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Preface

This volume consists of accepted papers that will be presented at BIO-
STAT2006, an international conference organized by the University of Cyprus
and the European Seminar - Seminaire Europeen ”Méthodes Mathématiques
pour l‘ Analyse de Survie, Fiabilité et Qualite de Vie”. In fact, this confer-
ence is a part of a series of conferences, workshops and seminars organized or
co-organized by the European Seminar over the years. Our objective in taking
part in this organization was to bring together scientists from all over the world
that work in Statistics in general and advance the knowledge in fields related
to biomedical and technical systems. During the conference a special workshop
will be presented by Prof. Mei-Ling Ting Lee on the topic of Microarray Data.

The papers included in this volume represent a cross-section of current con-
cerns and research interests in survival analysis, reliability, medical statistics,
biology and epidemiology. The papers are presented in alphabetic order within
each category (keynote, invited or contributed) using the name of the first au-
thor.

The editor would like to thank all the authors whose contribution made the
publication of this book possible. The members of the scientific and organizing
committees helped enormously in turning this effort into a very successful event.
I also like to thank the colleagues that organized invited sessions or invited talks.
The materialization of this conference would not have been possible without the
constant support and guidance of Prof. Misha Nikulin and the organizational
skills of Prof. Alex Karagrigoriou. Special thanks are due to the University
of Cyprus for embracing warmly the organization of this event. Last but not
least I like to thank all our sponsors that accepted our invitation to support
the conference without any hesitation.

Filia Vonta

Limassol, May 2006
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Hypotheses Testing: Poisson Versus Self-Exciting

and Self-Correcting

S. Dachian and Yu. A. Kutoyants

Laboratoire de Mathématiques, Université Blaise Pascal, Aubière, France
Laboratoire “Statistique & Processus”, Université du Maine, Le Mans, France

Abstract: We consider the problems of hypotheses testing with the basic sim-
ple hypothesis: observed sequence of points corresponds to a stationary Poisson
process with known intensity. The alternatives are stationary self-exciting and
self-correcting point processes. In the case of self-exciting alternatives we pro-
pose asymptotically uniformly most powerful tests in parametric and nonpara-
metric statements and for the self-correcting alternative we compare the score-
function test, likelihood ratio test and Wald’s test with the Neyman-Pearson
test. The results of numerical simulations of the tests are presented.

Keywords and phrases: Poisson process, self-exciting process, self-correcting
process, hypotheses testing, asymptotically uniformly most powerful test

1.1 Introduction

Let {t1, t2, . . .} be a sequence of events of a stationary point process X =
{Xt, t ≥ 0} (Xt is a counting process). The simplest stationary point process
is, of course, Poisson process with a constant intensity S > 0, i.e., the increments
of X on disjoint intervals are independent and distributed according to Poisson
law

P {Xt −Xs = k} =
Sk (t− s)k

k!
e−S(t−s), 0 ≤ s < t, k = 0, 1, . . .

Note that the statistical inference for Poisson processes is relatively simple (see
Kutoyants (1998)). Therefore if we have a stationary sequence of events it is
interesting to check first of all if this model (Poisson process) corresponds well
to the observations (see Cox and Lewis (1966)). Note that any inhomogeneous
Poisson process with known intensity can be transformed into homogeneous

1



2 Dachian and Kutoyants

Poisson process by time-changing. As alternatives we consider two types of sta-
tionary point processes: self-exciting process introduced by Hawkes (1972) and
self-correcting process introduced by Isham and Westcott (1979). The advan-
tage of these models is in the possibility to apply the likelihood ratio analysis,
because the intensity functions depend of the observations. The detailed dis-
cussion of these processes can be found in Daley and Vere-Jones (2003).

1.2 Self-Exciting Alternatives

The self-exciting point process is defined by intensity function of the following
form

S (t,X) = S∗ +
∫ t

−∞
g (t− s) dXs,

∫ ∞

0
g (t) dt < 1

where S∗ > 0 and the function g (·) ≥ 0. For example, g (t) = αe−γt with
α/γ < 1. The basic hypothesis corresponds to g (t) ≡ 0. We consider two
situations. The first one is parametric, when g (t) = ϑh (t), where h (t) is known
function and the second is nonparametric, when g (t) is unknown function. In
both cases we reparametrize the models to have contigual (asymptotically non
degenerate) alternatives.

Note that self-exciting processes cover a large class of stationary point pro-
cesses with rational spectral density (see, for example, Pham (1981)).

1.2.1 One-sided parametric alternative

We assume that the observed process is either Poisson with constant known
intensity S∗ or it is self-exciting processes with intensity function

(
ϑ = u/

√
T

)

S (ϑ, t, ω) = S∗ +
u√
T

∫ t

−∞
h (t− s) dXs,

i.e., we have to test the following two hypotheses

H0 : u = 0,

H1 : u > 0.

Let us denote

∆T

(
XT

)
=

1
S∗
√

T

∫ T

0

∫ t

0
h (t− s) dXs [dXt − S∗ dt]

and put cε = zε

√
I∗h. Here

I∗h =
∫ ∞

0
h (t)2 dt + S∗

(∫ ∞

0
h (t) dt

)2

.



Poisson Versus Self-Exciting 3

A test φ∗T (·) is called asymptotically uniformly most powerful (AUMP) in
the class Kε of tests of asymptotic level 1 − ε if for any other test φT (·) ∈ Kε

and any constant K > 0 we have

lim
T→∞

inf
0<u≤K

[β∗T (u, φT )− βT (u, φT )] ≥ 0.

Theorem 1.2.1 Let h (·) ∈ L1 (R+) ∩ L2 (R+) then the test

φ̂T

(
XT

)
= χ{∆T (XT )>cε}

is asymptotically uniformly most powerful in the class Kε and for any u > 0 the
power function

βT

(
u, φ̂T

)
−→ β̂ (u) = P

{
ζ > zε − u

√
I∗h

}
,

where ζ ∼ N (0, 1).

1.2.2 One-sided nonparametric alternative

We suppose that under hypothesis H0 the observed point process XT is stan-
dard Poisson with known intensity S∗ > 0 and under alternative H1 the inten-
sity function is

S (t,X) = S∗ +
1√
T

∫ t

−∞
u (t− s) dXs, 0 ≤ t ≤ T

where the function u (·) ≥ 0 is from the set

U% =
{

u (·) :
∫ ∞

0
u (t) dt = %

}

with some ρ > 0.
A test φ∗T (·) is called locally asymptotically uniformly most powerful in the

class Kε if for any other test φT (·) ∈ Kε and any K > 0 we have

lim
T→∞

inf
0≤%≤K

inf
u(·)∈U%

[βT (u, φ∗T )− βT (u, φT )] ≥ 0.

Let us introduce the decision function

φ̂T

(
XT

)
= χ{δT (XT )>zε}, δT

(
XT

)
=

XT − S∗T√
S∗T

.

Theorem 1.2.2 Let u (·) ∈ L1 (R+) ∩ L2 (R+), then the test φ̂T is locally
asymptotically uniformly most powerful in the class Kε and for any u (·) ∈ U%

its power function

βT

(
u, φ̂T

)
−→ β̂ (u) = P

{
ζ > zε − %

√
S∗

}
,

where ζ ∼ N (0, 1).
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1.3 Self-Correcting Alternatives

We observe a trajectory XT = {Xt, 0 ≤ t ≤ T} of a point process of intensity
function S (·) and there are two hypotheses: H0 : S (t,X) = S∗ and

H1 : S (t,X) = S∗ ψ (ϑ [S∗t−Xt]) ,

where ψ (·) is a known function.
Condition A. The function ψ (x) , x ∈ R is positive, continuously differen-

tiable at the point x = 0, ψ (0) = 1 and ψ̇ (0) > 0.
To have contigual alternative we put ϑ = u/S∗ψ̇ (0) T . ThereforeH0 : u = 0

and H1 : u > 0.
Denote

∆T

(
XT

)
=

1
S∗ T

∫ T

0
(S∗t−Xt−) [dXt − S∗ dt] =

XT − (XT − S∗T )2

2S∗T
.

and put aε =
1−z2

1−ε
2

2 and h (u) =
√

2u
1−e−2u .

Theorem 1.3.1 Let the Condition A be fulfilled, then the score function test
φ∗T

(
XT

)
= χ{∆T (XT )>aε} belongs to the class Kε and for any u > 0 its power

function
βT (u, φ∗T ) → β∗(u) = P

{
|ζ| ≤ h (u) z 1−ε

2

}
.

The likelihood ratio test is

φ̄T = χ{δT (XT )>b̃ε}, δT

(
XT

)
= sup

ϑ∈Θ
L

(
ϑ,XT

)
,

where L(ϑ,XT ) is the likelihood ratio function.
The Wald’s test

φ̂T

(
XT

)
= χ{γT ϑ̂T≥cε}

where ϑ̂T is the maximum likelihood estimator of ϑ. The constants bε and cε

are chosen from the condition φ̄T , φ̂T ∈ Kε.
We obtained the following presentation of the limit power functions of the

score function test β∗ (u), likelihood ratio test β̄ (u), Wald’s test β̂ (u) and
Neyman-Pearson test β◦ :

β∗ (u) = P
{∫ u

0
yv dwv < Ju − aε u

}
,

β̄ (u) = P
{∫ u

0
yv dwv < Ju − bε

√
2Ju

}
,

β̂ (u) = P
{∫ u

0
yv dwv < Ju − cε

u
Ju

}
,

β◦ (u) = P
{∫ u

0
yv dwv <

1
2
Ju +

eε

2
u2

}
.
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where

dyv = −yv dv + dwv, y0 = 0, 0 ≤ v ≤ u, Ju =
∫ u

0
y2

v dv.

Therefore for the large values of u

1
2Ju + eε

2 u2 > Ju − cε
u Ju > Ju − bε

√
2Ju > Ju − aε u,

and finally
β∗ (u) < β̄ (u) < β̂ (u) < β◦ (u) .

Surprisingly the numerical simulation (with N = 107) shows practical coinci-
dence of the last three powers. This effect is known in the time series statistics
(AR process near singular point).

The proofs of the all results presented in this talk and the results of the sim-
ulation of the tests as well as the references of related works can be found on the
site http://www.univ-lemans.fr/sciences/statist/index.php?page=publications
of preprints of the University of Maine (see Preprints 05-3 and 05-4).
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Asymptotic Confidence Bands For Kernel Density

Estimators Based Upon Resampling

Paul Deheuvels

LSTA, Université Paris VI

Abstract: In this paper, we show that a single bootstrap suffices to construct
sharp uniform asymptotic confidence bands for non-parametric kernel-type den-
sity estimators.

Keywords and phrases: Kernel density estimators, Non-parametric func-
tional estimation, Bootstrap and resampling, Confidence bands.

2.1 Introduction and Results

Let X1, X2, . . . be a sequence of independent random replicæ of a random vari-
able X with distribution function F (x) = P(X ≤ x) for x ∈ R. We are
concerned with the estimation of the density f(x) = d

dxF (x), assumed to exist,
and to be continuous and positive on the interval J = [c′, d′], where c′ and d′ are
two constants such that −∞ < c′ < d′ < ∞. We will consider here the classical
Akaike-Parzen-Rosenblatt (refer to ...) kernel estimator defined as follows. We
first pick a kernel K(·), defined as a function of bounded variation on R such
that

K(t) = 0 for |t| ≥ 1
2 and

∫

R
K(t)dt = 1.

We then select a bandswidth h > 0, and estimate f(x) by the statistic

fn,h(x) =
1

nh

n∑

i=1

K
(x−Xi

h

)
.

We are concerned with the limiting behavior of fn,h(x), uniformly over x ∈
I = [c, d], where c and d are constants such that c′ < c < d < d′. Setting
h0 = {c− c′}∧{d′− d}, we will assume, unless otherwise specified, that h = hn

7
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is a sequence depending upon n, and taking values within the interval (0, h0].
The study of the uniform consistency of fn,h(x) to f(x) makes use of the de-
composition of fn,h(x)− f(x) into two components. The first one captures the
bias part

Efn,h(x)− f(x) =
∫ 1

−1
{f(x− hu)− f(x)}K(t),

which is easily shown to be independent of the sample size, n ≥ 1, and to
converge uniformly to 0 over x ∈ I, as long as h → 0. The corresponding
rate of convergence is a purely analytic problem, depending upon regularity
assumptions on f , and will not be considered here. We will concentrate our
interest on the random part

fn,h(x)− Efn,h(x),

and investigate its uniform limiting behavior over x ∈ I. We seek sharp asymp-
totic confidence bands, defined as statistics θn, depending upon n ≥ 1 and the
sample X1, . . . , Xn, such that, as n →∞,

P
(

sup
x∈I

|fn,h(x)− Efn,h(x)| ≤ θn(1 + ε)
)
→ 1, (2.1)

and
P

(
sup
x∈I

|fn,h(x)− Efn,h(x)| ≤ θn(1− ε)
)
→ 0. (2.2)

The limit law, stated in Fact 2.1.1 below, is due to Deheuvels and Einmahl
(2000) (see also Stute (1982), Deheuvels (1992) and Deheuvels and Mason
(1992)), and shows that a possible choice for θn in (2.1)–(2.8) is given by

θn = θn,0 :=
{2 log(1/hn)

nhn

(
sup
x∈I

f(x)
) ∫

R
K2(t)dt

}1/2
. (2.3)

Fact 2.1.1 Let {hn : n ≥ 1} be a sequence such that

(H.1) hn → 0 and nhn/ log n →∞ as n →∞.

Then, as n →∞,

sup
x∈I

±{fn,hn(x)− Efn,hn(x)}

= (1 + oP(1))
{2 log(1/hn)

nhn

}1/2{
sup
x∈I

f(x)
∫

R
K2(t)dt

}1/2
. (2.4)

Unfortunately, θn,0, as given by (2.3), is not very useful, in practice, to construct
limiting asymptotic bounds for supx∈I ±{fn,hn(x)− Efn,hn(x)}. The fact that
it depends upon the unknown density f(·) is a minor problem, since, as shown
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in Deheuvels and Mason (2004), we may replace this quantity by fn,h(x) (or by
another uniformly consistent estimator of f(x)), thus yielding

θn = θn,1 :=
{2 log(1/hn)

nhn

(
sup
x∈I

fn,h(x)
)∫

R
K2(t)dt

}1/2
. (2.5)

The main difficulty, in the use of either θn,0 or θn,1, is due to the factor log(1/hn),
which is scale-dependent, up to the point where it becomes meaningless if the
scale is chosen such that hn > 1 for the value of n pertaining to the sample of
interest.

The purpose of the present paper is to propose a simple and practical way to
override the above-mentioned difficulty, based upon a resampling methodology.
We start by the introduction of a sequence {Zn : n ≥ 1} of independent and
identically distributed random replicæ of a random variable Z. We assume that
{Xn : n ≥ 1} and {Zn : n ≥ 1} are independent. Moreover, we assume that the
following conditions are satisfied.

(A.1) E(Z) = 1; E(Z2) = 2 (so that Var(Z) = 1);
(A.2) E(etZ) < ∞ for all |t| < ε, for some ε > 0.

We denote by Tn = Z1 + . . . + Zn the partial sum of order n ≥ 1 of these
random variables, and denote by En = {Tn > 0} the event that Tn > 0. We
define, further, the random weights

Wi,n = Zi/Tn =
Yi∑n

j=1 Yj
for i = 1, . . . , n when Tn > 0, (2.6)

=
1
n

when Tn ≤ 0.

We then define a resampled or bootstrapped version of fn,h(·) by setting, for
h > 0 and x ∈ R,

f∗n,h(x) =
1
h

n∑

i=1

Wi,nK
(x−Xi

h

)
. (2.7)

The following main result will turn out to provide a solution to our problem.

Theorem 2.1.1 Under (H.1) and (A.1–2), we have, as n →∞,

sup
x∈I

±{f∗n,h(x)− fn,hn(x)}

= (1 + oP(1))
{2 log(1/hn)

nhn

}1/2{
sup
x∈I

f(x)
∫

R
K2(t)dt

}1/2
. (2.8)

This allows us to choose θn by setting

θn = θn,2 := sup
x∈I

|f∗n,h(x)− fn,hn(x)|. (2.9)
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2.2 Proofs

The proof of Theorem 2.1.1 relies on a version of Corollary 3.1 of Deheuvels and
Mason (2004), stated in Fact 2.2.1 below. For the statement of this result, we
will need the following notation. Denote by G(z) = P(Z ≤ z) the distribution
function of Z, and let ψ(u) = inf{z : G(z) ≥ u}, for 0 < u < 1 denote the
corresponding quantile function. Without loss of generality, it is possible to
enlarge the original probability space (Ω,A,P), in order to carry a sequence
{Yn : n ≥ 1} of independent and identically distributed random variables, with
a uniform distribution on (0, 1), and such that Zn = ψ(Yn) for n ≥ 1. Set now

rn,h(x) =
1

nh

n∑

i=1

ψ(Yi)K
(x−Xi

h

)
. (2.10)

We note that, under (A.1), Ern,h(x) = Efn,h(x). Therefore, it is readily checked
from Corollary 3.1 of Deheuvels and Mason (2004), taken with λ1 = λ2 = 1,
c(x) = 1 and d(x) = 0, that the following fact holds.

Fact 2.2.1 Under (H.1) and (A.1–2), we have, as n →∞,

sup
x∈I

±{rn,hn(x)− Efn,hn(x)}

= (1 + oP(1))
{2 log(1/hn)

nhn

}1/2{
sup
x∈I

f(x)
∫

R
K2(t)dt

}1/2
. (2.11)

Proof of Theorem 2.1.1. In view of (2.11), all we need for the proof of
Theorem 2.1.1 is to show that, under (H.1) and (A.1–2), we have

sup
x∈I

|fn,hn(x)− rn,hn(x)| = oP
( log(1/hn)

nhn

)1/2
. (2.12)

Now, on the event En of (2.6), we have, by combining (H.1) with the central
limit theorem,

sup
x∈I

|fn,hn(x)− rn,hn(x)| =
∣∣∣ n∑n

i=1 Ψ(Yi)
− 1

∣∣∣ sup
x∈I

|rn,hn(x)|

= OP(n−1/2) = oP
( log(1/hn)

nhn

)1/2
.

Since, obviously, P(En) → 1, this, in turn, implies readily (2.12).2

Remark 2.2.1 A similar, but slightly more involved argument, shows readily
that the weights {W (i, n) : 1 ≤ i ≤ n} may be chosen under the multinomial
framework of the classical Efron bootstrap. Details about this will be given
elsewhere.
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Frailty Models for Censored and Truncated Data

Catherine Huber-Carol, Valentin Solev and Filia Vonta
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Abstract: Semi-parametric estimation of survival data with censoring and
truncation under a frailty model with covariates is proposed, based on a maxi-
mum likelihood approach. Consistency of the NPML estimate is proved when
no covariates are present.

Keywords and phrases: Frailty, censoring, truncation, identifiability, semi-
parametric estimation, consistency

3.1 NPML estimation for frailty model

3.1.1 The model

Xi is a positive random variable, the survival of subject i, i = 1, · · · , n, whose p-
dimensional covariate zi is observed and frailty ηi is not observed, but has known
distribution function Fη on IR+. The X ′

is are independent and their survival
function S(t) = P (X ≥ t) and hazard function h(t) = −dS(t)/S(t) obey the
following frailty model, where β ∈ Rp is an unknown regression parameter,
λ(t) the unknown baseline hazard and Λ(t) =

∫ t
0 λ(u)du the corresponding

cumulative baseline hazard:

h(t|z, η) = ηeβT zλ(t) (3.1)

S(t|z, η) = e−ηeβT zΛ(t)

S(t|z) =
∫ ∞

0
e−xeβT zΛ(t)dFη(x) = e−G(eβT zΛ(t)) (3.2)

where G is equal to − log of the Laplace transform of η:

G(y) = − ln(
∫ ∞

0
e−uydFη(u)) (3.3)

13
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3.1.2 Censoring and truncation

X may be both censored and truncated so that the X ′
is are generally not ob-

served. Instead, one observes two intervals (Ai, Bi), which are respectively the
censoring interval, Ai = [Li ; Ri], and the truncating interval ]Li ; Ri[, such
that Bi ⊃ Ai. This means that Xi is not observed but is known to lie inside
Ai, and Ai itself is observed only conditionally on the fact that it is inside
the truncating interval Bi. Otherwise, the corresponding subject is said to be
”truncated” i.e. it does not appear in the sample. Finally, for the n subjects
which are not truncated, the observations are (Ai, Bi, zi), i ∈ {1, 2, · · · , n}.

3.1.3 The likelihood

The likelihood is proportional to

l(S) =
n∏

i=1

li(Si) =
n∏

i=1

PSi(Ai)
PSi(Bi)

=
n∏

i=1

{
Si(L−i )− Si(R+

i )
}

{
Si(L+

i )− Si(R−i )
} (3.4)

Following Turnbull (1976), let us define the ”beginning” set L̃ and ”finishing”
set R̃, in order to take advantage of the fact that the likelihood is maximum
when the values of Si(x) are the greatest possible for x ∈ L̃ and the smallest
possible for x ∈ R̃:

L̃ = {Li, 1 ≤ i ≤ n} ∪ {Ri, 1 ≤ i ≤ n} ∪ {0}

R̃ = {Ri, 1 ≤ i ≤ n} ∪ {Li, 1 ≤ i ≤ n} ∪ {∞}.
Let

Q = {[q′j , p′j ] : q′j ∈ L̃ , p′j ∈ R̃ , [q′j , p
′
j ] ∩ L̃ = ∅ , [q′j , p

′
j ] ∩ R̃ = ∅}

0 = q′1 ≤ p′1 < q′2 ≤ p′2 < . . . < q′v ≤ p′v = ∞
Then,

Q = ∪v
j=1[q

′
j , p

′
j ] = C ∪W ∪D

where

C = ∪[q′j , p
′
j ] covered by at least one censoring set,

W = ∪[q′j , p
′
j ] covered by at least one truncating set,

but not covered by any censoring set,
D = ∪[q′j , p

′
j ] not covered by any truncating set.

The special case with G, defined in (1.3), being the identity function, and β = 0
was studied in detail in Turnbull (1976), Frydman (1994) and Finkelstein et. al
(1993).
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The above likelihood, as a function of the unknown β and Λ, is equal to

l(Λ, β|(Ai, Bi, zi)i∈{1,..,n}) =
n∏

i=1

{
e−G(eβT ziΛ(L−i )) − e−G(eβT ziΛ(R+

i ))
}

{
e−G(eβT ziΛ(L+

i )) − e−G(eβT ziΛ(R−i ))
} (3.5)

3.1.4 NPML estimation

As in the case of Turnbull (1976), where G is the identity and β = 0 in (3.2), the
NPML estimator of Λ for the frailty model (3.1) is not increasing outside the set
C ∪D (Huber and Vonta, 2004). Also, the set C is written as C = ∪m

j=1[qj , pj ].
Moreover, conditionally on the values of Λ(qj

−) and Λ(pj
+), 1 ≤ j ≤ m, the

likelihood does not depend on how the mass Λ(pj
+) − Λ(qj

−) is distributed
in the interval [qj , pj ]. The set D may be expressed as D = ∪m

j=0Dj , where
Dj = D ∩ (pj , qj+1) , p0 = 0 , qm+1 = ∞. Let δj = PΛ(Dj) and the indicators
µij = I{[ [qj , pj ] ⊂ Ai]} and νij = I{[ [qj , pj ] ⊂ Bi]} for i = 1, . . . , n and
j = 1, . . . ,m. Then the log-likelihood is equal to

log l(Λ, β|z1, . . . , zn) =
∑n

i=1

{
log

(∑m
j=1 µij

(
e−G(eβT zi (Λ(p+

j−1)+δj−1))

−e−G(eβT ziΛ(pj
+))

))

− log
( ∑m

j=1 νij

(
e−G(eβT zi (Λ(p+

j−1)+δj−1))

−e−G(eβT ziΛ(pj
+))

))}
·

In most practical cases D = D0 (left truncation) and/or D = Dm (right trun-
cation). In order to ensure the positivity of the estimators of δ′s and Λ′s and
the monotonicity of the sequence of γ′s below, we change parameters:

γ0 = log(δ0) γj = log(Λ(pj)) j = 1, . . . , m
τ1 = γ1 τj = log(γj − γj−1) j = 2, . . . , m.

We want now to maximize:

log l(Λ, β|z) =
n∑

i=1

{
log

( m∑

j=1

µij

(
e−G(e

βT zi+τ1+
Pj−1

k=2
eτk

) − e−G(e
βT zi+τ1+

Pj
k=2

eτk
)
))−

log
( m∑

j=1

νij

(
e−G(e

βT zi+τ1+
Pj

k=2
eτk

) − e−G(e
βT zi+τ1+

Pj
k=2

eτk
)
))}

. (3.6)

There is though a problem of identifiability as we have not any observation
on D, which is not covered by any truncating set. It can be proved that when no
covariate is present, what is identifiable is only the ratio P ([qj ; pj ])/

∑m
j=1 P ([qj ; pj ]),
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for all j ∈ {1, . . . ,m}. When a covariate of dimension p ≥ 2 is present, then it
can be proved that there is identifiability, by showing that those parameters are
functions of quantities that are themselves identifiable using the simple case of
D = D0

⋃
Dm and of two binary covariates leading to four different Si and sets

C and D that can be indexed by these four categories.

For simulations and a real data example (Kalbfleish AIDS data from trans-
fusion) we used (Huber and Vonta, 2004), the two most popular frailty distri-
butions: the Inverse Gaussian with mean 1 and variance 1/2b, and the Gamma
(Clayton-Cuzick frailty model) with mean 1 and variance c. The function G
(3.3) takes respectively the form:

G(x, b) =
√

4b(b+ x) − 2b, b > 0
G(x, c) = 1

c ln(1 + cx), c > 0.

3.2 Consistency

We now assume that there is no covariate involved. We want to prove the
consistency of the NPML estimator of Λ. The likelihood we maximized is con-

ditional on the censoring and truncating sets. It does not take into account the
laws of the censoring and truncation while the consistency is highly dependent
on the features of those two laws that may or may not allow a precise non
parametric estimation of Λ.
Let (a, b) ⊆ IR+ be the interval where all observations take place. Let us
define the censoring and truncating scheme on a practical example. In or-
der to fix ideas, let us say that a patient is visited by a doctor at several
dates τ = {(Yj , Yj+1], j = 0, 1, . . . , J(i)}, within a predetermined period of time
B =]Z1;Z2[⊆ (ab), and the doctor observes that the expected event, for exam-
ple AIDS onset, took place after Yk and before or else at Yk+1.

a b

time

Y1 Y2 Yk Yk+1 Yk+2

L(x)

x

R(x)

figure 1 : censoring interval ]L(x) R(x)].

Then we know that x, the time to onset of the event is censored by ]L ; R] =
(YkYk+1] and truncated by (L ; R) = (Z1;Z2) or more precisely by [Y1 ; YJ(i)] ,
the ”observed truncating set”. To each subject i, there corresponds a ”random
covering” τi, a truncating pair Z = (Zi1, Zi2) and a survival Xi. The three
random elements are assumed to be independent, and i.i.d. when i varies from
1 to n.
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Dropping now for simplicity the subscript i, let τ be a random covering
and define, for every u in IR+, L(u) as the greatest element of the covering τ
that is smaller than u and R(u) the smallest element of τ that is greater than
or equal to u. More precisely (L(u), R(u)) = (Yk, Yk+1), where k = k(u) =
inf {j : u ≤ Yj+1}. Then, for the subject associated to this covering, with sur-
vival x and truncating set (z1; z2), applying this to u = x, u = z1 and u = z2,
we have two cases: either R(z1) ≤ L(x) ≤ R(x) ≤ L(z2), then we observe the
pair of censoring and truncating sets (A,B) := (]L(x) ; R(x)], [R(z1) ; L(z2)]),
or R(z1) > L(z2), then the subject is truncated and gives no observation. The
two cases are illustrated in figure 2 below: above the time line, L(z2) < R(z1),
so that x is truncated and there is no observation, while below the line, the
censoring ]L(x);R(x)] and truncating [R(z1);L(z2)] sets are both observed as
(R(Z1) < L(X) < R(X) < L(Z2)).

a b

time

yj−2 yj−1yj yj+1 yj+2 yj+3

L(x)

x

R(x)z1 z2

R(z1) L(z2)

z1 z2 R(z1)L(z2)

figure 2 : two examples of truncating sets on the same x and τ .

Let Px be the law of υ(x) = (L(x), R(x)). If for all x, Px � λ2, with density
rx(u, v) = dPx

dλ2 , then there exists a non-negative function r(u, v), called the
baseline density of the random covering, such that for all x

rx(u, v) = r(u, v) 11(u, v](x) (a.s.) (3.7)

A necessary and sufficient condition for Px � λ2 to hold for all x is that
(i) for all j , dP(Yj , Yj+1)/dλ

2 = rj(u, v),

(ii) The series
∑
j
rj(u, v) converges a.s. to a function r(u, v),

(iii)For all x, rx(u, v) = r(u, v) 11(u, v](x).
For a proof and details, see Huber, Solev and Vonta (2005). Adding the
truncation, we now deal with the law Px,z1,z2 of vector W = (R(Z1), L(X),
R(X), L(Z2)). This law has three components. One is AC with respect to λ4,
when R(Z1) < L(X) < R(X) < L(Z2)), one is AC with respect to λ3, when
R(Z1) = L(X) < R(X) < L(Z2) or R(Z1) < L(X) < R(X) = L(Z2), and one
is AC with respect to λ2, when R(Z1) = L(X) < R(X) = L(Z2). Denoting
ν the baseline measure having density 1 with respect to the three Lebesgue
measures, let qx,z = dPx,z1,z2/dν. Let us now assume that, for all n,m > 0,
PYn,...,Yn+m � λm+1, and let us denote for i+ 1 < j:
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ri,j(y1, y2, y3, y4) the density of (Yi, Yi+1, Yj , Yj+1),

rj(y1, y2, y3) ”” (Yj−1, Yj , Yj+1),

rj(y1, y2) ”” (Yj , Yj+1).

We assume convergence of the series

∂4(s1, s2, s3, s4) =
∑

i, j:i+1<j
ri j(s1, s2, s3, s4) < ∞ (λ4-a.s.),

∂3(s1, s2, s3) =
∑
j

rj(s1, s2, s3) < ∞ (λ3-a.s.),

∂2(s1, s2) =
∑
j

rj(s1, s2) < ∞ (λ2-a.s.).

Then qx,z(s1, s2, s3, s4) = 11]s2, s3](x){∂2(s2, s3) 11[s2,s3](z)+∂3(s1, s2, s3) 11[s3,s4](z)+
∂4(s1, s2, s3, s4) 11[s1,s4](z). If now we assume to simplify without restriction of
the generality, that there is only right truncation, by setting z1 = a and denot-
ing L(z2) = z, then ∂2 disappears in the above formula, and as R(z2) plays no
role, integration with respect to s4 can take place so that one finally gets the
following formula for the law pw of the observation W :

p(u, v, z) = r(u, v, z)×

v∫
u

f(x) dx

∫
x≤z

f(x) dx

= r(u, v, z)× ϕ(f |u, v, z)

r ∈ G , f ∈ F , p ∈ P = {r ϕ(f |·), (r, f) ∈ G × F}
where f is the density of the survival X and r is the density of the censoring-
truncation based on the random covering. The NPML estimate p̂n, of p ∈ P is
defined as p̂n = Arg max

q∈P
∫

ln q dPn. ML estimates of r ∈ G and f ∈ F verify

r̂n = Arg max
q∈G

∫
ln q dPn, f̂n = Arg max

q∈F
∫

ln ϕ(q) dPn, and p̂n = r̂n × ϕ(f̂n|·).
The two results on which the proof of consistency of NPLM estimate of f
relies are a lemma of Sara van de Geer (1993) and a sufficient condition for
having a uniform law of large number in a class of functions (van der Vaart and

Wellner (2000)). Sara Van de Geer lemma tells us that h2(p̂n, p0) ≤
∫
p>0(

√
cpn

p0
−

1) d(Pn − P0). Denoting P∗ := {(
√

p
p0
− 1) × 11{p0 > 0} : p ∈ P}, one sees

that h(p̂n, p0) → 0 a.s. as soon as supp∗∈P∗ |∫ p∗ d(Pn − P0)| → 0 a.s. So a
necessary and sufficient condition to have consistency of p̂n is that we have
a uniform law of large numbers on P∗. This is satisfied in particular if P∗
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and its envelop are in L1(P0) and their bracketing entropy H[ ](ε,P∗, L1(P0))
is finite for all ε. The following assumptions ensure the consistency of NPML
estimate of f :
C1 The set P is totally bounded in Hellinger distance.
C2 For a constant C = CP and ε > 0 there exist finite coverings of F , G and

P: F ⊂
m⋃

i=1
V (fL

i , fR
i ), G ⊂

k⋃
j=1

W (rL
j , rR

j ); P ⊂ ⋃
i,j

U(pL
i,j , p

R
i,j) such that

{p : p = pr, f , for r ∈ W (rL
j , rR

j ) and f ∈ V (fL
i , fR

i )} ⊂ Ui,j = U(pL
i,j , p

R
i,j);

C3 h(pL
i,j , p

R
i,j) ≤ ε, h(fL

i , fR
i ) ≤ ε;

∫
pR

i,j dµ < CP ,
∫

fR
i dx < CP ;

C4 For all ε > 0 , z0 < b + ε : inf
r∈Wj

∫
v−u≤ε, z≥z0

r(u, v, z) dµ > 0.
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4.1 Extended Abstract

A little over a period of three decades, clinical trials have mushroomed in a va-
riety of human health studies, with a variety of objectives, having a variety of
interdisciplinary perspectives, and diverse implementational motives. Clinical
trials are designed by human beings, mostly, for human beings, incorporating
mostly human subjects, and, supposedly, for human benefit. Yet in this human
venture there are some inhuman features which warrant critical appraisal. Us-
ing human subjects in scientific (and mostly exploratory) studies may generally
trigger medical ethics, cost-benefit perspectives and a variety of other concerns.
In order to control some of these disturbing concerns, often, subhuman primates
are advocated as precursors or surrogates of human being, albeit there remains
a basic query:
How to extrapolate stochastics from mice to man? Can the basic principles of
animal studies or dosimetry be validated in clinical trials designated for human
being?
There is a basic qualm on the main objective of a clinical trial: symptomatic ef-
fects versus true disease-disorder detection and cure. Drug developers, pharma-
ceutical groups and regulatory agencies focus on treatments to relieve symptoms
which may not totally or adequately match treatment objectives. Bioethics and
public advocates have voiced concern on clinical trials in third-world countries,
the affordibality of usual high-cost drugs being a major issue in this cost-benefit
context. WHO and public health authorities all over the world are trying to
identify effective and affordable regimens for many developing countries. These
medical ethics, economic resources (affordability) and operational restraints of-
ten mar the routine use of standard statistical tools for drawing valid conclusions
from clinical trials.

21
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There are some basic differences between animal studies and clinical trials.
The former can be conducted in a fairly controlled laboratory setups but human
beings can not be put under such controlled environments, and as such, the
enormous disparity in physical characteristics and many other epidemiologic
endpoints, call for highly nonstandard statistical modeling and analysis. That
is why placebo-controlled trials (PCT) are used extensively in development of
new pharmaceuticals. In the early phase of adoption of clinical trials, such
PCTs were mostly advocated. However, there are allegations that PCT are
invariably unethical when known effective therapy is available for the condition
being treated or studied, regardless of the condition or the consequences of
deferring treatments. The 1997 Helsinki Declaration by the World Medical
Association (WMA) has clearly laid down the ethical principles for clinical
trials: In any medical study, every patient - including those of a control group,
if any, should be assured of the best proven diagnostic and therapeutic methods.
Most often, in a PCT, this ethics is violated by the very composition of the
placebo group. Based on this declaration, patients asked to participate in a
PCT must be informed of the existence of any effective therapy, must be able
to explore the consequences of deferring such therapy with the investigator,
and must provide fully informed consent. Active controlled equivalence trials
(ACET) have therefore been advocated for comparing an existing treatment
with a targeted one. They may show whether a new therapy is superior (or
inferior) to an existing one, but may not possess other characteristics of PCTs
(Temple and Ellenberg 2000, Sen 2001).

No matter it is a PCT or an ACET, there are numerous underlying con-
straints calling for novel constrained statistical inference (CSI) tools for statis-
tical analysis. There is another feature common to both PCT and ACETs. It
may be desirable in such a follow-up study to have interim analysis to monitor
the accumulating clinical evidence in the light of statistical perspectives. While
this feature has led to the evolution of time-sequential statistical methodol-
ogy, there remains much to update this novel branch of CSI in the light of the
underlying constraints and complications. It is usually desirable to look into
the accumulating data sets at regular time intervals, and statistically deciding
whether or not an early termination of the trial can be made in favor of the new
therapy (if that is to be advocated in the drug market) so that patients can be
switched to a better health perspective. Thus, usually, a repeated significance
testing (RST) scheme, often in a restrained setup, underlies statistical modeling
and analysis of clinical trials. In conventional group sequential tests (GST) usu-
ally one assumes independent and homogeneous increments for the associated
stochastic processes. This is generally not the case in interim analysis related
RST. Progressively censoring schemes (PCS) were introduced by Chatterjee and
Sen (1973) to formulate the general methodology of time-sequential procedures;
suitable martingale characterisations underlie most of these developments (Sen
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1981, 1999a, 2001). With a need to update this approach in a more general
framework to suit the ACET, let us consider the following statistical scenario.

Consider a typical constrained statistical interim analysis scheme relating
to a comparative clinical trial relating to an existing therapy and a new one.
The interim analysis related to monitoring of the accumulating evidence at time
points t1 < · · · < tK for some specified K, spanning over a projected period of
study T = (0, tK). If at an early time point tk, there appears to be a significant
difference (in favor of the new drug), then the trial is to be terminated at that
point. The null hypothesis (H0) relates to no difference over the entire period
T while the alternative (H1) to the new being better than the existing. We
frame the null hypothesis H0r that up to the time point tr there is no difference
between the two therapies, and let H1r be the alternative that for the first time,
at time point tr, there is a difference in favor of the new drug, for r = 1, . . . , K.
Then, restricted to the time domain T , we may note that there there is a nested
nature of these hypotheses. The null hypothesis H0 is accepted only when all
the H0r are accepted, while the alternative hypothesis H1 is accepted when at
least one of the K exclusive hypotheses H1r, 1 ≤ r ≤ K is accepted. Hence we
write

H0 = ∩K
r=1H0r, H1 = ∪K

r=1H1r. (4.1)

Further, based on the accumulating data set upto the time point tr, we
construct a suitable test statistic Lr for testing H0r vs H1r, r = 1, . . . , K. This
is essentially a RST problem in a constrained environment, and the natrure of
the null and alternative hypotheses immediately calls for the union intersection
principle (UIP). There is, however, some notable differences between the clinical
trial and usual multiple hypothesis testing problems. The UIP having a finite
intersection / union composition is more cumbersome to incorporate. Because
of clinical and ethical undercurrents, first we appraise the potential constraints.

Restraint 1 : The component hypotheses are nested. For each r(= 1, . . . , K, H1r

is a one-sided alternative.

Restraint 2 : For different r(= 1, . . . ,K), the different test statistics Lr are
not independent, and the pattern of their dependence may not follow a
Markov chain.

Restraint 3 : Early termination of the trial is associated with the acceptance
of H1r, for some r < K. It might be also due to significant adverse
side-effects of the treatment, irrespective of the accumulating statistical
evidence.

Restraint 4 : Explanatory variables provide useful statistical information, and
hence, need to be included as far as possible, albeit increasing model
complexity and CSI protocols.
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Restraint 5 : Conventional (log-)linear regression models may not be appropri-
ate. Some of the explanatory variables (viz., smoking, physical exercise,
diabetic, etc.) may be binary, or at best, categorical. Even if they were
quantitave, often for data recording, they are are reported as categorical.

Restraint 6 : Informative censoring: Censoring due to noncompliance (e.g.,
drop-out or failure due to other causes) may not be independent of the
placebo-treatment setup.

Restraint 7 : Surrogate end point: Often, the primary end point may be costly
from data collection perspectives, and some closely related or associated
(by symptoms, for example) variables, termed surrogate end points are
used as substitute. The statistical model for the surrogate end point could
be quite different from the primary one. Further, multiple end points may
also crop up in such studies. Standard parametric multivariate CSI tools
may not be usable properly.

Restraint 8 : Assessment of statistical quality of accumulating data with due
respect to the underlying clinical and statistical restraints could be a
major task.

Restraint 9 : Parametric models may not suit the purpose. Nonparamet-
rics and semiparametrics may perform better. However, the underlying
restraints in semiparametrics may generally need critical appraisal. Non-
parametrics may fare better but may require larger sample sizes to be of
good quality and efficacy.

Restraint 10: Data mining : The advent of genomics is increasingly advocating
for large number of end points and explanatory variables, and knowledge
discovery and data mining (KDDM) tools are being advocated more and
more. This does not, however, diminish the primary concern: To what
extent statistical inference is not compromised or invalidated by data
mining?

Suppose now that taking into account most of these restraints, albeit in
approximate forms, it is possible to observe the partial data set Dt upto the
time point t, so that Dt is nondecreasing (accumulating) in t ∈ T . Let Ft be
the history process upto the time point t, so that Ft is nondecreasing in t ∈ T .
Further, suppose that if all the (n)observations were available (i.e., the data set
includes all responses and all explanatory variables), then for testing H0 against
a restricted alternative H1, we would have a desirable test statistic which we
denote by Ln. In a parametric setup, Ln could be a version of the likelihood
ratio statistic or some of its variants like the partial-, penalized likelihood score
etc. In semiparametrics, pseudo-, quasi-, or profile likelihood statistics might
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be usable. In nonparametrics, rank statistics have more appeal. We may set
without any loss of generality ELn|H0) = 0, and define

Ln(t) = EH0{Ln | Ft}, t ≥ 0. (4.2)

Then, under fairly general regularity assumptions, we may note that under
H0,

{Ln(t),Ft; t ≥ 0} is a zero mean martingale (array) , (4.3)

although this martingale characterization may not generally hold when the null
hypothesis is not true. Also, even under the null hypothesis, Ln(t) may not have
independent and stationary increments. Our task is to set a time sequential or
RST procedure based on the discretized time-parameter process {Ln(tj), j ≤
K}. Thus, we are confronted with suitable CSI procedures amenable to RST
or interim analysis. Intuitively, we could conceive of an array of cut-off points:
{Cnr, r = 1l, . . . ,K}, such that if Ln(t1) ≥ Cn1, we stop the trial along with the
rejection of H0; if not, we go to the next time period t2 and then if Ln(t2) ≥ Cn2,
we stop at that time along with the rejection of the null hypothesis. Otherwise
we proceed to the next time period. In this way, the process continues, and if
for the first time, for some k ≤ K, Ln(tk) ≥ Cnk, we reject the null hypothesis
at that point and stop the trial. Thus, we proceed to accept the null hypothesis
only when Ln(tj) < cnj , ∀j ≤ K, continuing the trial to its target time tK .

The basic problem is to control the overall Type I error rate without sac-
rificing much power in such interim analyses scheme. This, in turn, requires a
skillful choice of the cut-off points Cnr, r ≤ K, which generally depend not only
on the tk, k ≤ K but also on the accumulated statistical information at these
points, and the latter is generally unknown or, at least, not properly estimable
at the start of the trial. In this respect, we shall appraise the role of UIP along
with other competitors. Group sequential tests (GST), formulated mostly in
the late 1970’s, make explicit use of normal distribution and equal increment
assumptions which may not be generally true in such a time sequential setup.
Even so, they needed extensive computation of the cut-off points. For some of
these details, we refer to Sen (1999). Led by the basic weak convergence results
for progressively censored linear rank statistics (Chatterjee and Sen 1973) some
of these computational complexities have been eliminated considerably.

Typically, there exists a (random) time-parameter transformation by which
the process {Ln(t), t ∈ T} can be written as Wn,T = {Wn,T (u), u ∈ [0, 1]} such
that under the null hypothesis, Wn,T converges weakly to a Brownian motion
on [0, 1]. By the same transformation, the calendar time points tr, r = 1, . . .K
are converted into (random) information time points u1 < · · · < uK . Thus, we
reduce the problem to a multivariate one-sided alternative hypothesis testing
CSI problem for which the UIT sketched in earlier sections works out well.
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Basically, we have to construct the Wn,T (ur), r ≥ 1, and find a suitable cut-off
point τα∗ and a significance level α∗ such that for a chosen α,

P{Wn,T (ur)/
√

ur < τα∗ , ∀r |H0} ≤ α. (4.4)

Since a Brownian motion process W (t), t ∈ [0, 1] has irrerular behavior with
respect to the square root boundary as t → 0, technically, we need that u1 is
away from 0. If the ur are scattered over (0, 1] and K is large, a more conve-
nient way of computing the cut-off points would be to appeal to the boundary
crossing probability of standard Brownian motion over one-sided square root
boundaries; DeLong (1981) has provided detailed tables for these. This ap-
proximation is quite good when K is larger than 10, as is often the case of
clinical trials with long-range follow-up time. Here also, the tabulated critical
values correspond to some small truncation at 0 (i.e., over the range [ε, 1], for
some positive ε (small). This weak invariance principle also avoids the need
to specify the exact information times needed for the GST. There is an allied
RST procedure considered by Chatterjee and Sen (1973) [and DeMet and Lan
(1983)] where the weak convergence to Browinan motion has been incorporated
in the utilization of (one-sided) linear boundaries [and a more general spending
function approach]. For rank based procedures, often, for not so large samples,
permutation tools provide scope for good approximations. The spirit of UIP is
inherent in such interim analysis too.

