CONE CHARACTERIZATION OF REFLEXIVE BANACH LATTICES by IOANNIS A. POLYRAKIS

(Received 18 June, 1993)

Abstract. We prove that a Banach lattice X is reflexive if and only if X_+ does not contain a closed normal cone with an unbounded closed dentable base.

Suppose that X is a Banach space and P a cone of X (i.e. $P \subseteq X$, $\lambda P + \mu P = P$ for each $\lambda, \mu \in \mathbb{R}_+$ and $P \cap (-P) = \{0\}$). The cone P is normal (or self-allied) if there exists $a \in \mathbb{R}_+$ such that for each $x, y \in P, x \leq y$ implies $||x|| \leq a ||y||$. A convex subset B of P is a base for P if for each $x \in P, x \neq 0$, there exists a unique number $f(x) \in \mathbb{R}_+$ such that $(f(x))^{-1}x \in B$. For each $D \subseteq X$, denote by $\overline{co} D$ the closed convex hull of D. A subset K of X is dentable if for each $\varepsilon \in \mathbb{R}_+$ there exists $x_{\varepsilon} \in K$ such that $x_{\varepsilon} \notin \overline{co}\{x \in K \mid ||x - x_{\varepsilon}|| \geq \varepsilon\}$.

We say that the cone P of X is isomorphic (or according to [6] and [7], locally isomorphic) to a cone Q of a Banach space Y if there exists an one-to-one, additive, positive homogeneous map T of P onto Q and T, T^{-1} are continuous in the induced topologies. Denote by c_0 the space of convergent to zero real sequences with the supremum norm and by l_1 the space of absolutely summing real sequences $\xi = (\xi(i))$ with

the norm $\|\xi\| = \sum_{i=1}^{\infty} |\xi(i)|$. The cones

$$c_0^+ = \{ x = (x(i)) \in c_0 \mid x(i) \in \mathbb{R}_+ \text{ for each } i \},\$$
$$l_1^+ = \{ x = (x(i)) \in l_1 \mid x(i) \in \mathbb{R}_+ \text{ for each } i \},\$$

are the positive cones of c_0 , l_1 respectively. If l_1^+ (respectively c_0^+) is isomorphic to a closed cone $D \subseteq P$, then we say that l_1^+ (respectively c_0^+) is embeddable in P. Cones isomorphic to l_1^+ are studied in [6]. For notation and terminology on convex sets we refer to [2].

THEOREM 1 ([5, Theorem 1]). Let X be a reflexive Banach space. Then X does not contain a closed normal cone with an unbounded closed dentable base.

Let X be a Banach lattice. By G. Lozanovskii's Theorem, see [4] or [1, p. 240], X is reflexive if and only if neither c_0 or l_1 is lattice embeddable in X.

THEOREM 2. Let X be a Banach lattice. Then the following statements are equivalent:

(i) X is reflexive,

(ii) l_1^+ is not embeddable in X_+ ,

(iii) X_+ does not contain a closed normal cone P with an unbounded closed dentable base.

Proof. By Theorem 1, (i) \Rightarrow (iii). Let the statement (iii) be true. Suppose that the statement (ii) does not hold. Then there exists a closed cone P of X isomorphic to l_1^+ and

Glasgow Math. J. 37 (1995) 65-67.

let $T: l_1^+ \to P$ be an isomorphism. By the continuity of T and T^{-1} at zero, there exist a, $b \in \mathbb{R}_+$ such that

$$a ||x|| \le ||T(x)|| \le b ||x||,$$
 for each $x \in l_1^+$.

Let $f = (\xi(k))$ with $\xi(k) = k^{-1}$ for each $k \in \mathbb{N}$. The set $B = \{x \in l_1^+ | f(x) = 1\}$ is a closed base for l_1^+ and T(B) a closed base for P. The cone P is normal because it is contained in X. The base B is unbounded because $ke_k \in B$ for each $k \in \mathbb{N}$; therefore T(B) is also unbounded. The functional g = (q(i)) with q(1) = 1 and q(k) = -1 for each $k \neq 1$, strongly exposes the point $e_1 = (1, 0, 0, ...)$ in B. This holds because if $x \in B$ with $x \neq e_1$, then

$$g(x) = x(1) - \sum_{k=2}^{\infty} x(k) < x(1) < f(x) = g(e_1).$$

Also, if $x_n \in B$ with $g(x_n) = x_n(1) - \sum_{k=2}^{\infty} x_n(k) \rightarrow 1$, then $x_n(1) \rightarrow 1$ and $\sum_{k=2}^{\infty} x_n(k) \rightarrow 0$;

