Lattice Banach spaces, order-isomorphic to l_1

By IOANNIS A. POLYRAKIS

Department of Mathematics, National Technical University of Athens, Patision 42, Greece

(Received 30 March 1983; revised 20 June 1983)

Introduction. It is known, (see [7], theorem 4 or [8], corollary II, 10·1), that a positive generated, ordered Banach space X is order-isomorphic to l_1 iff X has a Schauder basis which generates its positive cone X_+ and X_+ has a bounded base.

In this paper we prove that the existence of a bounded base of the positive cone and the validity of the Krein-Milman property in an infinite-dimensional, separable, locally solid lattice Banach space X, ensures the existence of a Schauder basis of Xwhich generates the positive cone X_+ , hence X is order-isomorphic to l_1 .

Notation. We denote by \mathbb{R}_+ the set of non-negative real numbers. Let X be a (partially) ordered linear topological space. We denote by X_+ its positive cone. X is positive generated if $X = X_+ - X_+$.

We say that X_+ gives an open decomposition of X if for each neighbourhood U of 0, the set $X_+ \cap U - X_+ \cap U$ is also a neighbourhood of 0.

A convex subset of X_+ is called a base for the cone X_+ , if $0 \notin B$ and for each $x \in X_+ \setminus \{0\}$, there exists a unique real number $\lambda > 0$, such that $\lambda x \in B$.

We say that a Schauder basis $(e_i)_{i \in \mathbb{N}}$ of X, generates the positive cone X_+ , if $X_+ = \{\sum_{i=1}^{\infty} \lambda_i e_i \in X | \lambda_i \ge 0\}$. If X is a lattice normed space then X is locally solid iff there exists $\alpha \in \mathbb{R}_+$, such that for each $x, y \in X$, $|x| \le |y|$ implies $\alpha ||x|| \le ||y||$. X is orderisomorphic to an ordered linear topological space Y, if there exists an isomorphism T of X on to Y and T, T^{-1} are positive.

A Banach space X has the Krein-Milman property, if each closed, convex and bounded subset A of X is the closed convex hull of its extreme points $(A = \overline{\text{co}} \exp A)$. It is known [6] that in Banach spaces the Radon-Nikodým property implies the Krein-Milman property. Moreover we know [1] that in locally solid lattice Banach spaces the Radon-Nikodým and the Krein-Milman property are equivalent.

It is also known that l_1 has the Krein-Milman property. If X and Y are isomorphic Banach spaces then X has the Krein-Milman property iff Y has it.

THEOREM 1. Let X be an infinite-dimensional, separable, locally solid lattice Banach space. Then the following statements are equivalent

(i) X is order-isomorphic to l_1 .

(ii) X has the Krein-Milman property and X_{+} has a bounded base.

Proof (i) \Rightarrow (ii). Let T be an order isomorphism of l_1 on to X. Then X has the Krein-Milman property. The set $B = \{x \in l_1^+ \mid ||x|| = 1\}$, is a bounded base of l_1^+ , hence T(B) is a bounded base of X_+ .

Proof (ii) \Rightarrow (i). Let *B* be a bounded base for the cone X_+ . Since *X* is locally solid we have that the cone X_+ is closed. By ([3], 3.8.1), it follows that the base *B* is closed. So *B* is a closed, convex and bounded subset of *X*, hence

$$B = \cos \exp \left(B \right). \tag{1}$$

Since B is closed and bounded and $0 \notin B$, it follows that there exist $M_1, M_2 \in \mathbb{R}_+ \setminus \{0\}$ such that

$$M_1 \leq \|x\| \leq M_2$$
, for each $x \in B$. (2)

The extreme points of B are extremal points of X_{+} , hence they are pairwise disjoint. So for each $x, y \in ep(B)$ we have $x \leq x + y = |x - y|$. Since X is locally solid we have $\alpha \|x\| \leq \|x-y\|$, hence $\|x-y\| \geq \alpha M_1$.

Now, from the separability of X, it follows that the set of extreme points of B is countable. (See also [9], proposition 3.) We assume that

$$\operatorname{ep}(B) = \{u_i | i \in \mathbb{N}\}.$$

We shall prove that $(u_i)_{i \in \mathbb{N}}$, is a Schauder basis of X which generates X_+ , where by ([8], II corollary 10.1), it follows that X is order-isomorphic to l_1 .