With the advent of genomics and bioinformatics, in general, clinical trials
are also encountering some challeging tasks. Instead of the conventional symp-
tomatic effect approach, there is a new emphasis on pharmacogenomics dealing
with the drug responses and the detection of disease genes along with the gene-
environment interaction. Recalling that there may be thousands of genes which
in a polygenic mode may not have individually significant impact but a large
number of them in synergy may have significant (joint) impact, clinical trials
are charged with not only finding the genes associated (causally or statisti-
cally) with a specific (group of) disease(s) but also their pharmacokinetics and
pharmacodynamics with specific drug development. Instead of clinical trials
with human subjects it calls for additional refinements: microarray and pro-
teomics studies in clinical trials setup at the molecular level with tissues or cells.
While this subject matter is beyond the scope of the present study, at least, it
could be emphasized that because of enormous cost in conducting such trials,
multi-center trials are needed for pooling small information from the individual
centers and also multiple end points typically arise in such composite studies.
Typically, we encounter a matrix of statistics, individually from the centers and
within each center, for the multiple end points. Although these centers may be
treated as independent, the intra-center responses for the different end point are
not. Confined to within center perspectives, typically, we have a vector valued
stochastic process, and as before, we have a constrained environment. There-
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fore, even if we are able to construct a martingale array (in a multi-dimensional
setup), formulating CSI procedures in a proper manner could be a formidable
task. Bessel process approximations for multi-dimensional stochastic processes
in clinical trials have been studied in the literature (viz., Sen (1981, Chapter
11)). There is a challenging task of incorporating such distributional approx-
imations in the formulation of statistical inference procedures for restrained
environments. The prospects for multivariate CSI analysis, displayed in detail
in Silvapulle and Sen (2004) need to be appraised further. It is our belief that
UPI, because of its flexibility and amenity to more complex models, would be
most suitable in this context too.

We conclude with some pertinent remarks on the role of UPI in meta anal-
ysis, as is currently adapted in multi-center clinical trials and genomic studies.
Multi-center clinical trials, although, generally conducted under not so homo-
geneous environment (e.g., different geographical or demographic strata, age /
culture differences), have a common objective of drawing statistical conclusions
that pertain to a broader population. Consider in this vein, C(≥ 2) centers,
each one conducting a clinical trial with the common goal of comparing a new
treatment with an existing one or a control or placebo. Since such centers per-
tain to patients with possibly different cultural, racial, demographic profiles,
diet and physical exercise habits etc. and they may have somewhat different
clinical norms too, the intra-center test statistics Lc, c = 1, . . . , C, used for
CSI/RST, though could be statistically independent, might not be homoge-
neous enough to pull directly. This feature may thus create some impasses in
combining these statistics values directly into a pooled one to enhance the sta-
tistical information. Meta analysis, based on observed significance levels (OSL)
or p-values, is commonly advocated in this context. Recall that under the null
hypothesis (which again can be interpreted as the intersection of all the null hy-
potheses), the p-values have the common uniform (0, 1) distribution, providing
more flexibility to adopt UIP in meta analysis. Under restricted alternatives,
these OSL values are left-tilted (when appropriate UIT are used) in the sense
that the probability density is positively skewed over (0, 1) with high density
at the lower tail and low at the upper. Let us denote the p-values by

Pc = P{Lc ≥ the observed value |H0}, c = 1, . . . , C. (4.5)

The well-known Fisher’s test is based on the statistic

Fn =
C∑

c=1

{−2 log Pc}, (4.6)

which, under the null hypothesis, has the central chi-square distribution with
2C degrees of freedom. This test has some desirable asymptotic properties.
There are many other tests based on the OSL values. The well known step-
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down procedure (Roy 1958) has also been adapted in this vein (cf. Subbaiah
and Mudholkar 1980, Sen 1983), and they have been amended for CSI and RST
as well (cf. Sen 1988). One technical drawback observed in this context is the
insensitivity (to small to moderate departures from the null hypothesis) of such
tests (including the Fisher’s ) when C is large, resulting in nonrobust and, to
a certain extent, inefficient procedure. Thus, alternative approaches based on
the OSL values have been explored more recently in the literature.

In the evolving field of bioinformatics and genomics, generally, we encounter
an excessively high dimensional data set with inadequate sample size to induce
the applicability of standard CSI or even conventional statistical inference tools.
On top of that, in genomics, the OSL values to be combined (corresponding to
different genes) may not be independent, creating another layer of difficulty with
conventional meta analysis. This led to the development of multiple hypotheses
testing in large dependent data models based on OSL values. This field is
going through an evolution, and much remains to be accomplished. In this
spectrum, the Simes (1986) theorem occupies a focal point. Let there be K null
hypotheses (not necessarily independent) H0k, k = 1, . . . , K with respective
alternatives (which possibly could be restricted or constrained as in clinical
trials or microarray studies) H1k, k = 1, . . . ,K. We thus come across the
same UIP scheme by letting H0 as the intersection of all the component null
hypotheses, and H1 as the union of the component alternatives. Let Pk, k =
1, . . . , K be the OSL values associated with the hypotheses testing H0k vs.
H1k, for k = 1, . . .K. We denote the ordered values of these OSL values by
PK:1, · · · , PK:K . If the individual tests have continuous null distributions then
the ties among the Pk (and hence, among their ordered values) can be neglected,
in probability. Assuming independence of the Pk, Simes theorem states that

P{PK:k > kα/K,∀k = 1, . . . ,K|H0} = 1− α. (4.7)

Interestingly enough, the Simes theorem is a restatement of the classical
Ballot theorem, developed some twenty years before (cf. Karlin 1969). In any
case, it is a nice illustration how the UIP is linked to the extraction of extra
statistical information through ordered OSL values.

It did not take long time for applied mathematical statisticians to make
good uses of the Simes-Ballot theorem in CSI and multiple hypothesis testing
problems. The above results pertains to tests for an overall null hypothesis in
the UIP setup. Among others, Hochberg (1988) considered a variant of the
above result:

P{PK:j ≥ α/(K − j + 1),∀j = 1, . . . , K|H0} = 1− α, (4.8)

and incorporated this result in a multiple testing framework. Benjamini and
Hochberg (1995) introduced the concept of false discovery rate (FDR) in the
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context of multiple hypothesis testing, and illustrated the role of the Simes-
Ballot theorem in that context. The past ten years have witnessed a phenome-
nal growth of research literature in this subfield with applications to genomics
and bioinformatics. The basic restraint in this respect is the assumption of
independence of the Pj , j = 1, . . . ,K, and in bioinformatics, this is hardly the
case. Sarkar (1998) and Sarkar and Chang (1997) incorporated the MTP2

(multivariate total positivity of order 2) property to relax the assumption of
independence to a certain extent. Sarkar (2000, 2002, 2004) has added much
more to this development with special emphasis on controlling of FDR in some
dependent cases. The literature is too large to cite adequately, but our primary
emphasis here is to stress how UIP underlies some of these developments and
to focus on further potential work.

Combining OSL values, in whatsoever manner, may generally involve some
loss of information when the individual tests are sufficiently structured to have
coherence that should be preserved in the meta analysis. We have seen earlier
how guided by the UIP, progressive censoring in clinical trials provided more
efficient and interpretable testing procedures. The classical Cochran-Mantel-
Haenszel (CMH) procedure is a very notable example of this line of attack. In
a comparatively more general multiparameter CSI setting, Sen (1999b) has em-
phasized the use of the CMH procedure in conjunction with the OSL values to
induce greater flexibility. The field is far from being saturated with applicable
research methodology. The basic assumption of independence or specific type
of dependence is just a part of the limitations. A more burning question is the
curse of dimensionality in CSI problems. Typically, there K is large and the
sample size n is small, i.e., K >> n. In the context of clinical trials in genomics
setups, Sen (2006) has appraised this problem with due emphasis on the UIP.
Conventional test statistics (such as the classical LRT ) have awkward distribu-
tional problems so that usual OSL values are hard to compute and implement
in the contemplated CSI problems. Based on the Roy (1953) UIP but on some
nonconventional statistics, it is shown that albeit there is some loss of statistical
information due to the curse of dimensionality, there are suitable tests which
can be implemented relatively easily in high-dimension low sample size envi-
ronments. In CSI for clinical trials in the presence of genomics undercurrents,
there is a tremendous scope for further developments along this line.
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Abstract: We consider the application of the parametric Accelerated Life
model in the Accelerated Life Testing, and we suppose that the failures times
have Generalized Weibull distributions. The hazard rates can be IFR or DFR
(Weibull, G.W), ∩ − shaped (log-normal, Generalized Weibull) or ∪ − shaped
(Generalized Weibull only). We propose estimation procedure to the AFT-GW
model in case of constant stress or step-stress.

5.1 The Accelerated Failure Time Model

5.1.1 Definitions and notations

Let x(·) be a m-dimensional time-dependent stress : x(·) = (x0 (·) , . . . , xm (·))T ,
where x1 (·) , . . . , xm (·) are the univariate time-dependent stresses. Let E be a
set of all admissible (possible) m-dimensional stresses:

E =
{

x(·) : x(·) = (x1 (·) , . . . , xm (·))T ; x : [0, +∞[−→ Rm
}

The application of accelerated stresses shortens the life durations of units. Let
x0 be the usual (standard or normal) stress: x0 ∈ E1 ⊂ E , E1 is a set of
all constant-in-time stresses. Also let us suppose that the lifetime Tx(·) under
stress x(·) is a positive random variable, and Sx(·) be the survival function of
Tx(·):

Sx(·)(t) = P
{
Tx(·) ≥ t

}
(1)

The AFT model is true on E , if there exists a function r : E −→ R+ such that

Sx(·)(t) = S0

(∫ t

0
r[x(τ)]dτ

)
, x(·) ∈ E (2)

where S0 is the baseline survival function. It could be possible that S0 =
Sx0 . In parametric models S0 belongs to a parametric family, and r[x(·)] is
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parameterized. If x(τ) = x ∈ E1 is constant in time, then we get from the
equation (2), the model by different way.

Sx(t) = S0(r(x)t), x ∈ E1 (3)

If the stress x is one-dimensional (scalar) and constant, r is often parameterized
as

r(x) = e−β0−β1ϕ(x) (4)

where ϕ is a given function of x. The most applied are 3 famous models:

• log-linear model , where r(x) = e−β0−β1x, ϕ(x) = x, (4a)

• power-rule model, where r(x) = e−β0−β1 ln x, ϕ(x) = lnx, x > 0, (4b)

• Arrhenius model, where r(x) = e−β0−β1/x, ϕ(x) = 1/x, x is a scalar. (4c)

5.1.2 Plan of experiments in parametric AFT model

Let us consider the following first plan of experiments when the items are tested
under the accelerated m-dimensional constant stresses x1, . . . xk. The usual
stress x0 is not used during the experiments. Let k be the number of observed
groups of units. ni units are tested under stress xi > x0, (i = 1, . . . , k). We
consider here 3 cases where the baseline survival function S0, belongs to the
family of Generalized Weibull distribution, such as:

S0(t) = exp {1− (1 + (t/θ)ν)γ} , t > 0, ν > 0, (Generalized Weibull). (5)

θ parameter may be included in the parameter β0 in the AFT model. These
survival function S0 can be respectively expressed as:

S0(t) = exp {1− (1 + tν)γ} , t > 0, ν > 0, (Generalized Weibull). (6)

In the case of γ = 1, we have the Weibull distribution.

Let us consider the second plan of experiments when the items are tested under
the constant step-stresses, where n units are on test at an initial low stress.
And if it does not fail in a predetermined time t1 is increased and so on. Thus
all units are tested under the step-stress

x(τ) =





x1, 0 ≤ τ < t1,
x2, t1 ≤ τ < t2,
. . . , . . .
xk, tk−1 ≤ τ < tk,

(7)
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where xj are m-dimensional constant stresses,t0 = 0,tk = +∞. Thus , for
step-stresses, the survival function can be written as

Sx(·)(t) = Sxi



t− ti−1 +

1
r (xi)

i−1∑

j=1

r (xj) (tj − tj−1)



 , (8)

where i = 1, 2, . . . , k and t ∈ [ti−1, ti[. Therefore the survival function under
stress x(τ) is

Sx(.)(t) = S0

(
1 {i > 1}

i−1X
j=1

e−βT xj (tj − tj−1) + e−βT xi (t− ti−1)

)
,

where xj may be ϕ(xj).

In the case of Generalized Weibull distribution, if 0 < ν < 1 and 1/γ < ν, the
curve of the hazard function has a ∪ − shape. If 1/γ > ν > 1, the curve of
hazard function has a ∩ − shape. If 0 < ν < 1 and ν < 1/γ then the hazard
function decreases from +∞ to 0 (DFR). If ν > 1 and ν > 1/γ then hazard
function increase to +∞ (IFR).To estimate this survival function under the
stress x and its two confidence limits, we have to estimate the parameter β and
σ(and possibly γ).

5.1.3 Parameter estimation: Generalized Weibull distribution

Let us consider the first plan of experiments when the units are tested under
accelerated constant stresses. Let ti be the maximal experiment duration for
the ith group. ni units are tested under accelerated stress xi (i = 1, . . . , k) Let
β = (β0, . . . , βm)T be the regression parameter. The lifetime of the jth unit
from ith group is the variable Tij . Set Xij = Tij ∧ ti and δij = 1 {Tij < ti}.
In case of various stress, the likelihood function is:

L(β, ν, γ) =

kY
i=1

niY
j=1

n
νγ (1 + (fi (Xij , β, γ))ν)γ−1 e−βT x(i)(Xij) (fi (Xij , β, γ))ν−1

oδij × (9)

exp {1− (1 + (fi (Xij , β, γ))ν)γ}
where

fi (Xij , β, γ) =

Z Xij

0
e−βT x(i)(u)du

In case of constant stress, we get:

L(β, ν, γ) =
kY

i=1

niY

j=1

�
νγe−νβT x(i)

Xν−1
ij

�
1 +

�
e−βT x(i)

Xij

�ν�γ−1
�δij

exp
n
1−

�
1 +

�
e−βT x(i)

Xij

�ν�γo

(10)

where x(i) = (xi0, . . . , xim), xi0 = 1 and ν = 1/σ.

By derivations of this log-likelihood lnL(β, ν, γ), we get :

Ul(β, ν, γ) =
∂ ln L(β, ν, γ)

∂βl
= ν

kX
i=1

xil

niX
j=1

(γωij (β, ν, γ)− δijuij (β, ν, γ)) l = 0, . . . , m;

(11a)
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Um+1(β, ν, γ) =
∂ ln L(β, ν, γ)

∂ν
=

D

ν
− 1

ν

kX
i=1

niX
j=1

(γωij (β, ν, γ)− δijuij (β, ν, γ)) ln hij(β, ν, γ)

(11b)

Um+2(β, ν, γ) =
∂ ln L(β, ν, γ)

∂γ
=

D

ν
− 1

ν

kX
i=1

niX
j=1

((1 + hij (β, ν))γ − δij) ln (1 + hij(β, ν)) ,

(11c)

where

D =
∑k

i=1

∑ni
j=1 δij

and

hij(β, ν) =
(
e−βT x(i)

Xij

)ν
, ωij (β, ν, γ) = (1 + hij(β, ν))γ−1, uij(β, ν, γ) =

1 + (γ − 1) hij(β,ν)
1+hij(β,ν) .

The Fisher information I(β, ν, γ) = (Ils (β, ν, γ)))(m+3)×(m+3) is a matrix with
the following components :

Ils (β, ν, γ) = −∂2 ln L (β, ν, γ)

∂βl∂βs
= ν

kX
i=1

xilxis× (12a)

niX
j=1

�
νωij (β, ν, γ) (1 + hij (β, ν))− δij (uij (β, ν, γ)− 1)

1 + hij (β, ν)

�
, (l, s = 0, . . . , m)

Il,m+1 (β, ν, γ) = −∂2 ln L (β, ν, γ)

∂βl∂ν
= − 1

ν
Ul (β, ν, γ)−

kX
i=1

xil

niX
j=1

�
ln hij (β, ν)

1 + hij (β, ν)

�
× (12b)

{γωij (β, ν, γ) (1 + γhij (β, ν))− δij (uij (β, ν, γ)− 1)} , (l = 0, . . . , m)

Il,m+2 (β, ν, γ) = −∂2 ln L (β, ν, γ)

∂βl∂γ
= − 1

ν

kX
i=1

xil× (12c)

niX
j=1

�
ωij (β, ν, γ) (1 + γ ln (1 + hij (β, ν)))− δij

hij (β, ν)

1 + hij (β, ν)

�
, (l = 0, . . . , m) ,

Im+1,m+1 (β, ν, γ) = −∂2 ln L (β, ν, γ)

∂ν2
=

1

ν
Um+1 (β, ν, γ) +

1

ν2

kX
i=1

niX
j=1

�
ln2 hij (β, ν)

1 + hij (β, ν)

�
×

{γωij (β, ν, γ) (1 + γhij (β, ν))− δij (uij (β, ν, γ)− 1)}+ (12d)

+
1

ν2

kX
i=1

niX
j=1

ln hij (β, ν, γ) {γωij (β, ν, γ)− δijuij (β, ν, γ)} ,

Im+1,m+2 (β, ν, γ) = −∂2 ln L (β, ν, γ)

∂ν∂γ
=

1

ν
×

kX
i=1

niX
j=1

hij (β, ν) ln hij (β, ν)

1 + hij (β, ν)
× (12e)
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{(1 + hij (β, ν))γ + γ (1 + hij (β, ν))γ + ln (1 + hij (β, ν))− δij}

Im+2,m+2 (β, ν, γ) = −∂2 ln L (β, ν, γ)

∂γ2
=

D

γ2
+

kX
i=1

niX
j=1

(1 + hij (β, ν, γ))γ ln2 (1 + hij (β, ν, γ))

(12f)

Then, the estimated survival function under usual stress x(0) is

Ŝx(0)(t) = exp

{
1−

(
1 +

(
e−β̂T x(0)

t
)ν̂

)γ̂
}

(13)

where x(0) ∈ E0 is the usual stress (standard or normal).

Under the stress x, the (1 − α) approximate confidence limit for Qx(t) =
ln (Sx(t)/ (1− Sx(t))) and Sx(t) is respectively

Q̂x(t)± σ̂Qxw1−α/2 (14)

and (
1 +

1− Ŝx(t)
Ŝx(t)

exp
{±σ̂Qxw1−α/2

}
)

(15)

where

σ̂Qx =
1�

1− Ŝx

�2

m+2X

l=0

m+2X
s=0

al

�
β̂, ν̂, γ̂

�
Ils
�
β̂, ν̂, γ̂

�
aT

s

�
β̂, ν̂, γ̂

�

al

�
β̂, ν̂, γ̂

�
= −ν̂xlam+1

�
β̂, ν̂, γ̂

�
/
�
ln t− β̂T x

�
, l = 0, . . . , m

am+1

�
β̂, ν̂, γ̂

�
= −γ̂

�
e−β̂T xt

�ν̂
�

1 +
�
e−β̂T xt

�ν̂
�γ̂−1 �

ln t− β̂T x
�

,

am+2

�
β̂, ν̂, γ̂

�
= −

�
1− ln Ŝx(t)

�
ln

�
1 +

�
e−β̂T xt

�ν̂
�

The (1 − α) approximate confidence limits for Qx(t) = ln (Sx(t)/ (Sx(t))) and
Sx(t) are respectively the same with x = x(0).

5.2 Results

5.2.1 Generalized Weibull, Weibull or Log-normal failure time
distributions in the case of ∪−shaped hazard rate function

The aim of this example is to show which distribution is better in fitting the
survival function when the hazard rate function has a ∪−shape. We simulated
data from Generalized Weibull distribution with parameters γ = 6.5 and ν =
0.7, β0 = 9 and β1 = −0.8. The values of one-dimensional stress x are : x1 =
2 < x2 = 4 < x3 = 6 < x4 = 10.These observations are not censored and the
power-rule model is used. Let x0 < x1 be the usual stress. There are n1 = 3300
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observations under the stress x1 , n2 = 2900 observations under the stress x2,
n3 = 2000 observations under the stress x3, n4 = 1300 observations under the
stress x4. The estimator s of the parameters and the log-likelihood are given
in Table 5.1, after simulating 600 times by using Monte-Carlo method. The

Table 5.1: Estimators of parameters from data with ∪ − shaped hazard rate function.

Distributions Weibull Generalized Weibull Log-normal

Log Likelihood -54567.81 -54313.08 -56092.1

β̂0 5.7909955 8.9048171 5.1076953

β̂1 -0.8005198 -0.7805359 -0.797745

ν̂ 0.8968277 0.6998924 0.6313976

γ̂ None 6.2579115 None

m̂
(
x(0)

)
145.3675 241.1373 171.5597

Figure 5.1: Different curves of Sx0 and λx0 ,different curves of relative bias
following the failure time distribution.

estimators of the survival function under usual stress with two 99% confidence
limits are given in Figure 5.1. In case of Generalized Weibull distribution, the
two 99% confidence limits a little narrower than two confidence limits in case of
Weibull and Log-normal distributions. In several moments t, in the case of the
AFT-Weibull and AFT-log-normal models, the theoretic curve of Sx is out of
the two 99% confidence limits, whereas it is not the case for AFT-Generalized
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Weibul model.

The bias, between the real value of survival function Sx(t, θ) and the mean
of estimated Ŝx(t) under the stress x, is shown as in Figure 5.1. From the
Figure 5.1, the bias is lower in case of Generalized Weibull distribution than
in cases of Weibull and Log-normal distributions. We see that the Generalized
Weibull distribution is quite better than Weibull and Log-normal distributions,
because this distribution is the only one which fits better this survival function
when the hazard rate function has a ∪ − shape. If we use the likelihood ratio
test, like

Z = −2
(
lnLLW (µ̂) − lnLLGW

(
θ̂
))

we see that Z takes the high values, and its significance is 0 < 0.05. For 600
simulations, there are 600 rejections of hypothesis that there are no difference
between Generalized Weibull and Weibull distributions, the power test is 1.
The bias is quite smaller than other cases, if we suppose that this hazard rate
function is ∪ − shaped. And the theoretic curve is not out of the two 99%
confidence limits. Therefore, the Generalized Weibull fits much better than
Weibull and Lognormal distribution.

5.2.2 Generalized Weibull distribution in case of step-stress

We are interested in the case of step-stress, we can see how the survival function
could behave, in Figure 5.2. For the size of 8000 items, the values of estimated

Figure 5.2: Survival functions with step-stress, IFR hazard rate function.
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parameters β̂0, β̂1, ν̂ and γ̂ are respectively 5.7888206, -0.7337947, 3.0522533
and 2.3047733. The value of log-likelihood is -37341.98. We see that the two
95% confidence limits of Sx0 are wider than the case of constant stress for the
same size of sample. The width of these two confidence limits are due to the fact
that the step-stress makes the estimation of survival functions more uncertain.
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Exact Inference and Optimal Censoring Scheme

for a Step-Stress Model Under Progressive Type-II

Censoring

N. Balakrishnan

Department of Mathematics and Statistics,
McMaster University,
Hamilton, Ontario, Canada L8S 4K1

Abstract: In reliability and life-testing experiments, the researcher is often in-
terested in the effects of extreme or varying stress factors such as temperature,
voltage, and load on the lifetimes of experimental units. Step-stress test, which
is a special case of accelerated life-tests, allows the experimenter to increase the
stress levels at fixed times during the experiment in order to obtain informa-
tion on the parameters of the life distribution more quickly than under normal
operating conditions.

In this talk, I will consider a simple step-stress model under the exponential
distribution when the available data are progressively Type-II censored, and
obtain the maximum likelihood estimators (MLEs) of the parameters assuming
a cumulative exposure model with lifetimes being exponentially distributed. I
will derive the exact distributions of the MLEs of parameters through the use of
conditional moment generating functions and discuss the construction of confi-
dence intervals for the parameters using these exact distributions, asymptotic
distributions of the MLEs, and the parametric bootstrap methods, and then
evaluate the performance of all these confidence intervals based on an extensive
Monte Carlo simulation study. Next, I will discuss the determination of opti-
mal progressive censoring schemes as well as the optimal time for change of the
stress level based on the simple step-stress model. Finally, I will present a few
examples to illustrate all the methods of inference developed here.

Keywords and phrases: Accelerated testing; Bootstrap method; Condi-
tional moment generating function; Coverage probability; Cumulative exposure
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model; Exponential distribution; Maximum likelihood estimation; Optimal cen-
soring scheme; Order statistics; Step-stress models; Tail probability; Progressive
Type-II censoring
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Non-Periodic Inspections To Guarantee A

Prescribed Level Of Reliability

C.T. Barker and M.J. Newby

The City University
School of Engineering and Mathematical Sciences
Northampton Square, London EC1V 0HB, England
Emails: c.t.barker@city.ac.uk and m.j.newby@city.ac.uk

Abstract: A cost optimal non-periodic inspection policy is derived for complex
multi-component systems. The model takes into consideration the degradation
of all the components in the system with the use of a Bessel process with drift.
The inspection times are determined by a deterministic function of the system
state. The non-periodic policy is developed by evaluating the expected lifetime
costs and the optimal policy by an optimal choice of inspection function. The
model thus gives a guaranteed level of reliability throughout the life of the
project.

Keywords and phrases: Wiener process; Bessel process; regenerative pro-
cess; renewal-reward

7.1 Introduction

The aim of the paper is to derive a cost-optimal inspection and maintenance
policy for a multi-component system whose state of deterioration is modelled
with the use of a Markov stochastic process. Each component in the system
undergoes a deterioration described by a Wiener process. The proposed model
takes into account the different deterioration processes by considering a multi-
variate state description Wt. The performance measure Rt of the system is
a functional on the underlying process and is not monotone. Because we now
wish to ensure a minimum level of reliability is maintained, we set the critical
threshold at an acceptable level and examine the probability that the system
will never return to this level after crossing it. When this occurs, the system is
aging in such a way that it needs to be repaired or replaced.
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7.2 The Model

In this section, we define the considered processes used in our model. We
also explain how the maintenance actions and the non-periodic inspections are
modelled.

7.2.1 The considered processes

The state of each component is modelled with the use of a Wiener process

W
(i)
t = µit + σB

(i)
t , W

(i)
0 = 0, ∀i ∈ {1, . . . , N} (7.1)

where B
(i)
t are independent Brownian motions.

The system’s state of deterioration is described by the corresponding multi-
variate Wiener process:

Wt =
(
W

(1)
t ,W

(2)
t , . . . , W

(N)
t

)
(7.2)

When the system is inspected a performance measure is calculated. This per-
formance measure is a functional on the underlying process, its Euclidean norm:

Rt = ‖Wt‖2 =

√√√√
N∑

i=1

(W (i)
t )2 (7.3)

Thus, Rt is Bes0(ν, µ): the Bessel process starting at the origin with parameter
ν, drift µ where:

ν =
1
2
N − 1, µ =

√√√√
N∑

i=1

µ2
i (7.4)

We refer the reader to Pitman J.W. and Yor M. (1981) and Revuz D. and Yor
M. (1991) for further details on the Bessel process.

The non-monotonicity of the performance measure Rt is handled by defining
a critical threshold ξ, which determines the response to an inspection. Because
we now wish to ensure a minimum level of reliability is maintained, we set the
critical threshold at an acceptable level and examine the probability that the
system will never return to this level after crossing it. For this we consider the
following process:

H0
ξ = sup

t∈R+

{t : Rt > ξ|R0 = 0} (7.5)

The probability density functions for both Rt and H0
ξ are known and given in

Pitman J.W. and Yor M. (1981) and Barker C. and Newby M. (2006)
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7.2.2 Non-periodic inspections and maintenance actions

The efficiency of the proposed policy entirely depends on the inspection times
and the type of maintenance on the system. Maintenance on the system is
modelled with the help of a maintenance function d. It is a decreasing bijective
function of the state of the system at inspection times only. Correspondingly,
we define a maintenance cost function CR depending on the state of the process
too. In the numerical example of section 7.4, the considered functions d and
CR are:

d(y) = y , if y <
ξ

2
(7.6)

= k ∗ y , if y >
ξ

2
(7.7)

for both k = 0.9 and k = 0.1,

CR(y) = 0 , if Xτ <
ξ

2
(7.8)

= 100 , if Xτ ≥ ξ

2
(7.9)

This paper considers a non-periodic inspection policy. The reason for this is
that it is more general and often more useful than the periodic policy, since it
generally results in policies with lower costs. This is done by considering the
inspection scheduling function m first introduced by Grall et al. (2002). It is a
decreasing function of the state of the process d (Xt) after a maintenance action
and determines the amount of time until the next inspection time. If we let Ti

denote the times at which the system is inspected, we have:

Ti+1 = Ti + m
(
Xd(XTi)

)
(7.10)

The approach is to optimize the total expected cost with respect to the
inspection scheduling function. The inspection functions form a two parameter
family and these two parameters are allowed to vary to locate the optimum
values. The function can be written m(x | a, b) leading to a total cost function
C(a, b) which is optimized with respect to a and b. Different forms of inspection
functions were considered with different convexity properties. Numerical exam-
ples shown in the present article consider the following inspection scheduling
function:

m (x) = −
(√

a−1
b x

)2
+ a , if 0 ≤ x ≤ b (7.11)

= 1 , if x ≥ b (7.12)
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7.3 Expected Total Cost

This section gives the expression for the expected total cost. It is derived by
considering the different scenarios at inspection times:

• 1{H0
ξ−x>m(x)} = 1

• 1{H0
ξ−x>m(x)} = 0

7.3.1 Expression of the expected total cost

We give the expression for the expected total cost without details, these are
similar to the ones given in Barker C. and Newby M. (2006):

v
(0)
ξ−x = Q (x) + λ (x) v

(0)
ξ +

∫ d−1(ξ)

0
v

(0)
ξ−d(y)K (x, y) dy (7.13)

where:

λ (x) =
∫ m(x)

0
h0

ξ−x (t) dt (7.14)

Q (x) = (1− λ (x))
(

Ci +
∫ +∞

0
CR (y) f0

m(x) (y) dy

)
+ Cfλ (x) (7.15)

K (x, y) =

(
1−

∫ m(x)

0
h0

ξ−x (t) dt

)
f0

m(x) (y) (7.16)

7.3.2 Obtaining the solutions

The equation Eq. 7.13 is solved numerically. The method used here is similar
to one given in Press W. H. et al. (1992). First, note that at t = 0 the system
is new. Under this condition, we rewrite equation Eq. 7.13 as follows:

v
(0)
ξ−x = Q (x) + λ (x) v

(0)
ξ−x +

∫ d−1(ξ)

0
v

(0)
ξ−d(y)K (x, y) dy (7.17)

Rewriting 7.13 as 7.17 does not affect the solution to the equation and will
allow the required solution to be obtained by a homotopy argument based on
ξ. The Nystrom routine with the N -point Gauss-Legendre rule at the points
yj , j ∈ {1, . . . , N} is applied to 7.17, we get

{1− λ (x)}v(0)
ξ−x = Q (x) +

N∑

j=1

v
(0)
ξ−d(yj)

K (x, yj) wj (7.18)
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We then evaluate the above at the following appropriate points xi = d (yj), Eq.
7.18 can thus be rewritten in the following matrix form:

(
D− K̃

)
v = Q (7.19)

where:

Di,j = (1− λ (xi))1{i=j}, K̃i,j = K (xi, yj) wj , Qi = Q (xi) (7.20)

Having obtained the solution at the quadrature points by solving inversion
of the matrix D − K̃, we get the solution at any other quadrature point x
by simply using equation Eq. 7.18 as an interpolatory formula, hence at the
desired quadrature point xi = 0.

7.4 Numerical Results and Comments

This section presents results from numerical experiments. The values of the
parameters for the process used to model the degradation of the system and
the different costs used were chosen arbitrarily to show some important features
of the inspection policy. The initial value for the critical threshold is ξ = 5, the
Bessel process considered is Bes0 (0.5, 1) and the value for the cost of inspection
and the cost of failure are Ci = 50 and Cf = 200. The numerical results for
the case of small maintenance on the system (k = 0.9) and the case of a large
amount of maintenance (k = 0.1) are shown in Fig. 7.1.

We first note that the surfaces and the contours clearly show the presence
of an optimal policy. Moreover, in the case k = 0.9, we note the presence of a
global minimum and also multiple local minima. This gives the decision maker
some kind of choice in the inspection policy to consider.

Inspection policies k=0.9 k=0.1
a∗ 5.6 4.3

m b∗ 2.3 1.9
v∗ 1075.6 625.6727

Table 7.1: Optimal values of the parameters a and b

The optimal values a∗, b∗ and v∗ for a, b and v0
ξ respectively, in the two different

scenarios, can be summarized in Table 7.1. We note that the optimal cost are
smaller for k = 0.1 than for k = 0.9. This makes sense, since in both cases
the same values for the costs were considered: as the case k = 0.1 corresponds
to bigger amounts of repair, the system will tend to deteriorate slower and
therefore will require less maintenance resulting in a smaller total cost.



48 C.T. Barker and M.J. Newby

1.5
2

2.3

3

5
5.6

6
6.5

1075.6

1100

1150

1200

1250

1300

Parameter bParameter a

E
xp

ec
te

d 
T

ot
al

 c
os

t

(a) k = 0.9

1
1.9

3
4

3.544.3
5

625.7

640

660

680

700

720

740

760

780

800

820

b

a

T
ot

al
 E

xp
ec

te
d 

C
os

t

(b) k = 0.1

1.5 2 2.3 3
5

5.6

6

6.5

Parameter b

P
ar

am
et

er
 a

(c) k = 0.9

1 1.5 1.9 2.5 3 3.5
3.5

4

4.3

5

Parameter b

P
ar

am
et

er
 a

(d) k = 0.1

Figure 7.1: Surfaces and contour representations for expected total costs with
k = 0.9 and k = 0.1
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Abstract: The analysis of censored data has been mainly approached through
nonparametric or semiparametric methods. One of the reasons of the widely
use of these methods as opposed to classical parametric approaches relies in
the difficulty of checking the validity of a parametric model when data are
censored. In this work we propose a Bayesian chi-squared test of goodness-of-
fit for censored data. The proposed algorithm is an extension of the Bayesian
quantile chi-squared test proposed by Johnson (2004) for complete data.
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8.1 Introduction

Though the use of parametric models, both in a frequentist or Bayesian frame-
work can be advisable in some situations, most applied methods in survival
analysis are either non or semi parametric. One of the reasons of the widely
use of these methods as opposed to classical parametric approaches relies in the
difficulty of checking the validity of a parametric model when data are censored.
In this work we propose a Bayesian chi-squared test of goodness-of-fit for cen-
sored data. The proposed algorithm is an extension of the Bayesian quantile
chi-squared test proposed by Johnson (2004) for complete data.

Pearson’s chi-squared test is one of the most classical test of goodness-of-fit.
As it is well known the application of this test stands on a finite partition of the
sample space in r classes and in the discrepancy between the observed and the
expected frequencies in each member of the partition under the null hypothesis.
The distribution of Pearson’s chi-squared statistic under simple null hypothesis
is a chi-square with r − 1 degrees of freedom. However, when the parameter is
unknown (composite hypothesis) and must be estimated, the asymptotic distri-
bution of Pearson’s statistic depends on the estimation method. In particular,
if the parameter is estimated by maximum likelihood from the complete data
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the limit distribution of the statistic is no longer chi-squared. To avoid this
difficulty some modifications of the classical Pearson’s test have been proposed
(see Greenwood and Nikulin, 1996, for a detailed review of chi-squared testing
methods).

In the following two sections we describe a Bayesian goodness-of-fit test
based on a quantile chi-squared statistic and propose an iterative algorithm to
perform this test when dealing with interval–censored survival data.

8.2 Bayesian chi-squared statistic

Let X1, . . . , Xn be a random sample from a random variable X. We wish to
test the hypothesis H0 that the distribution of X is F0(x; θ) with unknown
parameter θ = (θ1, . . . , θs)′ ∈ Θ ⊂ R.

A modification of Pearson’s goodness-of-fit test are the chi-squared tests
based on sample quantiles (Greenwood and Nikulin, 1996). There are different
versions of quantile tests but we describe here the one proposed in Johnson’s
paper:

Instead of considering a finite partition of the sample space, the quantile test
fixes a vector (p1, . . . , pr) of probabilities such that

∑r
j=1 pj = 1 and r > s + 1.

Define uj = p1 + · · · + pi for j = 1, . . . , r − 1 > s. For each value ui com-
pute the inverse distribution function F−1

0 (uj ; θ) which define a partition of the
sample space: A1 = (−∞, F−1

0 (u1; θ)], A2 = (F−1
0 (u1; θ), F−1

0 (u2; θ)], . . . , Ar =
(F−1

0 (ur−1; θ),+∞). The quantile test statistic is given by

X2
n(θ) =

r∑

j=1

(mj(θ)− npj)2

npj
(8.1)

where mj(θ) is the number of observations that fall into the jth class, Aj .
An alternative to estimate the unknown parameter by maximum likelihood

is to use its posterior distribution in a Bayesian parametric framework. Specif-
ically, Johnson (2004) proposed the following Bayesian quantile statistic:

X2
n(θ̃) =

r∑

j=1

(mj(θ̃)− npj)2

npj
(8.2)

which corresponds to statistic X2
n(θ) defined in (8.1) evaluated at a value θ̃ of

the posterior distribution.
Using results on large sample properties of posterior distributions given

in Chen (1985), Johnson (2004) proved that, under the null hypothesis, the
asymptotic distribution of the Bayesian quantile statistic X2

n(θ̃) is a chi-square
distribution with r − 1 degrees of freedom, independently of the dimension of
the underlying parameter vector.
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Using this result, Johnson proposed to perform the following goodness-of-
fit approach: Obtain a sample θ̃1, . . . , θ̃M from the posterior distribution of
θ. For each of these values compute the proposed statistic and check if the
sample X2

n(θ̃1), . . . , X2
n(θ̃M ) is consistent with a chi-square distribution with

r − 1 degrees of freedom.

8.3 Bayesian chi-squared test for censored data

In a survival study the random variable of interest X is positive and represents
the time until the occurrence of a certain event. We consider the more general
situation of interval censoring which contains right and left censoring as special
cases. In this framework the potential survival times of n items or individuals,
namely, X1, . . . , Xn, cannot be observed and, instead, we observe intervals that
contain them. Let D = {[Li, Ri], 1 ≤ i ≤ n} be the interval–censored survival
data where Li is the last observed time for the ith individual before the event
has occurred and Ri indicates the first time the event has been observed.

If censoring occurs noninformatively (Gómez et alt., 2004 and Oller et alt.,
2004) inferences can be based on the likelihood function L(θ|D) given by

L(θ|D) =
n∏

i=1

∫ Ri

Li

f0(u; θ) du. (8.3)

To test the null hypothesis, H0 : FX = F0(· ; θ), we propose a three steps
iterative algorithm. The first two steps correspond to the data-augmentation
algorithm proposed in Calle (2003) to obtain a sample from the posterior distri-
bution of the parameter of interest: In the first step, a survival time is sampled
for each individual with the restriction that the event occurred between Li and
Ri. We denote by Ti the imputed survival time to distinguish it from the real
unobserved survival time Xi of individual i. In the second step the parameter
θ is updated based on the complete imputed sample. In the third step the
proposed Bayesian quantile statistic (8.2) is computed based on the imputed
sample. We denote this statistic by Y 2

n (θ̃) in order to distinguish it from X2
n(θ̃)

which would be computed from the real survival times, X1, . . . , Xn.
The proposed iterative algorithm is as follows:

1. For every i = 1, . . . , n, impute a value Ti sampled from F0(x; θ) truncated
in the interval [Li, Ri], that is,

fT |L,R(t|l, r) =
f0(t; θ)

F0(r; θ)− F0(l; θ)
1{t: t∈[l,r]}(t)

We obtain an imputed sample T1, . . . , Tn.
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2. Sample a new value θ̃ of θ from its full conditional distribution given the
complete imputed sample T1, . . . , Tn:

p(θ|T1, . . . , Tn) =
n∏

i=1

f0(Ti; θ) · π(θ) (8.4)

where π(θ) is the prior distribution for θ

3. Given the imputed sample, compute the statistic

Y 2
n (θ̃) =

r∑

j=1

(m̃j(θ̃)− npj)2

npj
(8.5)

where θ̃ is the sampled value of θ obtained in step 2 and m̃j is the number
of imputed values T1, . . . , Tn that fall into the jthe class.

After performing iteratively the above algorithm and after a burn-in process
of discarding the first sampled values one obtains a sample Y 2

1n(θ̃), . . . , Y 2
Kn(θ̃)

of statistic Y 2
n (θ̃) that is the base for testing the null hypothesis as is described

at the end of this section.
The following propositions justify the use of statistic Y 2

n (θ̃) as a goodness-
of-fit test for the distribution of X and give its asymptotic distribution:

Proposition 8.3.1

1. Under the null hypothesis, H0 : FX = F0(· ; θ), the marginal distribution
of the imputed values, Ti, is FT (t) = F0(t ; θ)

2. Under an alternative hypothesis, H1 : FX = F1(· ; γ), the marginal distri-
bution of the imputed values, Ti, is

FT (t) = F0(t; θ)
∫∫

{(l,r): t∈[l,r]}

F1(r; γ)− F1(l; γ)
F0(r; θ)− F0(l; θ)

fL,R|X(l, r|t) dlr

Proposition 8.3.2 (Corollary) Under the null hypothesis, H0, statistic Y 2
n (θ̃)

follows a chi-square distribution with r − 1 degrees of freedom as n →∞.

As mentioned before, the goodness-of-fit test is based on the sample
Y 2

1n(θ̃), . . . , Y 2
Kn(θ̃) of the quantile chi-squared statistic Y 2

n (θ̃), assessing if the
sampling distribution agrees with a chi-square distribution with r − 1 degrees
of freedom. This agreement could be checked in different ways. Johnson (2004)
proposed to base the decision on a comparison between the posterior mean and
the asymptotic theoretical mean, which in this case is r − 1, the degrees of
freedom of the asymptotic chi-square distribution.
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The performance of the proposed approach has been investigated through a
simulation study where the null hypothesis of an exponential distribution was
tested for different underlying distributions and different censoring levels.
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Abstract:

A model selection criterion is often formulated by constructing an approx-
imately unbiased estimator of an expected discrepancy, a measure that gauges
the separation between the true model and a fitted approximating model. The
expected discrepancy reflects how well, on average, the fitted approximating
model predicts “new” data generated under the true model. A related measure,
the estimated discrepancy, reflects how well the fitted approximating model pre-
dicts the data at hand.

Generally, a model selection criterion consists of a goodness-of-fit term and a
penalty term. The natural estimator of the expected discrepancy, the estimated
discrepancy, corresponds to the goodness-of-fit term of the selection criterion.
However, the estimated discrepancy yields an overly optimistic assessment of
how effectively the fitted model predicts new data. It therefore serves as a
negatively biased estimator of the expected discrepancy. Correcting for this
bias leads to the penalty term of the selection criterion.

Cross validation provides a technique for developing an estimator of an ex-
pected discrepancy which need not be bias adjusted. The basic idea is to con-
struct an empirical discrepancy that measures the adequacy of an approximat-
ing model by assessing how accurately each case-deleted fitted model predicts
the deleted case.

The preceding approach is conveniently illustrated in the linear regression
framework by formulating estimators of the expected discrepancy based on
Kullback’s I-divergence and the Gauss discrepancy. The traditional criteria
that arise by augmenting the estimated discrepancy with a bias adjustment
are the Akaike information criterion and Mallows’ conceptual predictive cri-
terion. The corresponding cross-validitory criteria compare favorably to their
traditional counterparts in simulation studies.
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9.1 Introduction

A model selection criterion is often formulated by constructing an approxi-
mately unbiased estimator of an expected discrepancy, a measure that gauges
the separation between the true model and a fitted approximating model. The
natural estimator of the expected discrepancy, the estimated discrepancy, cor-
responds to the goodness-of-fit term of the selection criterion.

The expected discrepancy reflects how well, on average, the fitted approx-
imating model predicts “new” data generated under the true model. On the
other hand, the estimated discrepancy reflects how well the fitted approximat-
ing model predicts the data at hand. By evaluating the adequacy of the fitted
model based on its ability to recover the data used in its own construction, the
estimated discrepancy yields an overly optimistic assessment of how effectively
the fitted model predicts new data. Thus, the estimated discrepancy serves as
a negatively biased estimator of the expected discrepancy. Correcting for this
bias leads to the penalty term of the selection criterion.

Cross validation provides a technique for developing an estimator of an ex-
pected discrepancy which need not be bias adjusted. The basic idea involves
constructing an empirical discrepancy that measures the adequacy of an ap-
proximating model by assessing how accurately each case-deleted fitted model
predicts the deleted case.

Cross validation facilitates the development of model selection procedures
based on predictive principles. In this work, we attempt to better establish the
connection between cross validation and traditional discrepancy-based model
selection criteria, such as the Akaike information criterion and Mallows’ con-
ceptual predictive statistic.

9.2 Framework for Discrepancy-Based Selection Cri-
teria

Suppose we have an n-dimensional data vector

y = (y1, ......, yn)
′
,

where the yi’s may be scalars or vectors and are assumed to be independent.
A parametric model is postulated for y.

Let F (y) denote the joint distribution function for y under the generating
or “true” model, and let Fi(yi) denote the marginal distribution for yi under
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this model. Let G(y, θ) denote the joint distribution function for y under the
candidate or approximating model.

A discrepancy is measure of disparity between F (y) and G(y, θ), say ∆(F,G),
which satisfies

∆(F, G) ≥ ∆(F, F ).

We will consider discrepancies of the following form:

∆(F, G) = ∆(θ) =
n∑

i=1

EFi {δi(yi; θ)} .

Let θ̂ denote an estimator of θ. The overall discrepancy results from evalu-
ating the discrepancy between F (y) and G(y, θ) at θ = θ̂:

∆(θ̂) =
n∑

i=1

EFi {δi(yi, θ)} |θ=bθ.

The expected (overall) discrepancy results from averaging the overall discrep-
ancy over the sampling distribution of θ̂:

EF

{
∆(θ̂)

}
=

n∑

i=1

EF

{
EFi {δi(yi, θ)} |θ=bθ

}
.

The estimated discrepancy is given by

∆̂(θ̂) =
n∑

i=1

δi(yi, θ̂).

Model selection criteria are often constructed by obtaining a statistic that
has an expectation which is EF

{
∆(θ̂)

}
(at least approximately).

9.3 The Bias Adjustment Approach to Developing a
Criterion

The overall discrepancy ∆(θ̂) is not a statistic since its evaluation requires
knowledge of the true distribution F (y). The estimated discrepancy ∆̂(θ̂) is
a statistic and can be used to estimate the expected discrepancy EF

{
∆(θ̂)

}
.

