x E C and we say 
also that Xo is a proper Pareto efficient point of C with respect to the 
cone P if [cone(C - xo)J n (-P)) = {O}, where cone(C - :ro) is the closure 
of the set {A(x - xo) 1>- E 1R+, X E C}. We say also that Xo is a super 
efficient point of C with respect to the cone P if and only if there exists 
a real number a> 0 such that [cone(C - xo)] n (U - P) ~ aU, where U is 

the closed unit ball of E. Denote by E(C, P), posE(C, P), PE(C, P), and 
by	 SE(C, P), the set of Pareto efficient, positive proper efficient, proper 
efficient and super efficient points of C respectively. The proof of existence 
and density results for these points are the main problems of this subject. 

The geometry of the cone P and especially the existence of a bounded 
base for the cone P is very important for this theory as it is shown in the 
next results. 

THEOREM 32 ([6], Theorem 2.4). If E is a normed space ordered by 
the cone P and the cone P has a bounded base, then each weakly compact 
subset of E has strongly efficient points. 

THEOREM 33 ([6], Theorem 2.7 and Theorem 4.2). Let E be a Banach 
space ordered by the cone P. Suppose that the cone P has a closed, bounded 
base B and that C is a subset of E. 

(i)	 If C is closed and bounded, then E has super efficient points. 
(i)	 If the set C is weakly compact, the set of super efficient points of C 

is norm-dense in the set of efficient points of C. 
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