therefore $||e_1 - x_n|| \to 0$. Let $z_1 = T(e_1)$ and $h(y) = g(T^{-1}(y))$, for each $y \in P$. Then $h(y) < h(z_1)$ for each $y \in T(B)$ with $y \neq z_1$. For each sequence $y_n = T(x_n)$ of T(B) with $h(y_n) \to h(z_1)$ we have that $g(x_n) \to g(e_1)$; therefore $x_n \to e_1$ and so $y_n \to z_1$. Thus for each $\varepsilon \in \mathbb{R}_+$ there exists $\rho = \rho(\varepsilon) \in \mathbb{R}_+$ such that $h(y) < h(z_1) - \rho$, for each $y \in T(B)$ with $||y - z_1|| \ge \varepsilon$. Since h is additive, positive homogeneous and continuous we have

$$h(y) \le h(z_1) - \rho$$
, for each $y \in \overline{co}\{z \in T(B) \mid ||z - z_1|| \ge \varepsilon\}$,

therefore T(B) is dentable. This is a contradiction; therefore (iii) \Rightarrow (ii).

Suppose now that the statement (ii) holds. Since X_+ does not contain l_1^+ we have that l_1 is not lattice embeddable in X. Let $b_n = \sum_{i=1}^n e_i$, where (e_n) is the usual (Schauder) basis of c_0 . Then (b_n) is a basis of c_0 because for each $x = (x(i)) \in c_0$ we have

$$\sum_{i=1}^{n} (x(i) - x(i+1))b_i = \sum_{i=1}^{n} x(i)e_i - x(n+1)b_n \text{ and } \lim_{n \to \infty} x(n+1)b_n = 0.$$

The basis (b_n) is of type l_+ (i.e. (b_n) is bounded and there exists $k \in \mathbb{R}_+$, $k \neq 0$ such that $\left\|\sum_{i=1}^n a_i b_i\right\| \ge k \sum_{i=1}^n a_i$, for each finite sequence a_1, a_2, \ldots, a_n , of positive real numbers); therefore by [7, Theorem II.10.2, p. 323], the positive cone

$$C = \left\{ \sum_{i=1}^{\infty} \lambda_i b_i \in c_0 \mid \lambda_i \in \mathbb{R}_+ \text{ for each } i \right\} \subseteq c_0^+$$

of the basis (b_n) , is isomorphic to l_1^+ . (C is the set of decreasing real sequences convergent to zero.) This shows that c_0 is not lattice embeddable in X; therefore X is reflexive.

REMARK 1. In the proof of the previous theorem we have also show that l_1^+ is isomorphic to the cone $C \subseteq c_0^+$, of decreasing real sequences convergent to zero; therefore l_1^+ is embeddable in c_0^+ .

It is known [1, Theorem 14.12, p. 226] that a Banach lattice X is a KB-space (i.e. X has the property: every increasing, norm bounded, sequence of X_+ is norm convergent) if

and only if c_0 is not lattice embeddable in X. Also c_0^+ is not embeddable in the positive cone X_+ of a KB-space. This holds because if we suppose that a closed cone $P \subseteq X_+$ is isomorphic to c_0^+ , and T: $c_0^+ \to P$ is an isomorphism then we have: the sequence

 $s_n = T(b_n)$, where $b_n = \sum_{i=1}^n e_i \in c_0^+$, is norm bounded because $||T(b_n)|| \le A ||b_n|| = A$, for

each *n*. (s_n) is also increasing; therefore (s_n) is norm convergent to a point *s* of *P*. If T(e) = s, then $b_n \rightarrow e$, which is a contradiction; therefore c_0^+ is not embeddable in X_+ . Now, using Theorem 2 and the above remarks we obtain the following characterization of Banach lattices X in terms of the embeddability of the cones l_1^+ and c_0^+ in X_+ .

THEOREM 3. A Banach lattice X is a non-reflexive KB-space if and only if l_1^+ is embeddable in X_+ and c_0^+ is not embeddable in X_+ .

REFERENCES

1. C. D. Aliprantis and O. Burkinshaw, *Positive operators* (Academic Press, 1985).

J. Diestel and J. J. Uhl, Vector measures (Math. Surveys, Vol. 15. Amer. Math. Soc., 1977).
G. J. O. Jameson, Ordered linear spaces, Lecture Notes in Mathematics No 141 (Springer-Verlag, 1970).

4. G. Ya. Lozanovskii, Banach structures and bases, Functional Analysis and its Applications 1 (1967), 249.

5. I. A. Polyrakis, Extreme points of unbounded, closed and convex sets in Banach spaces, *Math. Proc. Cambridge Phil. Soc.* 95 (1984), 319-323.

6. I. A. Polyrakis, Cones locally isomorphic to the positive cone of $l_1(\Gamma)$, *Linear Algebra and Appl.* **84** (1986), 323–334.

7. I. Singer, Bases in Banach spaces I (Springer-Verlag, 1974).

DEPARTMENT OF MATHEMATICS NATIONAL TECHNICAL UNIVERSITY ZOGRAFOU CAMPUS 15780 ATHENS GREECE e-mail: ypoly@hisyros.ntua.gr