However, ∆̂(θ̂) is a biased estimator.
Consider writing EF

{
∆(θ̂)

}
as follows:

EF

{
∆(θ̂)

}
= EF

{
∆̂(θ̂)

}
+

[
EF

{
∆(θ̂)− ∆̂(θ̂)

}]
.
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The bracketed quantity on the right is often referred to as the expected optimism
in judging the fit of a model using the same data as that which was used to
construct the fit. The expected optimism is positive, implying that ∆̂(θ̂) is a
negatively biased estimator of EF

{
∆(θ̂)

}
. In order to correct for the negative

bias, we must evaluate or approximate the bias adjustment represented by the
expected optimism.

There are numerous approaches for contending with the bias adjustment.
These approaches include deriving an asymptotic approximation for the adjust-
ment, deriving an exact expression, or obtaining an approximation using Monte
Carlo simulation. However, these methods have limitations since their justifi-
cations usually require stringent conditions that may restrict the applicability
of the resulting criteria: for example, the assumption that the approximating
model of interest is correctly specified or overspecified, the assumption that the
largest approximating model in the candidate collection is correctly specified
or overspecified, the assumption that the true model errors are normally dis-
tributed, the assumption that the sample size is large relative to the dimension
of parameter vector for the approximating model, etc.

9.4 Cross Validation Approach to Developing a Cri-
terion

We will now introduce a general cross-validitory estimate of the expected dis-
crepancy that need not be bias adjusted.

Let y[i] denote the data set y with the ith case yi excluded. Let θ̂[i] denote
an estimator of θ based on y[i].

Recall that the overall discrepancy is defined as

∆(θ̂) =
n∑

i=1

EFi {δi(yi, θ)} |θ=bθ. (9.1)

Now consider the following variant of the overall discrepancy:

∆∗(θ̂[1], . . . , θ̂[n]) =
n∑

i=1

EFi {δi(yi, θ)} |θ=bθ[i]. (9.2)

The expected (overall) discrepancy corresponding to (9.1) is given by

EF

{
∆(θ̂)

}
=

n∑

i=1

EF

{
EFi {δi(yi, θ)} |θ=bθ

}
;

the expected (overall) discrepancy corresponding to (9.2) is given by

EF

{
∆∗(θ̂[1], . . . , θ̂[n])

}
=

n∑

i=1

EF

{
EFi {δi(yi, θ)} |θ=bθ[i]

}
.



Cross Validation Model Selection 59

Under general conditions, it can be established that

EF

{
∆(θ̂)

}
(9.3)

and
EF

{
∆∗(θ̂[1], . . . , θ̂[n])

}
(9.4)

are approximately the same (provided that the sample size is not excessively
small). Hence, an unbiased estimator of (9.4) is approximately unbiased for
(9.3).

The estimated discrepancy

∆̂(θ̂) =
n∑

i=1

δi(yi, θ̂)

is negatively biased for (9.3). However, the empirical discrepancy defined as

∆̂∗(θ̂[1], . . . , θ̂[n]) =
n∑

i=1

δi(yi, θ̂[i]) (9.5)

is exactly unbiased for (9.4). The justification of this fact is straightforward.

Since EF

{
∆∗(θ̂[1], . . . , θ̂[n])

}
≈ EF

{
∆(θ̂)

}
, it follows that ∆̂∗(θ̂[1], . . . , θ̂[n])

is approximately unbiased for EF

{
∆̂(θ̂)

}
. Thus, the empirical discrepancy

∆̂∗(θ̂[1], . . . , θ̂[n])

(a) estimates EF

{
∆∗(θ̂[1], . . . , θ̂[n])

}
without bias,

(b) estimates EF

{
∆(θ̂)

}
with negligible bias for large n.

The preceding are general results that may be established without imposing
restrictive conditions.

9.5 Examples in the Linear Regression Setting

Consider a setting where a continuous response variable is to be modeled using
a linear regression model.

Under the approximating model, assume the yi are independent with mean
x
′
i β and variance σ2. Let θ = (β

′
σ2)

′
. Further, let g(y, θ) denote the approx-

imating density for y, and let gi(yi, θ) denote the approximating density for
yi.
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Kullback’s I-Divergence and the Gauss discrepancy have applicability to
many modeling frameworks, including linear regression. The I-divergence is
given by

∆I(θ) = EF {−2 ln g(y, θ)} =
n∑

i=1

EFi {δ I
i (yi; θ)} , (9.6)

where δ I
i (yi; θ) = −2 ln gi(yi, θ). The Gauss (sum of squares) discrepancy is

given by

∆G(θ) = EF

{
n∑

i=1

(yi − x
′
iβ)2

}
=

n∑

i=1

EFi {δ G
i (yi; θ)} , (9.7)

where δ G
i (yi; θ) = (yi − x

′
iβ)2.

Provided that the approximating model of interest is correctly specified or
overspecified, the Akaike information criterion provides an asymptotically un-
biased estimator of the expected discrepancy corresponding to (9.6). Provided
that the largest approximating model in the candidate collection is correctly
specified or overspecified, a simple variant of Mallows’ conceptual predictive
statistic (with identical selection properties) provides an exactly unbiased esti-
mator of the expected discrepancy corresponding to (9.7). This variant is given
by (Cp + n)MSEL, where Cp denotes Mallows’ statistic and MSEL denotes the
error mean square for the largest approximating model.

Assuming normal errors, the cross-validitory criterion (9.5) based on the
I-divergence (9.6) is given by

n∑

i=1

ln σ̂2
−i +

n∑

i=1

(yi − ŷi,−i)2

σ̂2
−i

,

where ŷi,−i denotes the fitted value for yi based on the data set y[i], and σ̂2
−i

denotes the MLE for the variance based on the data set y[i].
The cross-validitory criterion (9.5) based on the Gauss discrepancy (9.7) is

given by
n∑

i=1

(yi − ŷi,−i)2,

the well known PRESS (predictive sum of squares) statistic.
In simulation studies, the cross-validitory criteria compare favorably to their

traditional counterparts. In settings where the generating model is among the
collection of candidate models under consideration, the cross-validitory crite-
ria tend to select the correctly specified model more frequently and to select
overspecified models less frequently than their bias-adjusted analogues.
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Equipe Statistique Mathématique et ses Applications
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Abstract: We are interested here in some failure times due to wear or aging.
The main aim is to jointly model the degradation process and one (or more)
associated failure time(s). Two main joint models exist. The first one considers
a failure time which is directly defined by the degradation process (degradation
failure) as a hitting time of growth curve with random coefficients, the second
one considers that the degradation influences the hazard rate of a failure time by
a conditional definition of its survival function (traumatic failure). When both
modes of failure exist, only the first one is observed. Very often, longitudinal
observations of degradation values (measured with error) are available for each
item until the first failure. We are mainly interested here in the nonparametric
estimation of the cumulative intensity function of the traumatic failure time
and related reliability characteristics. In order to analyze the distribution of
the degradation failure, we use either pseudo degradation failures or parametric
nonlinear mixed regression model.

Keywords and phrases: Degradation failure time, Traumatic failure time,
nonlinear mixed regression, Nelson-Aalen estimator.

10.1 Introduction

Degradation data modeling presents an attractive alternative in the assessment
and improvement of reliability of components from which the overall system
reliability can be deduced. If a component is monitored during its operation
time, periodical tests can provide either the simple information that the com-
ponent performs well (and thus is at risk for a failure) or a quantitative in-
formation giving the level of degradation in a specified scale at every time
measurement. Thus the degradation process can sometimes be observed and
monitored through some quantitative characteristics. Examples of such degra-
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dation characteristics for monitoring degradation processes include the wear
of tires (de Oliveira and Colosimo, 2004), gain of transitors (Whitmore, 1995),
degradation of fluorescent lamps (Tseng, Hamada and Chiao, 1995) or catalytic
converters for automotive (Barone, M. Guida, G. Pulcini, 2001) among others.

The usual traumatic failure time has then to be related to the evolution of
the degradation process. Two main joint models exist. The first one considers
a failure time which is directly defined by the degradation process, the second
one considers that the degradation process influences the distribution of the
failure time through a conditional definition of its hazard rate.

Let us assume that the degradation of an item is given by the sample path
of a non decreasing real-valued right continuous and left hand limited stochas-
tic process Z(t), t ∈ I. Lawless and Crowder (2004) and Couallier (2004)
consider gamma processes, Kahle and Wendt (2004) and Lehmann (2004) con-
sider marked point processes and Whitmore and Schenkelberg (1997) consider
Wiener diffusion processes. In the following, we shall make the assumption that

Z(t) = D(t, A), t > 0, (10.1)

where D is a differentiable and non decreasing parametric function of the time
and A is a random variable in Rp which takes account on the variability of
the degradation evolution. The model reduces here to a nonlinear growth curve
model with random coefficients where, for each individual i = 1..n the unknown
real degradation is Zi(t) = D(t, Ai) where Ai is the realization of A for the i-th
item and the observed degradation values are

Z
i|obs
j = D(tij , Ai) + εi

j ,

measured at times tij , j = 1..ni where the εi
j are error measurements of the

degradation values.

10.2 The degradation failure - estimation of FA and
FT0

We assume that the life time T0 is the first time of crossing a fixed ultimate
threshold z0 for Z(t)

T0 = inf{t ∈ I, Z(t) ≥ z0}.
The failure time T0 is sometimes called soft failure (or failure directly due to

wear) because in most of industrial applications, z0 is fixed and the experiment
is voluntarily ceased at the time the degradation process reaches the level z0

or just after this time. Known results about parametric models of degradation
failure Time T0 give the distribution function of T0 with respect to the dis-
tribution function od Z(t) or A. For instance, Padgett and Tomlinson (2004)
use the fact that if Z is a gaussian process with positive drift then T0 follows
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an Inverse Gaussian distribution, De Oliveira and Colosimo (2004) assume the
path model Z(t) = a + bt where a is fixed (unknown) and b is Weibull(α, β).
Then T0 follows a Inverse Weibull whose parameters depend on z0, a, α and β.
Yu (2003) assume the decreasing path model Z(t) = −βtα where α is fixed and
β ∼ LN(µ, σ2) then T0 ∼ LN( (ln(−z0)− µ)/α, σ2/α2).

As an example, we shall analyze in the following twenty one degradation
curves describing the fatigue crack propagation in aluminium alloy materials
(Meeker and Escobar, 1998). Each curve is well fitted by a Paris Curve with
a high variability in the adjusted parameters. The Paris growth curve is given
here by

g(t,m, C) =
(
0.9

2−m
2 +

2−m

2
C
√

π
m

t
) 2

2−m
,

with unit-to-unit coefficients Ai = (mi, Ci) fitted on each item. The failure
due to degradation is defined as the time where the curve reach the threshold
z0 = 1.6. The aim is thus to estimate the distribution functions F(m,C) and FT0

with the noised measurements of degradation for each item without assuming
that F(m,C) lies in a parametric family of distribution functions. For purely
parametric estimation of degradation curves with maximum likelihood estima-
tion of the d.f. of the failure time T0 only due to wear, we refer to Meeker and
Escobar (1998) and reference therein. Comparison with our semiparametric
model will be provided.
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Figure 10.1: Fatigue crack size propagation for Alloy-A data

Each individual path leads to a prediction (Âi) of unknown (Ai) by non lin-
ear least squares method. For all i, a predictor Âi is computed with nonlinear
least squares method with observed degradation values Zobs

ij , j = 1..ni. Bagdon-
avicius and Nikulin (2004) have shown under technical assumptions that the

pseudo empirical cumulative distribution function ˆ̂
FA(a) = 1/n

∑n
i=1 1{Âi≤a} is
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a uniformly consistent estimator of FA as n → +∞ . Instead of plugging the
Âi in the unknown empirical measure P (E) = 1/n

∑n
i=1 1(Ai ∈ E), we propose

here to use the approximate distribution function of Âi around Ai which is
gaussian with mean zero and estimated variance matrix Σ̂i given by the numer-
ical least square method. If, for all i, Âi − Ai ∼ N (0, Σ̂i) then a estimator of
the cumulative distribution function FA is

F̃A(a) =
1
n

n∑

i=1

∫

Rp

1(u<a)fN (Âi,Σ̂i)
(u)du (10.2)

Marginal distributions are easily deduced. For each coordinate Ak of A, the
estimated cumulative distribution function is

F̃Ak
(a) =

1
n

n∑

i=1

Φ(
a− Âi

k

σ̂i
k

)

where σ̂2i
k is the estimated variance of Âi

k and Φ is the cumulative distribution
function of the standard normal law.

The distribution function of T0 is obtained either by calculating the pseudo-
failure times T̂ i

0 = h(z0, Âi) and plugging it in the unknown empirical cumula-
tive distribution function of T0i, i = 1..n or by using P (T0 < t) = P (D(t, A) ≥
z0) and

F̂T0(t) =
∫

1{D(t,a)≥z0}dF̃A(a)
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Figure 10.2: Predictors (m̂i, ĉi) of (mi, ci) for Alloy-A Data and 95% confidence
region for each estimation – ecdf of predicted m̂i and F̃m

10.3 A joint model with both degradation and trau-
matic failure times

As in Bagdonavicius and Nikulin (2004) and Couallier (2004), we define the
traumatic failure time T with the conditional survival function given the past
degradation process as
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P (T > t|Z(s), 0 ≤ s ≤ t) = exp
(
−

∫ t

0
λT (Z(s))ds

)
. (10.3)

λT is a non decreasing function living in the degradation domain. The aim
is to estimate this failure rate which depends on the chronological time only
through the degradation process. The higher the degradation is, the higher
the instantaneous probability of failure for an at-risk item will be. Also, the
conditional survival function depends on the whole past degradation process. In
this model, contrarily to T0, the traumatic failure time T can occur even if the
degradation level is low but its survival function depends on the degradation
function.

We assume that T and T0 are two competing failure times whose distribu-
tion functions are related to the degradation process. U = min{T, T0} is the
observed failure time. If U = T0, we do not observe the traumatic failure time
T . The function Λ(z) =

∫ z
0 λ(s)ds is the cumulative hazard in the degradation

space. The definition (10.3) reduces here to

RT (t|A = a) = P (T > t|A = a) = exp
(
−

∫ t

0
λ(D(s, a))ds

)

For each item i = 1..n, by denoting T i
0 = inf{j ∈ {1..ni}|Zi

j ≥ z0}, we observe
only U i = min(T i, T i

0, t
i
ni

) and δi = 1(U i = T i) where tini
is the last time of

observation. In order to get nonparametric estimates of Λ, of RT (t|A = a) and
RT (t) = EA(R(t|A)), we use the fact that, denoting h(., A) the inverse function
of D(., A)

RT (t|Z(s), 0 ≤ s ≤ t) = P (T > t|A) = exp
[
−

∫ D(t,A)

D(0,A)
h′(z, A)dΛ(z)

]

If we denote by Zi the last observed degradation value (reached at time Ui), a
Doob Meyer decomposition of some counting process in the degradation space
leads to a nonparametric estimator of Λ

Λ̂(z) =
∑

δi=1,Zi≤z

( 1∑
j,Zj≥Zi

h′(Zi, Âj)

)
,

and a nonparametric estimator of the cond. survival function is

R̂T (t|A) = exp
[
−

∫ D(t,A)

D(0,A)
h′(z, A)dΛ̂(z)

]
.

Estimation of the overall survival function needs integration w.r.t. FA. A
nonparametric estimator of RT (t) = P (T > t) is

R̂T (t) =
∫

exp
[
−

∫ D(t,A)

D(0,A)
h′(z, A)dΛ̂(z)

]
dF̃A.

Estimation of the survival function of U = min(T, T0) is also available.
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Abstract: In this work, using a real epidemiological survey, we will mainly
present the methodology of construction of a Quality of Life questionnaire spe-
cific to air pollution disturbance.
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11.1 Introduction

Air pollution may cause cardio-respiratory diseases, and more often annoyance
reactions. Despite the large populations exposed to air pollution in our cities
and numerous epidemiological study demonstrating relationships between air
pollution and health, few studies have been published on the quantitative rela-
tions between the exposure to pollution and the public perception of air qual-
ity. The SEQAP epidemiological study has for main objective to measure the
relationships between adults perception of air pollution and air pollutants con-
centrations measured by monitoring networks in several French towns. Around
3 000 subjects will be randomly selected from adults living in 7 cities having
different levels of air pollutants exposure. From each cities, 450 subjects aged
25-65 will be chosen. Interview will be conducted by phone, including questions
on socio-demographic characteristics, occupation, smoking habits, household
members, access to a car, health, plus a specific quality of life scale taking into
account air pollution annoyance.

In this work we will mainly present the methodology of construction of a
Quality of Life scale specific to air pollution disturbance.
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11.1.1 Finding Questions

During a preliminary step, the main goal was to answer the question: what
do we want to measure? We found only few bibliographical references on the
subject. Unlike most of the studies on Perception of Air Pollution mainly based
on assessment of Satisfaction about Air Quality, we focused on assessment of
degradation of Quality of Life explained by air pollution. The first step was to
found questions (qualitative items) related to that subjective concept. These
questions (items) were chosen using a preliminary deep bibliographical research
and four focus group meetings. Two different focus groups involved students
in Environmental health, another one included teachers, known as expert on
Health Environment and the last one included general people without any a
priori knowledge on Environmental science.

After this preliminary step, we get a form containing questions on annoyance
reactions for different fields: health, daily life, local environment and quality of
life.

11.1.2 Selecting Questions

The second step consisted on testing this questionnaire on a small group of 83
subjects. All interviews were done by telephone. In order to get a preliminary
sample including people living in places with contrasting levels of air pollution
three different cities were chosen. 26 interviews were obtained from people
living in Le Havre, 16 inhabitants of Lyon and 41 from people living in Rennes.
We present in this paper preliminary results of the analysis of the obtained
data. The main interest of this preliminary study is to test the acceptability
of the questionnaire and to eliminate very bad questions. The final validation
study, and the selection of items will be based on the data of the large main
survey, available later.

11.2 Classical Unidimensional Psychometric Models

Statistical validation methods are mainly based on psychometric unidimensional
models.

11.2.1 The parallel model describing the unidimensionality of
a set of variables

Let X1, X2, ..., Xk, a set of observed variables measuring the same underlying
unidimensional latent (unobserved) variable. We define Xij as the measurement
of subject i, i=1,..,n, given by a variable j, where j=1,..,k. The model under-
lying Cronbach’s Alpha is just a mixed one-way anova model: Xij = µj + αi+
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εij , where µj is a varying fixed (non-random) effect and αi is a random ef-
fect with zero mean and standard error σα corresponding to subject variability.
It produces the variance of the true latent measure (τij = µj + αi). εij is a
random effect with zero mean and standard error σ corresponding to the ad-
ditional measurement error. The true measure and the error are uncorrelated:
cov(αi, εij) = 0. This model is called parallel model, because the regression lines
relating any observed item Xj , j=1,...,k and the true unique latent measure τj

are parallel.
These assumptions are classical in experimental design. This model defines

relationships between different kinds of variables: the observed score Xij , the
true score τij and the error εij . It is interesting to make some remarks about
assumptions underlying this model. The random part of the true measure of
individual i is the same whatever might be variable j. αidoes not depend on j.
The model is unidimensional. One can assume that in their structural part all
variables measure the same thing ( αi).

11.2.2 Reliability of an instrument

A measurement instrument gives us values that we call observed measure. The
reliability ρ of an instrument is defined as the ratio of the true over the observed
measure. Under the parallel model, one can show that the reliability of any
variable Xj (as an instrument to measure the true value) is given by:

ρ =
σ2

α

σ2
α + σ2

which is also the constant correlation between any two variables. This coefficient
is also known as the intra-class coefficient. The reliability coefficient ρ can be
easily interpreted as a correlation coefficient between the true and the observed
measure.

When the parallel model is assumed, the reliability of the sum of k variables
equals:

ρ̃ =
kρ

kρ + (1− ρ)
This formula is known as the Spearman-Brown formula. Its maximum likeli-
hood estimator, under the assumption of a normal distribution of the error and
the parallel model, is known as Cronbach’s Alpha Coefficient (CAC) [Cronbach
(1951)]:

α =
k

k − 1
(1−

k∑
j=1

S2
j

S2
tot

)

where S2
j = 1

n−1

n∑
i=1

(Xij −Xj)2 and S2
tot = 1

nk−1

n∑
i=1

k∑
j=1

(Xij −X)2.
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11.2.3 Backward Cronbach Alpha Curve

The Spearman-Brown formula indicates a simple relationship between CAC
and the number of variables. It is easy to show that the CAC is an increasing
function of the number of variables. This formula is obtained under the parallel
model.

A step-by-step curve of CAC can be built to assess the unidimensionality
of a set of variables. The first step uses all variables to compute CAC. Then,
at every successive step, one variable is removed from the scale. The removed
variable is that one which leaves the scale with its maximum CAC value. This
procedure is repeated until only two variables remains. If the parallel model is
true, increasing the number of variables increases the reliability of the total score
which is estimated by Cronbach’s alpha. Thus, a decrease of such a curve after
adding a variable would cause us to suspect strongly that the added variable
did not constitute a unidimensional set with the other variables.

11.3 Modern measurement models and graphical mod-
eling

Modern ideas about measurement models are more general. Instead of arbitrar-
ily defining the relationship between observed and truth as an additive function
(of the true and the error), they just focus on the joint distribution of the ob-
served and the true variables f(X,gθ). We do not need to specify any kind of
distance between X and θ. E and its relation to X and θ could be anything! E is
not equal to X-gθ. E could be some kind of distance between the distributions
of X and θ.

This leads us naturally to Graphical Modelling, as presented briefly in the in-
troduction of this paper. Graphical modelling (Lauritzen and Wermuth, (1989),
Whittaker, (1990)) aims to represent the multidimensional joint distribution of
a set of variables by a graph. We will focus on conditional independence graphs.
The interpretation of an independence graph is easy. Each multivariate distribu-
tion is represented by a graphic, which is composed of nodes and edges between
nodes. Nodes represent one-dimensional random variables (observed or latent,
i.e., non-observed) while a missing edge between two variables means that those
two variables are independent conditionally on the rest (all other variables in
the multidimensional distribution).

The Rasch Model in the psychometric context is probably the most popular
of modern measurement models. It is defined for the outcome X taking two
values (coded for instance 0 or 1):

P (Xij = 1/θi, βj) = exp(θi−βj)

1+exp(θi−βj)
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θn is the person parameter: it measures the ability of an individual n, on
the latent trait. It is the true latent variable in a continuous scale. It is the
true score that we want to obtain, after the reduction of the k items to 1. βj

is the item parameter. It characterizes the level of difficulty of the item (the
question). The Rasch model is member of the Item Response Models (Fischer
and Molenaar (1995)). The Partial Credit Model (Fischer and Molenaar (1995))
is another member of the family of Item Response Model: it is the equivalent
to the Rasch Model for ordinal categorical responses. Let Pijx = P (Xij = x),
then

Pijx =
exp

(
xθi −

x∑
l=1

βjl

)

mj∑
h=0

exp
(

hθi −
h∑

l=1

βjl

) ,

for x= 1. 2, . . ., mj (mj is the umber of levels of item j); i = 1 ... N (number
of subjects); j= 1 ... k (number of items). Under these models a reliability
coefficient like to Cronbach alpha can be derived (Hamon and Mesbah (2002))
and used in the same way as in parallel models, and a Backward Cronbach
alpha curve can be used at a first step followed by a goodness of fit test of the
Rasch model.

11.4 Results

Fifty four (54) ordinal items were used in the original form to measure the
annoyance of air pollution. Four response levels were used: ”pas du tout (never);
parfois (sometimes);souvent (often);tout le temps (always)” At a first step, nine
(9) items with ceiling effects ( more than 90 per cent of persons answering
”never”) were excluded from the analyse. Then a forced (limited to three
factors) factorial analysis followed by a varimax rotation allows us to identify
three different groups of items. Then a Stepwise Cronbach Alpha Curve was
built. Few items were deleted to allow the Cronbach Alpha Curve to be an
increasing curve. Final curves are below. A Rasch internal analysis and various
external validations using covariate in the questionnaire were also performed.
The contents of the items was discussed with psychological and medical expert
on respiratory diseases. Giving specific definition to the identified item groups
was the first objective of such discussion with psychological and medical experts.

11.5 Discussion

The previous results were based on a small pre-study. These results are only
useful to exclude some ”very bad” items to get a smaller questionnaire. The
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Group 1 Group 2 Group 3 

groups found here need to be confirmed by the final validation study based on
the planned large study.
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Abstract:
A graphical diagnostic test for the correct choice of frailty distribution is

constructed by exploiting a closure property of common frailty distributions
in proportional hazards models, namely, that the distribution of frailty among
survivors at time t has the same form as the initial distribution, with some
parameters unchanged. The distribution of frailty among surviving clusters in
the case of shared frailty is obtained under various definitions of the lifetime
of a cluster. The test is extended to this situation when cluster lifetime is
defined as the shortest lifetime of the cluster’s members. Other definitions of
cluster lifetime are less useful for this purpose because the distribution of frailty
among surviving clusters at time t does not have the same form as the initial
distribution.

Keywords and phrases: Lifetime data; frailty; shared frailty; proportional
hazards; graphical diagnostics

12.1 Introduction

Heterogeneity between individuals in time-to-event studies may be accounted
for by including measured covariates and an unmeasured frailty in the model.
In a proportional hazards framework, the model

h(t|z;x) = zeβ
′
x(t)hb(t) (12.1)

is usually assumed, where x(.) is a vector of possibly time-dependent covariates.
The unobservable individual random effect Z is the frailty and hb is a baseline
hazard function.
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One extension is to shared frailty models, where the structure of the data is
such that individuals are in groups or clusters and all the members of the same
cluster share the same value of frailty. Thus (omitting covariates, which could
be at the individual or cluster level, or both)

hij(tj |zi) = zihb(tj) (12.2)

for the j = 1, ..., mi members of the ith cluster.
A wide range of distributions are available to model the non-negative ran-

dom variable Z. Common choices include the Gamma (Vaupel et al, 1979)
and Inverse Gaussian (Hougaard, 1984), which are both members of a class of
exponential family distributions that have an interesting and useful property,
as seen below. Whatever distribution is assumed, it is desirable to check that
it is supported by the data. The present paper develops graphical diagnostics
for this purpose.

12.2 Closure property of the frailty distributions

Let frailty Z be a random variable with distribution F (z; α) on (0,∞), where
α is the parameter vector, with p.d.f. of the form

fZ(z) =
e−[z,g(z)][η1(α),η2(α)]

′

Φ(α)
ξ(z)

which is an exponential family distribution with canonical statistics z and g(z)
(Shao, 1998). A closure property for this distribution was shown by Hougaard
(1984) and earlier for the special case of the gamma distribution by Vaupel
(1979). The following theorem extends Hougaard’s result by including covari-
ates.

Theorem 12.2.1 Given the frailty distribution F (z; α) with p.d.f. as above,
then under the proportional hazards frailty model the frailty distribution among
survivors at time t is again F (.). The value of η1(α), the element of the param-
eter vector corresponding to z, changes, but the components of η2(α) do not.
More specifically, the p.d.f. of frailty among survivors at time t is given by

fZ|T>t
(z) =

e−[z,g(z)][η∗1(α),η2(α)]
′

Φ∗(α)
ξ(z)

where η∗1(α) = η1(α) + Hx
b (t) and Φ∗(α) = Φ(α)ST (t).

This result is obtained from the joint p.d.f. of T and Z, expressed as the
product of the p.d.f. of Z and the conditional p.d.f. of T given Z = z.
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This class of the exponential family includes the Generalized Inverse Gamma
distribution and hence the Gamma and Inverse Gaussian distributions as spe-
cial cases. Some other useful frailty distributions, such as the lognormal, do not
belong to this class because they do not have z as a canonical statistic. This
obstacle can be overcome by considering a generalized distribution, adding one
more parameter (Hougaard, 1986) which will be zero initially. The practical
importance of this property for our purposes is that we can fit the same model
(for example, Gamma frailty with Weibull baseline hazard) to a sample of life-
time data, or to a subsample consisting of the survivors at any chosen time, and
the estimates of the parameter η2 should be stable because the corresponding
population parameter does not change. In the case of the Gamma distribution,
this is the shape parameter. The property has been used by Economou and Ca-
roni (2005) to construct a diagnostic plot for the assumed frailty distribution
in the individual frailty model. An example of this is shown below, followed by
its extension to the shared frailty model.

12.3 Illustration

The maximum likelihood estimates of the model’s parameters are obtained by
maximising the logarithm of the usual likelihood function for lifetime data

L =
n∏

i=1

{
h(ti)δiS(ti)

}
(12.3)

where δi is the censoring indicator which takes the value 1 if ti is an observed
lifetime and zero if it represents a right censored observation. We first carry
out this estimation using all the data. Then we select a sequence of convenient
time points τj (j = 1, 2...k) and repeat the estimation k times, using in the ith
estimation only those data points ti satisfying ti ≥ τj .

To illustrate the method, we used data on the duration of a treadmill test
undertaken by 978 successive patients at a cardiac clinic in Athens. Figure 12.1
shows the diagnostic plots defined above. The baseline hazard is assumed to be
Weibull and both the Gamma and the Inverse Gaussian are examined as possible
distributions of the frailty. The upper diagram shows successive estimates of
the shape parameter (more precisely, the ratio of successive estimates to the
initial estimate) when the Gamma distribution is assumed for frailty. The lower
diagram shows the corresponding results when an Inverse Gaussian distribution
of frailty is assumed. To assist in assessing the results, an envelope of simulated
values has been added (Economou and Caroni, 2005). These diagrams indicate
clearly that the assumption of a Gamma distribution for frailty is acceptable,
because the estimates of its shape parameter at different times are scattered
about a horizontal line, but the Inverse Gaussian assumption is not.
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Figure 12.1: Diagnostic plots for data on 978 cardiac patients. Top: Weibull-
Gamma mixture (=Burr distribution); bottom: Weibull-Inverse Gaussian mix-
ture.

12.4 Shared frailty

To apply the same idea to the case of shared frailty, it is necessary to define
the survivors at time t. Since the distribution of the random variable Z is over
the clusters, the unit of analysis will be clusters not individuals. We therefore
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need to define what is meant by saying that a cluster survives at time t. Two
cases are of immediate interest.

Case 1.
The cluster “dies” as soon as any member dies. Hence the lifetime distribution
of a cluster of size m is given by the random variable T(1) = mini=1,...,m Ti.
This could be called the “minimum” definition. In this case, since the survivor
function of the cluster given frailty z, is S(1)(t|z) = (S(t|z))m, properties at
the cluster level are basically the same as those found already for individual
frailty. In particular, the closure property applies. It is easy to show that the
parameter denoted above as η1 becomes η1+mHb(t) and η2 remains unchanged.
If all clusters have the same size, the previous analysis therefore applies without
change. If there are different sizes of clusters, then the overall likelihood is

L =
k∏

m=1

nm∏

i=1

{
h(tmi)δiS(tmi)

}
(12.4)

where tmi is the survival time (either observed or censored) of the ith cluster
of size m and k is the largest size of cluster. The only difference from the
likelihood for a single size is that the η1 parameter takes the different form
indicated above for each size, but no new parameters are introduced and the
maximization presents no additional difficulty.

Case 2.
The cluster “dies” when all its members have died. This is the “maximum”
definition because the lifetime distribution of a cluster of size m is given by the
random variable T(m) = maxi=1,...,m Ti. In this case the closure property does
not extend neatly. The statements in Theorem 12.2.1 concerning η1 and η2 still
hold, but the term ξ(z) also changes, to

ξ∗(z) = ξ(z)
{

1−
(
1− e−zHb(t)

)m}
(12.5)

Both of these definitions can be written as special cases of defining a cluster
as “surviving” if at least r of its members are alive. The maximum definition
corresponds to r = 1 and the minimum definition to r = m. The simple closure
property applies only to the minimum definition.

Although the failure of the closure property prevents the use of the di-
agnostic plot with the maximum definition, the derivation of the conditional
distribution of frailty among survivors at time t is useful because it makes it
possible to employ the E-M algorithm to fit the frailty model, given data only
on clusters surviving at time t. This would be applicable in situations where
the existence of the cluster can only be recorded if at least one of its members
has survived, which represents a form of truncation.
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In the E-M approach to estimation, the likelihood is expressed as a function
of the values of the frailty Z, which are treated as missing data and are estimated
in the E-step.

References

1. Economou, P. and Caroni, C. (2005). Graphical tests for the assump-
tion of Gamma and Inverse Gaussian frailty distributions, Lifetime Data
Analysis, 11, 565-582.

2. Hougaard, P. (1984). Life table methods for heterogeneous populations:
Distributions describing the heterogeneity, Biometrika , 71, 75-83.

3. Hougaard, P. (1986). Survival models for heterogeneous populations de-
rived from stable distributions, Biometrika, 73, 387-396.

4. Shao, J. (1998). Mathematical Statistics, Springer-Verlag, NewYork.

5. Vaupel, J.A., Manton, K.G. and Stallard, E. (1979). The impact of het-
erogeneity in individual frailty on the dynamics of mortality, Demography,
16, 439-454.



13

On Pseudonormal Extension of the Class of

Multivariate Normal Probability Distributions

Jerzy Filus and Lidia Filus

Department of Mathematics and Computer Science, Oakton Community
College, Illinois, USA
Mathematics Department, Northeastern Illinois, University, USA

13.1 Introduction

A new class of continuous, easily reversible, transformations Rn onto Rn is de-
fined, and applied in a probabilistic setting. The form of each transformation
is basically similar to the affine diagonal mappings on Rn but the parameters
depend on the variables in a specific ”triangular” way. We call such trans-
formations ”pseudoaffine” as, ( by analogy to the ordinary affine) they are
compositions of ”nonsingular pseudolinears” and ”pseudotranslations”. These
transformations, when applied to random vectors of n independent normally
distributed random variables, produce, as outputs, random vectors whose joint
probability densities have some essential properties similar to those of the n-
variate normal. The so obtained new joint probability distributions we call
pseudonormal (See Kotz, Balakrishnan, Johnson (2000) pages 217-218.) since
1) the ordinary affine transformations (which are special cases of the pseu-
doaffines) produce the n-variate normal densities, and 2) the normal densities
are special cases of the pseudonormal. Eventually it turns out that the exten-
sion of the family of the affine mappings Rn → Rn corresponds strictly to the
extension of the family of the n-variate normals.

The idea of the pseudonormal joint probability distributions of the random
vectors, say, (X1, . . . , Xn) (as well as of several other pdf classes (first of all pseu-
doWeibullian ) based on the same general pattern, see FF3 ) has its primary
roots in the area of multicomponent system reliability modeling (see, for exam-
ple, Barlow and Proschan (1975) ). In that setting the r. variables X1, . . . , Xn

are interpreted as stochastically dependent system component life times. In the
recent more than four decades the problem of modeling stochastic dependences
between life times of system components, by means of their joint probability

79
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distributions, was investigated by many authors, such as Freund (1961), Mar-
shall and Olkin (1967) or Lindley and Singpurwalla (1986) to mention a few
among many other excellent positions available. Also see Filus (1991). For
a nearly exhaustive references on that subject, see Kotz, Balakrishnan, John-
son (2000). If the class of the pseudonormals is limited to its subclass defined
by the pseudotranslations only, other possibility as to characterize the resulting
pseudonormals arises. In such cases an alternative definition of these pseudonor-
mals (called ”non-multiplicative”) is obtained only by adding a nonlinear term
or terms to a linear regression function of the corresponding n-variate normal.
Such a nonlinear ”correction” of the usual linear regression model allows to
consider these pseudonormals as, say, nonlinear regression ”normal” distribu-
tions. In some cases the nonlinear regression normal model may be expected to
be more consistent with an empirical data than the ordinary normal. It then
appears that applications of the pseudonormals may not be limited to system
reliability modeling only. It seems that, sometimes, the pseudonormal models
may serve as alternatives to associated normal ones. As we anticipate, in some
instances, they might give a better fit to data than their normal counterparts.
Within the class of the pseudonormals, symmetric and nonsymmetric densities
subclasses are defined. For example, one obtains the symmetric pseudonormal
density by adding a cubic term to the normal linear regression function. This
procedure indicates a possibility to increase an accuracy of the models, at least
in some situations. On the other hand, if a given data shows a slight asymmetric
tendency then adding a proper quadratic term might be useful. Generalizing
this pattern more, a polynomial, of a reasonable degree, may eventually be
applied too.

13.2 The Outline

We recall that by the (ordinary) affine transformation in Rn one usually means
composition of a nonsingular linear transformation and a (constant) transla-
tion. Let T1, . . . , Tn be independent, normally distributed random variables
with zero expectation and arbitrary variances σ12 , . . . , σn2 respectively. Apply
to the random vector (T1, . . . , Tn) an easily reversible pseudoaffine transforma-
tion (Rn → Rn), given by the following pattern:

X1 = φ0T1 + θ0, X2 = φ1(X1)T2 + θ1(X1), . . . . . . . . . . . . (1)

Xn = φn− 1(X1, . . . , Xn−1)Tn + φn−1(X1, . . . , Xn − 1) a.s.,

where θ0 and φ0 6= 0 are constants, and φ1, . . . , φn−1, θ1, . . . , θn−1, n = 2, 3, . . .
are real continuous functions called ”parameter functions”. Here we will only
consider the case when φ0 = 1 and θ0 = 0 . We also will use deterministic
variables t1, . . . , tn, x1, . . . , xn as real values whenever they are assumed to be
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taken on by the random variables T1, . . . , Tn, X1, . . . , Xn respectively. In this
work we are interested in the theory of n-variate probability distributions of the
random vectors (X1, . . . , Xn), that are outputs in transformations (1), given in-
puts (T1, . . . , Tn) that may only be assumed to be distributed according to the
n- variate Gaussian pdfs (so that the marginals independence is not manda-
tory ). The corresponding n-variate probability densities h(x1, . . . , xn) of the
transformation outputs will always be given in the factored form as follows:

h(x1, . . . , xn) = h1(x1)h2(x2|x1) . . . hn(xn|x1, . . . , xn), (2)

where, in the case X1 = T1 a.s., h1(x1) is the ordinary N(0, σ1) normal den-
sity. For each j = 2, . . . , n the conditional densities hj(xj |x1, . . . , xj−1) one
obtains directly from (1). Notice that, in the above product, each factor
hj(xj |x1, . . . , xj−1) is a univariate normal (!) pdf with respect to xj alone.
This fact, as well as the form of the regression function E[Xj |x1, . . . , xj−1] =
θj−1(x1, . . . , xj−1), that follows, led us to use the name ”pseudonormal” (or
”exnormal” ) for the probability densities h(x1, . . . , xn). The conditional stan-
dard deviation sj(Xj |x1, . . . , xj−1) will simply be expressed as the product
σj |φj−1(x1, . . . , xj−1)| .

The usual jacobian of the inverse to (1) turns out simply to be the product:

∂(t1, . . . , tn)/∂(x1, . . . , xn)| = (|φ0||φ1(x1)||φ2(x1, x2)| . . . |φn−1(x1, . . . , xn−1)|)−1.

Finally, for j = 2, 3, . . . , n, the formula for the conditional densities hj(xj |x1, . . . , xj−1)
being factors in (2) is:

hj(xj |x1, . . . , xj−1) = (σj |φj−1(x1, . . . , xj−1)|
√

2π)−1×

exp[−(1/2σ2
j (φj−1(x1, . . . , xj−1))2)(xj − θj−1(x1, . . . , xj−1))2] (3)

and therefore the joint pseudonormal pdfs are entirely determined in the form
(2).

13.3 On some representative Bivariate pseudonor-
mals

In FF2 we considered the 2-dimensional transformations ”from independent
normals to pseudonormals”, which were subjected to the following scheme:

X1 = T1, X2 = φ(X1 − µ1)T2 + a(X1 − µ1) + θ∗?(X1 − µ1), (4)

where T1, T2 were assumed to be independent r. variables with N(0, σ1), N(0, σ2)
densities respectively. The parameter function θ?(T1 − µ1) was referred to as
a nonlinear term of the regression function E[X2|x1] . Now realize that the
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transformation (4) may be regarded as a composition of the two following trans-
formations: 1) the affine transformation:

T ?
1 = T1, T ?

2 = T2 + a(X1 − µ1), (5)

that transforms independent normals T1, T2 to the dependent normal (T ?
1 , T ?

2 ),
and 2) the pseudoaffine one:

X1 = T ?
1 , X2 = φ(X1 − µ1)T ?

2 + θ?(X1 − µ1), (6)

which transforms the (arbitrary) normal r. vector (T ?
1 , T ?

2 ), with a correlation
coefficient ρ = (aσ1)/σ2, into the actual pseudonormal r. vector (X1, X2) being
considered. Such a procedure dramatically simplifies calculations in comparison
with those performed in FF2. We refer to that paper, and, in order to unify
the notation, we will use back the symbol (T1, T2) instead of the above (T ?

1 , T ?
2 )

to denote the input random variables in (6). In this way we defined the trans-
formation (6) (instead of the more complicated (4) used in FF2 ) as defined
on arbitrary Gaussian random vectors ((T1, T2) with a correlation coefficient ρ
as above. The simplification gained in formula (6) in comparison to (4) turns
out to give a significant improvement in calculation efficiency regardless a cost
of some (mild) complexity now associated with the dependence of the input
random variables (T1, T2). Also we replace back the symbol θ?() in (6) by θ()
for the nonlinear term. Notice that the conditions E[T1] = E[T2] = 0 hold.
With all the new meanings we rewrite (6) as:

X1 = T1, X2 = φ(X1)T2 + θ(X1). (6?)

The regression function of the pseudonormal r. vector (X1, X2) defined by
(6?) now is: E[X2|x1] = ax1 + θ(x1), with a = ρσ2/σ1 . In FF2 it is shown
that for symmetric pdfs of (X1, X2) we have E[X2] = 0, whenever E[T2] =
0. The nonlinear part θ(x1) of the regression function enriches the original
Gaussian stochastic dependence structure of (T1, T2) determined by ρ. The
problem of finding the rth moments for the marginal variable X2, r = 2, 3, . . .,
now simplifies as only two terms in (6?) are to be raised to the rth power instead
of three in the expression (4) as it was the case in FF2.

13.4 On Some Bivariate Analytic Examples

Example 1: The Symmetric Case. In the following example the bivari-
ate density function h(x1, x2) is assumed to be symmetric in the sense that
h(−x1,−x2) = h(x1, x2) and thus h2(−x2) = h2(x2), where h2(x2) denotes
the marginal density of the r. variable X2. Recall that in such a case we
have E[X2] = 0 whenever E[T2] = 0. For more details about the symme-
try of pseudonormals see FF2. Consider the following pseudoaffine (or rather
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pseudotranslation) transformation:

X1 = T1, X2 = T2 + AX
(2k+1)
1 (7),

where k is a positive integer, and (T1, T2) is an arbitrary random vector with
the joint density f(t1, t2) = f1(t1)f(t2|t1) =

(1/(σ1

√
2π))exp[−t21/(2σ2

1)](1/σ2

√
2π(1− ρ2))exp[−(t2 − at1)2/(2σ2

2(1− ρ2))],
(8)

where ρ is the ordinary correctional coefficient of (T1, T2) and ρ = aσ1/σ2 .
Using (7) and (8) one obtains the joint pdf of the random vector (X1, X2) in
the form: h(x1, x2) = h1(x1)h2(x2|x1), where h1(x1) = f1(x1) is the same as
the first factor in (8) upon replacing t1 by x1 , and

h2(x2|x1) = (1/σ2

√
2φ(1− ρ2))exp[−(x2 − ax1 −Ax

(2k+1)
1 )2/2σ2

2(1− ρ2)].

It is clear, especially when the parameter ′A′ is small in comparison to ′a′, that
the new bivariate pseudonormal density h(x1, x2) arises as the result of adding
the nonlinear correcting term Ax

(2k+1)
1 to the original linear regression function

E[T2|x1] = ax1 of the bivariate normal (T1, T2) , when T1 = x1. This case is
specially interesting when k = 1. We call it the cubic correction. For the similar
quadratic correction see Example 2, for k = 1.

Evaluating the moments and other parameters of the pdf considered in this
example is much easier than in Example 1S in FF2. After elementary calcu-
lations one obtains the expectations E[X1] = 0, E[X2] = 0, and E[X2|x1] =
ax1 + Ax

(2k+1)
1 . Also one obtains the variance of X2 in the form

V ar(X2) = s2
2 = σ2

2 + A2j(4k + 1)σ(4k+2)
1 , (9)

where j(w) = (1)(3)(5) . . . (w) for any positive odd integer w, so that j(4k +
1)σ(4k+2)

1 is the (4k + 2)th central moment of X1 (Recall that the r.v’s X1 and
T1 have the same normal pdf). The covariance and the correlation coefficient c
of (X1, X2) are

E[X1X2] =
∫ ∞

−∞
x2h2(x2|x1)dx2x1h1(x1)dx1 = as2

1 + Aj(2k + 1)σ(2k+2)
1 ,

and c = ρ + j(2k + 1)A(s(2k+1)
1 /s2) respectively, with s1 = σ1, and s2 given by

(9). Notice that s2 → σ2, c → ρ as A → 0, where ρ = as1/s2 is the original
correlation coefficient of the normal r. vector (T1, T2).

Because of space limitation next two Examples of Bivariate nonSymmetric
Pseudonormals will only be sketched as described by the following defining
pseudoaffine transformations:
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Example 2. A class of nonmultiplicative pseudonormal pdfs, which seems
to be quite interesting with respect to possible applications, is given by the
following class of the pseudotranslations: X1 = T1, X2 = T2 + AX2k

1 , where k
is a positive integer, and the input r. vectors (T1, T2) are arbitrary normal with
any correlation coefficients ρ. For more details concerning this case see FF4,
where, between others, the central moments up to the fourth are obtained in a
relatively simple analytic form.
Example 3. A class of the multiplicative densities can be given by the following
class of pseudolinear transformations, applied to the same as above normal r.
vectors (T1, T2) : X1 = T1, X2 = A cosh(λX1)T2, with A and λ being positive
real constants.

13.5 Final Remarks

We want to make a note about other possible applications of the pseudolinear
transformations, which one obtains from (1) by letting θ0 = θ1(x1) = . . . =
θn−1(x1, . . . , xn−1) = 0.