Let $x \in B$. Then $0 \leq x \wedge u_i \leq u_i$, so for each $i \in \mathbb{N}$ there exists $x(i) \in \mathbb{R}_+$ such that $x \wedge u_i = x(i) u_i$. We shall prove that

$$x = \sum_{i=1}^{\infty} x(i) u_i.$$

For each $n \in \mathbb{N}$ we have

$$0 \leq \sum_{i=1}^{n} x(i) u_{i} = x(1) u_{1} \vee x(2) u_{2} \vee \ldots \vee x(n) u_{n} \leq x.$$
(3)

Since u_i , x belongs to the base B of X_+ , we have

$$\sum_{i=1}^{n} x(i) \leqslant 1, \quad \text{for each } n \in \mathbb{N}$$

But $||u_i|| \leq M_2$, for each $i \in \mathbb{N}$, so the series $\sum_{i=1}^{\infty} x(i) u_i$ converges to a point y of X_+ and from (3) it follows that

$$0 \leqslant y = \sum_{i=1}^{\infty} x(i) \, u_i \leqslant x.$$

On the other hand, from (1) we have that there exists a sequence $(x_{\nu})_{\nu \in \mathbb{N}}$ which converges to x and $x_{\nu} \in \operatorname{co} \{u_i | i \in \mathbb{N}\}$ for each $\nu \in \mathbb{N}$. So each element of this sequence has the form

$$x_{\nu} = \sum_{i \in \Phi(\nu)} \lambda_i(\nu) \, u_i,$$

where $\Phi(\nu)$ is a finite subset of \mathbb{N} and $\lambda_i(\nu) \in \mathbb{R}_+$ such that

i

$$\sum_{e \in \Phi(\nu)} \lambda_i(\nu) = 1.$$

So we have

$$x \wedge x_{\nu} = x \wedge \sum_{i \in \Phi(\nu)} \lambda_{i}(\nu) u_{i} \leq \sum_{i \in \Phi(\nu)} x \wedge \lambda_{i}(\nu) u_{i} \leq \sum_{i \in \Phi(\nu)} x \wedge u_{i} = \sum_{i \in \Phi(\nu)} x(i) u_{i} \leq y.$$
Hence
$$x \wedge x_{\nu} \leq y.$$
(4)

Because X is locally solid, we have that the operator $(z, w) \rightarrow z \wedge w$, from $X \times X$ onto X, is uniformly continuous, hence from (4) we have that $x = \lim (x \wedge x_v) \leq y$. So x = y.

So we have proved that each element x of B has the form

$$x = \sum_{i=1}^{\infty} x(i) u_i.$$

From the definition of $x(i), i \in \mathbb{N}$, we have that they are uniquely determinate. Since X is a linear lattice and the cone X_+ is closed, it follows that $(u_i)_{i \in \mathbb{N}}$ is a Schauder basis of X which generates X_{+} .

COROLLARY 1. Let X be an infinite-dimensional, separable, locally solid lattice Banach space. If X_+ has a bounded base, then the following statements are equivalent

(i) X has the Krein-Milman property.

(ii) X has a Schauder basis which generates X_{\perp} .

PROPOSITION 1. Let E be a Banach space with the Krein-Milman property and $S \subseteq E$ bean infinite-dimensional, closed, bounded and linearly compact simplex. If $C = \{\lambda x | x \in S\}$ and $\lambda \in \mathbb{R}_+$ and X = C - C is separable, then the following statements are equivalent:

(i) X is closed, the set of extreme points of S is countable (ep $(S) = \{u_i | i \in \mathbb{N}\}$) and each $element \, x \, of \, S \, is \, a \, unique \, (infinite) \, convex \, combination \, of \, its \, extreme \, points \, (x = \sum_{i=1}^{\infty} \lambda_i \, u_i,$ where $\lambda_i \in \mathbb{R}_+$ and $\sum_{i=1}^{\infty} \lambda_i = 1$).

(ii) The cone C gives an open decomposition of X.

(iii) The set $co(S \cup (-S))$, contains a neighbourhood of zero.

 $Proof(i) \Rightarrow (ii)$. The set of extreme points of S, $(u_i)_{i \in \mathbb{N}}$, is a Schauder basis of X which generates its positive cone and the set S is a bounded base for the cone C. Hence X is order-isomorphic to l_1 . So the cone C gives an open decomposition of X.

Proof (ii) \Rightarrow (i). By [4], X is a linear lattice. The cone C gives an open decomposition of X and S is a bounded base for the cone C, hence by ([3], $3\cdot 8\cdot 2$ and $4\cdot 1\cdot 5$), we have that X is locally solid. Because S is a closed and bounded base of C we have that the cone C is closed. X is closed in E because C is complete and gives an open decomposition of X, hence X has the Krein-Milman property. So, by Theorem 1, we have that X is order-isomorphic to l_1 and the statement (i) is true.

