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Introduction. It is known, (see [7], theorem 4 or [8], corollary 11, 10-1), that a positive
generated, ordered Banach space X is order-isomorphic to /; iff X has a Schauder basis
which generates its positive cone X, and X, has a bounded base.

In this paper we prove that the existence of a bounded base of the positive cone and
the validity of the Krein—-Milman property in an infinite-dimensional, separable,
locally solid lattice Banach space X, ensures the existence of a Schauder basis of X
which generates the positive cone X, hence X is order-isomorphic to /;.

Notation. We denote by R, the set of non-negative real numbers. Let X be a
(partially) ordered linear topological space. We denote by X, its positive cone. X is
positive generated if X = X, — X .

We say that X gives an open decomposition of X if for each neighbourhood U of 0,
the set X, n U — X, n U is also a neighbourhood of 0.

A convex subset of X | is called a base for the cone X, if 0¢ B and for eachxe X, \{0},
there exists a unique real number A > 0, such that AxeB.

We say that a Schauder basis (¢;);en 0f X, generates the positive cone X_, if
X, ={ZF_,1A;e,€X|A; 20}. If X is a lattice normed space then X is locally solid iff
there exists a € R,, such that for each z,ye X, |2| < |y| implies at||z|| < ||y|. X is order-
isomorphic to an ordered linear topological space Y, if there exists an isomorphism
Tof Xonto'Y and T, 7! are positive.

A Banach space X has the Krein—-Milman property, if each closed, convex and
bounded subset 4 of X is the closed convex hull of its extreme points (4 = coep 4).
It is known [6] that in Banach spaces the Radon-Nikodym property implies the
Krein—-Milman property. Moreover we know [1] that in locally solid lattice Banach
spaces the Radon-Nikodym and the Krein—-Milman property are equivalent.

It is also known that [, has the Krein—-Milman property. If X and Y are isomorphic
Banach spaces then X has the Krein—Milman property iff ¥ has it.

THEOREM 1. Let X be an infinite-dimensional, separable, locally solid lattice Banach
space. Then the following statements are equivalent

(i) X is order-isomorphic to 1.

(ii) X has the Krein—Milman property and X, has a bounded base.

Proof (i) = (ii). Let T be an order isomorphism of 'll on to X. Then X has the Krein—

Milman property. The set B = {&el{ |||z| = 1}, is a bounded base of I, hence T'(B) is
a bounded base of X .

Proof (ii) = (i). Let B be a bounded base for the cone X . Since X is locally solid we
have that the cone X, is closed. By ([3], 3-8-1), it follows that the base B is closed. So
Bis a closed, convex and bounded subset of X, hence

B = coep (B). (1)
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Since B is closed and bounded and 0¢ B, it follows that there exist M, M,eR,\{0}
such that
M, < ||#| < M,, foreach zeB. (2)

The extreme points of B are extremal points of X, hence they are pairwise disjoint.
So for each z,ycep (B) we have x < x+y = |z —y]|. Since X is locally solid we have
al| < 2 -y, hence |z—y| > alf;

Now, from the separability of X, it follows that the set of extreme points of B is
countable. (See also [9], proposition 3.) We assume that

ep (B) = {u;[ieN}.
We shall prove that (u;);.n, is a Schauder basis of X which generates X_, where by

([8], 11 corollary 10-1), it follows that X is order-isomorphic to /,.
Let xeB. Then 0 < 2 Au; < u;, so for each ieN there exists z(i)eR, such that

x Au; = 2(2) u;. We shall prove that

For each neN we have

(@) u; = x(1)u ve(2)u,v ... van)y, < . (3)
1

M=

0<

i

Since u;, « belongs to the base B of X, we have

x(i) € 1, foreach neN.