1. In system reliability modeling we assume that the input random variables
T1, . . . , Tn are independent exponentials with the expectations α1, . . . , αn re-
spectively rather than the normals. As a result one obtains a class of joint
probability densities h(x1, . . . , xn) of the output (X1, . . . , Xn) in the form (2),
where h1(x1) is the ordinary exponential with an expectation α1, and for each
j = 2, . . . , n the conditional exponential densities are:

hj(xj |x1, . . . , xj−1) = (1/αj |φj−1(x1, . . . , xj−1)|)exp[−xj/αj |φj−1(x1, . . . , xj−1)|].
(10)

2. Let, as before, T1, . . . , Tn be independent exponential random variables.
Extend the previously defined pseudolinear transformations pattern into the
pseudopower: X1 = T γ1

1 , X2 = φ1(X1)T
γ2
2 , . . . , Xn = φn−1(X1, . . . , Xn−1)T

γn
n

with arbitrary positive reals γi = 1/βi, for i = 1, . . . , n. Next gain in general-
ity can be obtained by admitting (for i = 2, 3, . . . , n) βi to depend on the r.
variables X1, . . . , Xi−1, while β1 remains constant. As a result one obtains the
joint density h(x1, . . . , xn) of the r. vector (X1, . . . , Xn) in a form similar to
(10), however the conditional densities hj(xj |x1, . . . , xj−1) now are Weibullian,
each with respect to xj alone. For j = 1, 2, . . . , n the shape parameters are βj ’s
respectively. For that reason the density h(x1, . . . , xn) is called ”pseudoweibul-
lian”. It can be shown that in the foregoing case one can weaken the assumption
that the variables T1, . . . , Tn are exponential, and allow them to be arbitrary
independent Weibullians. For more details on the reliability applications of the
so defined pseudoexponential and pseudoweibullian models see FF3.
3. In addition to the context of this paper, some nice theoretical results ob-
tained are to be mentioned. They mainly concern an invariance of the classes of
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the pseudonormals and the pseudoexponentials with respect to the pseudoaffine,
as well as the pseudoWeibullians with respect to pseudopower transformations.
Speaking briefly, any pseudonormal (so also a normal) or pseudoexponential
input, in any pseudoaffine transformation, results in a pseudonormal or a pseu-
doexponential output respectively. The same can be said about transforming
pseudoWeibullians through the pseudopowers so, in particular, through the
pseudoaffines. The proofs and some analysis of these properties can be found
in FF1.
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Abstract: Two approaches to defining virtual age of a degrading system are
considered. The first one is based on the fact that deterioration depends on
environment. In a more severe environment deterioration is more intensive,
which means that objects are aging faster and therefore, the corresponding
virtual age is larger than the calendar age in a baseline environment. The second
approach is based on considering an observed level of individual degradation
and comparing it with some average, ‘population degradation’.
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14.1 Introduction

Lifetimes of degrading (deteriorating) systems can be effectively modeled by
aging distributions. The simplest and probably the most natural is the class
of distributions with increasing failure rates (IFR). It is clear that an age of
a system, as some overall trivial marker of deterioration, is really informative
only for degrading objects. This age is the same for all individuals in a pop-
ulation, which are simultaneously incepted into operation. We shall call this
chronological age the statistical age.

Deterioration usually depends on environment. Deterioration under a more
severe environment is more intensive, which means that objects are aging faster.
Therefore, we discuss a statistical virtual age, which is defined for degrada-
tion comparison under different environments (stresses). We also introduce an
information-based virtual age of a system. If, for instance, an individual of 50
years old looks like and has vital characteristics (blood pressure, level of choles-
terol etc) are as of a 30 years old one, we can say that this observation indicates
that his virtual age could be 30.
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Another challenging problem to be considered is to define the virtual age of
a system with components in series having different virtual ages.

14.2 Virtual Age In Repairable Systems

We start with some introductory, helpful considerations on a notion of a virtual
age for repairable systems (Kijima (1988), Finkelstein (2000)).

A convenient mathematical description of repair processes uses a concept
of stochastic (or failure) intensity λt (Aven and Jensen (1999)). Consider,
for example, a renewal process (perfect instantaneous repair) with underlying
distribution F (t) and the failure rate λ(t). Then

λt =
∞∑

n=0

λ(t− Tn)I(Tn ≤ t < Tn+1). (14.1)

Denote by At the age process, which corresponds to the renewal process (14.1):

At =
∞∑

n=0

(t− Tn)I(Tn ≤ t < Tn+1). (14.2)

Thus, this stochastic process starts at t = 0 as a linear function with a unit
slope. It jumps again to 0 at T1, the time of the first repair, etc. The age of a
repairable system in this case is just time elapsed since the last repair. Note,
that as a minimal repair (note a perfect one!) does not change the age of a
system, the corresponding age process is deterministic: At = t.

Consider now intermediate between the perfect and minimal level of repair,
which brings an important notion of a virtual age. Assume that repair at
t = t1 decreases the age of a system not to 0 as for a perfect repair, but to
ν1 = qt1, 0 < q < 1, and the system starts the second cycle with this initial age
in accordance with the Cdf 1− F̄ (t1 + t)/F̄ (t1). This age is called the virtual
age. F (t) is assumed to be IFR in this approach.

14.3 Statistical Virtual Age

Consider a degrading system in a fixed baseline environment with the Cdf of
time to failure Fb(t). The chronological age t will be called the statistical age.
Let another statistically identical system be operating in a more severe envi-
ronment with the Cdf of time to failure Fs(t). We want to establish an age cor-
respondence between these two regimes. Degradation under the second regime
is more intensive therefore the time to reach the same level of degradation, as
under the baseline one, will be smaller. We shall call the corresponding time
the statistical virtual age of the second system.
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We will describe this definition in mathematical terms for a specific model.
Assume that the lifetimes for two regimes are ordered in the sense of a usual
stochastic ordering:

F̄s(t) < F̄b(t), t ∈ [0,∞), (14.3)

Inequality (14.3) implies the following equation:

Fs(t) = Fb(W (t)), W (0) = 0, W (t) > t, t ∈ (0,∞), (14.4)

which can be interpreted as a generalized Accelerated Life Model (ALM) (Cox
and Oakes (1984)) with a scale transformation function W (t), which in its turn
can be interpreted as an additive degradation function W (t) =

∫∞
0 w(u)du,

where w(t) has a meaning of a speed of degradation. Therefore, the statistical
virtual age of the second system is W (t), compared with the statistical age t of
a system in a baseline environment.

When the failure rates are given, or estimated from the data, relation (14.4)
can be viewed as an equation for obtaining the statistical virtual age W (t):

∫ t

0
λs(u)du =

∫ W (t)

0
λb(u)du. (14.5)

14.4 Information-based Virtual Age

In the previous section a system was considered as a black box. Observation of
a state of a system at time t can give an indication (under certain assumptions)
of its age, defined by the level of deterioration.

We start with a meaningful reliability example when the number of observed
operable components defines the corresponding level of deterioration.

Example 1. Consider a system of n + 1 components (one initial component
and n cold standby identical ones) with constant failure rates λ. Denote the
system’s lifetime random variable by Tn+1. The corresponding Cdf is

Fn+1(t) ≡ Pr[Tn+1 ≤ t] = 1− e−λt
n∑

0

(λt)i

i!
(14.6)

with an increasing failure rate.
In order to obtain the corresponding information-based virtual age to be

compared with the statistical age t, consider, firstly, the following conditional
expectation:

D(t) ≡ E[N(t) |N(t) ≤ n] = E[N(t) |Tn+1 > t]

=
e−λt

∑n
0 i (λt)i

i!

e−λt
∑n

0
(λt)i

i!

,
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where N(t) is the number of events in the interval [0, t] for the Poisson process
with rate λ. The function D(t) is monotonically increasing, D(0) = 0 and
limt→∞ = n. This function defines the ‘mean degradation curve’ for the system.

Denote the information-based virtual age by V (t). Our definition is:

V (t) = D−1(k). (14.7)

If k = D(t), then: V (t) = D−1(D(t)) = t. Similar:

k < D(t) ⇒ V (t) < t, k > D(t) ⇒ V (t) > t.

The general case of degrading objects can be considered in the same line.
Let Dt be an increasing, smoothly varying (predictable) stochastic process of
degradation with a mean D(t), which defines the statistical age of our object
as t. We also assume for simplicity that this is a process with independent
increments. Then dt - observation at time t defines the information-based
virtual age as V (t) = D−1(dt).

Alternatively, V (t) can be defined via the information-based remaining life-
time (Finkelstein, 2001). The statistical (conventional) mean remaining lifetime
(MRL) at t of a system with the Cdf F (x) is defined in a standard way as:

M(t) =
∫ ∞

0
F (x|t)dx =

∫ ∞

0

F̄ (t + x)
F̄ (t)

dx (14.8)

and we must compare it with the mean information-based remaining lifetime,
denoted by MI(t). Define the information-based virtual age in this case as

V (t) = t + (M(t)−MI(t)). (14.9)

Note that the idea of our definition (14.9) is in adding (subtracting) to the
chronological age t the gain (loss) in the remaining lifetime due to additional
information.

Example 2. Consider a system of 2 i.i.d components in parallel with exponen-
tial Cdfs. Then F̄ (t) = e−2λt − 2e−λt and

M(t) =
∫ ∞

0

2e−λt − e−2λte−λx

2− e−λx
dx.

Assume that our observation at time T is: two operable components. Then
MI(t) = 1.5λ and 0 < V (t) < t. If observation is one operable component, then
the virtual age is larger than t: V (t) > t.
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14.5 Virtual Age of a Series System

In this section possible approaches to defining a virtual age of a series system
of degrading components with different virtual ages will be considered. In
a conventional setting all components have the same chronological age and
therefore this problem does not exist. However, it is really important in different
applications (specifically, biological) to obtain a virtual age of a series system.

We start with considering the statistical virtual age discussed in Section
14.3. The survival functions of a series system of statistically independent
components under the baseline and a more severe environment are

F̄b(t) =
n∏

1

F̄bi(t); F̄s(t) =
n∏

1

F̄bi(Wi(t)), (14.10)

respectively, where Wi(t) is the scale transformation function for the ith com-
ponent and we assume that the model (14.4) holds for every component. Thus,
each component has its own statistical virtual age Vi(t) = Wi(t), whereas the
virtual age for the system V (t) = W (t) can be obtained from the following
equation: ∫ W (t)

0

n∑

1

λbi(u)du =
n∑

1

∫ Wi(t)

o
λbi(u)du. (14.11)

Going back to the information-based virtual age, as the first choice, we shall
weight ages in the series system of n degrading components in accordance with
the importance of the components with respect to the failure of the system.
Let Vi(t) denote the information-based virtual age of the ith component with a
failure rate λi(t) in a series system of n statistically independent components.
Then the virtual age of a system at time t is defined as an expected value of
the virtual age of a failed in [t, t + dt) component:

V (t) =
n∑

1

λi(t)
λs(t)

Vi(t),

where λs(t) =
∑n

1 λi(t) is the failure rate of the series system.
The second approach is based on the notion of the MRL function. Thus,

F̄ (x) =
n∏

1

F̄i(x), F̄ (x|t) =
F̄ (x + t)

F̄ (x)
=

n∏

1

F̄i(x|t).

Denote now by FI,i(x, t) the information-based Cdf of the remaining lifetime
for the ith component. Then

M(t) =
∫ ∞

0

n∏

1

F̄i(x|t)dx, MI(t) =
∫ ∞

0

n∏

1

F̄I,i(x, t)dx
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and eventually, equation (14.9) should be used for obtaining the corresponding
information-based virtual age of a series system in this case.
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Abstract: In survival data analysis the interval censoring problem has been
usually treated via maximum likelihood inferences. Standard methods suppose
that conditions producing censoring do not affect the survival process in order
to justify the use of a simpler expression of the likelihood function. This paper
is about formal conditions to ensure the validity of such a simplified likelihood.
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15.1 Introduction

Interval censoring mechanisms arise when the event of interest cannot be di-
rectly observed and it is only known to have occurred during a random interval
of time. This type of censored data has been extensively analyzed during the
last years. Inference methods are mainly based on the simplified likelihood
we would obtain if the censoring intervals were fixed in advance, ignoring the
randomness of the intervals. Such likelihood–based inferences are correct when
the censoring process does not affect the lifetime variable. Moreover, there are
situations where this noninformative assumption does not hold but the use of
the simplified likelihood is still correct. In this work, we talk about these in-
formative situations. We introduce and discuss the results given in Oller et al.
(2004).

Let T be the positive random variable of interest representing the time until
the occurrence of a certain event E with unknown right-continuous distribution
function W (t) = Prob{T ≤ t} and support DW = {t > 0 : dW (t) > 0}. Data
is said to be interval–censored when the time to E is unknown and instead of
this time we observe a time interval bL,Rc where L is the last observed time
before the event E has occurred and R indicates the first time the event E has
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been observed. We use the bL,Rc notation to indicate an interval that can be
closed, open or half open depending on the censoring model. We are in fact
formally observing a random censor vector (L,R), such that T ∈ bL, Rc with
probability 1. Thus, a model for interval censored data is described by a joint
distribution FL,R,T with range

{
(t, l, r) : 0 ≤ l ≤ t ≤ r < 1

}
.

Based on the marginal law of the observables FL,R and a sample of n ob-
servations bl1, r1c, . . . , bln, rnc, the full likelihood can be expressed as,

L0 =
n∏

i=1

dFL,R(li, ri) =
n∏

i=1

P (L ∈ dli, R ∈ dri, li ≤ T ≤ ri) (15.1)

If the observed intervals are treated as fixed in advance and we ignore their
randomness, then the likelihood simplifies as,

L =
n∏

i=1

PW (bli, ric) =
n∏

i=1

P (li ≤ T ≤ ri) (15.2)

In the next section, we define conditions under which the nonparametric max-
imum likelihood estimator (NPMLE) of the lifetime distribution can be based
on this simplified likelihood (15.2).

15.2 Noninformative and constant–sum models

In studies where interval–censored data arise because individuals are intermit-
tently inspected, it is usually assumed that the inspection process is indepen-
dent of T. This independence written in terms of (L,R) and T reduces to the
following noninformative condition.

Definition 15.2.1 A model FL,R,T is noninformative if the following condition
holds:

dFL,R|T (l, r|t) =
dFL,R(l, r)
PW (bl, rc) 1{t∈bl,rc}(l, r). (15.3)

This property has been introduced in the papers of Self and Grossman (1986)
and Gómez et al. (2004). In a more general censoring framework, Heitjan and
Rubin (1991) and Gill et al. (1997) develop and characterize the analogous
notion of coarsening at random conditions. In Oller et al. (2004) different char-
acterizations for the noninformative condition are given and their equivalence
is shown. They also introduce a weaker condition, namely the constant–sum
condition, which is sufficient for the validity of the simplified likelihood (15.2)
in a nonparametric estimation of the lifetime probability distribution W . The
constant–sum condition for interval censoring is an extension of the same notion
in Williams and Lagakos (1977), in the context of right censoring, and Betensky
(2000), in the context of current status data.
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Definition 15.2.2 A model FL,R,T is constant–sum if the following condition
holds: ∫ ∫

{(l,r):t∈bl,rc}

dFL,R(l, r)
PW (bl, rc) = 1 ∀t ∈ DW (15.4)

Theorem 15.2.1 If a censoring model FL,R,T is constant–sum, the NPMLE of
the lifetime distribution function can be obtained through maximization of the
simplified likelihood (15.2) .

Clearly, if a censoring model is noninformative, then the model is constant-
sum. The reciprocal is not true. However, as it is showed in Oller et al.
(2004), if a censoring model FT1,L1,R1 is constant–sum, then there always exists
a noninformative model, FT2,L2,R2 , with the same marginal distributions, W2 =
W1 and FL2,R2 = FL1,R1 .

Further discussion about the relationship between the noninformative and
the constant–sum conditions is given by Lawless (2004). The author consider
situations where an inspection process defines the censoring observations. When
the inspection process depends on T , Lawless (2004) proves that the constant–
sum property is equivalent to the existence of an alternative inspection process
which is independent of T and which gives the same distribution for the ob-
servables, FL,R, as the underlying true inspection process.

15.3 Illustration

Here we present an example of constant–sum model which illustrates previ-
ous results. Let DW = {0, 1, 2, 3, 4} be the support of the lifetime variable
and DFL,R

= {[0, 1], [0, 2], [2, 4], [3, 3]} the observable censoring intervals. We
consider the model determined by the joint probability between the lifetime
variable and the observables, dFT,L,R(t, l, r), given by Table 15.1.

Table 15.1: Joint probability dFT,L,R of a constant–sum model.

'

&

$

%

bl, rc [0,1] [0,2] [2,4] [3,4]
t dW (t)
0 1/24 3/24 0 0 1/6
1 3/24 1/24 0 0 1/6
2 0 1/6 1/6 0 1/3
3 0 0 1/24 3/24 1/6
4 0 0 3/24 1/24 1/6
dFL,R(l, r) 1/6 1/3 1/3 1/6 1
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It is easy to verify that this model holds the constant–sum condition (15.4)
for each t ∈ {0, 1, 2, 3, 4}. For instance, for t = 1 the constant–sum condition is

∑

{(l,r):1∈bl,rc}

dFL,R(l, r)
PW (bl, rc) =

dFL,R(0, 1)
PW (b0, 1c) +

dFL,R(0, 2)
PW (b0, 2c) =

1
6

1
6 + 1

6

+
1
3

1
6 + 1

6 + 1
3

= 1.

However, this model does not hold the noninformative condition. For instance,
dFL,R|T (0, 2|0) = 3/4, while dFL,R(0, 2)/PW ([0, 2]) = 1/2, so condition (15.3)
fails.

Henceforth, we illustrate the result in Theorem 15.2.1 by considering a sam-
ple of n1 individuals with observed intervals [0, 1], n2 individuals with [0, 2], n3

with [2, 4] and n4 with [3, 4]. In this case, the likelihood function (15.1) is given
by

L0 = [dFL,R(0, 1)]n1 [dFL,R(0, 2)]n2 [dFL,R(2, 4)]n3 [dFL,R(3, 4)]n4 .

Using the following factorization

dFL,R(l, r) = PW (bl, rc) · dFL,R(l, r)
PW (bl, rc)

and parametrizing as θt = PW (t) for t = 0, 1, 2, 3, 4 and

γj = dFL,R(lj , rj)/PW (blj , rjc) for (lj , rj) = (0, 1), (0, 2), (2, 4), (3, 4)

we have,

L0 = [(θ0 + θ1)γ1]
n1 [(θ0 + θ1 + θ2)γ2]

n2 [(θ2 + θ3 + θ4)γ3]
n3 [(θ3 + θ4)γ4]

n4 .

The MLE of the parameters θ and γ is obtained by maximizing the logarithm
of the likelihood, log(L0), subject to the constraints:

(i) 0 ≤ θt ≤ 1

(ii) θ0 + θ1 + θ2 + θ3 + θ4 = 1

(iii) 0 ≤ γj ≤ 1

(iv) (θ0 + θ1)γ1 + (θ0 + θ1 + θ2)γ2 + (θ2 + θ3 + θ4)γ3 + (θ3 + θ4)γ4 = 1.

Constraint (iv) is needed because dFL,R(0, 1)+dFL,R(0, 2)+dFL,R(2, 4) + dFL,R(3, 4) =
1, and it can be equivalently written as

(iv) θ0(γ1 + γ2) + θ1(γ1 + γ2) + θ2(γ2 + γ3) + θ3(γ3 + γ4) + θ4(γ3 + γ4) = 1.

Since the model is constant-sum, in the maximization process we have to add
equation (15.4) as a new constraint, that is,
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(v) γ1 + γ2 = 1, γ2 + γ3 = 1 and γ3 + γ4 = 1.

However condition (iv) can be derived from conditions (v) and (ii): θ0(γ1+γ2)+
θ1(γ1 + γ2)+ θ2(γ2 + γ3)+ θ3(γ3 + γ4)+ θ4(γ3 + γ4) = θ0 + θ1 + θ2 + θ3 + θ4 = 1,
and hence condition (iv) could be omitted in the maximization process and it
is no longer a constraint between the parameters θ and γ. Therefore, the MLE
of θ can be obtained maximizing the simplified likelihood

log(L) = n1 log(θ0+θ1)+n2 log(θ0+θ1+θ2)+n3 log(θ2+θ3+θ4)+n4 log(θ3+θ4)

under the constraints (i) and (ii).

15.4 Identifiability of the lifetime distribution

This section is devoted to study the identifiability of the lifetime distribution
W on the basis of the assumed support of the lifetimes DW and the distribution
for the observables FL,R. We assume a known lifetime support, DW , which is
not necessarily equal to the usual assumption DW = (0,∞).

Definition 15.4.1 Given a censoring model FT,L,R, we say that W is noniden-
tifiable when there exists a censoring model having different lifetime distribution
but sharing the same lifetime support DW and the same distribution for the ob-
servables FL,R.

Generally, W will not be identifiable unless we assume some kind of restric-
tion on the model. In fact, the following theorem shows that if we are restricted
to the class of constant–sum models, the probabilities assigned by the lifetime
distribution to the observable intervals bl, rc can be identified from the pair
(DW , FL,R). To assure the complete identifiability of W , however, additional
conditions on the observables support will be necessary.

Theorem 15.4.1 Let FT,L,R and FT ∗,L∗,R∗ be constant–sum models such that
(DW , FL,R) = (DW ∗ , FL∗,R∗), then PW (bl, rc) = PW ∗(bl, rc) dFL,R–almost surely.

There are specific situations where it is possible to ensure complete identi-
fiability. For instance, when uncensored data are allowed for the whole support
of the lifetime variable, that is, when dFL,R(t, t) > 0 for any t ∈ DW . This iden-
tifiability assumption is rather mild and it is typically satisfied in right censored
data and doubly censored data applications.

When DW = (0,∞) and every observable arises from a random inspection
process with discrete support (L and R lie in a set {a0, a1, . . . , ak} with 0 =
a0 < a1 < · · · < ak = +∞), we can show that the probabilities PW ((aj−1, aj ])
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are identifiable if and only if every value in the set {a0, a1, . . . , ak} is being in-
spected. When the support of the inspection times is not finite, the constant–
sum property is not enough to assure complete identifiability, we need a count-
able number of inspections for each individual and independence between the
inspection process and the lifetime variable instead. In that case, we can also
show that if the support of L or R covers DW = (0,+∞), then W is completely
identifiable.
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3. Gómez, G., Calle, M. L. and Oller, R. (2004). Frequentist and bayesian
approaches for interval–censored data, Statistical Papers, 45, 139–173.

4. Heitjan, D. F. and Rubin D. B. (1991). Ignorability and coarse data, The
Annals of Statistics, 19, 2244–2253.

5. Lawless, J. F. (2004). A note on interval–censored lifetime data and the
constant–sum condition of Oller, Gómez and Calle (2004), The Canadian
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Abstract: We define a new class of models for multivariate survival data,
in continuous time, based on a number of cumulative hazard functions, along
the lines of our family of models for correlated survival data in discrete time
(Gross and Huber, 2000, 2002). This family is an alternative to frailty and
copula models. We establish some properties of our family and compare it
to Clayton’s and Marshall-Olkin’s. Finally we derive non parametric partial
likelihood estimates of the hazards involved in its definition and prove, using
martingale theory, their asymptotic normality. Simulations will be performed
as well as applications to diabetic retinopathy and tumorigenesis in rats.

Keywords and phrases: Survival data, clusters, right censoring, continuous
time, hazard rates

16.1 Introduction

Much attention has been paid to multivariate survival models and inference
since the early work of Hougaard, and his recent book (2004) on the subject.
Studies on twins lead to the development of papers on bivariate distributions,
and, more generally the analysis of family data or clusters data lead to more gen-
eral models for correlated survival data. One way of dealing with this problem
is to use copula or frailty models (see for example Bagdonavicius and Nikulin
(2002) for a review of those models). Among the most usual bivariate models,
one finds Clayton’s, Marshall-Olkin’s and Gumbel’s models. We shall present
here a model for continuous multivariate data based on the same idea as the
one we used in the discrete case (Gross and Huber, (2002)), and which is closely
related to a multi-state process. We define our class of models in detail for the
special case of bivariate data, and generalize this class to any dimension. We
then obtain properties of these models and compare them to the usual ones
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cited above. We then derive NPML estimators for the involved functions and
derive their asymptotic properties.

16.2 Definition of the models

16.2.1 Bivariate continuous model

Let L be the class of continuous univariate cumulative hazard functions on IR+:

L = {Λ : IR+ → IR+, continuous, non decreasing , Λ(0) = 0, Λ(t) −−−→
t→∞ ∞}

Definition 1 (bivariate continuous model)
Given any five members Λ01

11,Λ
10
11, Λ00

11, Λ
00
01,Λ

00
10 of L, we define a joint bivariate

survival function S on IR+ × IR+ by

for x < y , dS(x, y) = exp{−Λ01
11(x)− Λ10

11(x)− Λ00
11(x)}dΛ01

11(x)
exp{−(Λ00

01(y)− Λ00
01(x)}dΛ00

01(y)
for y < x , dS(x, y) = exp{−Λ01

11(y)− Λ10
11(y)− Λ00

11(y)}dΛ10
11(y) (16.1)

exp{−(Λ00
10(x)− Λ00

10(y)}dΛ00
10(x)

for y = x , dS(x, y) = exp{−Λ01
11(x)− Λ10

11(x)− Λ00
11(x)}dΛ00

11(x)

We propose the family (16.1) of bivariate probabilities as an alternative to the
bivariate probabilities defined by frailties or copulas. It is easy to verify that S
thus defined is actually a bivariate survival function, and that a necessary and
sufficient condition for the corresponding probability to be absolutely contin-
uous (AC) with respect to λ2, the Lebesgue measure on IR2, is that Λ00

11 ≡ 0.
Otherwise, part of the mass is on the diagonal of IR2.

16.2.2 Generalization to p components

When more than two components are involved, say p, then our class of models
is defined in a similar way, involving now a number of cumulative hazards K(p)
equal to

K(p) =
p−1∑

k=0

Cp−k
p C1

p−k. (16.2)

when the multivariate law is absolutely continuous with respect to λp, the
Lebesgue measure on IRp, and

K(p) =
p−1∑

k=0

Cp−k
p (2p−k − 1). (16.3)

when simultaneous jumps are allowed.
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16.2.3 Properties of the bivariate family

Theorem 1 For all bivariate survival functions defined above and such that
Λ00

11 ≡ 0, we have the following conditional hazard rates ∀s < t ∈ IR+:

P (X = dt, Y > t|X ≥ t, Y ≥ t) = dΛ01
11(t)

P (X > t, Y = dt|X ≥ t, Y ≥ t) = dΛ10
11(t)

P (X = dt|X ≥ t, Y < t) = dΛ00
10(t) = P (X = dt|X ≥ t, Y = ds)

P (Y = dt|Y ≥ t,X < t) = dΛ00
01(t) = P (Y = dt|Y ≥ t,X = ds)

Conversely, if there exist Λ10
11, Λ

01
11,Λ

00
10, Λ

00
01, cumulative hazard functions in L

such that the joint law satisfies the above equations, then the joint survival
function of (X, Y ) satisfies (16.1).

Theorem 2 If (X, Y ) has survival function S given by (16.1), then X and Y
are independent and S is absolutely continuous with respect to λ2 if and only if

Λ00
11 ≡ 0 ; Λ01

11 ≡ Λ00
10 ; Λ10

11 ≡ Λ00
01.

A version of our model (16.1), in discrete time, was introduced in Gross and
Huber (2000). The two models are embedded in the general model obtained by
replacing, in (16.1), L by L∗, the set of cumulative hazards with possible jumps
on an at most denumerable set of points D ∈ IR+:

L∗ = {Λ : IR+ → IR+, Λ non decreasing , Λ(0) = 0, Λ(t) −−−→
t→∞ ∞}

Simple examples of laws of type (16.1) may be obtained by choosing usual
parametric hazards for the involved Λ′s.

16.3 NPML estimation

16.3.1 Likelihood for the bivariate case

Let X = (Xi1, Xi2) be the bivariate survival time of cluster i, i ∈ {1, 2, . . . , n}.
The clusters are assumed to be independent. Xi1 and Xi2 may possibly be right
censored by a bivariate censoring time C = (Ci1, Ci2), independent of X, so
that the observed bivariate time is T = ((Xi1 ∧Ci1, Xi2 ∧Ci2) ≡ (Ti1, Ti2). The
indicator of non censoring is denoted δ = (δi1, δi2) ≡ (1{Ti1 = Xi1}, 1{Ti2 =
Xi2)}. Let Rij(t) = 1{t < Tij} and Nij(t) = δij1{t ≥ Tij} be respectively
the associated at risk and counting processes defined for i ∈ {1, 2, . . . , n} and
j ∈ {1, 2}, and R(t) = (Ri1(t), Ri2(t)), N(t) = (Ni1(t), Ni2(t)) . The likelihood
will be expressed in terms of the hazards defined as λ01

11(t)dt = P (t ≤ X1 ≤
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t + dt|X1 ≥ t,X2 > t) and the like. It is the product V =
∏n

i=1 Vi where each
Vi may be written as

Vi =
∏

t(1− λ10
11(t)dt− λ01

11(t)dt)R1(t)R2(t)(λ10
11(t))

R1(t−)R2(t−)dN1(t)

(λ01
11(t))

R1(t−)R2(t−)dN2(t)
∏

t(1− λ10
10(t)dt)R1(t)(1−R2(t))δ2∏

t(1− λ01
01(t)dt)R2(t)(1−R1(t))δ1(λ10

10(t)dt)R1(t)(1−R2(t))δ2dN1(t)

(λ01
01(t)dt)R2(t)(1−R1(t))δ1dN2(t)

Maximization of V (NPML) implies jumps of the Λ′s at (ordered) times Tk , k =
1, 2 · · · , K when an event occurred (δij = 1 for some (i, j)). Let us introduce
the quantities:

τ1(i) = 1{Ti1 < Ti2} ; τ2(i) = 1{Ti2 < Ti1} ; τ(i) = 1{Ti1 = Ti2}
ak = Λ01

11(T
+
k )− Λ01

11(T
−
k ) ; bk = Λ10

11(T
+
k )− Λ10

11(T
−
k ) ;

ck = Λ00
10(T

+
k )− Λ00

10(T
−
k ) ; dk = Λ00

01(T
+
k~)− Λ00

01(T
−
k ) .

and the counts:

s1(i) =
∑

i′ 1{Ti1 ≤ Ti′1 ∧ Ti′2} ; s2(i) =
∑

i′ 1{Ti2 ≤ Ti′1 ∧ Ti′2} ;
s3(i) =

∑
i′ τ2(i′)1{Ti′2 ≤ Ti1 ≤ Ti′1}} ; s4(i) =

∑
i′ τ1[i′]1{Ti′1 ≤ Ti2 ≤ Ti′2}}.

Then the log-likelihod is equal to

L = −∑
i aiδi1τ1(i)s1(i) − ∑

i biδi2τ2(i)s2(i) +
∑

i δi1τ1(i) log(ai)∑
i δi2τ2(i) log(bi) − ∑

i ciδi1τ2(i)bis3(i) − ∑
i diδi2τ1(i)bis4(i)∑

i δi1τ2(i) log(ci) +
∑

i δi2τ1(i) log(di)

By derivation of L with respect to ai, bi, ci, di, we obtain the NPML estimates:

âi = δi1τ1(i)
s1(i) ; b̂i = δi2τ2(i)

s2(i) ; ĉi = δi1τ2(i)
s3(i) ; d̂i = δi2τ1(i)

s4(i) .

In order to derive their asymptotic properties, one rewrites them in terms of the
associated counting N , at risk Y and martingale M processes with respect to
the filtration F(t) = σ(Ni1(s), Ni2(s), Ri1(s), Ri2(s), s < t), for each case: jump
of individual 1 (resp. 2) in the presence (resp. absence) of the other element of
the pair:

Ni,11:01(t) = 1{Xi1 ≤ t,Xi1 < Xi2 ∧ Ci1 ∧ Ci2} =
∫ t
0 Ri1(s)Ri2(s)dNi1(s)

Yi,11(t) = 1{Xi1 ∧Xi2 ∧ Ci1 ∧ Ci2 ≥ t} = Ri1(t)Ri2(t)
Mi,11:01(t) = Ni,11:01(t)−

∫ t
0 Yi,11(u)dΛ01

11(u)

and the like, (Ni,11:10(t), Yi,11(t),Mi,11:10(t)),(Ni,10:00(t), Yi,10(t),Mi,10:00(t)), and
(Ni,01:00(t), Yi,01(t),Mi,01:00(t)). The whole asymptotic normal theory holds as
the estimates of the cumulative Λ′s, properly normalized converge to indepen-
dent gaussian martingales with estimable covariances.
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16.4 Concluding remarks

The proposed model could be considered as a multistate model, where the suc-
cessive states are the actual composition of the subset of the cluster that is still
at risk after some members have experienced the expected event. In a future
work, we shall introduce covariates such as cluster and individual covariates as
well as the time elapsed between two successive states of the cluster. Let us
finally remark that the parallel with semi-Markov models for multistate models
is not straightforward. This is due to the fact that, for example in the bivariate
case, when the pair is in state (0, 1) the cumulative hazard Λ00

01 starts from 0
and not from the time s at which the first member of the pair experienced the
event. Making the parallel perfect would lead to a new family of models having
all properties of semi-markov multistate models, to which could be applied all
results already obtained for example by Huber, Pons and Heutte (2006).
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Abstract: The Pareto Distribution can serve to model several types of data
sets, especially those arising in the insurance industry. In this paper, we present
methods to test the hypothesis that the underlying data come from a Pareto
Distribution. The test presented for the Type I Pareto Distribution is based on
the regression test of Brain and Shapiro (1983) for the exponential distribution
while the test for the Type II Pareto Distribution uses the modified Greenwood
statistic developed by Shapiro and Chen (2001). Power comparisons of the tests
are carried out via simulations.

Keywords and phrases: Type I Pareto distribution, Type II Pareto distri-
bution, regression tests, Greenwood’s statistic, extreme

17.1 Introduction

Statisticians and engineers have been expanding the types of models used in the
analysis of measurement data. There was a time when the normal distribution
was used as an underlying model for all data, but of late the exponential,
Weibull, lognormal, gamma and Pareto distributions have been used in the
search for models that more closely match the phenomena under study. Since
the choice of a model can significantly affect the results of the analysis of a data
set, testing model assumptions plays an important role in such analysis. This
paper presents composite tests for the assumption that a set of data comes from
a Pareto population.

The Pareto distribution originates from the work of Pareto (1897) and has
been used in many applications including modeling income distributions, hy-
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drology, insurance claims and in general, populations representing extreme oc-
currences. Arnold (1983) stated that this model was useful for approximating
data that arose from distributions with ”fat tails”. A comprehensive discussion
of the Pareto distribution can be found in this reference. Various modifications
have been made to the classical distribution proposed by Pareto. In Arnold’s
book he has labelled these as Type I, Type II, Type III and Type IV. This
article will discuss a distributional test for the first two of these distributions.
The estimation of the Pareto parameters using the maximum likelihood method
results in biased estimates for the Type I Pareto and is not straightforward for
the Type II. Several authors have presented simplified corrections for the bias
of the maximum likelihood estimators for the Type I model (see for e.g., Sak-
sena (1978), Baxter (1980), and Cook and Mumme (1981)). Estimation for the
parameters of the Type II model has been studied extensively as well. Harris
(1968) and Arnold and Laguna (1977) proposed the technique of matching of
moments for the Type II while Davison (1984) and Grimshaw (1993) (among
others) have studied maximum likelihood estimation for the Type II Pareto.

The classical or type I Pareto distribution is defined by the density function,

f(y) =
ασα

yα+1
, y ≥ σ > 0, α > 0. (1.1)

The parameter α is the shape parameter and σ is the scale parameter. Note
that the minimum value of Y is equal to σ. It is easy to see that if Y has a
Type I Pareto distribution, then T = ln(Y/σ) has an exponential distribution
with a mean of 1/α.

The Type II Pareto distribution is defined by the distribution function

F (y) = 1− (
1 +

y

σ

)−α
, y ≥ 0, σ ≥ 0, α > 0. (1.2)

If one assumes that α > 1 then the distribution has a finite first moment.
Unlike other distributions there are few tests to assess whether it is rea-

sonable to use the Pareto model with a given set of data when the two pa-
rameters are unknown. When the parameters are known it is a simple matter
to transform the data to an exponential distribution and use one of the many
tests for the exponential. In the composite case one can use the classical chi
squared goodness of fit procedure using maximum likelihood estimates of the
parameters; but this procedure usually has poor power properties for contin-
uous distributions. Choulakian and Stephens (2001) developed two composite
hypothesis tests for a generalized Pareto distribution based on the Anderson-
Darling and the Cramer-von Mises statistics. However, the generalized Pareto
is a Type II distribution that has been parametrized and where the parameter α
can be negative. We were interested in investigating testing procedures for the
classical Type I and Type II Pareto models. For the Type I Pareto model, this
paper proposes a composite hypothesis test that is based on transforming the



Goodness of Fit tests for Pareto Distribution 107

data to an exponential distribution and uses a modification of a test of expo-
nentiality devised by Brain and Shapiro (1983). The test statistic proposed by
Brain and Shapiro has an asymptotic chi-squared distribution with two degrees
of freedom distribution and requires a correction factor that is a function of the
sample size. Simulation studies have indicated that the null distribution of the
proposed test statistic for the Pareto I distribution can be approximated by the
chi squared distribution for sample sizes as small as 10 without the correction.
For the Type II Pareto, we propose a test statistic based on the procedure
developed by Shapiro and Chen (2001) for testing the gamma distribution.

We now describe the testing procedures.

17.2 Type I Pareto Distribution

The first step in testing for either the Type I or the Type II Pareto distribution
is the estimation of the parameters. Maximum likelihood estimates for the Type
I Pareto are easy to compute and are given by:

σmle = Y(1) = the smallest observation (2.1)

αmle =
n

∑n
i=1 ln

( Y(i)

Y(1)

) . (2.2)

The estimator of α is biased which can be corrected by multiplying by (n −
2)/n. Both these estimators are consistent and mutually independent and their
sampling distributions are given in Malik (1970). A simulation study of the
mean square error for the shape and scale parameters shows that the MSE’s
are usually quite small (below 0.01 in most cases) indicating that using the
scale parameter estimate to transform the data to an exponential distribution
should yield satisfactory results.

Based on the regression test of Brain and Shapiro (1983) for the exponential
distribution, the test for the Type I Pareto distribution is then conducted as
follows:
1. Denote the data values by Y1, Y2, ..., Yn

2. Obtain the estimate of the scale parameter using the maximum likelihood
estimator from (2.1)
3. Transform the data to Wi = ln(Xi) where Xi = Yi

σmle
= Yi

Y(1)
. Note that

this transformation converts the shape parameter to a scale parameter and the
scale parameter to the origin parameter of zero. As pointed out in Section 1, the
transformed data will be exponential with origin of zero and a scale parameter
of α.
4. Order the transformed variables and compute the (n−1) weighted spacings;
Vi = (n − i + 1)(W(i) −W(i−1)), i = 1, 2, . . . , n and V0 = 0. Note that W(1) ≤
W(2) ≤ ... ≤ W(n) are the order statistics of the Wi’s.
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5. Compute

Z1 =

√
12

n− 1

(∑n−1
i=1 αiVi+1∑n−1
i=1 Vi+1

)
(2.3)

where ai = i− n/2, i = 1, 2, . . . , n− 1.
6. Compute

Z2 =

√
5

4(n + 1)(n− 2)(n− 3)
12

∑n−1
i=1 α2

i Vi+1 − n(n− 2)
∑n−1

i=1 Vi+1∑n−1
i=1 Vi+1

(2.4)

7. Finally the test statistic
Z = Z2

1 + Z2
2 (2.5)

8. The limiting distribution of Z is a chi square distribution with 2 degrees of
freedom, so reject the null hypothesis of a Pareto Type I distribution if Z > χ2

2,α

for an α level test.
The power of the test has been tested against various alternatives and the

simulation results show that the test is extremely powerful with the power being
higher than 0.70 in most cases.

17.3 Type II Pareto Distribution (Work in Progress)

Once again the first step in testing for the Type II Pareto Distribution involves
the estimation of the underlying parameters, σ and α. The maximum likelihood
estimates of the parameters are obtained by solving the following non linear
equation for σ :

f(σ̂) = N2 − ( N∑

i=1

σ̂

σ̂ + Xi

)
?

(
N −

N∑

i=1

ln
σ̂

σ̂ + Xi

)
= 0. (3.1)

Once we have σ̂ , the estimate of α, α̂ is given by:

α̂ =
N∑N

i=1 ln(σ̂ + Xi)− n ln σ̂
. (3.2)

To solve equation (3.1), we will use the iterative method proposed by Grimshaw
(1993). Provided that the estimators have a small mean square error, the
modified Greenwood statistic as developed by Shapiro and Chen (2001) will be
used to test for the Type II Pareto distribution. The procedure is described as
follows:
1. Denote the data values by Y1, Y2, ..., Yn

2. Obtain the estimates of the scale parameter and the shape parameters, σ̂
and α respectively, using (3.1) and (3.2)
3. Transform the data to Zi = 1 − [1 + Yi/σ̂]−α̂. Note that the transformed
data will be made up of i.i.d. uniform (0,1) random variables.
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4. Order the transformed data and compute the (n+1) spacings; Di = Z(i) −
Z(i−1), i = 1, 2, ..., n + 1 where Z(1) ≤ Z(2) ≤ ... ≤ Z(n) are the ordered Z values
and Z(0) = 0, Z(n+1) = 1.
5. Compute the modified Greenwood statistic, Gw as follows:

Gw = (n + 1)
n+1∑

i=1

αiD
2
i (3.3)

where a1 = a2 = a3 = a4 = 3/2(n + 1) and ai = 1−4α1
n−3 , i = 3, 4, ..., n− 1.

6. The percentiles and the rejection region for the test will be determined
via Monte Carlo simulations since the asymptotic distribution of Gw is not
available.

Finally the power of the proposed test will also be studied via simulations.
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Abstract: The linear hazard regression model developed by Aalen is becoming
an increasingly popular alternative to the Cox multiplicative hazard regression
model. There are no methods in the literature for selecting among different
candidate models of this nonparametric type, however. In the present paper a
focussed information criterion is developed for this task. The criterion works for
each specified covariate vector, by estimating the mean squared error for each
candidate model’s estimate of the associated cumulative hazard rate; the finally
selected model is the one with lowest estimated mean squared error. Averaged
versions of the criterion are also developed.

Keywords and phrases: Aalen’s linear model, covariate selection, focussed
information criterion, hazard regression, model selection

18.1 Introduction: Which Covariates to Include?

We consider survival regression data of the usual form (Ti, δi, xi) for individuals
i = 1, . . . , n, where xi is a vector of say r covariates, among which one wishes to
select those of highest relevance. Also, Ti = min{T 0

i , Ci} is the possibly censored
life-length and δi = I{T 0

i < Ci} the associated non-censoring indicator, in terms
of underlying life-length T 0

i and censoring time Ci for individual i.
Our framework is that of the linear hazard regression model introduced by

Aalen (1980), see e.g. the extensive discussion in Andersen, Borgan, Gill and
Keiding (1993, Ch. 8), where the hazard rate for individual i may be represented
as

hi(u) = xt
iα(u) =

r∑

j=1

xi,jαj(u) for i = 1, . . . , n,
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in terms of regressor functions α1(u), . . . , αr(u). These need to satisfy the
requirement that the linear combination xtα(u) stays nonnegative for all x sup-
ported by the distribution of covariate vectors. In other words, the associated
cumulative hazard function

H(t |x) =
∫ t

0
xtα(u) du = xtA(u) =

r∑

j=1

xjAj(t) (18.1)

is nondecreasing in t, for all x in the relevant covariate space; here we write
Aj(t) =

∫ t
0 αj(u) du for j = 1, . . . , r.

Among questions discussed in this paper is when we might do better with
only a subset of the x covariates than with keeping them all. We focus specif-
ically on the problem of estimating H(t |x) of (18.1) well, for a specified indi-
vidual carrying his given covariate information x. The full-model estimator

Ĥ(t |x) = Ĥfull(t |x) = xtÂ(t) =
r∑

j=1

xjÂj(t) (18.2)

is one option, using the familiar nonparametric Aalen estimators for A1, . . . , Ar

in the full model, keeping all covariates on board. Pushing some covariates out
of the model leads to competing estimators of the type

H̃I(t |x) =
∑

j∈I

xjÃI,j(t), (18.3)

where the index set I is a subset of {1, . . . , r}, representing those covariates
that are kept in the model, and where the ÃI,j(t)’s for j ∈ I are the Aalen
estimators in the linear hazard rate model associated with the I covariates.
Using H̃I(t |x) instead of Ĥ(t |x) will typically correspond to smaller variances
but to modelling bias. Slightly more generally, bigger index sets I imply more
variance but less modelling bias, and vice versa. Thus the task of selecting
suitable covariates amounts to a statistical balancing game between sampling
variability and bias.

In the present ‘extended abstract’ we can only briefly report on develop-
ments, findings and applications presented more fully in the technical report
Hjort (2006). In Section 18.2 we fix the framework and give proper definitions of
full-model and submodel estimators, partly in terms of counting processes and
at-risk processes. Links with martingale theory make it possible to reach results
reported on in Section 18.3 that accurately describe the bias and variance prop-
erties associated with a given candidate model. These quantities can then be
estimated from data. The focussed information criterion (FIC) introduced in
Section 18.4 acts by estimating the risk associated with each candidate model’s
estimator of the cumulative hazard function; the model we suggest being used
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in the end is the one with lowest estimated risk. A weighted version is also put
forward.

This brief introduction has so far taken model comparison as corresponding
to accuracy of estimators of cumulative hazard rates H(t |x). By a delta method
argument this is also nearly equivalent to ranking models in terms of accuracy
of estimates of survival probabilities S(t |x) = exp{−H(t |x)}. It is important
to realise that a submodel I may work better than the full model, even if the
submodel in question is not ‘fully correct’ as such; this is determined, among
other aspects, by the sizes of the αj(u) regressor functions that are left out
a model. This makes model selection different in spirit and operation than
e.g. performing goodness-of-fit checks on all candidate models.

General methodology for focussed information criteria and frequentist model
average inference has been developed in Hjort and Claeskens (2003) and Claes-
kens and Hjort (2003) for the case of likelihood theory for parametric models.
The work reported on here may be seen as suitable extensions of that method-
ology, to the present framework of nonparametric hazard regression models; see
again Hjort (2006) for a fuller account.