Proof (ii) \Rightarrow (iii). Let $\rho \in \mathbb{R}_+ \setminus \{0\}$ such that for each $x \in S ||x|| > 2\rho$. If

$$U_{\rho}^{+}=\{x\!\in\!X_{+}\,|\,\|x\|\leqslant\rho\},$$

then $U^+_{\rho} - U^+_{\rho}$ is a neighbourhood of zero. Let $x \in U^+_{\rho} - U^+_{\rho}$. Then there exist $y, z \in U^+_{\rho}$ such that x = y - z. We put $2y = \lambda_1 b_1$, $2z = \lambda_2 b_2$, where $b_1, b_2 \in S$. Since $||b_1||, ||b_2|| > 2\rho$ we have that $0 < \lambda_1, \lambda_2 < 1$. So we have:

$$\begin{aligned} x &= \frac{2y}{2} - \frac{2z}{2} = \frac{\lambda_1}{2} b_1 + \frac{\lambda_2}{2} (-b_2) = \left(\frac{1}{2} + \frac{\lambda_1}{4} - \frac{\lambda_2}{4}\right) b_1 + \frac{\lambda_2}{2} (-b_2) \\ &+ \left(\frac{1}{2} - \frac{\lambda_1}{4} - \frac{\lambda_2}{4}\right) (-b_1) \in \operatorname{co}\left(S \cup (-S)\right). \end{aligned}$$

Hence $-U_{\rho}^{+}\subseteq \operatorname{co}\left(\mathcal{S}\cup(-\mathcal{S})\right).$

Proof (iii) \Rightarrow (ii). Let $M \in \mathbb{R}_+$ such that for each $x \in S$ implies ||x|| < M. Then we have $co(S \cup (-S)) \subseteq co(S \cup \{0\}) - co(S) \cup \{0\}) \subseteq U_M^+ - U_M^+$. Hence $U_M^+ - U_M^+$ is a neighbor bourhood of zero, hence C gives an open decomposition of X.

Definition. Let E be a linear lattice. A closed subspace X of E is called *lattice-subspace* of E if X, ordered by the cone $X \cap E_+$, is a linear lattice.

PROPOSITION 2. Each infinite-dmensional lattice-subspace X of l_1 is order-isomorphic to l_1 .

IOANNIS A. POLYRAKIS

Proof. It is clear that X has the Krein-Milman property and that the set

$$B = \{x \in X_+ | \|x\| = 1\}$$

is a bounded base for the cone X_+ . The cone X_+ gives an open decomposition of X because X is complete and X_+ generating ([3], $3 \cdot 5 \cdot 2$). So X is a locally solid linear lattice; hence it is order isomorphic to l_1 .

PROPOSITION 3. Let X be an infinite-dimensional lattice-subspace of $L_1[0, 1]$. Then the following statements are equivalent:

(i) X is order-isomorphic to l_1 .

(ii) X has the Krein-Milman property.

Proof. It is clear that the positive cone X_+ gives an open decomposition of X. So X is locally solid. The set $B = \{x \in X_+ | ||x|| = 1\}$ is a bounded base for the cone X_+ . Since $L_1[0, 1]$ is separable we have that X is separable. Hence the statements (i) and (ii) are equivalent.

REFERENCES

- J. BOURGAIN and M. TALAGRAND. Dans un espace de Banach reticulé solide, la propriété de Radon-Nikodým et celle de Krein-Milman sont équivalentes. Proc. Amer. Math. Soc. 81 (1981), 93-96.
- [2] J. DIESTEL and J. J. UHL. Vector Measures (American Mathematical Society Surveys, 1977).
- [3] G. J. O. JAMESON. Ordered Linear Spaces. Lecture Notes in Math. vol. 141 (Springer-Verlag, 1970).
- [4] D. KENDALL. Simplexes and vector lattices. J. London Math. Soc. 37 (1962), 365-371.
- [5] J. LINDENSTRAUSS. On extreme points of l_1 . Israel J. Math. 4 (1966), 59-61.
- [6] J. LINDENSTRAUSS. Weakly compact sets-their topological properties and the Banach spaces they generate. Ann. of Math. Stud. 69 (1972), 235-273.
- [7] C. W. MCARTHUR, I. SINGER and M. LEVIN. On the cones associated to biorthogonal systems and bases in Banach spaces. Canad. J. Math. 21 (1969), 1206-1217.
- [8] I. SINGER. Bases in Banach Spaces (Springer-Verlag, 1970).
- [9] P. C. TSEKREKOS. Some applications of L-constants and M-constants on Banach Lattices. J. London Math. Soc. (2), 18 (1979), 133-139.

522