1

I%E

i
But ||u,|| < M,, for each ieN, so the series 3,2, z(i) u; converges to a point y of X and
from (3) it follows that

O0<y= .Elx(i)ui < .
iz

Onthe other hand, from (1) we have that there exists a sequence (x,), .y which converges
to x and z, € co {u;|¢ € N} for each ve N. So each element of this sequence has the form

T, = Z /\i(V)ui’

te ®(v)

where @(v) is a finite subset of N and A,(v) e R, such that

¥ Al)=1
i€d)
So we have
xAhx,=zA X A)u, < 3 cAAWMu < XY zAau,= Y z(@)u; < Y.
i€0) 0 0] 0
Hence TAZ, <Y (4)

Because X is locally solid, we have that the operator (z, w) > 2z A w, from X x X onto X,
is uniformly continuous, hence from (4) we have that x = lim(x Az,) < y. So x = ».
So we have proved that each element z of B has the form

2= 3 z()u,
i=1
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From the definition of x(¢), { € N, we have that they are uniquely determinate. Since X

is a linear lattice and the cone X | is closed, it follows that (#;);en 1s @ Schauder basis of
X which generates X _ .

CorOLLARY 1. Let X be an infinite-dimensional, separable, locally solid lattice Banach
space. If X has a bounded base, then the Jollowing statements are equivalent

(1) X has the Krein-Milman property.

(i1) X has a Schauder basis which generates X .

PRf)POSITION 1. Let E be a Banach space with the Krein-Milman property and S < K
bean infinite-dimensional, closed, bounded andlinearly compact simplex. If C' = {Ax|zeS
and A€R.} and X = C—C is separable, then the Jollowing statements are equivalent :

(1) X'isclosed, the set of extreme points of Sis countable (ep (S) = {u;]i e N}) and each
elementzof Sis a unique (infinite) convex combination of its extreme points (x = 3L, A u,
where A, € R, and T2, A, = 1). S

(ii) The cone C gives an open decomposition of X.

(iii) The set co (S U (—S)), contains a netghbourhood of zero.

Proof (i). = (i1). The set of extreme points of S, (4;) ;en, 1s a Schauder basis of X which
generaftes 1ts positive cone and the set § is a bounded base for the cone ¢'. Hence Xis
order-isomorphic to I,. So the cone ' gives an open decomposition of X.

Proof (ii) = (i). By [4], X is a linear lattice. The cone (' gives an open decomposition
of X and § is a bounded base for the cone C, hence by ([3], 3-8-2 and 4-1-5), we have
that X is locally solid. Because § is a closed and bounded base of C' we have that the
cone C is closed. X is closed in & because € is complete and gives an open decompo-
sition of X, hence X has the Krein-Milman property. So, by Theorem 1, we have
that X is order-isomorphic to !, and the statement (i) is true.

Proof (ii) = (iii). Let p € R, \{0} such that for each z¢ S I > 2p. If
Ut = weX, |2 <),

then Uf- U/ is a neigbourhood of zero. Let ze Uf- U/. Then there exist y,zeU}
such that x = y —z. We put 2y = A,6,, 22 — A2by, where by, b,€ 8. Since [[b,], [|by] > 2p
we have that 0 < A}, A, < 1. So we have:

2y 22 A A 1A, A A
; 2(_b2)=(§+f—f)bl+52(_b2)

Hence Uy~U}t < co(Su(-28)).

Proof (iii) = (ii). Let M e R, such that for each 2 Simplies |z < M. Then we have
co(SU(=8)) S co(Su{0})—co(S)u {0}) = Uj; - U#,. Hence Uii—Uj; is a neigh-
bourhood of zero, hence ¢ gives an open decomposition of X.

Deﬁnition. Let £ be alinear lattice. A closed subspace X of £ is called lattice-subspace
of £ if X, ordered by the cone X 0 £ + 18 a linear lattice.

‘ fROPOSITION 2. Each infinite-dmensional lattice-subspace X of 1, is order-isomorphic
o l;.
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Proof. It is clear that X has the Krein—-Milman property and that the set

B={weX,||o = 1)

is a bounded base for the cone X . The cone X, gives an open decomposition of X
because X is complete and X, generating ([3], 3-5-2). So X is a locally solid linear
lattice; hence it is order isomorphic to [;.

ProposiTION 3. Let X be an infinite-dimensonal lattice-subspace of L;[0, 1]. Then the
Jollowing statements are equivalent :

(i) X is order-isomorphic to 1.

(ii) X has the Krein—Milman property.

Proof. It is clear that the positive cone X | gives an open decomposition of X.So X is
locally solid. The set B = {xe X |||« = 1} is a bounded base for the cone X . Since
L,[0, 1] is separable we have that X is separable. Hence the statements (i) and (ii) are
equivalent. ‘
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