18.2 Estimators in Submodels

This section properly defines the Aalen estimators Â and ÃI involved in (18.2)
and (18.3). It is convenient to define these in terms of the counting process and
at-risk process

Ni(t) = I{Ti ≤ t, δi = 1} and Yi(u) = I{Ti ≥ u}
for individuals i = 1, . . . , n. Now introduce the r × r-size matrix function
Gn(u) = n−1

∑n
i=1 Yi(u)xix

t
i. The Aalen estimator Â = (Â1, . . . , Âr)t is

Â(t) =
∫ t

0
Gn(u)−1n−1

n∑

i=1

xi dNi(u) for t ≥ 0.

This also defines Ĥfull(t |x) of (18.2). It is assumed here that at least r linearly
independent covariate vectors xi remain in the risk set at time t, making the
inverse of Gn well-defined for all u ≤ t; this event has probability growing
exponentially quickly to 1 as sample size increases, under mild conditions.

To properly define the competitor H̃I(t |x) of (18.3), we use the notation
xI = πIx for the vector of those xj components for which j ∈ I, for each given
subset I of {1, . . . , r}. In other words, πI is the projection matrix of size |I|×r,
with |I| the number of covariates included in I. For the given I, we partition
the Gn function into blocks,

Gn(u) =
(

Gn,00(u), Gn,01(u)
Gn,10(u), Gn,11(u)

)
.
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where Gn,00(u) = n−1
∑n

i=1 Yi(u)xi,Ix
t
i,I is of size |I| × |I|, etc. The Aalen

estimator for the vector of Aj functions where j ∈ I is

ÃI(t) =
∫ t

0
Gn,00(u)−1n−1

n∑

i=1

xi,I dNi(u).

These are those at work in (18.3).
Using martingale theory for counting processes one may express dÃI(u) as

dAI(u)+Gn,00(u)−1Gn,01(u) dAII(u) plus martingale noise. In particular, when
the I model is used, then the Aalen estimator ÃI(t) does not really estimate
AI(t), but rather the function AI(t) +

∫ t
0 G−1

00 G01 dAII , where G00 and so on
are limit versions of Gn,00 and so on; see below.

18.3 Assessing and Estimating
Bias, Variance, and Mean Squared Error

In this section we first indicate how useful approximations can be developed for
the mean squared error of each of the (18.3) estimators H̃I(t |x) = xt

IÃI(t), and
then use these to construct natural risk estimators. We shall assume that the
censoring variables C1, . . . , Cn are i.i.d. with some survival distribution C(u) =
Pr{Ci ≥ u}, and that they are independent of the life-times T 0

i ; the case of no
censoring corresponds to C(u) = 1 for all u. It will furthermore be convenient to
postulate that x1, . . . , xn stem from some distribution in the space of covariate
vectors. These assumptions imply for example that the Gn function converges
with increasing sample size, say

Gn(u) → G(u) = E∗Y (u)xxt = E∗ exp{−xtA(u)}xxt C(u), (18.4)

where E∗ refers to expectation under the postulated covariate distribution. Also
the mean function Ḡn(u) = n−1

∑n
i=1 pi(u)xix

t
i converges to the same limit

G(u); here pi(u) = EYi(u) = exp{−xt
iA(u)}C(u). We shall finally assume that

the r×r-function G(u) is invertible over the time observation window u ∈ [0, τ ]
of interest; this corresponds to C(τ) positive and to a non-degenerate covariate
distribution. As in Section 18.2 there will be a need to partition the G(u)
function into blocks G00(u), G01(u), etc.; G00(u) has e.g. size |I| × |I|.

Consider as in Section 18.1 a given individual with covariate information x,
and let

bI,n(u) = Gn,10(u)Gn,00(u)−1xI − xII , (18.5)

which can be seen as a bias function, of dimension q = r − |I|. One may now
show that

√
n{xt

IÃI(t)− xtA(t)} =
√

n

∫ t

0
bt
I,n dAII + xt

I

∫ t

0
G−1

n,00 dVn,I . (18.6)
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The second term is a zero-mean martingale, in terms of a certain Vn process,
while the first term is a bias term, stemming from using model I that does not
include all the components. We may use (18.6) to develop good approximations
to say msen(I, t), defined as n times mean squared error of the (18.3) estima-
tor. We treat the covariate vectors x1, . . . , xn as given, i.e. our approximations
are expressed directly in terms of these. To give the result we need to define
dJn(u) = n−1

∑n
i=1 Yi(u)xix

t
i xt

i dA(u), the increments of a process which has a
well-defined limit

dJ(u) = E∗Y (u)xxt xt dA(u) = E∗ exp{−xtA(u)}xxt xt dA(u) C(u)

under conditions stated earlier. The basic mse decomposition result is that

msen(I, t) .= sqb(I, t) + var(I, t), (18.7)

where the variance term is xt
I

∫ t
0 G−1

00 dJ00 G−1
00 xI and the squared bias term is

sqb(I, t) = n
(∫ t

0
b̄t
I,n dAII

)2
,

where b̄I,n is as in (18.5) but with Ḡn replacing Gn.
We have seen that each candidate model I has an associated risk msen(I, t)

of (18.7) when estimating the cumulative hazard function using H̃I(t |x). Now
we deal with the consequent task of estimating these risk quantities from data.
For the variance part we use

v̂ar(I, t) = xt
I

∫ t

0
G−1

n,00(u) dĴn,00(u) Gn,00(u)−1 xI ,

wherein dĴn(u) = n−1
∑n

i=1 Yi(u)xix
t
i xt

idÂ(u), engaging the full-model Aalen
estimator. The |I| × |I| block used for the variance estimation is πI dĴn(u)πt

I .
For the squared bias part, considerations given in detail in Hjort (2006) show
that

ŝqb(I, t) = n
(∫ t

0
bt
I,n dÂII

)2
−

∫ t

0
bt
I,n dQ̂n bI,n

is a nearly unbiased estimator, in which

dQ̂n(u) = πII{Gn(u)−1 dĴn(u) Gn(u)−1}πt
II .

These considerations lead to the risk estimator

R̂(I, t) = m̂sen(I, t) = max{ŝqb(I, t), 0}+ xt
I

∫ t

0
G−1

n,00 dĴn,00 G−1
n,00 xI .
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18.4 The FIC and the Weighted FIC

Here we show how risk estimation methods developed above lead to natural
information criteria for model selection. The first such is a focussed information
criterion (FIC) that works for a given individual and a given time point at which
we wish optimal precision for his survival probability estimate. For the given
covariate x and time point t we calculate

FIC = FIC(I, x, t) = max{ŝqb(I, x, t), 0}+ v̂ar(I, x, t)

for each candidate model I, with these terms computed as in the previous
section. We note that bI,n(u) of (18.5) depend on x and that the submatrices
Gn,00 and so on of (18.4) depend on I. In the end one selects the model with
smallest FIC score.

Note that FIC is sample-size dependent. In a situation with a given amount
of non-zero bias

∫ t
0 b̄t

I dAII , the ŝqb component of FIC will essentially increase
with n, whereas the variance component remains essentially constant. This
goes to show that the best models will tolerate less and less bias as n increases,
and for sufficiently large n only the full model (which has zero modelling bias)
will survive FIC scrutiny.

There are various variations on the FIC above, including important versions
that correspond to suitable weighted risks; see Hjort (2006) for a full description
of such wFIC methods. A special case worth recording is when t is fixed and the
weight function w is identical to the covariate distribution. It is unknown, but
may be approximated with the empirical distribution of covariates x1, . . . , xn.
This leads to wFIC(I) as a sum of a weighted variance and a weighted squared
bias term, specifically with w-v̂ar(I) equal to

n−1
n∑

i=1

v̂ar(I, xi, t) = Tr
{(∫ t

0
G−1

n,00 dĴn,00 G−1
n,00

)(
n−1

n∑

i=1

xi,Ix
t
i,I

)}

and w-ŝqb(I) that can be expressed as
n∑

i=1

{xt
i,IB̂I(t)− xt

i,IIÂII(t)}2 − n−1
n∑

i=1

∫ t

0
bI,n(u, xi)t dQ̂n(u) bI,n(u, xi),

where B̂I(t) =
∫ t
0 G−1

n,00Gn,01 dÂII(u).
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Semi-parametric Regression Models For

Interval-censored Survival Data, With and

Without Frailty Effects

Philip Hougaard

Biostatistics, H. Lundbeck A/S, Valby, Denmark

Abstract: Interval-censored survival data occur when the time to an event is
assessed by means of blood samples, urine samples, X-ray or other screening
methods that cannot tell the exact time of change for the disease, but only
that the change has happened since the last examination. This is in contrast
to standard thinking that assumes that the change happens at the time of the
first positive examination. Even though this screening setup is very common
and methods to handle such data non-parametrically in the one-sample case
have been suggested more than 25 years ago, it is still not a standard method.
However, interval-censored methods are needed in order to consider onset and
diagnosis as two different things, like when we consider screening in order to
diagnose a disease earlier. The reason for the low use of interval-censored meth-
ods is that in the non-parametric case, analysis is technically more complicated
than standard survival methods based on exact times. The same applies to
proportional hazards models. The talk will cover semi-parametric regression
models, both of the proportional hazards type and of the corresponding frailty
models, with proportional hazards conditional on the gamma distributed frailty.
The statistical theory will not be dealt with in detail. The talk will emphasize
the applications, using examples from the literature as well as from my own
experience regarding development of microalbuminuria among Type 2 diabetic
patients.

Keywords and phrases: Frailty; Interval censoring; Non-parametric estima-
tion
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19.1 Introduction

Interval-censored survival data refer to survival data, where the times of events
are not known precisely; they are only known to lie in given intervals. This is
in contrast to the standard survival data setup, which assumes that all event
times are either known precisely, or they happen after the end of observation
(that is, right-censored data).

Thus, we only know that the event time is in an interval of the form (Li, Ri],
where the left endpoint is the time last seen without the disease, and the right
endpoint is the first time seen with the disease.

The inspection times are supposed to be generated independently of the
response process and not informative of the parameters governing the response
process. The likelihood then has the following form

∏

i

{Si(Li)− Si(Ri)}. (19.1)

In the parametric case, this expression can be directly optimized; all that is
needed is to insert the relevant expressions for Si(t). As in other cases, the
likelihood function is maximized by differentiating the expression with respect
to the parameters, and then setting these derivatives to 0.

In the non-parametric case, it becomes much more complicated. First, it
is impossible to identify the survivor function at all time points. This corre-
sponds to the problem that the Kaplan-Meier estimate cannot determine the
tail of the distribution, when the largest time value corresponds to a censoring.
For interval-censored data, this problem can occur at any time point. We can
only determine the values of the survivor function at the interval endpoints,
that is, the collection of Li and Ri’s, which we together will call x-values. In
many cases, several consecutive of these x-values will show identical survivor
function values, and thus the survivor function between them are given as the
common value. When two consecutive values do not agree, we have an inter-
val with positive estimated probability and we cannot determine where in the
interval the probability mass lies. That is, we can only determine the total
probability of that interval. This was realized already by Peto (1973), which
also describes a procedure to select a subset of the intervals, which will contain
all the probability mass. It is those intervals between the x-values, which have
a lower endpoint among the L-observations and an upper endpoint among the
R-observations. To emphasize that these make up only a subset of the intervals,
they are denoted as intervals (P, Q]. The likelihood is formally the same as de-
scribed in Eq. (19.1). When these intervals have been determined, estimation
consists of optimising the likelihood subject the probabilities of these intervals
being greater than or equal to 0. It is often the case that some of these intervals
have zero estimated probability.
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19.2 Proportional hazards models

This can be extended to the proportional hazards model, defined as the hazard
being of the form

λ(t; z) = λ0(t) exp(β′z). (19.2)

where z is vector of covariates with corresponding regression coefficients β and
λ0(t) an arbitrary function describing the hazard as function of time. The re-
gression parameters β is the interesting parameter, whereas the hazard function
is a nuisance parameter. To apply this model to interval-censored data, we need
to express this relation by means of the survivor function, for example as

S(t; z) = exp{−Λ0(t) exp(β′z)}, (19.3)

where Λ0(t) =
∫ t
0 λ0(u)du is the integrated hazard function. The argument on

selecting a subset of the intervals carries over without modification, because
the argument does not request that the distributions are equal. Instead of
using the probability parameters corresponding to each interval, we may use
the contributions to the integrated hazards for each interval, say θj = Λ0(Qj)−
Λ0(Pj). This extends the proportional hazards model of Cox (1972), but the
nice estimation methods of that paper cannot be used. The estimates can
instead be found by generalizing the procedure from the non-parametric case.

19.3 Conditional proportional hazards

The proportional hazards model described above is very useful for finding the
effect of covariates. However, it may still be relevant to extend the model, first
of all, in its own right to obtain a more flexible model, when we think that
the assumption of proportional hazard is not fulfilled and second as a means
of goodness-of-fit checking the assumption of proportional hazards. One choice
is the gamma frailty model, which specifies that conditional on the individual
unobserved frailty, say Y the hazard has the form

µ(t; z) = µ0(t)Y exp(β′z). (19.4)

As Y is unobserved, we have to assign a distribution to it and integrate out, to
obtain the marginal distribution. Here we use the gamma distribution

f(y) = δδyδ−1 exp(−δy)/Γ(δ) (19.5)

which is formulated to have a mean of 1. After integration we obtain the
expression

S(t; z) = {1 + exp(β′z)M0(t)/δ}−δ, (19.6)

which can similarly be inserted into Eq. (19.1). This model will show converging
hazards when Y has been integrated out. In that sense it is an extension of the
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proportional hazards in only one direction. More details on the frailty model
are described in Hougaard (2000).

This can be optimised in the same as for the proportional hazards model;
there is just an additional parameter δ. This model can be compared to the
proportional hazards model by the likelihood ratio test.

19.4 Conclusion

The proportional hazards has been suggested earlier for interval-censored data,
but it seems to have been complicated to calculate the estimates and therefore,
this has never become a standard model. However, estimation is not that
difficult, so it is possible to apply this model. Indeed, it is not difficult to
extend to the gamma frailty model, which is useful for setting the proportional
hazards model in perspective.
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Abstract: We consider an incomplete repair model, that is, the impact of re-
pair is not minimal as in the homogeneous Poisson process and not ”as good
as new” as in renewal processes but lies between these boundary cases. The re-
pairs are assumed to impact the failure intensity following a virtual age process
of the general form proposed by Kijima. In previous works field data from an
industrial setting were used to fit several models. In most cases the estimated
rate of occurency of failures was that of an underlying exponential distribution
of the time between failures. In this paper it is shown that there exist main-
tanance schedules under which the failure behavior of the failure-repair process
becomes a homogeneous Poisson process.

Keywords and phrases: Incomplete repair, Poisson process, renewal process,
virtual age, hazard rate, optimal maintenance

20.1 Introduction

In this research, we are concerned with the statistical modeling of repairable
systems. Our particular interest is the operation of electrical generating sys-
tems. As a repairable system, we assume the failure intensity at a point in time
depends on the history of repairs. In the environment under investigation, it
was observed that maintenance decisions were regularly carried out. We assume
that such actions impacted the failure intensity. Specifically we assume that
maintenance actions served to adjust the virtual age of the system in a Kijima
type manner (Kijima et al., 1988, Kijima, 1989). Kijima proposed that the
state of the machine just after repair can be described by its so-called virtual
age which is smaller (younger) than the real age. In his framework, the rate of
occurence of failures (ROCOF) depends on the virtual age of the system.

123



124 Waltraud Kahle

Kijima proposed two repair effect models. In his first model he assumed
that repairs serve only to remove damage created in the last sojourn (a Kijima
type I virtual age process). In his second model he assumed that the repair
action could remove all damage accumulated up to that point in time (a Kijima
type II virtual age process). That is, such repairs reset the virtual age of the
unit to somewhere between that of a completely restored unit (good-as-new
repair) and a minimally repaired unit, inclusively.

Further, we assume that the baseline failure intensity of the system follows
a Weibull distribution

In Gasmi, Love, Kahle (2003) it was shown that the likelihood func-
tion can be developed from the general likelihood function for observation of
point processes (Liptser and Shiryayev (1978)). Further, the likelihood ratio
statistic can be used to find confidence estimates for the unknown parameters.

The numerical results for this data file are surprising: Under different as-
sumptions about the repair actions (renewals, Kijima type I or II, mixture of
Kijima type repairs and renewals in dependence on the time required for repair)
a value for β was estimated approximately to be 1, see Gasmi, Love, Kahle
(2003). That is, the failure intensity is more or less constant. But in this case
the failure behavior does not depend on maintenance actions.

One of the reasons for this could be that for real systems, maintenance
actions depend on the state of the system. In Kahle, Love (2003) it was
assumed that each maintenance action has its own degree of repair which is
assumed to be

ξk = 1− Φ(log(rk)− 2.4) ,

where ξk is the degree of repair after the kth failure or shut down, rk is the
repair time after the k-th sojourn and Φ is the distribution function of the
standard normal distribution. The constant 2.4 is the estimated mean value of
the log repair times. The estimated variance of the log repair times is about 1.
It is easy to see that we get a degree of repair ξk of nearly 1.0 for very small
repair times (which means that the age of the system after repair is the same
as before the failure or shutdown) and a ξk of approximately 0.0 for long repair
times (the system is perfectly repaired).

For this model we get the following estimates for the parameters of the
baseline Weibull intensity:

β̂ = 2.305 α̂ = 134, 645 min,

that is, the assumption that each maintenance action has its own degree of
repair leads to an estimate of the shape parameter of β̂ = 2.305. This re-
ally increasing failure rate is in agreement with the experiences of maintenence
engineers.
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20.2 Optimal Maintenance as Time Scale
Transformation

The results, mentioned in the previous sections, suggest, that in practice the
engineers make a good maintenance policy, that is, they make repairs in de-
pendence on the state of the system. The idea is that such a policy makes the
apparent failure behavior of a system to be that of an exponential distribu-
tion. This is consistent with our data. In figure 20.1 are shown the cumulative
distribution function of the operating time between failures together with the
fitted CDF of an exponential distribution and the Q-Q plot (observed quantiles
against the quantiles of the exponential model. These plots suggest reasonable
agreement with the exponential model if we consider only the failure process
and ignore all maintenance events.
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Figure 20.1: Operating time between failures: CDF and exponential Q-Q plot

Definition 20.1 A maintenance policy is called failure rate optimal, if the
state dependent preventive maintenance actions lead to a constant ROCOF of
the failure process.

Following an idea in Finkelstein (2000) we assume that by repair actions,
the time scale is transformed by a function W (t). Let Λ0(t) be the baseline
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cumulative hazard function and let Λ1(t) = Λ0(W (t)) be the resulting hazard
after a transformation of the time scale. For the Weibull hazard

Λ0(t) = (t/α)β

and W (t) = t1/β we get

Λ1(t) = Λ0(t1/β) =
t

αβ
,

that is, the hazard function of an exponential distribution with parameter λ1 =
1/αβ.

In practice we have repair actions at discrete time points, which leads to
the question of the degrees of repair at these points. Let us consider two ex-
amples. In both examples we assume that after a failure the system is repaired
minimally. Additionally, maintenance decisions were regularly carried out. We
assume that maintenance actions served to adjust the virtual age of the system
in a Kijima type manner.

Example 1: Assume that the distances between maintenance actions are
constant and all repair actions follow the Kijima type I repair process. Let
t1, t2, . . . be the time points of maintenance actions and ∆ = tk − tk−1, k =
1, 2, . . . , where t0 = 0, be the constant distance between maintenances. Then
it is possible to find a discrete time transformation which consists of different
degrees of repair. Let the sequence of degrees be

ξk =
k1/β − (k − 1)1/β

∆1−1/β
.

Then the virtual age vn of the system at time tn = n ·∆ can be found to be

vn = ∆
n∑

k=1

ξk = ∆
n∑

k=1

k1/β − (k − 1)1/β

∆1−1/β
= (n ·∆)1/β .

Example 2: Again we assume that the distances between maintenance
actions are constant, but now we consider the Kijima type II repair process. In
this case the appropriate sequence of degrees of repair is

ξk =
k1/β

(k − 1)1/β + ∆1−1/β
.

In both cases the sequence is decreasing, that is, with increasing time the
repairs must become better.
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In figure 20.2 are shown the cumulative hazard functions for an Weibull
process without maintenance (solid line) and for maintenance actions every
∆ = .1 time units (broken line). For this, a Weibull process with parameters
α = 1 and β = 2.5 and 30 failures was simulated. The difference ∆ = .1
between maintenance actions is relatively small, and the empirical cumulative
hazard function of the process with preventive maintenance is closed to that
of a Poisson process. The dotted line shows the theoretical cumulative hazard
function of an homogeneous Poisson process.
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Figure 20.2: Weibull process without and with preventive maintenance actions

There are many other possibilities for finding failure rate optimal mainte-
nance policies. One other very simple policy is to consider constant degrees of
repair. It is easy to see that in this case the repair actions must take place more
often with increasing time.
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21.1 Introduction

This talk is concerned with two important questions in nutritional epidemiol-
ogy. The first is biological: is there a relationship between dietary fat intake and
breast cancer? The second is methodological: how do various dietary assess-
ment instruments compare in their power to detect diet-disease relationships?

In studying diet-disease relationships, the dietary assessment instrument
most widely used is the Food Frequency Questionnaire (FFQ) which is relatively
cheap to administer, and hence is practical to use in large-scale prospective
studies. Recently, a series of cohort prospective studies with FFQ has found
little evidence of a fat-breast cancer relationship.

There are other dietary assessment instruments, however, including multiple-
day food records. These instruments are more expensive to administer, but are
often thought to be better measures of dietary intake than the FFQ. Recently,
Bingham et al. (2003) reported the results of a comparison of two instruments,
a FFQ and a 7-day diary, both completed by a cohort of 13,070 women. They
found that a statistically significant positive association between fat intake and
breast cancer incidence could be demonstrated using the 7-day diary, but not
using the FFQ. This study suggested that the 7-day diary, being associated with
less error than the FFQ, may be more efficient than the FFQ at detecting this
diet-disease relationship. However, the study was based on a relatively small
number of breast cancer cases (168).
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We undertook a similar comparison within the control group of the Dietary
Modification (DM) arm of the Women’s Health Initiative (WHI) Clinical Trial.
This is a randomized controlled trial of a low-fat diet that is high in fruits,
vegetables, and grains. General eligibility criteria for the trial are provided
in detail elsewhere (Hays et al., 2003). Women who participated in this trial
completed both a FFQ and a 4-day food record (FR) on entry, allowing a
comparison between these instruments, similar to the comparison of Bingham
et al. To achieve more power in comparing the dietary intervention and control
groups, women were excluded from the trial if they reported consuming a diet
with less than 32% energy from fat, as estimated by the FFQ.

The control group comprised approximately 30, 000 women who received
general advice on diet and health, but no intensive dietary counseling. At the
time of the analysis, after a median follow up of 7 years, 603 of these women
had been diagnosed with invasive breast cancer. Staff at the WHI Clinical
Coordinating Center frequency matched 2 women with no diagnosis of breast
cancer for every case, matched on age category (50-59, 60-69, 70-79), clinic,
and length of follow-up (+/- 12 months) resulting in a sample of 603 cases and
1206 controls. The matching was done because the cost of analyzing the food
records of all women in the control group would have been prohibitive.

With this as background, this talk has two main goals. The first goal is to
describe and compare two methods for estimating relative risks in the entire
(non-truncated) population using data from a truncated sample, both for the
FFQ (on which truncation is based) and for the FR. One method uses a full
(prospective) likelihood. The other is an approximate method that posits a
risk model in which the truncation variable is included, and then employs a
new residualization method. We will demonstrate that the approximate method
gives estimates with very small bias and variances that are substantially smaller
than those of the full likelihood method.

The second goal of this talk is to describe a simple approximate methodol-
ogy that allows the comparison of the instruments, again for the entire, rather
than the truncated, population. The key point is that we want to compare the
relative local power of instruments that would be obtained in a non-truncated
prospective study, using data from the truncated sample. To do so, we develop
estimates of the standard errors of the estimators that would have been ob-
tained in a (hypothetical) non-truncated sample. We show that under some
fairly mild approximations, one can obtain an approximate comparison of the
instruments without having to model the often high-dimensional distribution
of all the covariates.
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21.2 Models for Risk Analysis in Truncated Samples

Let Y be a binary response, let F be the scalar risk factor of primary impor-
tance, and let X be all the other covariates. The risk model of interest is the
logistic regression model

P (Y = 1|F, X) = H
(
β0 + Fβ1 + X ′β2

)
, (21.1)

where H(·) is the logistic distribution function. Interest is in the log relative risk
β1. Because of biased sampling, we observe only those subjects with C > ctrun,
where C is a variable that is related to F and X, and ctrun is the truncation
cutoff value.

21.2.1 A prospective likelihood approach

Suppose that C is normally distributed within the cases and controls as follows:

[C|Y = y, F,X] = Normal(α0y + α′1yF + α′2yX,σ2
y), (21.2)

for y = 0, 1. The probability of being in the truncated sample given disease
status is

P (C > ctrun|Y = y, F, X) = 1− Φ
{

ctrun − α0y − α′1yF − α′2yX

σy

}
.(21.3)

Defining A = (α00, α10, α20, σ0, α01, α11, α21, σ1)′ and

S(F, X,A) = log
{

P (C > ctrun|Y = 1, F,X)
P (C > ctrun|Y = 0, F,X)

}
, (21.4)

it follows easily that the truncated sample has the risk model

P (Y = 1|X,F, C > ctrun) = H
{
β0 + β′1F + β′2X + S(F, X,A)

}
. (21.5)

Using equation (21.2), the density of C given disease status in the truncated
sample is

fC,trun(c|Y = y, X, F, C > ctrun) =
1
σy

φ

{
c− α0y − α′1yF − α′2yX

σy

}

×
[
1− Φ

{
ctrun − α0y − α′1yF − α′2yX

σy

}]−1

, (21.6)

and the joint density of (Y, C) in the truncated sample is

fY,C,trun(y, c|X, F,C > ctrun) = fC,trun(c|Y = y, X, F, C > ctrun)
× [

H
{
β0 + β′1F + β′2X + S(F, X,A)

}]y

× [
1−H

{
β0 + β′1F + β′2X + S(F, X,A)

}]1−y
. (21.7)
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Equation (21.7) is the prospective density function conditional on (X, F ) and
the population formed by the truncated sample, in terms of the parameters
(β0, β1, β2) and A. Consistent and asymptotically normal estimates of these
parameters are obtained by maximizing the prospective likelihood based upon
(21.7), even ignoring the nested case-control sampling scheme.

21.2.2 A more powerful approximate approach

In simulations and in the analysis of the WHI controls study, we found that
the above likelihood approach gave risk estimates with too large variability due
to poorly estimated offset S(F, X,A). Therefore we developed an alternative
methodology.

Assume that the risk model for Y given (F, X, C) is linear logistic in (F, X,C).
Note that any regression model which includes the truncation variable C as a
covariate will be immune from any bias arising from the truncated sample. In-
clusion of C in the model, however, will change the regression parameters of
the other covariates (F and X in our case), if C is correlated with them. To
overcome this latter problem, we define R = C − E(C|F,X), the residual of
the regression of C on (F, X). If E(C|F, X) is linear in (F,X), then Y is linear
logistic in (F,X, R), and R is uncorrelated with the other covariates. Further-
more, since by conditioning on (F, X,R) we are conditioning on C, the model
is still immune from bias due to truncation.

Under our assumptions, Y approximately follows the linear logistic risk
model in (F, X, R):

P (Y = 1|F, X, R) ≈ H
(
β0 + Fβ1 + X ′β2 + Rβ3

)
.

In order to implement this method, we must estimate E(C|F, X) within the
truncated sample. In the present nested case-control study, assuming a rare
disease, this can be handled approximately under assumption (21.2) using the
control data only.

21.3 Comparison of Instruments

Let π0 be the marginal probability of disease in the population. Let σ2
F be the

variance of F in the population, let its covariance with X be ΣFX and let the
covariance matrix of X be ΣXX . Then

n1/2(β̂1 − β1) ≈ Normal
[
0, σ2

β,1 =
{
π0(1− π0)(σ2

F − ΣFXΣ−1
XXΣ′FX)

}−1
]
,(21.8)

Local power is determined by the noncentrality parameter, namely

Θ = n1/2β1/σβ,1. (21.9)
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Let ΘFFQ and ΘFR be the noncentrality parameters for the FFQ and FR,
respectively, and let Θ̂FFQ and Θ̂FR be estimates of ΘFFQ and ΘFR. Inference
about the difference in the local power of the two instruments can be based on
κ = ΘFR−ΘFFQ and its estimate κ̂ = Θ̂FR− Θ̂FFQ, using bootstrap methods
to estimate the standard error of κ̂.

Suppose that the bivariate pair (C, F ) are jointly normally distributed given
X, with means linear in X and a constant covariance matrix. This implies the
models

[F |C,X] = α0 + α1C + α′2X + ε; (21.10)
[C|X] = γ0 + γ′1X + η, (21.11)

where ε has mean zero and variance σ2
ε , while η has mean zero and variance σ2

η.
It is easily shown that

σ2
β,1 =

{
π0(1− π0)(σ2

ε + α2
1σ

2
η)

}−1
, (21.12)

In order to implement (21.12), we need to estimate σ2
ε , α1 and σ2

η. This
can be done as follows. First, estimate σ2

ε and α1 by regressing F on (C,X)
in the truncated sample. Then, estimate σ2

η by maximum likelihood using the
likelihood based on model (21.11). In the WHI controls study, estimation is
complicated by the nested case-control sampling scheme. Under a rare disease
assumption, one can estimate σ2

β,1,approx by fitting (21.10) and (21.11) among
the controls only.

21.4 Analysis of the WHI Data

In the present study, the exposure of interest, F , is the logarithm of total fat,
saturated fat, polyunsaturated fat or monounsaturated fat, as estimated from
the FFQ or FR. The vector of other risk factors, X, consists of the following
variables: logarithm of energy intake, duration of follow-up, age at entry to
study (in 5-year age groups), clinical center region (North-East, South, Mid-
West, West), hormone use (never, ever), family history (missing, no, yes), and
breast biopsy (missing no, yes). The truncation variable C is the logarithm of
FFQ-reported percent calories from fat.

For the approximate method, when using the FR to assess diet, total fat,
polyunsaturated fat and monounsaturated fat are statistically significant risk
factors for breast cancer incidence, with estimated log relative risks of 0.78
(s.e.=0.27), 0.51 (s.e.=0.18) and 0.71 (s.e.=0.23), respectively, while saturated
fat, with an estimated log relative risk of 0.31 (s.e.=0.19), is not statistically
significant. When using the FFQ to assess diet, none of the types of dietary fat
are statistically significant risk factors, and the estimated log relative risks are
generally much smaller than those estimated using the FR.
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When we compare the local power of the FR and FFQ using κ̂, the estimated
difference in noncentrality parameters in a hypothetical non-truncated sample,
tests do not reach the formal 0.05 level of significance for any of the types of
dietary fat; the tests for total fat (κ̂ = 2.07, s.e.= 1.18) and polyunsaturated
fat (κ̂ = 2.25, s.e.= 1.26), however, are close to significant, with p-values of 0.08
and 0.07, respectively, strongly suggesting that the FR has greater local power
to detect these diet-disease relationships.

Three of the four types of dietary fat estimated by FR were statistically
significant risk factors when we used the approximate method to estimate re-
gression parameters, while none were significant when we used the (prospective)
likelihood method. The standard errors of β̂1 for the likelihood method, more-
over, were 30% to 50% larger than those for the approximate method, which is
similar to what we saw in simulations.
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22.1 Introduction

Consider a population consisting of an unknown number, ν (ν ≥ 1), of classes.
Each member of the population belongs to one of the ν classes and conversely
each class has at least one representative in the population. In practical ap-
plications, a class may represent a biological species, a word in a vocabulary,
an error in a software code, a demographic category, a genotype etc. Any
specific class is discovered when the first member of that class is observed.
Suppose we randomly select the population members sequentially, one at a
time, and with replacement if the population is finite. For each selected unit
we record if it belongs to a new class or not. Let Xj = 1 if a new class is
discovered in the jth selection, and Xj = 0 otherwise. Then, the data gener-
ated by n selections can be represented by X1, X2, . . . Xn. For n selections, let
x(n) = (x1, x2, . . . , xn) denote the observed data, and let Rn(x(n)) =

∑n
j=1 xj

and Mn(x(n)) = n−Rn(x(n)) denote the number of discovered classes and the
number of repeat events, respectively. The outcome of a sequence of selections
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can also be viewed as a path in a two dimensional lattice of points with non-
negative integer co-ordinates. All paths start at the origin (0, 0), and at the jth
step move one unit to the right if xj = 1, and one unit up if xj = 0.

Estimation of the number of classes ν has been discussed in a variety of
forms by many authors, mostly assuming that all classes are equally likely to
occur in each selection. One goal of this paper is to extend the investigation
of completeness for randomized stopping rules. However, much of this paper
is devoted to comparison of stopping rules and some related results. We shall
assume that all classes are equally likely to occur in each selection, which is
a common assumption for estimation of ν. This assumption is important for
unbiased estimation of ν; without any assumption about the class probabili-
ties, ν cannot be estimated unbiasedly even when ν has an upper bound (cf.,
Christman and Nayak, 1994).

A stopping rule φ is a sequence of functions φ0, φ1(x(1)), φ2(x(2)), . . . , where
φj(x(j)) is the conditional probability of stopping sampling given that j se-
lections have been made with observed outcomes x1, x2, . . . , xj . As the first
selection always discovers a new class, we shall take φ0 = φ1 = 0 . Let N
denote the sample size, which may be a random variable. Then, we have:
φj(x(j)) = P (N = j|N ≥ j,X(j) = x(j)). We shall consider only those stopping
rules φ (or equivalently ψ) for which sampling stops with probability 1.

In this paper we present relevant distribution theory and sufficient statistics.
We find that {Rn} is a minimal sufficient sequence and it is transitive. This
implies that the stopping rules based on (Rn,Mn) form an essentially complete
class. Then we compare these stopping rules using Blackwell’s (1951) criterion
for comparing experiments. We show that a ‘more informative’ stopping rule
also costs more in terms of expected sample size. We consider stopping rules
with bounded average sample size and present certain complete class results.
Some of our results are similar to those of Kusama and Koyama (2000) for
sequential binomial experiments. Our context, however, differs from sequential
binomial sampling in two significant ways: Unlike in binomial sampling, our
sample space depends on the unknown parameter ν, and successive observations
in our case are not independent. Finally, we investigate completeness and show
that a closed complete stopping rule must be non-randomized.

22.2 Sufficient Statistics.

In this section we present some distributional results and minimal sufficient
statistics.

Definition 22.2.1 For each n ≥ 1, let Tn be a function of X(n). Then,
{Tn, n ≥ 1} is said to be a sufficient sequence for ν if for each n, Tn is a
sufficient statistic for ν based on X(n).
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It is easy to see that Rn(x(n)) is a minimal sufficient statistic. Thus, in our
context {Rn} is a minimal sufficient sequence. Then, from Blackwell (1947) it
follows that for any given stopping rule φ, (N, RN ) or equivalently (RN ,MN =
N − RN ) is sufficient for ν, i.e., the conditional distribution of X(N) given
(N,RN ) is independent of ν. We shall take

G = {α = (r,m) : r and m are non-negative integers}, (22.2.1)

which is the two-dimensional lattice with non-negative integer points, as a com-
mon sample space of (RN ,MN ) for all φ.

For a sequential experiment, a decision rule δ consists of a sequence of
decision functions δ0, δ1(x(1)), δ2(x(2)), · · · , where δj(x(j)) is the action to be
taken if sampling stops after observing x(j). Let L(ν, a) be the loss from taking
action a when the true parameter value is ν, and let cj(ν, x(j)) denote the
sampling cost of taking observations x1, · · · , xj and stopping. The total cost
of stopping at x(j) and then taking action δ(x(j)) is L(ν, δ(x(j))) + cj(ν, x(j)).
The risk function, to be denoted by R(ν, (φ, δ)), is the expected total cost from
using the stopping rule φ and the decision rule δ. For any given stopping rule
φ, the decision rules based on a sufficient sequence form an essentially complete
class (see, Ferguson (1967), Sec. 7.3), i.e., given any decision rule δ, there
exists a decision rule δ0 based only on a sufficient sequence {Tj} such that
R(ν, (φ, δ0)) ≤ R(ν(φ, δ)) for all ν ≥ 1. Furthermore, if the loss function is
convex any decision rule that is not based on {Tj} can be improved upon by
Rao-Blackwellization.

In sequential decision theory, however, it is also known that for a given pair
of stopping and decision rules (φ, δ) there need not exist a pair (φ0, δ0), where
both φ0 and δ0 are based on a sufficient sequence {Tj} and R(ν, (φ0, δ0)) ≤
R(ν(φ, δ)) for all ν ≥ 1. Bahadur (1954) showed that a positive assertion in
this direction can be made if {Tj} is transitive:

Definition 22.2.2 A sufficient sequence {Tj} is said to be transitive if for
every j ≥ 1, and all bounded integrable functions g,

E[g(X(j))|Tj , Tj+1] = E[g(X(j))|Tj ].

In our case the sequence {Rj} is a transitive sufficient sequence. From
Bahadur’s (1954) general results we now have the following:

Theorem 22.2.1 For any given stopping rule φ, there exists a stopping rule
φ0 based on {Rj} such that the distribution of (N, RN ) under φ is the same as
the distribution of (N, RN ) under φ0 for all ν ≥ 1.

Theorem 22.2.2 If the sampling cost cj(ν, x(j)) depends on x(j) only through
Rj(x(j)), the class of rules (φ0, δ0) based on {Rj} is essentially complete, that
is, given any rule (φ, δ) there exists a rule (φ0, δ0) based on {Rj} such that
R(ν, (φ0, δ0)) ≤ R(ν(φ, δ)) for all ν ≥ 1.
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The assumption about sampling cost in Theorem 22.2.2 is satisfied in most
practical applications; often cj(ν, x(j)) is a function only of the number of selec-
tions j, e.g., cj(ν, x(j)) = kj. In view of Theorem 22.2.2 we shall consider only
the stopping rules in the class C0 = {φ : φj(x(j)) depends on x(j) only through
Rj and Pν(N < ∞|φ) = 1}.

22.3 Comparison of Stopping Rules.

In this section we shall compare the stopping rules in C0 using Blackwell’s
(1951) ideas for comparing experiments. In general, an experiment is defined
by a sample space X , a σ-algebra, and a family of probability distributions on
X indexed by an unknown parameter. In our application, an experiment is
equivalent to a stopping rule. Applying sufficiency we shall assume that only
the number of discoveries (R) and repeat events (M) at the stopping time are
observed and hence we shall take G (defined in (22.2.1)) as a common sample
space of all of our experiments. We now state Blackwell’s (1951) criterion for
comparing two stopping rules (or sampling plans).

Definition 22.3.1 A stopping rule φ1 is said to be sufficient for (more infor-
mative than) another stopping rule φ2 if there exists a stochastic kernel z, i.e.,
a probability measure z(.|α) on G for each α ∈ G, such that

Pν(β|φ2) =
∑

α∈G

z(β|α)Pν(α|φ1) ∀ ν ≥ 1, β ∈ G.

We shall write φ2 ¹ φ1 when φ1 is sufficient for φ2. If φ2 ¹ φ1 and φ1 ¹ φ2,
φ1 and φ2 are said to be equivalent, in which case we shall write φ ∼ φ2. If
φ2 ¹ φ1 but φ 6∼ φ2, φ1 is said to be more informative that φ2, to be written as
φ2 ≺ φ1.

From Blackwell (1953) it follows that if φ1 is sufficient for φ2, then for
every loss function L(ν, a) (not accounting for the cost of sampling), and deci-
sion rule δ based on φ2, there exists a decision rule δ∗ based on φ1 such that
Eν,φ2L(ν, δ(α)) ≤ Eν,φ1L(ν, δ∗(α)) for all ν ≥ 1. Definition 22.3.1 can be used
naturally to define admissible stopping rules: For a given class of stopping rules
C, φ ∈ C is said to be admissible in C if there does not exist any φ∗ ∈ C such
that φ ≺ φ∗. By Definition 22.3.1, if φ1 is sufficient for φ2, then the sampling
distribution under φ2 can be achieved by using a random transformation (not
involving ν) after observing the outcome under φ1. We next present a condition
that those random transformations must satisfy.

Lemma 22.3.1 Suppose φ1 is sufficient for φ2, i.e., there exists a kernel z,
such that for each β ∈ G, Pν(β|φ2) =

∑
α∈G z(β|α)Pν(α|φ1) for all ν ≥ 1. For

any given δ ∈ G if Pν(δ|φ1) > 0 for some ν ≥ 1, then z (L(δ)|δ) = 1, where
L(δ) = {α ∈ G : r(α) ≤ r(δ),m(α) ≤ m(δ)} is the lower left quadrant of δ.
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In the following we show that more informativeness comes only at a cost of
higher average sample size (Theorem 22.3.1), and that any stopping rule can be
modified to obtain a more informative rule if the average sample size is allowed
to increase, even by an arbitrarily small amount (Theorem 22.3.2).

Theorem 22.3.1 If φ1 is sufficient for φ2, then Eν [N |φ1] ≥ Eν [N |φ2]. Fur-
ther, if φ2 ≺ φ1, then the inequality is strict.

Theorem 22.3.2 For any sampling plan φ ∈ C0 and any ε > 0, there exists
a sampling plan φ∗ such that φ ≺ φ∗ and 0 < Eν [N |φ∗] − Eν [N |φ] < ε for all
ν > 0.

22.4 Plans With Bounded Average Sample Size.

In this section we shall consider the following subclasses of C0: Sk = {φ ∈
C0| supν Eν(N |φ) ≤ k}, S0,k = {φ ∈ Sk| supν Eν(N |φ) = k} and Ak = {φ ∈
Sk|φ is admissible in Sk}.

Our main goal is to discuss admissible plans within Sk. In particular, we
state a sequence of results to finally show that Ak is minimal complete but not
all plans in S0,k are admissible.

Theorem 22.4.1 Ak ⊂ S0,k.

Theorem 22.4.2 If Eν(N |φ) = k for some ν, then φ is admissible in Sk. In
particular, the plan with fixed sample size k is admissible in Sk.

Theorem 22.4.3 Ak is minimal complete in Sk. Then, by Theorem 4.1, S0,k

is complete in Sk.

Theorem 22.4.4 S0,k is not minimal complete in Sk.

22.5 Completeness.

A stopping rule φ is said to be complete if for any function f defined on G,
Eν [f(α)] = 0 for all ν ≥ 1 implies f(α) = 0 for all α ∈ G. Completeness is a
helpful property for unbiased estimation and hypotheses testing. In this section
we characterize completeness of closed stopping rules in C0. A stopping rule φ
is closed if Pν(N < ∞|φ) =

∑
α∈G Pν(α|φ) = 1 for all ν ≥ 1.

Theorem 22.5.1 A closed stopping rule φ ∈ C0 is complete only if φ is a
non-randomized rule, i.e., for each α ∈ G,φ(α) is either 0 or 1.
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The last theorem shows that complete stopping rules belong to the subclass
of non-randomized rules. Christman and Nayak (1994) investigated that sub-
class and characterized the complete rules in it. Thus, Theorem 22.5.1 together
with their results give a full account of complete rules.

Desire for complete stopping rules lead us to non-randomized rules. How-
ever, we note that non-randomized rules may not be maximally informative
within a given class of stopping rules. More generally, we can show that for
any k, the non-randomized rules in Sk do not form an essentially complete class
(within Sk).
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23.1 Extended Abstract

Let Z = (X, Y ) be a random vector, PZ be the distribution of Z, PX , P Y be
the distributions of X, Y correspondingly . We consider the product measure

P×
Z = PX × PY .

We assume that the measure PZ is absolutely continuous with respect to the
measure P×

Z and set

p(x, y) =
dPZ

dP×
Z

(x, y).

We suppose that there exists the density function f(x, y) of the distribution
PZ with respect to the Lebesgue measure. The density function f can be
represented in the form:

f(x, y) = p(x, y)fX(x)fY (x), (1)

where fX , fY are the density functions of the random variables X, Y .
We denote by FX , FY the distribution functions of the random variables

X, Y and put
q(x, y) = p

(
F−1

X (x), F−1
Y (y)

)
, (2)

where F−1 is the notation for the inverse function. The function q(x, y) is
density function on [0, 1] × [0, 1]. It is the density function of the rescaled
random vector

Z∗ = (X∗, Y ∗) = (FX (X) , FY (Y )) . (3)

It is clear that the random variables X∗, Y ∗ are uniformly distributed on [0, 1].
The density function q(x, y) is called copula density and is responsible for the
type of dependence of the coordinates of the vector Z.
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So, we have
f(x, y) = q (FX(x), FY (y)) fX(x)fY (y), (4)

Let Z1 = (X1, Y1), . . . , Zn = (Xn, Yn) be i.i.d. random vectors with common
distribution PZ , PX

n and P Y
n be the empirical measures constructed on samples

X1 . . . , Xn and Y1 . . . , Yn correspondingly,

PX
n {A} =

1
n

n∑

j=1

IA(Xj), P Y
n {A} =

1
n

n∑

j=1

IA(Yj),

and FX
n , F Y

n be the corresponding empirical distribution functions. Denote

Z∗j =
(
FX(Xj), F Y (Yj)

)
, Z∗n, j =

(
FX

n (Xj), F Y
n (Yj)

)
. (5)

and set

PZ∗
n =

1
n

n∑

j=1

IA(Z∗j ) PZ∗
n =

1
n

n∑

j=1

IA
(
Z∗n, j

)
.

Suppose that we observe the sample Z1, . . . , Zn. If the distributions of X
and Y are unknown, then it is impossible to construct the empirical measure
PZ∗

n on observations Z1, . . . , Zn. There are many reasons to think (see in details
Rüschendorf L. (1976)) that the observable ”empirical” measure PZ∗

n is close
(in a certain sense) for large n to PZ∗

n .
For a metric space ([0, 1]× [0, 1], r) we consider Kantorovich metric κr(µ1, µ2),

κr(µ1, µ2) = inf
µ

∫ ∫

[0,1]×[0,1]

r(x, y) µ(dx, dy),

where µ runs over all probability measures on [0, 1] × [0, 1] with marginal
measures µ1 and µ2. We investigate the asymptotic behavior of the value
κr(PZ∗

n , PZ∗) and apply the obtained results to some problems of non-parametric
goodness of fit.
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Abstract The first-hitting time (FHT) model has proved to be useful as an
alternative model for time-to-event and survival data. On the basis of the FHT
model, we introduce the threshold regression (TR) methodology. The threshold
regression model has an underlying latent stochastic process representing a
subject’s latent health state. This health status process fluctuates randomly
over time until its level reaches a critical threshold, thus defining the outcome
of interest. The time to reach the primary endpoint or failure (death, disease
onset, etc.) is the time when the latent health status process first crosses a
failure threshold level. The effectiveness of threshold regression lies in how
initial health status, hazards and the progression of disease are modeled, while
taking account of covariates and competing outcomes. The threshold regression
model does not require the proportional hazards assumption and hence offers
a rich potential for applications.
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Abstract: In this paper the evolution of the semi-Markov process with finite
state space is considered. We develop a procedure for constructing confidence
non-parametric intervals for the performability function. This investigation is
based on the semi-Markov kernel estimator given in Ouhbi and Limnios [3].
This generalize the methods known for renewal function and point availability
in renewal systems as well as for availabilty and reliabilty studies in semi-Markov
systems.

Keywords and phrases: Non-paramertic confidence interval, Performability,
Semi-Markov processes

25.1 Introduction

Performability of semi-Markov systems with finite state space and random hold-
ing time in each state are often used in many applied fields : reliability [1],
economical studies [11], risk studies [10]. Construction of non-parametric confi-
dence intervals for the point availability and reliability of semi-Markov systems
was considered in Ouhbi and Limnios [6], it generalize the results obtained
in Frees [8], Schneider [9] and Baxter et al.[7] for the renewal function and
the point availability. In this paper, we propose a non-parametric method for
constructing the confidence interval for the performability function of the semi-
Markov systems. Our methodology is based on the results obtained in Limnios
and Ouhbi [3].
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25.2 Preliminaries

Let us consider a Markov renewal process (MRP) (J, S) = (Jn, Sn)n≥0 defined
on a probability complete space, where Jn is a Markov chain with values in
E= {1, ..., s} which is the state space of the process and Sn are jumps times
with values in R+. The random variables J0,J1, ...,Jn,... are the consecu-
tive states to be visited by the MRP and X1, X2, ... defined by X0 = 0 and
Xn = Sn − Sn−1, for n ≥ 1, are the sojourn times in these states taking values
in [0,∞).
A MRP can be completely determined if, we know its initial law and its tran-
sition probabilities defined respectively by :P (J0 = k) = p(k) and

P [Jn+1 = k, Xn+1 ≤ x|J0, J1, ..., Jn, X1, X2, ..., Xn] = QJnk(x) (a.s.)

for all x ∈ [0, +∞) and 1 ≤ k ≤ s.
The probabilities pij = Qij(∞) (= lim

t→+∞Qij(t)) are the transition probabilities

of the embedded Markov chain Jn.
Let us, also consider the distribution function associated to sojourn time in
state i before going to state j defined by:

Fij(.) =
{

p−1
ij ×Qij(.) if pij > 0

0 otherwise.

So, we have:
P [Jn = j/J0, J1, ....Jn−1 = i] = pij for all n > 0.

P [Xn ≤ x/J0, .....Jn−1 = i, Jn = j] = Fij(x) for all n ≥ 0 and x ≥ 0.

P [Xn1 ≤ x1, Xn2 ≤ x2, ........Xnk
≤ xk/Jn, n ≥ 0] =

k∏

i=1

FJni−1Jni
(xi) (a.s.)

for 0 ≤ n1 ≤ n2 ≤ ... ≤ nk and xi ≥ 0 for i = 1, ..., k.

The Markov renewal matrix, ψ(t) is defined by

ψ(t) = E[N(t)] =
∞∑

l=0

Q(l)(t),

where N(t) is the counting process of transitions of the process up to time t

and Q
(1)
ij (t) = Qij(t) and for l > 1, Q(l)(t) is the lth convolution of Q(t) in the

Stieltjes sense and

Q
(0)
ij (.) =

{
1{i=j}(t) if t > 0
0 otherwise.
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Let us recall that since the state space, E, is finite, ψ(t) is element wise finite
for every t ≥ 0, i.e. the MRP is normal see [4]

The semi-Markov transition matrix function of the semi-Markov process,
(Zt)t≥0, is defined by:

Pij(t) = P [Zt = j|Z0 = i] = P [JNt = j|J0 = i] i, j ∈ E,

It is known, cf. Pyke [13], that

Pij(t) = 1{i=j}(1−
s∑

k=1

Qik(t)) +
∑

k∈E

∫ t

0
Pkj(t− s)Qik(ds).

By solving the above Markov renewal equation, cf. Limnios [1], it is seen that,
in matrix notation,

P (t) = (I −Q(t))(−1) ∗ (I − diag(Q(t)1)), (25.2.1)

where diag(·) is a diagonal matrix of ith entry
∑s

j=1 Qij(t) and 1 = (1, 1, ..., 1)t.
The semi-Markov transition matrix is a very useful matrix function in studying
the semi-markov processes asymptotic properties and in their applications see
Ouhbi and Limnios [6].
Let (Zt)t∈R+ be a homogeneous semi-Markov process with finite state space
E = {1, ...., s},

Wt =
∫ t

0
L(Zu)du,

t ∈ R+ where L is a measurable function taken to be a function of the occupied
state and the holding time in that state so in the sequel

L(Zu) =
∞∑

n=0

g(Jn)1{Sn≤u<Sn+1}

so

W (t) =
∑

i∈E

∞∑

n=0

∫ t

0
g(i)1{Jn=i,Sn≤u<Sn+1}du.

Let us define the mean performance at time t > 0, denoted by Φ(t) := EW (t).
Then

Φ(t) := E[W (t)] =
∑

i∈E

∫ t

0
g(i)P [Zu = i]du.

=
∑

i∈E

g(i)
∫ t

0
Pu(i)du.
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The problem here is to construct confidence intervals for Φ(t) from a sample
path truncated to the time interval [0, T ] of this process.
Let (Zt, 0 < t ≤ T ) be a given observation of the semi-Markov process on the
fixed interval [0, T ]. Let us define the following empirical estimator Q̂ij(t, T )
for the semi-Markov kernel Qij(t) at fixed time t

Q̂ij(t, T ) :=
1

Ni(t)

N(t)∑

k=1

1{Jk−1=i,Jk=j,Xk≤t}. (25.2.2)

Define also P̂ij(s, T ), the estimator of Pij(t), by

P̂ij(s, T ) = (I − Q̂(s, T ))(−1) ∗ (I − Ĥ(s, T ))(i, j). (25.2.3)

For the above estimators (25.2.2) and (25.2.3), the reader can find detailed
results concerning asymptotic properties such as consistency and normality in
[3, 6, 5].

Define now the following estimator for the mean performability Φi(t) :=
EiΦ(t),

Φ̂i(t, T ) :=
∑

j∈E

g(j)
∫ t

0
P̂ij(s, T )ds. (25.2.4)

In this section we give the asymptotic properties of this estimator when the
time of observation tends to infinity for a unique trajectory .

Theorem 25.2.1
The estimator, Φ̂i(t, T ) is uniformly strongly consistent in the sense that

sup
t∈[0,L]

|Φ̂i(t, T )− Φi(t, T )| −→ 0 a.s., as T →∞.

Theorem 25.2.2
For any fixed t, t ∈ [0,∞),

√
T (Φ̂i(t, T )−Φi(t, T )) converges in law to a mean

zero normal random variable with variance

σ2(t) =
s∑

i=1

s∑

j=1

µii{(Wij)2 ∗Qij − (Wij ∗Qij)2

+
∫ ∞

0
[
∫ ∞

0
g(j)(x ∧ (t− u))dAi(u)]2dQij(x)

− [
∫ ∞

0

∫ ∞

0
g(j)(x ∧ (t− u))dAi(u)dQij(x)]2

+ 2
∫ ∞

0
Wij(t− x)

∫ ∞

0
g(j)(x ∧ (t− u))dAi(u)dQij(x)

− 2(Wij ∗Qij)(t).(Ai ∗ (g(j)(x ∧ .)))(t)}
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where for t ∈ R+ :

Ai(t) =
s∑

k=1

αkg(i)ψki(t), and Wkl(t) =
s∑

i=1

∑

j∈U

αi(ψik ∗ ψlj ∗ Ij)(t),

and a ∧ b := min{a, b}.

25.3 Confidence intervals for the performability func-
tion

An estimator of σ2(t), denoted σ̂2(t), is obtained on replacing Q and ψ by Q̂
and ψ̂ respectively in the above expression. In the next theorem we show that

ˆσ2(t) is strongly uniform consistent

Theorem 25.3.1
For any fixed t, t ∈ [0,∞),The estimator, σ̂2(t) is uniformly strongly consistent
in the sense that

sup
t∈[0,L]

|σ̂2(t)− σ2(t)]| −→ 0 a.s., as T →∞.

In summary, we have the following theorem

Theorem 25.3.2√
T
dσ(t)

(Φ̂i(t, T )−Φi(t, T )) converges in distribution to a standard normal random
variate

Hence for α ∈ (0, 1), an approximate 100(1 − α)% confidence interval for
E[W (t)] is

Φ̂i(t, T )− zα
2

σ̂(t)√
T
≤ Φi(t, T ) ≤ Φ̂i(t, T ) + zα

2

σ̂(t)√
T

where zα
2

is the upper α
2 quantile of the standard normal distribution.
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Abstract: This talk will give an overview of statistical models and methods for
software reliability estimation. General order statistics (GOS) models and non-
homogeneous Poisson process (NHPP) models form two significant subclasses
of the many software reliability models proposed in the literature. We shall
discuss certain logical implications and criticisms of these two classes of models
and estimability of the underlying parameters. The NHPP models with finite
limit of the expected number of failures m(τ) as the testing time τ approaches
∞, have an important limitation. Specifically, the parameters of those models
cannot be estimated consistently as the testing time approaches infinity. How-
ever, certain parameter based asymptotic properties of the maximum likelihood
estimators can be obtained. Difficulties in estimating the unknown parameters
from standard debugging data will be explained and an alternative experiment,
called recapture debugging, which generates additional statistical information
will be described.

26.1 Extended Abstract

Software has become a critical part of the operational technology of all ma-
jor businesses, organizations, and government agencies. Releasing poor quality
software is harmful to both the user and the reputation of the company devel-
oping the software. When a new software developed, it is tested with diverse
inputs before its release, and whenever the software fails, efforts are made to
identify the error (bug) that caused the failure and fix it. However, for large pro-
grams, detection and complete removal of all errors cannot be assured through
software testing and debugging and the decision of when to release the software
needs to be made based on its assessed reliability. Thus, statistical analysis
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of software failure data and estimation of software reliability are important in
software engineering.

Usually, the software is tested for a fixed amount of time τ with varied
inputs, and the data consist of the observed failure times. Specifically, the
random observables are: the number of failures during testing (R) and the
successive failure times 0 ≤ T(1) ≤ · · · ≤ T(R) ≤ τ . Typically, time is measured
in processor running time, excluding time for debugging and idle time. Also,
upon each failure efforts are made to detect and remove the error that caused
the failure, so only the first occurrence of each error can be observed.

One class of models for analyzing software failure data, called the general
order statistics (GOS) models (cf., Raftery, 1987), assume the following:
Assumption 1. Whenever the software fails, the error causing the failure is
detected and corrected completely without inserting any new errors, i.e., the
debugging process is perfect.
Assumption 2. The software initially contains an unknown number of errors,
ν, and the detection times of those errors are independently and identically
distributed (iid) with a common density fθ(x), where θ > 0 is an unknown
parameter, possibly vector valued.

The GOS class includes the first software reliability model, introduced by
Jelinski and Moranda (1972), where fθ(x) is an exponential density function.
Other GOS models may be viewed as modifications of the Jelinski-Moranda
model.

The second class of models postulates that the failure counts follow a non-
homogeneous Poisson process (NHPP). Let M(t) denote the number of failures
observed in the time interval (0, t] and let m(t) = E[M(t)]. A NHPP model
specifies the functional form of the intensity function λ(t) = d

dtm(t), letting it
depend on some unknown parameters. The Goel and Okumoto (1979) model is
one of the earliest NHPP models for software reliability, in which the intensity
function λ(t) is assumed to be

λ(t) = µθ exp(−θt), µ > 0, θ > 0.

Kuo and Yang (1996) classified NHPP models into two groups using limt→∞m(t).
If the limit is finite, it is called NHPP-I, otherwise it is called NHPP-II. More-
over, NHPP-I processes can be expressed as mixtures of GOS processes. Specif-
ically, if in the GOS model, ν is assumed to be a Poisson random variable with
mean µ, it can be seen that M(t) is NHPP-I with rate function λ(t) = µfθ(t) and
mean function m(t) = µFθ(t) (cf. Langberg and Singpurwalla (1985), Musa,
Iannino and Okumoto (1987), p. 269, or Kuo and Yang (1996)). Conversely,
any given NHPP-I process with rate function λ(t) and mean function m(t) can
be expressed as Poisson mixture of GOS processes with µ = limt→∞m(t) < ∞
and f(t) = λ(t)µ. Examples of NHPP-I models include the models proposed
by Goel and Okumoto (1979) where λ(t) = µθe−θt, Yamada et al. (1983)
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where λ(t) = µθ2te−θt, Goel (1985) where λ(t) = µθαtα−1 exp(−θtα), Little-
wood (1984) where λ(t) = µ[1− ( θ

θ+t)]
α, and Yamada and Osaki (1985) where

λ(t) = µ/[1 + α exp(−θt)].

The NHPP models implicitly assume imperfect debugging as the number of
failures in [0,∞) is unbounded for all values of the parameters µ and θ. The
number of errors (initial or remaining) is not of direct interest in NHPP models.
Moreover, all reliability measures depend only on the unknown parameters µ
and θ (and not the data). Logically, software system reliability changes only
when changes are made in the code, e.g., by detecting and fixing bugs. In
between such changes, the reliability does not change (cf., Xie, 1991, p. 111).
Thus, the reliability of a software changes only in jumps at times of debugging,
and NHPP-I models are not consistent with that. Also, NHPP-I models assume
independence of the failure process in non-overlapping intervals, but one would
expect debugging activities at any time to affect the failure process subsequent
to that time. We can show that no estimator of µ (or θ) converges in probability
to the true value as the testing time τ converges to ∞, i.e., the parameters
cannot be estimated consistently, which is a significant limitation of NHPP-I
models.

For a GOS model, the assumption of perfect debugging is unrealistic. Also,
the likelihood function can be very unstable and the MLE of ν can be infinite
with positive probability. The nature of difficulties in estimating the parameters
of a GOS model are exemplified by the Jelinski-Moranda model, the simplest
GOS model. There, if one of the two parameters (ν or θ) is known, estimation
of the other parameter is easy. For example, if θ is known, ν̂ = R/Fθ(τ) is the
minimum variance unbiased estimator (MVUE) of ν and it is finite. However,
estimating both ν and θ is quite difficult. This suggests that the information
about ν and θ in the data is confounded. Letting Yi = T(i)−T(i−1), i ≥ 0, T(0) =
0, we note that E(R) and 1/[E(Yi)] = (ν − i + 1)θ, i = 1, · · · , R are increasing
functions of both ν and θ. So, ν and θ have similar effects on the random
observables, and it is difficult to tell from the observed data whether ν is large
and θ is small, θ is large and ν is small, or both are moderate.

It appears that for accurate inferences, additional information on one of
the two parameters is necessary. Extending the GOS model, if the errors are
assumed to be accessed according to iid renewal processes with renewal den-
sity fθ(x), then extra information on θ would be obtained if the errors are not
removed during testing and their repeat occurrence times are observed. This
motivated Nayak (1988) to propose recapture debugging for estimating software
reliability. Recapture debugging data can be modeled as a marked Poisson pro-
cess and inferences about ν, θ, and various reliability measures can be made
following standard statistical theory (cf., Nayak, 1988, 1991). In particular,
the minimum variance unbiased estimators of many parametric functions can
be obtained under suitable stopping rules. Statistical research on software re-
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liability analysis has focused mainly on modeling and analyzing the standard
debugging data. We believe the data collection aspect should not be ignored
and other debugging methods for generating more useful information should be
explored.
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27.1 Introduction1

Measures of information appear everywhere in probability and statistics. They
also play a fundamental role in communication theory. They have a long history
since the papers of Fisher, Shannon, and Kullback. There are many measures
each claiming to capture the concept of information or simply being measures
of (directed) divergence or distance between two probability distributions. Also
there exist many generalizations of these measures. One may mention here the
papers of Lindley and Jaynes who introduced entropy based Bayesian informa-
tion and the maximum entropy principle for determining probability models,
respectively.

Broadly speaking there are three classes of measures of information and di-
vergence: Fisher-type, divergence-type, and entropy (discrete and differential)-
type measures. Some of them have been developed axiomatically (see, for ex-
ample, Shannon’s entropy and its generalizations), but most of them have been
established operationally in the sense that they have been introduced on the
basis of their properties.

There have been several phases in the history of information theory: Ini-
tially we have (i) the development of generalizations of measures of information
and divergence (f−divergence, (h−f)−divergence, hypo-entropy, etc), (ii) the
synthesis (collection) of properties they ought to satisfy, and (iii) attempts to
unify them. All this work refers to populations and distributions. Later on

1Part of this work was done while the author was Visiting Professor at the University of
Cyprus.
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we have the emergence of information or divergence statistics based on data or
samples and their use in statistical inference primarily in minimum ”distance”
estimation and for the development of asymptotic tests of goodness of fit or
model selection criteria. Lately we have a resurgence of interest on measures
of information and divergence and they are used in many places, in several
contexts and in new sampling situations. Some of these ideas are discussed
below.

The measures of information and divergence enjoy several properties (non-
negativity, maximal information, sufficiency etc) and statisticians do not agree
on all of them. There is a body of knowledge known as statistical information
theory which has made many advances but not achieved a wide acceptance and
application. The approach is more operational rather than axiomatic as it is
the case with Shannon’s entropy.

There are several review papers which discuss the above points. We mention
the following: Kendall (1973), Csiszar (1977), Kapur (1984), Aczel (1986),
Papaioannou (1985 and 2001), Soofi (1994 and 2000). The aim of this talk is to
develop a general appreciation on the meaning and uses of various properties
rather than on their mathematical content.

We shall present some recent developments on measures of information and
divergence as follows:

1. We shall discuss the properties of sub-additivity

I(X, Y ) ≤ I(X) + I(Y ),

super-additivity
I(X, Y ) ≥ I(X) + I(Y ),

and conditional inequality
I(X|Y ) ≤ I(X),

where I is any measure of information or divergence. We shall expand on their
implications to statistical theory (measures of correlation or dependence). For
recent papers see Papaioannou and Ferentinos (2005) and Micheas and Zografos
(2006).

2. We shall present several inequalities involving measures of information and
divergence.

3. We shall review information and divergence under censoring both informa-
tive and noninformative. We shall discuss the ’acid test” property imposed by
the censoring process as well as various interrelationships between measures of
information or divergence in several censoring situations. One recent use of
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informativity has to do with Fisher information in weighted distributions, in
order statistics, and in record statistics (Arnold et al. (1998), Abo-Eleneen and
Nagaraja (2002), Park and Zheng (2004)). A weighted distribution is a distri-
bution which has a density in its pdf, i.e., if f(x, θ) is a density, we use a density
proportional to w(x)f(x, θ) to make inferences about θ. Weighted distributions
are used to model ascertainment bias. Iyengar et al. (1999) studied conditions
under which the Fisher information about θ obtained from a weighted distri-
bution, is greater than the same information obtained from the original density
f(x, θ), where f(x, θ) belongs to an exponential family. This is clearly a result
on information. Thus, there are cases where the Fisher information about θ
contained in an order statistic, is greater than the same information contained
in a single observation. This follows from the fact that the distribution of an
order statistic is a weighted distribution. It turns out that for the normal distri-
bution with σ2 known, IF

X(k)(µ) ≥ IF
X(µ), where X(k) is the kth order statistic

of a random sample from X1, X2, ..., Xk from N(µ, σ2). This result is in agree-
ment with our intuition, since the order statistic essentially involves the whole
sample. Other interesting informativity applications appear with the residual
lifetime of a stationary renewal process or with truncated distributions. For
details see Iyengar et al. (1999). Several studies have shown that the tails of
an ordered sample from a symmetric distribution contain more Fisher informa-
tion about the scale parameter than the middle portion. Zheng and Gastwirth
(2000, 2002) examined the Fisher information about the scale parameter in two
symmetric fractions of order statistics data from four symmetric distributions.
They showed that for the Laplace, logistic and normal distribution, the extreme
tails usually contain most of the Fisher information about the scale parameter,
while the middle portion is less informative. For the Cauchy distribution the
most informative two symmetric fractions are centered at the 25th and 75th

percentile

4. Similar results as in the previous paragraph exist when we deal with trun-
cated data, and in particular samples from truncated exponential distributions.
Bayarri et al. (1989) give conditions under which for the Fisher information

I(X) < I(Y ) or I(X) = I(Y ) or I(X) > I(Y ),

where X follows an arbitrary exponential distribution of the form

f(x, θ) = a(x)exp(b(θ)u(x)/c(θ), θ ∈ Θ

and Y follows the truncated distribution

g(y, θ) =
{

f(y, θ)/s(θ), for y ∈ S
0, otherwise
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The set S, a subset of the sample space of X, is the truncation or selection
set with s(θ) = Pθ(X ∈ S) =

∫
S f(x, θ)dx. A selection sample from the right

tail of the normal distribution contains less Fisher information about the mean
than an unrestricted random sample when the variance is known, but more
information about the variance than an unrestricted random sample when the
mean is known.

5. We shall look at recent work involving evaluations of measures of information.
There is a recent upsurge of this kind of evaluations starting with the work of
Guerrero and continuing with the work of Zografos, Nadaraya, and Cavanaugh
and Shumway.

6. We shall also discuss model comparisons and model selection criteria using
measures of information and divergence. The work here originates with the
Akaike information criterion (AIC).

7. Time permitting we shall discuss information in frailty models.
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Abstract: A popular summary measure of the discriminatory ability of a sin-
gle continuous diagnostic marker for binary disease outcomes is the receiver-
operator characteristics curve (ROC). For most diseases however, single biomark-
ers do not have adequate sensitivity or specificity for practical purposes. We
present an approach to combine several markers into a composite diagnostic
test without assuming a model for the distribution of the predictors. Using suf-
ficient dimension reduction techniques, we replace the predictor vector with a
lower-dimensional version, obtained through linear transformations of biomark-
ers, without loss of information. We show how to combine the linear transfor-
mations using their asymptotic properties into a scalar diagnostic score whose
performance can be assessed by the ROC curve. In the special case that a
single linear combination of the markers contains sufficient information for the
outcome, this approach results in the same marker combination obtained by Su
& Liu (1993) that maximises the area under the ROC curve. The asymptotic
distribution of the left singular vectors of a consistent estimate of an asymptot-
ically normally distributed random matrix is derived, which provides the basis
for an asymptotic chi-squared test to assess individual biomarker contribution
to the diagnostic score.
Keywords and phrases: Dimension reduction; Likelihood ratio; NHANES
III; Random matrix; SAVE; SIR; Singular value decomposition.

28.1 Introduction

The emerging field of clinical proteomics involves the discovery and identifica-
tion of new biomarkers that may aid in diagnosis of disease, prediction of clinical
outcome, and therapeutic efficacy for a host of diseases, including cancer, car-
diovascular and mental conditions. In an ideal setting one would obtain a single
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marker with very high specificity and sensitivity, or predictive ability, for the
desired outcome. However, such high performance markers are yet to be found
for many diseases, including many cancers. A more realistic approach is to
combine several markers of modest individual discriminatory ability to improve
discrimination and performance for diagnosis or screening applications.

A popular summary measure of the discriminatory ability of a single diag-
nostic marker in the setting of a binary disease outcome is the receiver-operator
characteristics curve (ROC) that plots sensitivity against (1-specificity) (true
vs. false positivity) for all thresholds that could have been used to define ”test
positive.” Two tests can be compared by calculating the difference between the
areas under their two ROC curves (AUCs), with the larger area corresponding
to the ”better” test. In order to use the ROC curve as a measure of diagnostic
accuracy for several markers, a scalar function of the marker values is needed.
If one knows the joint distribution of all the markers in a panel in both the
case and the control populations, the likelihood ratio (LR) statistic is such a
scalar and provides the most powerful means of combining the markers (McIn-
tosh & Pepe, 2002). However, the LR approach may be sensitive to violations
of the distributional assumptions and does not allow one to easily assess the
contributions of individual markers. Assuming multivariate normality of the
markers, several authors have derived a diagnostic score consisting of a single
linear combination of the marker values that maximises the area under the
ROC curve (Su & Liu, 1993), or the sensitivity over a range of specificities (Liu
et al., 2005). Pepe & Thompson (2000) relax the assumption of multivariate
normality and find a linear marker combination that maximises a distribution
free estimate of the AUC. While their approach is attractive, since it can be
adapted in order to maximise the partial area under the curve (McGlish, 1989)
and to incorporate covariates, it is computationally difficult when one wishes
to combine more than two markers.

In this paper, we extend the approach of Su & Liu (1993) by relaxing the
assumption of multivariate normality of the markers, and, more importantly,
by identifying a sufficient number of linear combinations of markers that can
be combined into a diagnostic score, using two sufficient dimension reduction
methods, Sliced Inverse Regression (SIR) and Sliced Average Variance Esti-
mation (SAVE). First we provide general background on SAVE and SIR. The
SAVE procedure, applied to discrimination between two populations, defines a
sufficient subspace for discrimination. We combine projections of the original
markers into this subspace that are uncorrelated by construction and asymp-
totically normally distributed via a likelihood ratio statistics to obtain a scalar
diagnostic score for discrimination. Neither SAVE nor SIR require the specifica-
tion of a model for the relationship between the markers and the outcome. We
also show that SIR, a first order moment method, results in the same linear com-
bination that Su and Liu (1993) obtained. Even though aggregate predictors
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such as linear combinations effectively combine information from all markers,
individual marker contribution to a diagnostic panel may be of significant in-
terest. We also derive the asymptotic distribution of the left singular vectors of
consistent estimates of an asymptotically normally distributed random matrix.
This general result provides the basis for an asymptotic chi-squared test to as-
sess which of the original markers do not contribute to the SAVE predictors
and thus are superfluous for computing the diagnostic score. This test can be
applied to assess variable contribution to any linear combination of predictors
whose coefficients are the elements of the left singular vectors of an asymptot-
ically normal random matrix. Hence, it is not limited to SAVE but can be
used in all dimension reduction methods that are based on the estimation of a
kernel matrix that is asymptotically normal. We use simulations to assess the
performance and robustness of the proposed scalar discrimination scores based
on SAVE and SIR and to test for marker contributions to the diagnostic score.
A data example is presented in and we conclude with a discussion of our results.

28.2 Dimension Reduction Methods based on Inverse
Regression

We denote the marker values by X = (X1, . . . , Xp)T and the outcome variable
by Y . Before we focus on the setting of binary outcomes Y = 0 for nondiseased
and Y = 1 for diseased individuals, we provide some general framework for
inverse regression that applies to both continuous and discrete Y . A data
reduction formulation that accounts for the correlation among markers, is to
assume there exists a p×d, d ≤ p, matrix η so that the p×1 predictor vector X
can be replaced by the d×1 predictor vector ηT X without loss of information for
the regression of Y on X. Most importantly, if d < p, then sufficient reduction
in the dimension of the regression is achieved. The linear subspace S(η) spanned
by the columns of η is a dimension-reduction subspace (Li, 1991, 1992) and its
dimension denotes the number of linear combinations of the components of X
needed to model Y .

The central dimension-reduction subspace, denoted by SY |X (Cook, 1996,
1998) is the intersection of all dimension-reduction subspaces for F (Y |X) and
is trivially the smallest dimension-reduction subspace when it exists. The di-
mension d = dim(SY |X) is called the structural dimension of the regression of
Y on X and can take on any value in the set {0, 1, . . . , p}.

The estimation of the central subspace is based on finding a kernel matrix Ωx

so that S(Ωx) ⊂ SY |X . This can be done by first moment methods such as SIR
(Li, 1991) with Ωx = cov(E(X|Y )), or second moment methods including SAVE
(Cook & Weisberg, 1991), with Ωx = E(cov(X)−cov(X|Y ))2. SAVE is the most
comprehensive dimension reduction method as it gains information from both
the inverse mean function and the differences of the inverse covariances.
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28.2.1 SIR and SAVE for binary outcomes Y

Let µx = E(X) and Σx = var(X). Also let the conditional moments on the
binary disease status be µx|j = E(X|Y = j) and Σx|j = var(X|Y = j) for
j = 0, 1. We assume that Σx and Σx|j , j = 0, 1 are nonsingular. Denote

the standardised predictors by Z = Σ−1/2
x (X − E(X)), and the conditional

means and variances, for the binary response Y , by µj = E(Z|Y = j) and
Σj = var(Z|Y = j), j = 0, 1.

The subspace spanned by the columns of the differences in the first two
moments of Z|Y , ν = µ1−µ0 and ∆ = Σ1−Σ0, is S(∆, ν). Cook & Lee (1999)
showed that the SAVE kernel matrix based on the standardised predictors is
ΩSAV E = Ωz = (∆, ν), and hence that SSAV E = S(∆, ν) contains some or all
the sufficient linear combinations that can replace the predictor vector Z in the
regression of Y on Z, under the two moment conditions stated in the previous
section. Furthermore, when the conditional distribution of Z|Y is normal, then
SSAV E = SY |Z . They also showed that ΩSIR = ν, that is, SSIR = S(ν) ⊂
SSAV E .

In implementing SAVE or SIR, ν and ∆ are replaced by the corresponding
sample moments, ν̂ = Σ̂−1/2

x (x̄1 − x̄0) and ∆̂ = Σ̂−1/2
x (Σ̂x|1 − Σ̂x|0)Σ̂

−1/2
x to

yield ŜSAV E = S(∆̂, ν̂), a k × (k + 1) matrix, and ŜSIR = S(ν̂), a k × 1
vector. The latter has obviously dimension at most 1. To assess the dimension
d = dim(Ssave), a test statistic for dimension can be used that is a function
of the singular values of the Ω̂z = Ω̂SAV E = (∆̂, ν̂), or Ω̂SIR = ν̂, depending
on the method used. Cook & Lee (1999; Theorem 3) provide details on the
test statistic for SAVE in the binary outcome setting and show that it has an
asymptotic weighted chi-squared distribution. Approximate p-values can be
obtained using a result, for example, by Wood (1989). The SIR test statistic
for dimension has an asymptotic chi-squared distribution (Li, 1991; Bura &
Cook, 2001). In both cases, the estimation is carried out by performing tests of
H0 : p = d against Ha : p > d sequentially, starting at d = 0, which corresponds
to independence of Y and X, and adding unit increments to d until we cannot
reject the null at a prespecified α level. For binary classification problems, SIR
can estimate at most one basis element of SY |X .

28.3 Combining diagnostic markers using SIR and
SAVE

As mentioned in the introduction, a popular measure to quantify performance
of a diagnostic test is the ROC curve, that plots sensitivity of a test against 1-
specificity for all possible thresholds that could be used to define ”test positive.”
The most widely used summary measure for the ROC curve is the area under the
curve (AUC), defined as AUC =

∫ 1
0 ROC(t)dt. The AUC can also be expressed



Combining Diagnostic Markers 167

as the probability that the scalar diagnostic scores Si for the cases (S1) and
controls (S0) are correctly ordered, that is AUC = pr(S1 > S0). The SIR single
linear combination of the markers can be used directly as a diagnostic score.
However, for SAVE a scalar needs to be derived if the dimension is estimated
to be larger than one.

28.3.1 Relation of SIR to existing results on linear combina-
tions of multiple markers

In the case where the biomarkers are normally distributed for both controls and
cases, SIR results in the same linear combination that was obtained by Su and
Liu (1993) by maximising

AUC(a) = pr(a′X1 > a′X0) = Φ
{a′(µx|1 − µx|0)

(a′Σxa)1/2

}
,

as a function of a. The maximiser is a∗ = cΣ−1
x (µx|1 − µx|0), for any constant

c, with Σx = Σx|0 + Σx|1. As indicated in section 28.2.1, SSIR = S(ν) where

ν = Σ−1/2
x (µx|0 − µx|1). The linear combination obtained from SIR, under

only the linearity condition as defined in §2, is thus proportional to the linear
combination obtained by Su and Liu, and consequently maximises the AUC.
When Σ0 = Σ1 = Σ, this linear combination is proportional to the linear
combination obtained by LDA, Σ−1

x (µx|1 − µx|0)X.

28.3.2 Combining diagnostic markers using SAVE

McIntosh & Pepe (2002) showed that among all possible functions of X, the like-
lihood ratio function LR = LR(X) = pr(X|Y = 1)/pr(X|Y = 0) has an ROC
curve with the maximal AUC. Thus, if the joint distribution of the markers X
is known among cases and controls, an optimal scalar marker score can be com-
puted using the LR function. If the markers in the case and control populations
are multivariate normal, that is, for j = 0, 1, (X|Y = j) ∼ MV N(µx|j , Σx|j),
then log LR = log{f1(x)/f0(x)} = C + 1/2x′(Σ−1

x|0 − Σ−1
x|1)x + x′(Σ−1

x|1µx|1 −
Σ−1

x|0µx|0)x. The LR statistic for multivariate normal predictors is thus fully

characterized by (Σ−1
x|0 − Σ−1

x|1) and (Σ−1
x|1µx|1 − Σ−1

x|0µx|0), which also determine
Ωsave. The SAVE predictors completely capture the discriminatory informa-
tion contained in the LR statistic.

Motivated by the above argument we propose the following approach for
combining diagnostic test results based on the SAVE predictors:

1. We first estimate the dimension d of Ŝsave, and then, given d, the corre-
sponding linear combinations, x∗1 = Σ−1/2

x Uz1X, . . . , x∗d = Σ−1/2
x UzdX.
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2. Diaconis & Freedman (1994) and Hall & Li (1993) showed that, under
mild conditions, low-dimensional projections of high-dimensional data are
approximately Gaussian. We thus assume that the estimated SAVE pre-
dictors, X∗, are approximately normally distributed with mean µ∗ and
variance-covariance structure Σ∗, regardless of the distribution of the orig-
inal markers. In addition, the SAVE predictors are orthogonal, and thus
independent by construction, with Σ∗ = diag(σ∗i ). We use the sample
moments of X∗ to estimate µ∗ and Σ∗.

3. To compute a diagnostic score S for the SAVE predictors x∗1, . . . , x
∗
d, we

use the LR statistic (McIntosh & Pepe, 2002), based on the product of m
independent univariate normal distributions, that is

S(x∗) = LR(x∗) =
f1(x∗)
f0(x∗)

=

∏d
j=1 φ(x∗j ;µ

∗
1j , σ

∗
1j)∏d

j=1 φ(x∗j ;µ
∗
0j , σ

∗
0j)

where φ denotes the univariate normal density function.

The key advantage of using the SAVE predictors in the LR statistic instead
of the markers directly is that except for the linearity and constant variance
conditions, no other specific distributional assumption for the markers is needed.
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29.1 Abstract

Many clinical trials attempt to measure health-related Quality of Life (QoL)
that reflect patient’s perception of his or her well-being and satisfaction with
therapy. QoL endpoints are often used in non-comparative or comparative
clinical trials which are commonly designed to evaluate therapeutic efficacy as
well as further investigation of the side-effects and potential risks associated
with therapy. Early stopping of such trials in case of beneficial or deleterious
effect of the treatment on QoL is an important matter. The use of sequential
tests taking into account the specific nature of QoL data seems to provide a
powerful method to detect therapeutic effects [1].

QoL is usually evaluated using self-assessment questionnaires and responses
to the items are usually combined into QoL scores assumed to be normally
distributed. However, these QoL scores are rarely normally distributed and
usually do not satisfy a number of basic measurement properties. An alternative
is to use item response theory (IRT) models such as the Rasch model for binary
items which takes into account the categorical nature of the items [2]. In this
framework, the probability of response of a patient on an item depends upon
different kinds of parameters: the ”ability level” of the person (which reflects
his/her current QoL) and a set of parameters characterizing each item.

Sequential analysis and mixed Rasch models assuming either known or un-
known items parameters values were combined in the context of phase II, phase
III comparative clinical trials. The statistical properties of two sequential tests
[3], the Sequential Probability Ratio Test (SPRT) and the Triangular Test (TT)
are compared using mixed Rasch models and the traditional method based on
QoL scores by means of simulations. An example of the use of combining se-
quential analysis and IRT modelling methodologies is also presented on data
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from a comparative phase III clinical trial in oncology.
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Abstract: Our interest in utility theory has been sparked by its frequent men-
tion in quality of life studies, and its total lack of mention in reliability theory
and survival analysis. It seems to us that if the aim of reliability theory is to
assist decision making in the context of system design, then the utility of reli-
ability should play a key role. Yet little, if any, has been written on this topic.
The aim of this paper is two-fold. The first is to articulate on the issue of the
utility of reliability and the general nature of the utility function. The second
is to describe an approach for the coherent assessment of utilities. Whereas the
first aim is specific to reliability, the second is more general and should appeal
to all decision theorists.

In order to formalize the role of the utility of reliability for decision making
in the context of system design, we need to distinguish between reliability and
survivability. The former is to be seen as a chance or a propensity, and the
latter as one’s uncertainty about propensity. This distinction is in keeping with
the essential spirit of de Finetti’s famous theorem on exchangeable Bernoulli
sequences wherein he links the objective and the subjective interpretations of
probability. Thus to us here, reliability is a chance, not a probability.

For the coherent elicitation of utilities we lean on the literature on quality of
life studies wherein the Rasch Model of item response theory plays a prominent
role. It has been claimed, but the specifics have not been given, that the
Rasch Model can be used to assess utilities. In this talk, following a brief
overview of the meaning of utility, we outline a statistical procedure for the
coherent assessment of utilities using a binary response model, like the Rasch
Model. Besides coherence, the virtue of using statistical approaches for utility
assessment is that now we can provide measures of uncertainty about utility,
and mechanisms for updating utilities. Both these possibilities have not, to
the best of our knowledge, been covered in the literature on utility theory for
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decision making.

This talk is expository and outlines work in progress.



31

Adaptive Designs for Group Sequential Clinical

Survival Experiments

Eric V. Slud

Statistics Program, University of Maryland College Park, USA

Abstract: Randomized two-group clinical survival experiments now commonly
allow at least one interim look, enabling possible early stopping to meet ethical
concerns. Various authors have also studied the possibility of interim design
modifications to adapt to unexpected accrual or control-group mortality rates.
This paper formulates trial design as a decision theoretic problem with a large
class of loss functions, in the setting of a statistic with the asymptotic behavior
of Brownian motion with drift, as in Leifer and Slud (2002). A more general
observation process arises in the case of adaptive designs allowing the option of
continued followup without new accrual past an interim look, as was introduced
in Koutsoukos, Rubinstein and Slud (2000). Some optimal two-look designs are
displayed, and both types of adaptation are given a unified form.

Keywords and phrases: Accrual stopping; Backward induction; Bayesian
decision theory; behavioral decision rule; Loss function; Stopping boundaries

31.1 Introduction

Group sequential designs are designs in which experimental data on two-group
treatment comparisons can be scrutinized at a finite number of interim look-
times with the possibility of early stopping of the experiment in such a way as
to maintain a prescribed experimentwise significance level. Such designs first
appeared for two-group randomized clinical trials with normally distributed
quantitative responses in the mid-1970’s. After a few years, methods appeared
which took explicit account of the staggered entry, followup time, and delayed
response of clinical trials with survival-time endpoints. By the early 1980’s,
such methods were firmly established theoretically. Work of Tsiatis (1982)
showed that the repeatedly computed logrank-numerator statistic at a series
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of fixed scheduled interim look-times would under standard conditions behave
in large two-sample trials as a sequence of independent-increment Gaussian
variables, with mean 0 under the null hypothesis H0 of no treatment effect and
with steady positive drift proportional to variance under local proportional-
hazard alternatives. Slud and Wei (1982) showed how variance increments
could be progressively estimated and at the same time early stopping could
be accommodated under an α-spending schedule. In a (one-sided) trial of
sample size n, with the statistic Sk/

√
n calculated at the k’th look-time tk,

a threshold or boundary bk is used to stop the trial early with rejection of
H0 if Sk/

√
n ≥ bk, where bk is found inductively, in terms of the estimated

large-sample variance Vk of Sk/
√

n, to satisfy

αk = Pr(Sj/
√

n < bj for 1 ≤ j < k, Sk/
√

n ≥ bk) (31.1.1)

and where the values α1, . . . , αK are prescribed and sum to the experimentwise
significance level α. The times at which interim looks might be taken in this
setup can be allowed to be random stopping-times, e.g., to be level-crossing
times for the proportional-hazard parameter’s information, which is propor-
tional to the logrank variance and thus also to the number of observed failure
events. Moreover, the choice of the specific value αk need not be made until
the k − 1th look-time (Lan and DeMets 1983). The asymptotic theory under-
lying this extension was given by Slud (1984) and other authors, establishing
that under local (contiguous) proportional-hazard alternatives the repeatedly
computed logrank statistic considered as a stochastic process behaves asymp-
totically in large samples like a time-changed Brownian motion with drift. The
history of these developments from the viewpoint of trial design, along with
practical recommendations on the choice among early-stopping designs as of
1984, can be found in Fleming et al (1984).

Later research on the specification of early-stopping boundaries included
generalizations beyond our scope here (more general statistics, adjustment for
covariates, modified formulations of repeated significance testing, etc.), but also
developed optimization methods: Tsiatis and co-authors restricted attention to
parametrically restricted families of boundaries and computed the ones which
minimized expected trial duration over boundaries with prescribed size and
(average) power against specified alternative(s); while Jennison (1987) under-
took a brute-force (grid-search) computation of optimal boundaries in the sense
of minimizing a weighted linear combination of type-II error probabilities and
expected sample sizes over specified alternatives, for given significance level.

Clinical investigators often find at the times of interim looks in clinical trials
that planned accrual goals have not been met, and sometimes that clinical as-
pects of the trial (noncompliance, lower-than expected tolerated doses) suggest
power less than desired against clinically meaningful alternatives. For this and
other, ethical, reasons, there has been a perceived need for adaptive (group-)
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sequential trial designs accommodating flexibility in accrual rates and spacing
of look times. However, the designs must explicitly take account of such flexi-
bility: Proschan et al. (1992) nicely illustrate the effects on significance level of
modifying look-time definitions and other trial assumptions in mid-trial.

Up to the present, alternative suggestions for interim trial modifications are
being proposed with optimal features of various sorts. A recent example is Case
and Morgan (2001), which restricted itself to two-look two-armed trials with
exponentially distributed survival but allowed accrual rates to be modfied at
the interim look.

This paper has three objectives: first, to describe a Bayesian decision prob-
lem as in Leifer and Slud (2002) which incorporates multi-look trials with gen-
eral loss-components penalizing trial length and incorrect decisions as a func-
tion of the alternative-parameter θ; second, to describe following Leifer and
Slud (2002), especially in the two-look case, how optimal decision procedures
require later look-times and stopping-boundaries to depend on earlier observed
statistic values; and third, to describe an extended multi-look setting which in-
cludes the method Koutsoukos et al. (2000) used to design trials with an option
to stop accrual with or without early stopping of the trial.

31.2 Decision Theoretic Formulation

In light of the theoretical results (Tsiatis 1982, Slud 1984) mentioned above,
the data arising by calculating a two-sample (weighted-)logrank statistic at
interim looks of a multi-look staggered-accrual trial with survival endpoints
under local proportional-hazard alternatives (and also more general classes of
alternatives), possibly requiring estimation of the variance increments in real
time, is asymptotically equivalent in large data samples to the values of a Wiener
process with drift, X(t) = W0(t) +ϑ t. Here ϑ is an unknown real parameter
quantifying positive or negative relative prognosis for treatment- versus control-
group patients in the trial. The objective of the trial is inference on ϑ to
distinguish the null hypothesis ϑ ≤ 0 against alternatives with ϑ > 0 : process
data X(τj) may be observed at an increasing sequence of times τj , 1 ≤ j ≤ K,
with τj allowed to be determined from (τi, X(τi), i < j) (and, possibly,
auxiliary randomizations independent of the data). The upper-bound K on
the number of look times is nonrandom and fixed, and the trial ends at the first
time τν for which either ν = K or τν+1 = τν , at which time a binary decision
χ ∈ {0, 1} is made as a function of all observable data (τi, X(τi), i ≤ ν).
When actions (τi, 1 ≤ i ≤ ν) and χ have been taken, losses are measured in
terms of τν = t and χ = z ∈ {0, 1}, when ϑ is the correct alternative (drift)
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parameter assumed distributed according to a prior distribution π on R, by

L(t, z, ϑ) =
{

c1(t, z, ϑ) + z c2(t, ϑ) + (1− z) c3(t, z, ϑ), if ϑ ≤ 0 ,
c(t, z, ϑ) + (1− z) c2(t, ϑ) + z c3(t, z, ϑ), if ϑ > 0.

(31.2.2)
Note that z is the indicator of rejection of the null hypothesis H0 : ϑ ≤ 0.
The functions c1, c2, and c3 represent, respectively, the costs of trial duration;
incorrect terminal decision; and correct, but late, terminal decision. These costs
are general enough to apply to realistic clinical trial scenarios, both from the
point of view of public health and of drug developers. The cost functions are
assumed to be π-integrable for each (t, z), piecewise smooth jointly in (t, ϑ),
nondecreasing in t, and to satisfy for all (t, z, ϑ) :

c1(0, ϑ) = c3(0, ϑ) = 0 , c3(t, z, ϑ) < c2(t, ϑ) (31.2.3)

In addition, π is assumed to place positive mass in small neighborhoods of
ϑ = 0 and ϑ = ϑ1 > 0, and c1(·, z, ϑ) is assumed to grow to ∞ for z = 0, 1
and π-almost all ϑ.

In this setting, the decision problem is to choose decision rules

δ = ({τj}K
j=1, ν, χ) (31.2.4)

subject for fixed α, β > 0 to the type I and II error probability constraints

Eϑ=0(χ) ≤ α , Eϑ=ϑ1(1− χ) ≤ β (31.2.5)

This decision theoretic problem closely mirrors that of Leifer and Slud
(2002). It can be analyzed, standardly, in terms of a Lagrangian formulation
(Berger 1985) in which the constraints (31.2.5) are omitted and the loss-function
is replaced (after a reduction showing there is no loss of generality in assuming
π0 ≡ π({0}) > 0 and π1 ≡ π({ϑ1}) > 0) by

Lλ0,λ1(t, z, ϑ) ≡ L(t, z, ϑ) +
λ0

π0
I[ϑ=0] +

λ1

π1
I[ϑ=ϑ1] (31.2.6)

31.3 Optimal Decision Rules

Leifer and Slud (2002, including later revisions) show that optimal Bayesian
decision rules for (31.2.6) have the following properties:

1. There is a finite, nonrandom constant t∗ > 0, which may be made
uniform with respect to compact sets of pairs (λ0, λ1) ∈ R2

+, such that
τν ≤ t∗.
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2. For each triple (α, β, r) lying on the (closed) lower boundary of the
3-dimensional convex set of triples

(
Eϑ=0(χ), Eϑ=ϑ1(1− χ),

∫
Eϑ(L(τν , χ, ϑ))π(dϑ)

)
(31.3.7)

of randomized decision rules, there exists a possibly randomized decision
rule for which (α, β, r) is exactly equal to the triple (31.3.7).

3. Every minimum-risk, possibly randomized, decision rule for the decision
problem with the loss-function (31.2.6) has a terminal decision χ which
is a.s. equal to a nonrandom function of the form χ = I[X(τν)≥w(τν)],
with w(·) unique, but implicitly defined.

4. Generically for the loss-function (31.2.6), possibly after a small random
perturbation of the cost-function c1 preserving the Assumptions, for
each (λ0, λ1), the optimal decision rule minimizing the Bayesian risk for
loss function (31.2.6) is unique and nonrandomized and can be computed
by backward induction.

31.4 Modified Trials with Accrual-Stopping

We conclude by indicating (a one-sided modification of) a trial design of Kout-
soukos et al. (2000) extending that of Section 31.2, which allows the flexibility
of modifying accrual without stopping followup, effectively reducing, but not
to 0, the rate at which information about the alternative parameter unfolds.
The notation concerning the repeatedly calculated statistic Sk is as in the
Introduction. In this design, the look-times τj = j are evenly spaced, since at
most one unit of further followup is allowed when accrual is stopped, and at the
end of such a followup period the trial is stopped. In the one-sided version of
this design, trial and accrual stopping are respectively determined by a constant
CU and sequences CA,j and CR,j such that CA,j < CU :

The trial is stopped outright at j, with Rejection, if Sj/
√

n ≥ CU .

The accrual (i.e. entry) of new patients is disallowed for all times
later than j if CA,j ≤ Sj/

√
n < CU , in which case the trial is

stopped at time j + 1, with final Rejection if Sj+1/
√

n ≥ CR,j+1

and Acceptance otherwise.

Boundaries of this type can be computed to have fixed size, and the free pa-
rameters CU , CA,j , CR,j+1 can be optimized with respect to a loss function
containing costs for wrong decisions and trial durations (analogous to cost func-
tion c1 in Section 31.2) under a range of alternatives weighted by a prior π.
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We will indicate how this design falls within a slightly generalized version of
the setting in Section 31.2 when the variance-process for the observed statistic
process is affected by design elements, like the stopping of accrual at an interim
look without stopping the trial.
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32.1 Extended Abstract

Breast cancer is a disease that exhibits substantial international variation in in-
cidence. Rates tend to be highest among whites in the United States and west-
ern Europe, whereas rates in Asia are among the lowest. Historically there ex-
isted about a 6-fold difference in breast cancer incidence between these extremes
(Ziegler et al., 1993). This large variation in breast cancer risk is not due to
underlying genetic differences as the rates of breast cancer in Asian-Americans
shift substantially towards those of whites in the United States (Deapen et al.,
2002).

To better understand reasons for the increase of breast cancer in Asian-
Americans, we have conducted a large population-based case-control study
which included 1,277 women with breast cancer and 1,160 control women with-
out breast cancer. Chinese, Japanese and Filipino women, between the ages
of 25 and 74 years at the time of diagnosis of an incident breast cancer on
or after January 1995 were identified through the Los Angeles County Cancer
Surveillance Program, the population-based cancer registry of the study area.
Control women were frequency-matched to cases on specific Asian ethnicity
and age and were selected from the neighborhoods where breast cancer cases
resided at the time of diagnosis. In-person interviews were conducted by using
a standardized, structured questionnaire that covered demographic character-
istics and migration history, menstrual and reproductive history, lifetime use of
exogenous hormones, body size at each decade of life, physical activity patterns,
and diet history. The food frequency questionnaire was modeled after the val-
idated diet instrument used in the Multiethnic Cohort Study being conducted
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in Hawaii and Los Angeles County (Stram et al., 2000).

We calculated odds ratios (relative risk estimates), their corresponding 95%
confidence intervals and P values by conditional logistic regression methods,
with matched sets defined jointly by age, and specific Asian ethnicity. All ba-
sic regression models in this study also included as covariates birthplace and
years of residence in the United Status, education, and relevant menstrual and
reproductive factors. Results based on the first group of cases and controls in-
terviewed showed that breast cancer risk was significantly inversely associated
with soy intake and that age at first exposure to soy intake was an impor-
tant co-determinant of protection (Wu et al., 2002). We also observed that tea
intake, particularly green tea intake, had significant protective effect against
breast cancer risk in Asian American women (Wu et al., 2003). Our updated
findings from this study, including results in relation to menstrual and repro-
ductive factors, dietary factors, body size, and use of exogenous hormones will
be discussed. Some of the differences and similarities between the Asian diet
and the Mediterranean diet will be highlighted.

We have recently expanded the scope of this study and are following the
cases interviewed in this case-control study to determine the extent to which pre-
diagnostic dietary and non-dietary lifestyle factors are associated with breast
cancer prognosis in Asian-American women. A secondary goal is to explore if
prognosis is associated with post-diagnostic lifestyle factors.

Data collected in the completed interview for the case-control study will be
the source of information on exposures before diagnosis. We are recontacting
cases by telephone to conduct a follow-up interview five or more years after
initial cancer diagnosis. The follow-up interviews include questions on disease
status (recurrences, new primaries), treatment history (surgery, use of tamox-
ifen, aromatase inhibitors and other agents, chemotherapy, radiation), use of
alternative therapies, and selected lifestyle factors after diagnosis, including
pregnancy, changes in menopausal status, use of exogenous hormones, body
weight, physical activity, intake of soy and tea and other food groups. The
Los Angeles County Cancer Surveillance Program will serve as the source of
information on survival and tumor characteristics (tumor stage, nodal status,
tumor size, histology, grade and estrogen/progesterone receptor status). Two
endpoints will be included in the final analysis: overall survival and recur-
rence/second primary cancer. Some of our experience from this ongoing study
will be discussed.
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Abstract: It is well known the role of entropies and divergences in statistics
and related fields as indices of the diversity or variability and as pseudo distances
between statistical populations. The definition of these measures is extended in
the case of mixed continuous and categorical variables, a case which is common
in practice in the fields of medicine, behavioural sciences etc. The role of
these indices in testing statistical hypothesis and as descriptive measures in
the location model will be clarified.

Keywords and phrases: Location model, mixed variables, entropy, diver-
gence

33.1 Introduction

Many times in practice the statistician is faced with mixed, continuous and cat-
egorical variables. In medicine, for instance, variables sex, profession, smoking
and drinking are categorical while variables age, weight, height and time per
week for gymnastic are continuous. In this and similar situations, the vector
random variables include both, continuous and categorical components. There
are several options to treat mixed data. If, for example, the qualitative vari-
ables can be subjected to some scoring system, then all variables can be treated
as quantitative. In a similar manner, all the variables can be treated as quali-
tative if the quantitative variables might be categorized by grouping. Another
approach is to analyze separately the continuous and the categorical part of the
data and then to combine the results. But all of the above procedures involve,
according to Krzanowski (1983), some element of subjectivity. If, for exam-
ple, we treat the continuous variables as categorical by grouping them, then
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this procedure results a loss of information due to the grouping of the observa-
tions. If we treat separately the continuous and the categorical variables and
combine the results of the individual analyses then we will ignore possible asso-
ciations and dependencies between the continuous and the categorical variables
which may cause a false final decision. These reasons motivated several authors
to adopt the location model, introduced by Olkin and Tate (1961) (cf. also
Schafer (1997)), to study this type of mixed data. The location model helps to
handle the joint distribution of mixed continuous and categorical variables and
has been used to formulate statistical tests, as well as, discrimination and classi-
fication rules. Representative work in testing statistical hypothesis with mixed
data are the papers by Afifi and Elashoff (1969), Bar-Hen and Daudin (1995),
Morales et al. (1998), de Leon and Carrière (2000) and Nakanishi (2003). Al-
location rules on this model were investigated, among other, by Krzanowski
(1975), Vlachonikolis (1985), Balakrishnan et al. (1986), Nakanishi (1996).

On the other hand, information theoretic procedures are well known in
statistics and related fields, and entropy and divergence measures provide with
useful tools in order to formulate and define statistical tests and allocation
rules. The use of entropies and divergences in the case of mixed variables is
the subject of the papers by Krzanowski (1983), and recently by Bar-Hen and
Daudin (1995), Morales et al. (1998) and Nakanishi (1996, 2003). To handle
the joint distribution of mixed continuous and categorical variables, Krzanowski
(1983) has considered the location model as it is introduced by Olkin and Tate
(1961), while Bar-Hen and Daudin (1995) considered a generalization of the
location model.

In this talk, some preliminary concepts will be presented in respect to the
location model. This model will be applied in order to present measures of
entropy and divergence in the mixed variables case. In this context, some
probabilistic and statistical results will be outlined and discussed.

33.2 The Model

The location model has been introduced by Olkin and Tate (1961) and has since
been used in several disciplines in statistics and related fields. In order to state
this model consider q continuous random variables X1, ..., Xq and d categorical
random variables Y1, ..., Yd, where each Yi is observed at ki, i = 1, ..., d, possible
states yij , i = 1, ..., d and j = 1, ..., ki. The d qualitative random variables
define a multinomial vector Z = (z1, ..., zc)T with c possible states, where each
of the c = k1×k2× ...×kd states is associated with a combination of the values
yij , i = 1, ..., d and j = 1, ..., ki of the qualitative variables. Denote by pm the
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probability of observing the state zm, m = 1, ..., c,

pm = Pr(Z = zm), m = 1, ..., c, with
c∑

m=1

pm = 1.

Conditionally on Z = zm, m = 1, ..., c, the q continuous random variables
X = (X1, ..., Xq)T are described by a parametric density denoted by fm(x),
that is,

fm(x) = f(x|Z = zm),

for m = 1, ..., c. In this context, the joint density with parameter θ of the
random vectors X = (X1, ..., Xq)T and Z = (z1, ..., zc)T is

fθ(x, z) =
∑c

m=1 f(x|Z = zm) Pr(Z = zm)Izm(Z)
=

∑c
m=1 fm(x)pmIzm(Z),

(33.2.1)

with

Izm(Z) =
{

1, if Z = zm

0, otherwise
, for m = 1, ..., c.

The joint density fθ(x, z), given by (33.2.1), defines the well known location
model. The conditional density can be any parametric family of probability
distributions. The classic location model, defined by Olkin and Tate (1961),
considers that conditionally on Z = zm, m = 1, ..., c, the q continuous random
variables X = (X1, ..., Xq)T jointly follow the multivariate normal distribution
with location and scale parameters respectively µm and Σm, with Σm a positive
definite matrix of order q, for m = 1, ..., c. If we will denote by fm(x) this
conditional density, then

fm(x)=f(x|Z=zm)=(2π)−
q
2 |Σm|−

1
2 exp

{
−1

2
(x− µm)T Σ−1

m (x− µm)
}

.

(33.2.2)
Bar-Hen and Daudin (1995), generalized the classic location model (33.2.1)
and (33.2.2) by considering fm(x) = f(x|Z = zm) to be any parametric family
of probability distributions and not necessarily the multivariate normal model
(33.2.2).

Let µ1 be the countable measure on Z = {z1, . . . , zc} and µ2 be the Lebesque
measure on Rq. Denote by µ = µ1⊗µ2 the product measure on Z ×Rq. Then,
for a concave function ϕ, the ϕ−entropy of the joint density fθ(x, z), given by
(33.2.1), is defined by

Hϕ(fθ) =
∫

ϕ(fθ(x, z))dµ, (33.2.3)

and it can be considered as a descriptive measure of the variability or diversity
of the mixed variables and hence of their joint distribution. If ϕ(x) = −x ln x,
x > 0, then (33.2.3) leads to the well known Shannon entropy.
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Suppose now that the continuous and the categorical variables X1, ..., Xq

and Y1, ..., Yd, are observed on the members of two populations π1 and π2.
Each of the populations is described by the generalized location model (33.2.1)
with joint density

fθi(x, z) =
c∑

m=1

fi(x|Z = zm)pimIzm(Z), i = 1, 2,

respectively, where pim denotes the probability of observing the state zm in the
population πi, i = 1, 2 and m = 1, ..., c.

The φ−divergence of fθ1 and fθ2 is defined by

Dφ(fθ1 , fθ2) =
∫

fθ2(x, z)φ
(

fθ1(x, z)
fθ2(x, z)

)
dµ, (33.2.4)

where φ is a real convex function defined on (0,∞), which, moreover, satisfies
appropriate conditions which ensure the existence of the above integral. Special
choices of the convex function φ lead to the Kullback–Leibler directed diver-
gence, the Cressie and Read’s power divergence and the distances considered
by Krzanowski (1983), as well. Dφ is a measure of the distance between popu-
lations π1 and π2 in the sense that Dφ(fθ1 , fθ2) attains its minimum value φ(1)
if and only if fθ1(x, z) = fθ2(x, z).

In practice, training samples are available from the population described by
fθ(x, z) or the populations π1, π2 and based on the samples, we are interested
in the study of the sampling behavior of Hϕ(fθ), or to test the hypothesis of
homogeneity of the two populations or to construct minimum distance rules
for the allocation of a new observation as coming from one of the populations
considered. In these cases an estimator of Hϕ(fθ) or Dφ(fθ1 , fθ2) can serve as
a test statistic for testing homogeneity or as the main tool in order to define
a minimum distance allocation rule. An estimator of Hϕ(fθ) or Dφ(fθ1 , fθ2)
can be obtained, on the basis of a random sample of size n from fθ(x, z), or on
the basis of two independent random samples of sizes ni, from the populations
fθi(x, z), i = 1, 2. Let θ̂ denotes the m.l.e. of θ and θ̂i the m.l.e. of θi, i = 1, 2.
Then, the sample estimators of Hϕ and Dφ are obtained from (33.2.3) and
(33.2.4), if we replace the unknown parameters by their m.l.e., in the formulas
for Hϕ(fθ) and Dφ(fθ1 , fθ2). The said estimators are the ϕ−entropy of fbθ and
the ϕ−divergence of fbθ1

and fbθ2
, defined, respectively, by

Hϕ(fbθ) =
∫

ϕ(fbθ(x, z))dµ, and Dφ(fbθ1
, fbθ2

) =
∫

fbθ2
(x, z)φ

(
fbθ1

(x, z)

fbθ2
(x, z)

)
dµ.

In this talk, we will mainly concentrate, without any loss of generality, on the
well known Shannon entropy and Kullback-Leibler divergence for mixed, con-
tinuous and categorical variables which are obtained from (33.2.3) and (33.2.4),
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for ϕ(x) = −x lnx and φ(x) = x lnx, respectively. Asymptotic distributions of
these entropy and divergence measures will be stated. Moreover, the role of the
above indices as descriptive measures in the location model will be discussed
and studied.
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34.1 Introduction

The Weibull probability distribution function W (t; θ, ν) and its numerous gen-
eralizations are often used as a lifetime model (see, e.g., Bagdonavičius and
Nikulin (2002), Barlow and Proschan (1991), Harter (1991)). A random non-
negative absolutely continuous failure time T can be described by the different
ways. For example, the Weibull distribution of T can be specified by its prob-
ability distribution function

W (t; θ, ν) = 1− exp{1− (t/θ)ν}, θ, ν, t > 0, (34.1.1)

by the survival function S(t; θ, ν) = P (T ≥ t) = 1 −W (t; θ, ν), by the hazard or
failure rate function α(t; θ, ν) = νθ−νtν−1, by the probability density function
f(t; θ, ν) = νθ−νtν−1 exp[−(t/θ)ν ] or by quantile function tp = θ[− ln(1−p)]1/ν ,
0 < p < 1, (see Lawless (2003)).

Introduction of Weibull family W (t; θ, ν) can be justified by the following
two reasons:

Remark 34.1.1 Let T1, ..., Tn be a random sample such that

P (Ti ≤ t) = G(t; θ, ν), i = 1, ..., n, θ, ν, t > 0,
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where G(t; θ, ν) is a distribution function satisfying the conditions lim
t↓0

G(t; θ, ν) =

θ−νtν , G(t; θ, ν) = 0 if t ≤ 0 for all fixed θ and ν. Then n1/nT(1n), where
T(1n) = min(T1, ..., Tn) is the first order statistic, converges in probability to
W (t; θ, ν).

Remark 34.1.2 Let T ∼ W (t; θ, ν). Then the statistic Z = lnT follows the
well-known extreme-value probability distribution

P (Z ≤ z) = 1− exp{1− exp[(z − µ)/σ]},

where µ = ln θ and σ = 1/ν > 0. This distribution is also often used in
reliability studies.

In accelerated life studies the Generalized power Weibull family with the dis-
tribution function

F (t; θ, ν, γ) = 1− exp{1− [1 + (t/θ)ν ]1/γ}, t, θ, ν, γ > 0, (34.1.2)

proves to be very useful (Bagdonavičius and Nikulin (2002)). The family
(34.1.2) with all moments being finite possesses very nice properties. Depen-
dent on values of parameters the hazard rate function α(t; θ, ν, γ) = νγ−1θ−ν [1+
(t/θ)ν ]1/γ−1 can be constant, monotone increasing or decreasing, ∩-shaped and
∪-shaped. Note also that F (t; θ, ν, 1) = W (t; θ, ν) and F (t; θ, 1, 1) = E(t; θ),
which is the exponential probability distribution.

In Section 34.2 of this note we consider the problem of estimating parameters
for the family (34.1.2). Section 34.3 is devoted to constructing a modified chi-
squared test based on moment type estimators. Results of power estimating
are analyzed in Section 34.4.

34.2 Estimating parameters

Let T1, ..., Tn be a random sample from the distribution (34.1.2). Assuming pa-
rameters θ, ν, γ to be unknown, the loglikelihood function for (34.1.2) can hardly
be maximized analytically. Because of this we investigated maximum likeli-
hood estimates (MLEs) θ̂, ν̂, γ̂ of parameters θ, ν, γ by Monte Carlo simulation.
Results of the simulation showed that for three-parameter Power-Generalized
Weibull probability distribution (34.1.2) MLEs do not converge to their true
values, and, hence, are inconsistent.

Moments of the family (34.1.2) can be represented as

ET j = θj

∞∫

1

(tγ − 1)j/νe1−tdt, j = 1, 2, ... (34.2.3)
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Moment type estimates (MMEs) γ̄ and ν̄ can be found by solving the equation

g(γ, ν) =

{ ∞∫

1

(tγ − 1)2/νe1−tdt

[ ∞∫

1

(tγ − 1)1/νe1−tdt

]−2

− T 2/(T̄ )2
}2

+

+

{ ∞∫

1

(tγ − 1)3/νe1−tdt

[ ∞∫

1

(tγ − 1)1/νe1−tdt

]−3

− T 3/(T̄ )3
}2

, (34.2.4)

where T̄ , T 2, T 3 are three first initial sample moments. MME θ̄ is then defined
by the formula

θ̄ = T̄

[ ∞∫

1

(tγ̄ − 1)1/ν̄e1−tdt

]−1

.

Unfortunately, there is no exact solution of (34.2.4). Approximate solution,
which minimizes g(γ, ν), gives inconsistent γ̄ and not

√
n- consistent estimates

ν̄ and θ̄.
If the parameter γ is considered to be fixed, MMEs ν̄ and θ̄ can be found

by solving the following system of two equations:

∞∫

1

(tγ − 1)2/νe1−tdt
[ ∞∫

1

(tγ − 1)1/νe1−tdt
]−2

= X2/(X̄)2 (34.2.5)

and

θ = (X̄)
[ ∞∫

1

(tγ − 1)1/νe1−tdt
]−1

. (34.2.6)

Fig. 34.1 summarizes results of Monte Carlo simulation of MMEs θ̄ and ν̄. It
can be seen that these MMEs are

√
n - consistent. This suggests constructing

a modified chi-squared test of Mirvaliev (2001) for testing the null hypothesis
about the model (34.1.2).

34.3 Modified chi-squared test

Denote the unknown parameter ~θ = (θ1, θ2)T , where θ1 = θ, θ2 = ν. Denote also
pi(~θ) =

∫
4i(~θ)

dF (t; θ, ν, γ), i = 1, ..., r, where 4i(~θ) are nonintersecting random

equiprobable cells with borders ai(~θ) = σ{[1−ln(1−i/r)]γ−1}1/ν , i = 0, 1, ..., r,

a0(~θ) = 0, ar(~θ) = ∞. If we introduce the vector V n(~θ) of standardized
grouped frequencies with components vn

i (~θ) = [npi(~θ)]−1/2(Nn
i − npi(~θ)), then

the standard Pearson’s statistic X2(~θ) would be X2(~θ) = V (n)T (~θ)V (n)(~θ). If
~θ = (θ1, θ2)T is unknown and is replaced by MME θ̄, the modified Mirvaliev’s
test can be used instead of the Pearson’s statistic, which in the limit will possess
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Figure 34.1: Simulated values of mean absolute errors for MMEs θ̄, ν̄ as a
function of the sample size n (θ = ν = 3, γ = 2 fixed).

the chi-squared probability distribution with r − 1 degrees of freedom and on
the contrary of Pearson’s test will not depend on unknown parameters. De-

fine matrices K(~θ), V (~θ), C(~θ), and B(~θ) with elements Kij =
∞∫
0

ti ∂f(t;θ,ν,γ)
∂θj

dt,

Vij = mij − mimj , where mi = E(T i),mij = E(T i+j), i, j = 1, 2, Cij =

p
−1/2
i (~θ)

{ ∫
4i(~θ)

tjf(t; θ, ν, γ)dt − pi(~θ)mj

}
, and Bij = 1√

pi(~θ)

ai(~θ)∫
ai−1(~θ)

∂f(t;θ,ν,γ)
∂θj

,

i = 1, ..., r, j = 1, 2, correspondingly. If ~q = (p1/2
1 (~θ), ..., p1/2

r (~θ))T let matrices A
and L be A = I−~q~qT +C(V −CT C)−1CT and L = V +(C−BK−1V )T A(C−
BK−1V ) correspondingly. For the brevity we omitted dependence of all these
matrices on ~θ. In terms of these matrices the Mirvaliev’s statistic is written as
(Mirvaliev (2001))

Y 22(θ̄) = X2(~θ) + R2(θ̄)−Q2(θ̄), (34.3.7)

where
R2(θ̄) = V (n)T (θ̄)C(V − CT C)−1CT V (n)(θ̄),

Q2(θ̄) = V (n)T (θ̄)A(C −BK−1V )L−1(C −BK−1V )T AV (n)(θ̄).

The statistic Y 32(θ̄) = Y 22(θ̄)−U2(θ̄), where U2(θ̄) = V (n)T (θ̄)[I−B(BT B)−1

BT ]V (n)(θ̄) is the well known Dzhaparidze-Nikulin (DN) test (Dzhaparidze and
Nikulin (1974)), which is distributed asymptotically as χ2

2, can be used on its
own right. Explicit expressions for elements of matrices A,B, C, K,L, and V
will be published elsewhere.
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34.4 Power estimating

To assess power of Mirvaliev Y 22(θ̄) and Y 32(θ̄) tests for the PGW null hy-
pothesis against Exponentiated Weibull (EW) (see Mudholkar, Srivastava, and
Freimer (1995)), Three-parameter Weibull (W3), and Generalized Weibull (GW)
(see Mudholkar, Srivastava, and Kollia (1996)) alternatives we conducted Monte
Carlo simulation for the different number r of equiprobable random cells.
Anderson-Darling A2 test was also simulated for comparison. We used samples
of size n = 200, and type one error α = 0.05. Table 34.1 summarizes results
that were obtained. From the table one may conclude that shapes of PGW and

Table 34.1:

r Y 22(θ̄) Y 32(θ̄) A2

PGW-EW
5 0.056 0.0510 0.052
15 0.049 0.061 0.052
40 0.063 0.0705 0.052

PGW-W3
5 0.068 0.098 0.1205
15 0.060 0.077 0.1205
40 0.082 0.047 0.1205

PGW-GW
5, 15, 40 1.000 1.000 1.000

EW distributions are very close to each other and no one test can definitely
discriminate them. The same conclusion is true for testing PGW versus W3.

In the above investigation we tested a null hypothesis against an alterna-
tive assuming parameters being unknown. This means that parameters of the
null hypothesis are adjusted to a sample generated by the alternative model
thus making null and alternative hypotheses as close as possible. In other
words words tests are sensitive only to the difference in shape of those hy-
potheses. From the results obtained it follows that shapes of the Generalized
Power Weibull, Exponentiated Weibull, and Three-parameter Weibull distribu-
tions are very close to each other, though their hazard rate functions can be
different. Thus, to select one of these models for a survival analysis we need
to develop a test, which will compare their hazard rate functions directly (see
also Voinov, Alloyarova, and Pya (2006)). At the same time to discriminate
between different in their shape PGW and GW any test - Y 22(θ̄), Y 32(θ̄), and
even insensitive DN U2(θ̄) can be used, since power of all these tests is very
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close to one.
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35.1 Problem setting

We consider a group of G objects with numbers i = 1, 2, ..., G. The i-th object is
examined ni times, at the time moments ti,1 < ti,2 < ... < ti,ni . At the j-th time
moment ti,j we fixe a vector of independent variables xi,j = (x(1)

i,j , x
(2)
i,j , ..., x

(mi)
i,j )

and a value of a dependent variable Yi,j . It is supposed that the last is formed
by the linear-regression equation

Yi,j =
mi∑

v=1

βi,vx
(v)
i,j + Zi,j , (35.1.1)

where βi,v is the coefficient for the i-th object and v-th independent variable
and Zi,j is normally distributed random term (a disturbance) with mean zero
and variance σ2

i .
Further if for two various objects i and i′ the time moments ti,j and ti′,j′

coincide then the random terms Zi,j and Zi′,j′ (therefore Yi,j and Yi′,j′ too)
are correlated random variables with the covariance ci,i′ whereas for various
time moments they are assumed independent (Zi,j and Zi,j′ are independent
for j 6= j′ as well).
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As usually it is assumed that for i = 1, 2, ..., G and j = 1, 2, ..., ni xi,j =
(x(1)

i,j , x
(2)
i,j , ..., x

(mi)
i,j ) is known constant vector and Yi,j is the fixed value. On

this base it should estimate the unknown parameters of the regression model
{βi,v}, {ci,i′}, where σ2

i = ci,i.
Our final aim is for the future time moment t to get a prognosis of the sum

W (t) =
G∑

i=1

Yi,j(t) =
G∑

i=1

( mi∑

v=1

βi,vx
(v)
i,j(t) + Zi,j(t)

)
(35.1.2)

The seemingly unrelated regression equations models were considered by
Turkington (2002). In this case it is supposed that ni = n, ti,j = ti′,j for all
i, i′. If in addition xi,j = (x(1)

i,j , x
(2)
i,j , ..., x

(mi)
i,j ) = xi′,j = (x(1)

i′,j , x
(2)
i′,j , ..., x

(mi)
i′,j ) for

all i, i′, then we have the multivariate linear regression model, see Srivastava
(2002).

35.2 The prognosis of the sum

Let Xi be a (ni ×mi)-matrix of the independent variables for the i-th object.
The unknown coefficients {βi,v} are estimated using well known formula

β∗i = (XT
i Xi)−1XT

i Yi, (35.2.3)

where β∗i = (β∗i,1, β
∗
i,2, ..., β

∗
i,mi

)T , Yi = (Yi,1, Yi,2, ..., Yi,ni)
T are the vectors of the

estimators and the dependent variables.
The last formula gives the unbiased estimator of βi. It allows us to get the

unbiased estimator for the sum of interest W (t):

W ∗(t) =
G∑

i=1

Y ∗
i,j(t) =

G∑

i=1

xi,j(t)β
∗
i =

G∑

i=1

mi∑

v=1

β∗i,vx
(v)
i,j(t). (35.2.4)

Our aim is the calculation of the variance of this estimator.

35.3 Covariance of the estimators

With respect to Eq.(35.2.3), the covariance matrix of two coefficient vectors
β∗i , β∗l is calculated by formula

Cov(β∗i , β∗l ) = (XT
i Xi)−1XT

i Cov(Yi, Yl)Xl(XT
l Xl)−1. (35.3.5)

Also we need to calculate the covariance Cov(Yi, Yl). Let D(i,l) is (ni × nl)-
matrix for which D

(i,l)
j,f = 1 if ti,j = tl,f and D

(i,l)
j,f = 0 otherwise.
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Let us remember that the covariance of two dependent variables Yi,j and
Yl,f for the same time moment ti,j = tl,f is equal to ci,l. Therefore

Cov(Yi, Yl) = ci,lD
(i,l).

Now we are able to rewrite Eq.(35.3.5) in the following form:

Cov(β∗i , β∗l ) = ci,l(XT
i Xi)−1XT

i D(i,l)Xl(XT
l Xl)−1. (35.3.6)

Our next task is the estimation of the unknown covariance {ci,l}. With that we
try to use usual estimator of the least squares:

c∗i,l =
1

vi,l
(Yi −Xiβ

∗
i )T D(i,l)(Yl −Xlβ

∗
l ), (35.3.7)

where vi,l is a constant that is determined by a condition of the estimator
unbiasedness.

To define the constant vi,l it is necessary to calculate expectation of the
estimator c∗i,l. We have:

E(c∗i,l) = E

(
1

vi,l
(Yi −Xiβ

∗
i )T D(i,l)(Yl −Xlβ

∗
l )

)
=

=
1

vi,l
E

(
(Yi −Xi(XT

i Xi)−1XT
i Yi)T D(i,l)(Yl −Xl(XT

l Xl)−1XT
l Yl)

)
=

=
1

vi,l
E

(
Y T

i (Ii −Xi(XT
i Xi)−1XT

i )D(i,l)(Il −Xl(XT
l Xl)−1XT

l )Yl

)
,

where Ii and Il are unique matrices of rank ni and nl respectively.
Since Yi = Xiβi + Zi then

(Ii −Xi(XT
i Xi)−1XT

i Yi = (Ii −Xi(XT
i Xi)−1XT

i )Zi,

E(c∗i,l) =
1

vi,l
E

(
ZT

i (Ii −Xi(XT
i Xi)−1XT

i )D(i,l)(Il −Xl(XT
l Xl)−1XT

l )Zl

)
.(35.3.8)

We introduce the following notation: Rj(i) is the j-th row of the matrix
(Ii −Xi(XT

i Xi)−1XT
i ), f(l, i, j) is the observation number for the l-th object,

for which the time coincides with ti,j , and is equal to zero if such number absents
itself:

f(l, i, j) =
nl∑

v=1

v ×D
(i,l)
j,v . (35.3.9)

Then
E(c∗i,l) =

1
vi,l

∑

j

∑

k

E
(
Zi,jRj(i)D(i,l)RT

k (l)Zl,k

)
=
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=
1

vi,l

∑

j

Rj(i)RT
f(l,i,j)(l)E

(
Zi,jZl,f(l,i,j)

)
=

1
vi,l

ci,l

∑

j

Rj(i)RT
f(l,i,j)(l).

The last formula shows that

vi,l =
∑

j

Rj(i)RT
f(l,i,j)(l). (35.3.10)

With this value of the constant vi,l Eq.(35.3.7) gives the unbiased estimator
of the covariance ci,l.

Note for σ2
i = ci,i we have the usual estimator:

σ2∗
i = c∗i,i =

1
ni −mi

(Yi −Xiβ
∗
i )T (Yi −Xiβ

∗
i ). (35.3.11)

35.4 Variance of the sum

The variance of the sum in Eq.(35.2.4) is calculated by the usual way:

V ar(W ∗(t)) =
G∑

i=1

xi,j(t)Cov(β∗i )xT
l,j(t)+

+2
G−1∑

i=1

G∑

l=i+1

xi,j(t)Cov(β∗i , β∗l )xT
l,j(t). (35.4.12)

With that Cov(β∗i , β∗l ) is calculated by Eq.(35.3.6) and the covariance matrix
of the vector β∗i is calculated by the well known formula

Cov(β∗i ) = ci,i(XT
i Xi)−1. (35.4.13)

35.5 Example

Consider two objects (G = 2) with numbers i = 1, 2. The first object is exam-
ined n1 = 5 times, at the time moments t1,1 = 1, t1,2 = 2, t1,3 = 4, t1,4 = 6,
t1,5 = 9. The second object is examined n2 = 7 times, at the time moments
t2,1 = 1, t2,2 = 3, t2,3 = 4, t2,4 = 5, t2,5 = 6, t2,6 = 7, t2,7 = 9. It is
supposed that the dependent variables {Y1,j , Y2,j} are formed by the following
linear-regression equations:

Y1,j = β1,1 + β1,2t1,j + β1,3t
2
1,j + Z1,j , j = 1, ..., 5,

Y2,j = β2,1 + β2,2t2,j + β2,3t
2
2,j + β2,4

1
t22,j

+ Z2,j , j = 1, ..., 7.
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Let us calculate unique normalized constant v1,2 using Eq.(35.3.10). The
matrices X1, X2 and D(1,2) have the following forms here:

X1 =




1 1 1
1 2 4
1 4 16
1 6 36
1 9 81




, X2 =




1 1 1 1
1 3 9 1/9
1 4 16 1/16
1 5 25 1/25
1 6 36 1/36
1 7 49 1/49
1 9 81 1/81




, D(1,2)T =




1 0 0 0 0
0 0 0 0 0
0 0 1 0 0
0 0 0 0 0
0 0 0 1 0
0 0 0 0 0
0 0 0 0 1




.

Matrix R1 = (I1 −X1(XT
1 X1)−1XT

1 ) for example is

R1 =




0.283 −0.409 0.014 0.177 −0.065
−0.409 0.660 −0.212 −0.096 0.057
0.014 −0.212 0.539 −0.440 0.099
0.177 −0.096 −0.440 0.484 −0.126
−0.065 0.057 0.099 −0.126 0.034




.

The function f(2, 1, j) values are given in table 1.
Table 1

The function f(2, 1, j) values

j = 1 j = 2 j = 3 j = 4 j = 5
f(2, 1, j) 1 0 3 5 7

The calculations according to Eq.(35.3.10) show that v1,2 = 0.491. We wish
to remark that the result is not the whole number as it takes place in the usual
regression analysis.

Now we wish to compare variances estimators for two cases: 1) the random
variables Y1,j and Y2,j are independent; 2) at the same time they are dependent.

For the first case we have with respect to Eq.(35.4.12) and Eq.(35.4.13):

V ar(W ∗(t)) =
2∑

i=1

xi,j(t)Cov(β∗i )xT
i,j(t) =

2∑

i=1

σ2
i xi,j(t)(X

T
i Xi)−1xT

i,j(t) .(35.5.14)

For the second case

V ar(W ∗(t)) =
2∑

i=1

σ2
i xi,j(t)(X

T
i Xi)−1xT

i,j(t) + 2x1,j(t)Cov(β∗1 , β∗2)xT
2,j(t), (35.5.15)
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where covariance Cov(β∗i , β∗l ) is calculated by Eq.(35.3.6). Let t = 10, then

x1,j(10) = (1 10 100), x2,j(10) = (1 10 100 0.01).

Let σ2
1 = c1,1 = 2, σ2

2 = c2,2 = 5, c1,2 = ρσ1σ2 where ρ is the correlation
coefficient. Then for first case the Eq.(35.5.14) gives V ar(W ∗(10)) = 16.703.
For the second case the values of this variance (Eq. (35.5.15)) are presented in
the table 2 as a function of the correlation coefficient ρ.

Table 2

The variance V ar(W ∗(10)) values as a function of ρ (four joint observations)

ρ -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9
V ar 7.474 10.11 12.75 15.39 18.02 20.66 23.30 25.93 28.57

We see that the dependence changes the variance values very sufficiently.
It can be due to big number of joint observations (four out of five for the
variable Y1). Obviously the less the number of the joint observations the less
this dependence. The table 3 contains corresponding results for three joint
observations when the variable Y1 is fixed at the time moments t1,1 = 1, t1,2 = 2,
t1,3 = 4, t1,4 = 8, t1,5 = 9.

Table 3

The variance V ar(W ∗(10)) values as a function of ρ (three joint observations)

ρ -0.7 -0.5 -0.3 -0.1 0.1 0.3 0.5 0.7 0.9
V ar 9.358 11.35 13.33 15.32 17.31 19.30 21.29 23.28 25.26

Finally we can conclude that it is necessary to attach great importance to
considered phenomena of the dependence in the given statistical data.
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Critical Condition in Human. The Entropy Based

Technology of Definition.

Antonov V., Fedulin A., Nosyrev S., Kovalenko A, Kashtanov A.

Saint-Petersburg State Technical University
Hospital 122

Abstract: Technology of definition allows to determine the state of system
and get the forecast of a state transition in real-time mode on usage of periodic
signals of a system of any nature. The technology details are discussed here
based on definition of correlation dimension in measured signal entropy phase.

Keywords and phrases:deterministic chaos, informational entropy, correla-
tion dimension

36.1 Introduction

The know-how based on usage of periodic signals of a system of any nature –
human, mechanical, thermal and chemical. It allows to determine the state of
system and get the forecast of a state transition in real-time mode.

The state of system is determined by the value of correlation dimension of
signal informational entropy in time. It can be explained such as the ability of
the system to react on external stress. This way, changing of reaction ability
means state transition.

The details of the computational model of such system state analysis are
discussed. The main features are:

• Real-time mode of computation

• The data insufficiency (express analysis)

• Input noise

• Portability for mobile & other platforms with low computational ability

201
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36.2 Methods

We present fast and simple way to obtain result. The every step in time of
dynamic process split in 3 independent stages.

36.2.1 Stage 1. Evaluation of general signal frequency & am-
plitude

Let X ={xi}, i = 1..M0 – is source signal data, measured with frequency ∆f.
Let R ={ri, ti}, i = 1..M1 – peak value and peak time.

To get peak values and peak time we can use Fast Fourier Transformation
(36.2.1) or another well-known method from signal analysis theory.

ϕ(y) =

∞∫

−∞
ϕ(x)e−ixydx (36.2.1)

36.2.2 Stage 2. Evaluation of informational entropy

Let Gi ={ri−j , ti−j}, j = 1..K, series of peak values in time

For each Gi we calculate the value of informational entropy e in the following
way [2]:

e =
n∑

i=1

Pi log
1
Pi

, (36.2.2)

where {Pi}– value distribution histogram of Gi.

To get the distribution histogram to calculate entropy value we can use
many methods, for example, evaluation of autocorrelation function or straight
evaluation of Pi in case where peak sampling frequency is much less than K. The
main feature of the methods is that data value must be stable to K changing.
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Let E ={ei, ti},i = 1..M2, system trajectory in entropy phase space, like it’s
shown on the figure below.

It’s obvious to use the equation M1 = M2 + K to get M2. In fact Kdefines
the value of time delay for getting first entropy value. The smaller the K value
the faster we get the results, the greater the K value the more accuracy of
calculation. The K value is determined by the entropy evaluation method.

36.2.3 Stage 3. Evaluation of correlation dimension of fractal
curve in entropy phase space

We suppose that the system trajectory E is the fractal [1] and evaluate corre-
lation dimension of its attractor in time assuming its value is between 1 and
2. Correlation dimension of trajectory attractor is calculated by Hausdorf box
method [4]. We subdivide all space in M(ε) squares with length ε and calcu-
late the probability of trajectory attractor to visit every square pi. This way,
correlation dimension is calculated by the formula

D=
c lim

ε→0

ln
M(ε)∑
i=1

p2
i

ln ε
(36.2.3)

To get value in range [1..2] we have to build 2D trajectory in 2D phase space
~ei=(x=value, y=value velocity).

Let Ei ={~ei = (x = ei−j , y = ei−j−L),t = ti−j}, j=1..N – part of system
trajectory. It’s proved by Tuckens [3] that it can be find L value that such
repaired trajectory metrical features is the same with source built in phase
space.

Let D ={di, ti}, i =1, ..., M3, where di – value of correlation dimension of
Ei. We can find M3 from equation M3 = M2 − L − N . The L and N value
defines the time delay value of first analysis results after input measurement



204 Antonov V., Fedulin A., Nosyrev S., Kovalenko A, Kashtanov A.

have been started, then each new di would be calculated after each new peak
had been got.

In fact of data insufficiency we aren’t able to use Hausdorf formula directly
because this way all pi are equal to 0. So we use the following method

C(
cr) =

1
M(r)2

M(r)∑

i,j=1

H(r − |~ei − ~ej |), (36.2.4)

where H is Heavyside function. In other words Cc(r) is the relative amount of
point pairs closer in space to each other than r.

If Cc(r)∼= αrD in some interval of r R=(r1,...,r2) than we assume Dc=D–
correlation dimension of trajectory attractor. To get D value we calculate series
∆Cc(ri) with fixed logarithmic step by r:

∆C(ri) =
log(C(ri+1)− log C(ri))

log(ri+1)− log(ri)
(36.2.5)

It’s evidently that ∆C c(ri = 0) = 0 and ∆C c(ri=∞)= 1, but if interval R exist
then

∆C(ri) =
log C(ri+1)− log C(ri)

log(ri+1)− log(ri)
≈

log(
αrD

i+1

αrD
i

)

log( ri+1

ri
)

= D (36.2.6)

so ∆C c(r) is closer to constant function and function value defines D like it’s
shown on figures below.

It’s shown by Tsonis [5] that the method convergence is good where N≥N min =
102+0.4D, so N value is determined from this equation. L value is determined
from evaluation stability principle and can be from range (1, ...N).

36.3 Summary

Given technology has been implemented as demonstration real-time application
to determine human state using their ECG data (R-R peaks) power by Hospital
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122. It’s visible the value decreasing tendency for human with poor state of
health.
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Analysis of Duration of Studies Data By Kernel

Methods
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Abstract: We use kernel based estimators to analyze duration of studies data.
We consider separately female and male student groups as well the total pop-
ulation. The results are interpreted and illustrated graphically.

Keywords and phrases: Kernel estimate, censored data, duration of studies,
survival function, hazard rate.

37.1 Introduction

Kalamatianou and McClean (2003) modeled the distribution of the duration of
undergraduate studies in a Greek university using survival analysis techniques.
In particular their nonparametric estimation part is based on the Kaplan-Meier
estimator (Kaplan and Meier (1958)) which provides a step function as an
estimate of the true survival function. Although the Kaplan-Meier curve is
a well established method in survival analysis the information it provides is
limited as it produces a step function. For this reason in this paper we work
on the same problem and employ kernel estimates to obtain continuous curves
of improved performance over the Kaplan-Meier estimate. Kulasekera et al.
(2001) proved that a smoothed version of the Kaplan-Meier curve would be
more efficient in terms of its asymptotic properties. This, together with the
work of Marron and Padgett (1987) which extents kernel estimates to censored
data situations yields continuous estimates of the survival and hazard functions
appropriate for the data available at hand.

Next we give a brief description of the data to be analyzed.

207
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37.2 Data

The data were obtained from the students records office of a Greek university
and their full description is given in Kalamatianou and McClean (2003). The
main variable of interest is duration of studies. These are 10313 observations
which represent study times of students who entered any department of the
university from the academic year 1983-84 until 1992-93.

In the next section we employ kernel smoothing techniques to analyze these
data further.

37.3 Estimation

Suppose we have a sample X1, X2, . . . , Xn of i.i.d. survival times censored at
the right by i.i.d. random variables U1, U2, . . . , Un, which are independent from
the Xi’s. Let f be the common probability density and F the distribution
function of the Xi’s. Also, denote by H the distribution function of the Ui’s.
Typically the randomly right censored observed data are denoted by the pairs
(Xi, ∆i), i = 1, 2, . . . , n with Xi = min{Xi, Ui} and ∆i = 1{Xi≤Ui} where 1{·}
is the indicator random variable of the event {·}.

An estimate of the unknown pdf f can be defined as

f̂(x) =
1

nh

n∑

i=1

∆i

Ĥ∗(Xi)
K

(
x−Xi

h

)

where K, called kernel, is a function that integrates to 1, h, called bandwidth,
is the amount of smoothing applied to the estimator and Ĥ∗ is an estimate of
1−H, typically taken to be the Kaplan-Meier estimator, i.e.

Ĥ∗(x) =





1, 0 < x ≤ Z1
∏k−1

i=1

(
n−i+1
n−i+2

)1−Λi

, Zk−1 < x ≤ Zk, k = 2, . . . , n

0, Zn < x

with (Zi, Λi) being the ordered (Xi,∆i), i = 1, . . . , n. Estimator f̂(x) has
been widely discussed in the literature. See Marron and Padgett (1987) for
motivation and the references therein for an overview. Practical implementation
of f̂(x) requires selection of the kernel K and the bandwidth h. Of the two, of
greater importance is selection of the smoothing parameter as this affects the
asymptotic properties of the estimate and its visual performance, e.g. Wand
and Jones (1995, page 13). All work here uses the Epanechnikov kernel,

K(x) =
3

4
√

5

(
1− x2

5

)
, −

√
5 ≤ x ≤

√
5.
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Motivation for use of this particular kernel function comes from its optimality
properties as those are described in Wand and Jones (1995). Bandwidth se-
lection is typically done by choosing h which minimizes some error criterion.
Here we use the least squares cross-validation method, developed for the case of
pdf estimation from censored data by Marron and Padgett (1987). We employ
the method to minimize the Integrated Squared Error (ISE) for the reasons
exhibited in Marron and Padgett (1987). The objective is to choose h which
minimizes the Integrated Squared Error (ISE) of f̂(x) given by

ISE(f̂(x)) =
∫

f̂2(x)w(x) dx− 2
∫

f̂(x)f(x)w(x) dx +
∫

f(x) dx (37.3.1)

where w(x) is a weight function and its purpose is to eliminate endpoint effects.
As the third term on the RHS of (37.3.1) is independent of f̂ we want to choose
h which minimizes the sum of the first two terms. The first of the two terms is
known. As about the second, least squares cross validation principles suggest
estimating it by

1
n

n∑

i=1

f̂i(Xi)
w(Xi)
Ĥ∗(Xi)

1{∆i=1}

where f̂i(x) is the ‘leave-one-out’ version of f̂ given by

f̂i(x) =
1

(n− 1)h

∑

j 6=i

1
Ĥ∗(Xj)

K

(
x−Xj

h

)
1{∆i=1}.

Thus we want to choose h which minimizes the cross validation criterion, CV(h),
given by

CV(h) =
∫
{f̂(x)}2w(x) dx− 2

n

n∑

i=1

f̂i(Xi)
w(Xi)
Ĥ∗(Xi)

1{∆i=1}.

By simple algebra, a more efficient in computation form of CV(h) is

CV∗(h) =
1

n2h

n∑

i=1

n∑

j=1

1{∆i=1}
Ĥ∗(Xi)Ĥ∗(Xj)

K2

(
Xi −Xj

h

)
+

2
nh

K(0)

where
K2(x) = K∗(x)− 2K(x).

Minimization of CV∗(h) typically is done by a grid search for h in the interval
n−1/5σ/4 < h < 3n−1/5σ/2 and then extend the interval if the minimum is at
the endpoints of either side. After the best point is found a possible improve-
ment would be a quasi-Newton approach.
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With h chosen in this manner the ISE of the estimator becomes asymp-
totically optimal (see theorem 4.1, Marron and Padgett (1987)) in the sense
that

ISE(f̂ , ĥ)

infh ISE(f̂ , h)
→ 1 a.s.

An estimate of the survival function S(x) = 1 − F (x), can be obtained by
integrating f̂(x). Let Ŝn(x) = 1− F̂ (x), where F̂ (x) =

∫ x
−∞ f̂(u) du. Estimator

Ŝn(x) has been studied by Kulasekera et al (2001). They proved that Ŝn(x)
performs better in Mean Squared Error than the Kaplan-Meier estimator.

Then an estimate of the hazard rate function λ(x) = f(x)/(1 − F (x)) can
be obtained by using the estimates f̂(x) and F̂ (x) and substituting to λ̂(x).
This gives λ̂(x) = f̂(x)/(1 − F̂ (x)). Next we apply estimators Ŝn(x) and λ̂(x)
to the dataset discussed in section 37.2.

37.4 Results

In this section we implement estimators Ŝn(x) and λ̂(x) to estimate the sur-
vival function and the hazard rate of the total population and the subgroups of
men and women. In all cases bandwidth selection was done with the meth-
ods described in section 37.3. For survival function estimation we use for
comparison the parametric estimates of Kalamatianou and McLean (2003).
These are Sa(x) = 0.26801 + 0.6344e−0.05471(x−46) for the total population,
Sw(x) = 2401 + 0.6566e−0.06198(x−46) for the women subgroup and Sm(x) =
0.3081 + 0.6034e−0.04398(x−46) for the male subgroup. In all cases x ≥ 46.

Interpretation of the estimated survival function is as follows: The values of
the survival function express the probability that a student will not graduate
after time x. Therefore, small values of the estimated survival function at time
x mean high probability for someone to graduate while the opposite happens
for large values.

In figure 37.1(a) we plot the estimated survival function Ŝn(x) for the total
population together with the Kaplan-Meier estimator and estimator Sa(x). We
see that the continuous estimates perform quite similarly. Both estimates sug-
gest a similar rate of decrease from the beginning of the interval of estimation
all the way through to the end.

In figure 37.1(b) we use Ŝn(x) as well as Sw(x) and Sm(x) to estimate the
survival function of the subgroups of women and men. Again both estimators
for both populations estimators perform quite similarly. The main conclusion
is that there are indeed differences between the sexes in the graduation process
and the duration of studies. As we see from the plot women graduate faster
than men.

We turn to estimation of the hazard rate function. In general, λ̂(x) gives an
estimate of the instantaneous probability that a student having not graduated
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Figure 37.1: Parametric and nonparametric estimates of the survival function
for the total population and separately for men and women subgroups.
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Figure 37.2: Hazard rate for the total population and separately for men and
women subgroups.
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at time x will graduate in the time interval (x, x + ∆x). In figure 37.2(a) we
estimate the hazard rate for the total population whereas in figure 37.2(b) we
estimate the hazard rate for the subgroups of men and women. All estimates
were calculated by using λ̂(x). In both figures the pattern is the same for all
three hazard estimates, i.e. an initial increase in hazard reaches its peak at
the 54th month of study and then the curve decreases. It is apparent from
figure 37.2(b) that women graduate faster than men. Note though that this
seems to change between the 86th and the 136th month of study, something
not indicated by the study of the survival function.

An interesting feature from figure 37.2(a) is that there is a certain number of
students that they don’t get their degrees even though they have completed 162
months of study. Furthermore figure 37.2(b) suggests that this group consists
of both male and female students.
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Abstract: We propose a simple and robust approach for meta-analysis of
population-based genetic association studies. The method exploits the binary
nature of the data, and treats the genotypes as independent variables in a logis-
tic regression model. We present simple tests for detecting heterogeneity and
we describe a random effects extension of the method using multilevel modeling
in order to allow for between studies heterogeneity. We derive also simple meth-
ods for deciphering the genetic model of inheritance and adjusting for potential
confounders. The methodology was applied in three published meta-analyses
with very promising results. The proposed approach is flexible and easy to use
from the one hand, while at the other hand it covers almost every aspect of a
meta-analysis providing overall estimates and avoiding multiple comparisons.
We expect that this simple method would be used in the foreseeable future in
meta-analyses of gene-disease association studies.

Keywords and phrases: Meta-analysis, genetic epidemiology, random effects,
logistic regression

38.1 Introduction

Meta-analysis of genetic association studies is performed in order to investigate
the relation of a particular genetic marker and a disease synthesizing the avail-
able information in the field. The main difference compared to the well-known
epidemiological studies, is the fact that the ”exposure” (i.e. the genotype) has
more than two levels. In Table 1, we list the data corresponding to a meta-
analysis of four studies regarding the association of KIR6.2 E23K polymorphism
and Type II diabetes taken from Hani et al., (1998). Traditional methods of
meta-analysis, Petiti, (1994), require that the three genotypes should be col-
lapsed into two categories (for instance AA vs AB+BB) or that pair-wise com-
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parisons should be made (BB vs AB and so on). The choice of the categories to
be combined is important since it depends on the underlying genetic model of
inheritance. Nevertheless, even in the best case the risk of performing multiple
tests cannot be disregarded.

Genotype

Controls Cases 

Study AA AB BB AA AB BB

1 38 52 6 72 78 22

2 44 27 11 38 45 17

3 33 34 8 21 26 11

4 45 53 16 53 87 51

Table 1. Data taken from the meta-analysis of Hani et al., (1998) concerning the 
association of KIR6.2 gene polymorphisms with Type II diabetes (A stands for 
Glutamic, B stands for Lysine).

Thakkinstian et al., (2005), proposed a methodology of predefined steps us-
ing the commonly used approach of meta-analysis with summary data. Minelli
et al., (2005b), proposed the so-called (genetic) model-free approach, which
does not assume a genetic model a priori but instead deduces it from the data.
More specifically, they modelled jointly the ORBB, which is the logOR of BB
genotype vs AA, and ë, which is the ratio of logORBB and logORAB (i.e the
OR of AB genotype vs BB), an approach that recognizes the fact the two ORs
are correlated. Recently, Minelli et al., (2005a) extended their method in a
Bayesian framework investigating the use of both prospective and retrospective
likelihood and concluded that both methods produce equivalent results. Here,
we will present a simple alternative to the aforementioned methods, using the
genotypes as independent variables in a logistic regression. The method is easily
performed in nearly any statistical software, and with this approach we over-
come the problem of multiple comparisons between genotype contrasts as well
as the non-normality of summary measures (logORs). Furthermore, there is no
need for specialized software in order to fit the more sophisticated models.

38.2 Logistic regression models

38.2.1 Fixed effects logistic regression

Let yij denote the number of cases, nij the total number of subjects, and πij

the underlying risk of the jth person in the ith study respectively. Considering
allele B as the risk factor, the AA genotype (r = 1) is treated as the reference
category and we create dummy variables such as z2ij = 1 if the genotype is AB
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(r = 2) and z3ij = 1 if the genotype is BB (r = 3). Using ordinary logistic
regression we can perform a meta-analysis stratified by studies as follows:

logit(πij) = αi + θ2z2ij + θ3z3ij (1.1)

where, we include dummy variables αi as indicators of the study-specific fixed-
effects. The exponentiated coefficients θ2 and θ3 here provide the combined
estimate for the odds-ratio associated with each genotype. The model in Equa-
tion (1.1) assumes the homogeneity of the genotype effects between studies.
Attaching a term for the interaction between the study effect and the geno-
types:

logit(πij) = αi +
r∑

c=2

θczcij +
k∑

i=2

r∑

c=2

γicαizcij (1.2)

corresponds to testing the hypothesis that the effect of each genotype vary
significantly between studies. This hypothesis can be tested by applying a
multivariate Wald test, where the null hypothesis is:

H0 : γic, ∀i = 2, 3, . . . , k; c = 2, 3, . . . , r.

Denoting by b the vector of the estimated coefficients, by V the estimated
variance-covariance matrix, and by Rb = r the vector of the (c − 1)(i − 1)
linear hypotheses, the statistic:

W = (RB− r)′(RVR?)−1(Rb− r) (1.3)

will have asymptotically a χ2 distribution as shown by Judge et al., (1985):

W χ2
(i−1)(c−1). (1.4)

This test for the significance of the interaction terms is the analogue of the χ2

test for heterogeneity (Cochran’s Q) used in a summary data method. The
Wald test could be used also for testing contrasts between the derived coeffi-
cients. Moreover, W could be used for calculating a modified version of the
inconsistency index I2, initially proposed by Higgins et al., (2003):

I2 =
W − (i− 1)(c− 1)

W
100%. (1.5)

38.2.2 Random effects logistic regression

In order to consider an additive component of heterogeneity, and fit a random-
effects logistic regression allowing the variability of the genotype effects between
studies, we introduce a study-specific random coefficient vci, representing the
deviation of study’s true effect (θri) from the overall mean effect θr, thus:

logit(πij) = αi + (θ2 + v2i)z2ij + (θ3 + v3i)z3ij (1.6)
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In the above model, the random terms are distributed normally:

(
v2i

v3i

)
∼ N

( (
0
0

)
,

(
σ2

2i σ2
23i

σ2
32i σ2

3i

) )
(1.7)

with the covariance between the random terms being equal to:

Cov(v2i, v3i) = σ23i = σ32i = ρσ2iσ3i (1.8)

where ρ is the correlation of the two random terms. Variations on this model
include, the incorporation of random study-specific effects, or a common vari-
ance for the random coefficients. All these approaches need different coding for
the dummy variables, and are not explored further. The reader is referred to
the works of Turner et al., (2000); Higgins et al., (2001). The logistic regression
model finally, could be used to infer the genetic model. For instance, in case
when both θ2 and θ3 are significantly greater than zero then we can test the
null hypothesis:

H0 : θ2 = θ3 (1.9)

using a Wald test as the one described above with a chi-square distribution with
2 d.f. A non-significant p-value (> 0.05) indicates the equality of the logORs,
suggesting a dominant mode of inheritance.

38.3 Application on published meta-analyses

We present here an application of the proposed methodology in three already
published meta-analyses and we compare the obtained results with those of the
other methods (Table 2). We evaluate the traditional methods using summary
data, under both fixed effects (FE) and random effects (RE) assumptions, the
genetic model-free approach with random-effects with λ bounded (0 < λ <
1) and unbounded, as well as the Bayesian approach under prospective and
retrospective likelihood.

In nearly all the cases the methods yield comparable results. In meta-
analyses with smaller number of included studies, the Bayesian methods pro-
duce wider confidence intervals reflecting the uncertainty of the priors used. In
the case of the meta-analysis of Hani et al., (1998) concerning the association
of KIR6.2 gene polymorphisms and Type II diabetes, which consists of only
4 studies, the Bayesian methods conclude that there is no overall association.
In the same dataset, the traditional methods based on summary data, clearly
overestimate the presumed risk.

The model-free approach, with bounded λ tends to produce always confi-
dence intervals not including one. A major difference with the logistic regres-
sion approach, appears in the meta-analysis of Kato et al., (1999) regarding the
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relationship between the M235T AGT polymorphism and Essential hyperten-
sion. Here, the random effects logistic regression model provided a significantly
higher estimated risk associated with the BB (i.e. TT) genotype compared to
all the other methods. This is clearly a consequence of the non-normality of
the distribution of the particular logOR (p-value according to the Shapiro-Wilk
test equals to 0.00709), and strongly supports the usefulness of the proposed
approach. The genetic model for this study is clearly a recessive one, which
comes also in agreement with the results of the two different approaches of
Minelli and coworkers. However in the model-free approach with bounded ë as
well as in the Bayesian methods, the confidence interval for logORAB does not
include one, even though the recessive model corresponds to a non-significant
estimate, complicating further the interpretation of the results.

Meta-analysis Studies Method ORBB(95% CI) ORAB(95% CI)

Summary methods (FE) 2.24 (1.81, 2.67) 1.29 (0.99, 1.58)
Summary methods (RE) 2.23 (1.79, 2.68) 1.31 (0.84, 1.79)

Model-free approach (RE, unbounded λ) 2.14 (1.39, 3.29) 1.21 (0.90, 1.63)
Hani et al., Model-free approach (RE, bounded λ) 2.14 (1.43, 3.29) 1.21 (1.08, 1.63)

(1998) 4 logistic regression (FE) 2.15 (1.40, 3.30) 1.21 (0.91, 1.63)
logistic regression (RE) 2.15 (1.40, 3.30) 1.22 (0.91, 1.63)

Bayesian method (prospective) 2.01 (0.97, 4.09) 1.16 (0.99, 1.77)
Bayesian method (retrospective) 2.03 (0.96, 3.96) 1.16 (0.99, 1.80)

Summary methods (FE) 2.24 (1.81, 2.67) 1.29 (0.99, 1.58)
Summary methods (RE) 1.78 (1.10, 2.89) 1.10 (0.72, 1.66)

Model-free approach (RE, unbounded λ) 1.64 (0.99, 2.72) 1.00 (0.66, 1.53)
Kato et al., Model-free approach (RE, bounded λ) 1.64 (1.15, 3.05) 1.00 (1.00, 1.62)

(1999) 7 logistic regression (FE) 1.67 (1.13, 2.46) 1.16 (0.78, 1.74)
logistic regression (RE) 1.95 (1.24, 3.08) 0.98 (0.60, 1.57)

Bayesian method (prospective) 1.81 (1.05, 3.66) 1.08 (1.00, 1.74)
Bayesian method (retrospective) 1.83 (1.06, 3.60) 1.09 (1.00, 1.71)

Summary methods (FE) 2.24 (1.81, 2.67) 1.29 (0.99, 1.58)
Summary methods (RE) 1.14 (0.99, 1.32) 1.10 (0.99, 1.23)

Model-free approach (RE, unbounded λ) 1.17 (1.04, 1.33) 1.08 (1.00, 1.17)
Wheeler et al., Model-free approach (RE, bounded λ) 1.17 (1.04, 1.33) 1.08 (1.01, 1.17)

(2004) 19 logistic regression (FE) 1.15 (1.02, 1.30) 1.09 (1.01, 1.17)
logistic regression (RE) 1.14 (1.00, 1.29) 1.09 (1.01, 1.19)

Bayesian method (prospective) 1.15 (1.01, 1.33) 1.08 (1.00, 1.21)
Bayesian method (retrospective) 1.15 (1.02, 1.34) 1.08 (1.00, 1.21)

Table 2. The results obtained in the three published meta-analyses. FE: fixed
effects; RE: random effects. For explanation of the methods see the text.

In the meta-analysis concerning the association of Paraoxonase (PON1)
Q192R polymorphism with Myocardial Infarction by Wheeler et al., (2004),
the estimates of the ORs and the confidence intervals are nearly identical in
all methods. However, the model-free approach indicates clearly a co-dominant
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model of inheritance (λ = 0.53), contradicting our results, which suggest an
intermediate risk associated with the two genotypes. Once again the normal-
ity assumptions are crucial for this decision since logORAB is not distributed
normally (p = 0.00035). Indeed, analysing the same data under the Bayesian
models, we see that similar conclusions to ours could be drawn (λ = 0.62), a
result that further strengthen the belief for the validity of the logistic regression
approach.

38.4 Conclusions

The methodology introduced here can be easily applied in the meta-analysis
of population-based genetic association studies. We presented both fixed and
random effects models using the genotypes as independent variables in a logistic
regression. The methods are quite familiar to epidemiologists and the results
can be interpreted without serious difficulties. Furthermore, we provided tests
for assessing heterogeneity, as well as statistical procedures to discover a possible
model of inheritance. Compared to the widely used approach in the literature,
the proposed methodology is far more robust and permits making overall infer-
ences from the meta-analysis. The methodology proposed by Thakkinstian et
al., (2005), is a more careful and detailed version of the widely used approach;
however it has many limitations such as the need of multiple comparisons, the
lack of an overall test for homogeneity, or of a test for the genetic model and
the inability of incorporating covariates simultaneously. Compared to the more
sophisticated model-free approaches of Minelli and coworkers, the logistic re-
gression approach is flexibly and easily implemented. Moreover, it allows the
incorporation of covariates as well as implements formal overall tests for hetero-
geneity, which were not addressed by this method. Additionally, the model-free
approach demands further modifications in cases where there are more than
three genotypes. Finally, all the above-mentioned approaches are based on
summary data methods. The logistic regression approach on the other hand,
uses directly the binary structure of the data, hence it is expected to perform
better in cases where the normality assumption of the logORs is violated.
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Abstract: The entry of a small item into the upper aero-digestive ways is one
of the leading causes of injuries in children up to 14 years old. The aim of
this paper is to show how the Bayesian models along with Markov chain Monte
Carlo techniques can be used to formulate a model for use in a quantitative
risk assessment. Inference, in the light of evidence, can be made on all domain
variables making it possible to sample from the distributions of variables of
interest such as volume or shape of objects which caused injuries. Results show
how the knowledge of such distribution can be helpful in implementing a safety
design of the products.
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39.1 Introduction

The accidents due to the inhalation, ingestion and aspiration of foreign bodies
are still one of the leading causes of injury and death in children [1]. Some
of the most commons objects which cause foreign body injuries include balls,
marbles and beads, nuts and seeds, fish bones, pebbles, stones and small part
of toys.

Many studies have been carried out to characterize the types, shapes, and
sizes of objects causing injuries. In [2], a statistical analysis was performed
on the features of objects causing choking in children. In [3], a computerised
models of the airways and oral cavities of children of various ages was developed
in order to asses the hazards of toys and small parts. In [4] the Quantitative
Risk Analysis methodology was adopted to evaluate the potential risk associated
with any given consumer product. A risk equation was set up to determine the
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effect of object characteristics on the risk of injury and predict the probability
of injury by multiplying the hazard associated with an object by the exposure
of the child to the object. Finally Monte Carlo simulations were utilized to
generate estimates of product-related risk.

In general, probabilistic methods enable the characterization of uncertainty
associated with the dimensions and the shape of the objects involved in the
injuries. Using these methods the safety design of products can be assessed on
a quantitative basis, furthermore allowing the evaluation of the risk associated
to the characteristic of an object such as its volume and shape. The aim of
this paper is to give a quantitative risk assessment for the identification of the
features of such products which don’t provide anyone who might come into
contact with a level of safety.

One of the most challenging aspects of applying any probabilistic methodol-
ogy to this problem is the determination of the appropriate distribution of the
actual features of the products. Nevertheless, one of the benefits of utilizing a
probabilistic approach is that Bayesian statistical tools can be used to update
probability distributions as soon as new data become available. With regard to
the substantive issue motivating the paper, available data are usually coming
from official discharge records, although new data collection strategies are being
implemented at European level. Following presentation of the model built up,
results will be discussed.

39.2 Materials and Methods

39.2.1 Data

The European Survey on Foreign Bodies Injuries Study collected data on foreign
body injuries from 19 European Hospitals (Austria, Belgium, Bulgaria, Croatia,
Czech Republic, Denmark, Finland, Germany, Greece, Italy, Poland, Romania,
Slovakia, Slovenia, Spain, Sweden, Swiss, Turkey and United Kingdom). Data
on 2103 injuries occurred in the years 2000-2002 were gathered according to the
ICD931 to ICD935. Objects were characterised by size, shape and consistency
[1]. According to their shape they were assigned to one of the following four
categories: Spherical - e.g. ball, pebble; Three-dimensional (3D) - e.g. pen
cap; Two-dimensional (2D) - e.g. sheet, cellophane; 2D-circle - e.g. coin. With
regard to the size, when the dimensions (expressed in millimetres) of the ob-
ject were reported, the volume was calculated accordingly to the shape of the
objects itself, e.g. for three-dimensional objects the volume of an ellipsis was
calculated by the length of the axis, for spherical objects the volume of a sphere
was calculated by the diameter reported and finally for two-dimensional circle
objects the volume was approximated by that one of a cylinder. Such volume
measures represent how much space the smallest geometrical figure containing
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the irregular-shaped foreign body takes up. In addition to the volume, the ratio
between long axis and short axis was calculated in order to make the ellipticity
of a measured foreign body available.

39.2.2 Bayesian model

A multivariate Bayesian model was used to model volume and ellipticity. Since
volume and ellipticity are positive values with an empirical distribution which
is skewed to the right, their log transformed was assumed to be normal. A
Wishart(R,ρ) prior was specified for the population matrix of the parameters.
To represent a vague prior knowledge, we chose the degrees of freedom ρ for
this distribution to be as small as possible—i.e. 2, the rank of Ω.

The model was expressed in the equation form as:

X|θ, τ ∼ Normal(µ, τ−1) (39.2.1)

θ ∼ Normal(µ,Ω−1) (39.2.2)

τ ∼ Wishart(R, ρ) (39.2.3)

Missing values were generated from their full conditional distributions through
the use of the Gibbs algorithm. To ensure stability of the results, the Gibbs
sampler was run for 61,000 updates with the first 10,000 discarded as burn–
in. The benefit of this approach is in its generality. In fact it was assumed
that only the data come from a log–normal distribution with a mean for each
characteristics and an overall variance.

Bayesian statistics provides a very plain approach to a “learning from ex-
perience”process which allows new data to be used in order to revise baseline
probability distributions. Suppose that a surveillance system observes a new
data point. The model can be updated through the classical Bayesian approach:

P (datanew|data) =
∫

P (datanew|θ, data)dθ =
∫

P (datanew|θ)P (θ)dθ

(39.2.4)

39.3 Results

In figure 39.1 is shown the bivariate density of volume and ellipticity sampled
from the population of foreign body which caused injuries in children. In figure
39.2 is shown the marginal density of volume and ellipticity. In table 39.1
summary statistics of volume and ellipticity parameters are shown.

Any sample from the joint probability of volume and ellipticity represents a
collection of volume and ellipticity data from the population of products which
caused injuries. From the posterior density it is straightforward to detect the
item characteristics which pose a major threat to the children health.
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Sampling from the posterior distribution of volume and ellipticity, the high-
est probability is associated to a volume lesser than 631 millimeters3 and an
ellipticity between 0.97 and 1.085—i.e. spherical shaped objects with a diameter
of about 8.5 millimeters.

39.4 Conclusion

The evolution of the food industry has contributed to the introduction of new
forms of presentation and packaging, leading to the combination of edible and
inedible components, such as toys, which may pose a hazard to consumer safety.
In this paper, it has been shown how the Bayesian modeling can be used to
formulate a model for use in a quantitative risk assessment aimed to implement
a safety design which is determined by whether a product provides anyone who
might come into contact with it a level of safety. In order to do so,it could
be important to model item characteristics such as volume and ellipticity by
severity of injury. In fact joint probabilities of item features and severity can
better characterize the overall risk than marginal or conditional probabilities.
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Figure 39.1: Bivariate density of volume and ellipticity

Table 39.1: Volume and ellipticity parameters estimates

*Parameters Mean sd 2.5% Median 97.5%
volume 106.27 1.08 92.76 106.27 54.60
ellipticity 1.33 2.05 1.28 1.34 1.41
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Abstract: Progressively type-II censored order statistics are widely used in
reliability theory and biometrics. Using transition kernels we provide a new
definition of progressively type-II censored order statistics which allows an easy
derivation of known properties of these random variables. It is shown that, for
an absolutely continuous distribution function, our definition of progressively
type-II censored order statistics leads to a joint density which coincides with
the joint density of progressively type-II censored order statistics derived by
Viveros and Balakrishnan (1994).
Moreover, we extend the model by allowing not only to remove units from the
experiment but also to add additional units to the experiment.
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40.1 Introduction

Suppose that a total of n units is placed on a life-test. Let the iid random
variables X1, . . . , Xn describe the failure times of these units. We assume that
the distribution function F of these random variables is absolutely continuous
and denote its density by f . The well known progressive type-II censoring
scheme works as follows: At the time of the first failure a number of R1 randomly
chosen units of the remaining n − 1 units are removed from the experiment.
At the time of the next failure R2 randomly chosen units of the remaining
n − 2 − R1 are censored, and so on. Finally, at the time of the mth failure
all remaining units are removed. So, due to censoring one only observes m
failure times which will de denoted by X1:m:n, ..., Xm:m:n. From their description
of progressively type-II censored order statistics under the censoring scheme
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(R1, . . . , Rm), Ri ∈ N, i = 1, . . . ,m, Viveros and Balakrishnan (1994) (see also
Aggarwala and Balakrishnan (2000, p. 7)) derive the following joint density:

fX1:m:n,X2:m:n,...,Xm:m:n(x1, x2, . . . , xm) = c
m∏

i=1

f(xi)(1− F (xi))Ri , (40.1.1)

for x1 < x2 < . . . < xm where c = n(n−R1 − 1) · . . . · (n−∑m−1
i=1 Ri −m + 1).

In the following, to simplify the notation we set γj = n −∑j−1
i=1 Ri − (j − 1),

j = 2, . . . ,m.

40.2 Progressive type-II censoring via transition ker-
nels

The idea underlying our definition of progressively type-II censored order statis-
tics X1:m:n, . . . , Xm:m:n is the following: After the (j− 1)th failure at time tj−1

and after removing
∑j−1

i=1 Ri items from the experiment we still have γj items
at work. These items are independent and have distribution function

Fj(t) =
F (t)− F (tj−1)

1− F (tj−1)
, t ≥ tj−1. (40.2.2)

The distribution function of the minimum Xmin of a sample of n − (j − 1) −∑j−1
i=1 Ri units having distribution function (40.2.2) is

P (Xmin ≤ t) = 1−
(

1− F (t)− F (tj−1)
1− F (tj−1)

)γj

= 1−
(

1− F (t)
1− F (tj−1)

)γj

, t ≥ tj−1. (40.2.3)

Now, for j = 2, . . . ,m, define transition kernels pj on (R+,B) where B is the
Borel σ-Algebra on R+ by

pj(s, B) =
∫

B

γj

(1− F (s))γj
f(t)(1− F (t))γj−1I[s,∞)(t)dt (40.2.4)

and let the initial distribution p be given by

p(B) =
∫

B

nf(x)(1− F (x))n−1dx. (40.2.5)

Notice that, for j = 2, . . . , m, pj(s, ·) is a probability measure on B for every
s ∈ R+, and pj(·, B) is B-measurable for every B ∈ B.
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Theorem 40.2.1 There exist a probability space (Ω,F , P ) and a Markov chain
X1:m:n, . . . , Xm:m:n defined on that space such that

P (X1:m:n ≤ t) = p([0, t]) (40.2.6)

and

P (Xj:m:n ≤ t|X1:m:n = t1, . . . , Xj−1:m:n = tj−1)
= P (Xj:m:n ≤ t|Xj−1:m:n = tj−1)
= pj(tj−1, [tj−1, t]) (40.2.7)

for j = 2, . . . ,m

Proof. See, e.g., Iosifescu and Tautu (1973, p. 121).

Having established the existence of random variables fulfilling (40.2.6) and
(40.2.7) we define

Definition 40.2.1 Random variables X1:m:n, . . . , Xm:m:n with the properties
(40.2.6) and (40.2.7) are called progressively type-II censored order statistics
(based on F ).

Remark 40.2.1 For example, it is immediate from our definition that the
marginal distribution of Xj:m:n is independent of Rj , . . . , Rm and that
X1:m:n, . . . , Xj:m:n are progressively type-II censored order statistics with cen-
soring scheme (R1, . . . , Rj−1, n− j −∑j−1

i=1 Ri).

The following remark explains how our definition of progressively type-II cen-
sored order statistics can be used to define generalized progressively type-II
censored order statistics rXr+1:m:n, . . . , rXm:m:n (cf. Aggarwala and Balakrish-
nan (2000, p. 9)).

Remark 40.2.2 Define the initial distribution rp by

rp(B) =
∫

B

n!
r!(n− r − r)!

f(x)F (x)r(1− F (x))n−r−1dx

and, for j = r + 2, . . . , m, the transition kernels on (R+,B) by

rpj(s,B) =
∫

B

n− (j − 1)−
j−1∑

i=r+1
Ri

(1− F (s))
n−(j−1)−

j−1P
i=r+1

Ri

f(t)(1−F (t))
n−(j−1)−

j−1P
i=r+1

Ri−1

I[s,∞)(t)dt.

Theorem 40.2.1 can then be used to establish the existence of a probability space
(Ω,F , P ) and a Markov chain rXr+1:m:n, . . . , rXm:m:n such that (40.2.6) and
(40.2.7) hold with p and pj replaced by rp and rpj, respectively.
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The next theorem shows that our definition of progressively type-II cen-
sored order statistics leads to the same joint density as derived by Viveros and
Balakrishnan (1994).

Theorem 40.2.2 The joint density of the random variables of Definition 40.2.1
coincide with (40.1.1).

Proof. The joint distribution function of the random variables of Definition
40.2.1 is given by (cf. Iosifescu and Tautu (1973, p. 121)

P (X1:m:m ≤ t1, . . . , Xm:m:n ≤ tm) =
t1∫
0

t2∫
t1

. . .
tm∫

tm−1

n(1− F (x1))n−1f(x1)

· γ2

(1−F (t1))γ2
f(x2)(1− F (x2))γ2−1

· . . . · γm

(1−F (tm−1))γm f(xm)(1− F (xm))γm−1dxm . . . dx1

Differentiation with respect to t1, . . . , tm leads to (40.1.1)

40.3 Modified progressively type-II censored order
statistics

In this section we extend the model by assuming the following situation: Sup-
pose at the time tj−1 of the (j − 1)th failure we can either remove Rj−1 units
from the experiment or add some units (corresponding to Rj−1 < 0) of age tj−1

and with the same distribution function F . In that case, the censoring scheme
is given by (R1, . . . , Rm) where now Ri ∈ Z for i = 1, . . . ,m− 1. If we assume
that the added units are independent, and independent of (X1, . . . , Xn), the
next observed failure has the same distribution as the minimum of a sample of
n− (j − 1)−∑j−1

i=1 Ri units having distribution function (40.2.2). We let again
γj = n−(j−1)−∑j−1

i=1 Ri, j = 2, . . . , m. Now, define the initial distribution mp
by (40.2.5) and the transition kernels mpj by (40.2.4) where Ri, 1 ≤ i ≤ m− 1,
may now be negative. We use again Theorem 40.2.1 to establish the existence
of a probability space (Ω,F , P ) and random variables mX1:m:n, . . . , mXm:m:n

such that (40.2.6) and (40.2.7) hold with p and pj replaced by mp and mpj ,
respectively.

Definition 40.3.1 Random variables mX1:m:n, . . . , mXm:m:n fulfilling (40.2.6)
and (40.2.7) with p and pj replaced by mp and mpj, respectively, are called
modified progressively type-II censored order statistics (based on F ).

We show next that well known properties of progressively type-II censored order
statistics also hold for modified progressively type-II censored order statistics.
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Lemma 40.3.1 Let F (x) = 1− e−x. Then the random variables

Z1 = n · (mX1:m:n) (40.3.8)

and
Zj = γj · (mXj:m:n − mXj−1:m:n) j = 2, . . . , m (40.3.9)

are independent and identically distributed as standard exponential.

Proof. It follows from our definition of modified progressively type-II cen-
sored order statistics and the proof of Theorem 40.2.2 that their joint density
fmX1:m:n,...,mXm:m:n is given by

fX1:m:n,X2:m:n,...,Xm:m:n(x1, x2, . . . , xm) = c
m∏

i=1
f(xi)(1− F (xi))Ri(40.3.10)

= c exp (−nx1 −
∑m

i=2 γi(xi − xi−1)) ,

for x1 < x2 < . . . < xm where c = n · γ1 · . . . γm and Ri ∈ Z, 1 ≤ i ≤ m − 1.
The result now follows from the definition of Zj , 1 ≤ j ≤ m, and density trans-
formation.

Remark 40.3.1 From the preceding Lemma we immediately obtain a simula-
tion algorithm for modified progressively type-II censored order statistics from
an arbitrary distribution function F . Simulate m standard exponential ran-
dom variables, calculate simulated modified progressively type-II censored order
statistics from a standard exponential distribution according to (40.3.8) and
(40.3.9) and set mY1:m:n = F−1(1 − exp(mX1:m:n)), . . . , mYm:m:n = F−1(1 −
exp(mXm:m:n)).

If our modified progressively type-II censored order statistics
mX1:m:n, . . . , mXm:m:n are based on the Uniform(0, 1) distribution we have the
following result

Lemma 40.3.2 The random variables

Vj =
1− mXm−j+1:m:n

1− mXm−j:m:n
, j = 1, ...,m, mX0:m:n = 0

are independent and Vj is Beta(n − (m − j) − ∑m−j
k=1 Rk, 1) distributed, j =

1, . . . , m.

Proof. By analogy with the case of progressively type-II censored order statis-
tics.
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Remark 40.3.2 In the definition of the transition kernels there is no need to
confine ourselves to natural exponents. We can choose arbitrary positive num-
bers (α1, ..., αm). The same is true for the exponent of the initial distribution.
Comparing the joint density (40.3.10) of modified progressively type-II censored
order statistics with the joint density of generalized order statistics (cf. Kamps
(1995)) we see that they are contained in this model in the distribution theoret-
ical sense. Hence, Lemma 40.3.1 may also be obtained from Theorem 3.10 of
Kamps (1995).
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A Markov Model for Disease Prevalences Including

Population Development
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Abstract: Disease prevalence development shall be predicted. For this pur-
pose, a stochastic processes was applied.
The database is the register of all diabetics of the earlier German Democratic
Republic. The register concerns a population of about 17 million people and
the period of 1960 to 1989 and covers information on nearly 510 million person-
years.
The modelling with the help of Markov chain theory proved to be the best
method. For the model parameters, maximum-likelihood-estimators could be
applied. It is proved, regarding the properties of the Markov chain model and
the data basis, that the observation time period is sufficient, and necessary, to
obtain the desired predictions for the development of diabetes prevalences in
the population observed.

Keywords and phrases: Disease prevalence prediction, markov chain epi-
demiological model

41.1 Introduction

One of the advantages of the former Democratic Republic’s (GDR) centrally
organized public health system was that it allowed for the possibility of estab-
lishing a state wide diabetes register over a long period of time.
This unique data collection was held at the former Central Institute for Dia-
betes in Karlsburg, near Greifswald, Germany. The register covers the period
from 1960 to 1989, concerns the former GDR population (about 17 million peo-
ple) and represents approximately 98% (Michaelis and Jutzi (1991)) of the
inflicted persons. It covers information on nearly 510 million person-years.
The prediction of the prevalence development of the diabetes on the base of
this register is the central question.
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Different regression models were brought into line with the data. The results
were not satisfactory.
The essential part of our work lies in the application of the Markov chain theory
on the described task. Markov chains are used by Müller for example, for the
treatment of similar problems.
Fortunately, four circumstances meet in our situation: There exists a unique
database. The Markov chain model fits the data well and, from a mathematical
point of view, has good properties. Consequently, the searched parameters can
be calculated by the ”best” method with maximum precision.
The analysis performed on the Karlsburg diabetes register produced the follow-
ing main results: The course of time of the prevalences is well described using
Markov chains, and the stationary distribution of the stochastic process can be
used for the prevalence prediction. It is proved, regarding the mathematical
model and the databases, that the observation time period is sufficient, and
necessary, to obtain the desired predictions for the development of prevalences.

41.2 Methods

The data collected from 1960 to 1989 at the former Central Institute of dia-
betes at Karlsburg; Germany, provide the basis of our studies on prevalence of
diabetes mellitus in the population of the former GDR.
The data from the total time period were recorded annually by the administra-
tive districts of the country and handed in to the Central Institute in Karlsburg
in form of a complete census. The annual reports were divided into the num-
bers of diabetics, new cases of diabetes, and deceased diabetics according to age
group and gender. In addition, it was differentiated between insuline depen-
dent diabetes mellitus (IDDM) and non insuline dependent diabetes mellitus
(NIDDM). The administrative incidence is the registration of accessible cases.
This is distinguished from the true incidence. Insulin dependence and the cen-
tralist structure of the GDR allowed no difference between administrative and
true IDDM-incidence. Caution is required with the data recorded as NIDDM.
They should be relatively close to the true values, although the variably strong
deviations from the true incidence in different years must be considered, since
during the time period reported in the GDR screening tests for diabetes melli-
tus were conducted several times. These are also reflected in the present data
material. As a whole Michaelis and Jutzi (1991) assumes the degree of reg-
istration reliability to be ca. 98 percent.
In these studies, the data available from 1960 to 1989 are separated according
to gender (F, M) and type of disease treatment (IDDM or T1, NIDDM or T2).
Within these four groups, 3 age classes young (Y, 0-19-yr-olds), middle (M, 20-
39-yr-olds) and old (O, over 39-yr-olds) are differentiated. The division chosen
was recommended by experienced clinicians.
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It was our goal to describe the prevalence of diabetes mellitus over the course
of time and to predict, from these studies, disease development.

Figure 41.1: Observed IDDM prevalence among females (left: middle, young
with solid line; right: old)

The mathematical model chosen was to understand the course of disease preva-
lence as a stochastic process. This description allows for the integration of
population dynamic elements in the mathematical model. The aging popula-
tion structure of the former GDR is included in the stochastic model, because
the disease is dependent on the aging structure. The necessary data is taken
from the statistical yearbooks of the GDR (1960 - 1989).
Discrete stochastic processes are easiest to work with. We applied a homoge-
nous, irreducible, ergodic Markov chain with a finite state space.
Because maximum likelihood estimators can be determined for the transition
probabilities of such Markov chain, it is possible to use characteristics of these
estimators to good purpose in modelling the time course of diabetes mellitus
prevalence. Their mathematically proven main properties are asymptotic con-
sistency and asymptotic efficiency. That means roughly spoken, the bias of the
calculated transition probabilities tends for large observations to zero, and the
information contained in the data is best used.
The database evaluated is extraordinary large. It covers the observation of
about 17 million people over 30 years. Consequently, the calculated parameters
of the Markov chain are free of bias, and there is no better way to calculate
them than applying the maximum likelihood method.
Applying ergodic Markov chains to the modelling of diabetes the stationarity
of the stochastic process is the basis of two conclusions. First, there is an equi-
librium state of the prevalence in the population. Second, actual observations
allow a prognosis of the further development of the diabetes prevalence.
The state space of the Markov chain applied here consists of ten states: healthy
(H), IDDM ( T1) and NIDDM (T2) in the three age groups and, additionally,
the state ”gone”. Absorbing states must be excluded and a kind of ”circu-
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lation” introduced. The births belonging to a population development model
must therefore be brought back from the state ”gone” into the system.
The reader must bear in mind that this is strictly a mathematical aid. This
allows us to consider a rather simple model with outstanding characteristics,
especially since only the population numbers in each age group are to be con-
sidered and the number of individuals in the additional state ”gone” will not
play a role in the application of the model.
As a starting value for the state ”gone”, the sum of individuals already present
in the other states will be entered. This seems a reasonable start, because
then the correct population birth rate can immediately used as a transition
probability from the state ”gone” to the state ”healthy female young”.

Figure 41.2: Markov chain model for diabetes prevalence including population
development, inside: estimated transition probabilities from the data of the
GDR diabetes register and the Statistical Yearbooks of the GDR

41.3 Results

The Fig. 41.1 is intended to give an overview of the observed course of IDDM
diabetes prevalence in the female subpopulation of the GDR during the years
examined. The ordinate axes are divided into percent points. To illustrate
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the trend, the individual points are connected by lines. Here must be empha-
sized that the data from the Karlsburg register for each year only yield one
number, and thus the representation should only be limited to 30 single points
each. The percent values refer to the proportion of individuals with diabetes
mellitus within each age group. Fluctuations within the age structure of the
population thus do not influence the values. Next, population development and
both treatment forms IDDM and NIDDM will be described for the female pop-
ulation in one Markov chain model (Fig. 41.2). The accompanying transition
probabilities form a 10-by-10 field transition matrix. They are estimated by
the maximumlikelihood- method and may found in Fig. 41.2. With this model,
the prevalence curves ca be simulated over the observed time period. The sim-
ulated IDDM prevalences in the female subpopulation are shown for the three
age groups in Fig. 41.3.
One sees, observations (cp. Fig. 41.1) and calculations agree well. This im-
pression is confirmed with a goodness-of-fit-measure, the measure of certainty
B2. It is between 0.86997 (group of old females) and 0.99998 (group of young
females). Further, the associated asymptotic standard deviation of the calcu-
lated transition probabilities reaches at most 50% of the estimated parameter,
which is still acceptable. This maximal value concerns, in fact, the smallest
observed individual group. It shows only 4753 entries from disease-years, which
would be expected in these quite rare cases of young woman treated with oral
antidiabetics. Looked at in this way, the model meets the demands on it well.

Figure 41.3: IDDM prevalence among females simulated by the Markov chain
(left: middle, young with solid line; right: old)

However, we must bear in mind that working with this aspect, the possibilities
for refining the model are nearly exhausted: the smaller number of individuals
in the single groups or states used to estimate parameters would also let the
differences of standard deviations and asymptotic standard deviations increase
further.
The observation of the stationary distribution of the Markov chain can be seen
as a long-term prognosis for the actual development of the diabetes prevalences.
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Independent of the starting distribution, the stationary distribution already in-
dicates that the observed trends can be realized with the model. If the starting
distribution is also included, the following trends result:

1. The IDDM prevalences in the two younger female groups attain their sta-
tionary values approximately within the 30-year observation period. For
the subsequent years, the model predicts only a very slight increase, which
in contrast to the previous 30 years does not represent a multiplication.

2. Of special interest is the models prognosis for the further development
of IDDM prevalence in the group of older women, which is very strongly
influenced by secondary failure. This prevalence curve, derived from the
model, is shown in Fig 41.4 . Increasing prevalence values are again prog-

Figure 41.4: IDDM prevalence prognosis among females (old); period 1960 -
2060

nosed beyond the observed period, with an end to the increase predicted
around the year 2010. Here, the prevalence value already lies above the
value which follows and represents the stationary distribution. In this
case, the model prognoses fluctuations gradually decreasing in towards a
constant prevalence value.

3. This models NIDDM prevalences in the young female group demonstrate
almost no fluctuations in the 30-year observation period. This trend con-
tinues and reaches a stationary value only slightly higher than the starting
value.

4. In the middle age group, we again see a prevalence curve of gradually
decreasing fluctuations for NIDDM. However, the increase in this case
already occurs within the first half of the observation period, then reaches
a rather constant, high level, and finally slumps off somewhat during the
prognosis time period to attain the stationary distribution value.

5. In the older group of women with NIDDM, a fluctuating-in is also prog-
nosed. A peak is reached approximately at the end of the observation
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period; subsequently, the prevalence values decrease somewhat and ap-
proach the stationary value.

The model curves found using the male subpopulation data behave as they did
in the female subpopulation. The stationary values are approximately reached
during the 30-year observation period.
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7. Statistische Jahrbücher der DDR. (1960–89). Berlin



240 K-E.E. Biebler and B.P. Jäger
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Abstract: Region of interest ratings (six-dimensional Bernoulli variables) of
158 chest radiographs of miners are used for their classification into one of two
pneumoconiosis q-categories. Six classifiers: Logistic, Bayes, Normal Bayes, K-
means, Sum and Weighted Sum, of which 5 were considered in a preceding pa-
per, are compared based on ROC curves, and their performance is evaluated by
using logic functions for their representation as binary classifiers. Specifically,
Karnaugh maps are constructed, showing lung symmetry and disease growth
properties. For each classifier, the area under the ROC curve is estimated and
used as a measure of its performance.
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Abstract: Statistical inferences based on small dimension samples represents a
big problem and a made to measure challenge. In the biomedical domain there
are numerous situation where costs or ethical reasons enforce that only a few
data are collected. Nevertheless, some inferences must be made. In this paper,
an alternative model is tested by applying a simulation strategy through a
bootstrap re-sampling technique. Linked to this methodology the phenomenon
of bootstrap aggregation is revealed. The model is tested on real small samples
of data, significant in neonatology. All calculations are implemented through
Matlab scripts.

Keywords and phrases: bootstrapping small samples, bagging, correction of
bagging, oxidizing stress at newborns

43.1 Introduction

Classical statistics is no longer the only way to infer from data. There are many
situations when the conditions for applying a classical tests are not satisfied.
The most common inconvenient is the small dimension of the samples and the
absence of the information about the population’s distribution from which the
samples are taken. To handle such situations re-sampling techniques is one of
the alternatives. The first part of the paper is dedicated to the presentation
of the problem and to a brief introduction into the principles of nonparametric
bootstrap re-sampling technique. The second part contains the simulation of an
important re-sampling phenomenon: the bootstrap aggregation (”bagging”). In
the last part the bootstrapping-simulation model is tested on real small samples
of data. These comes from a neonatology problem. The inferential problem is
detailed in this part. The interpretation of the results will take into account
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the phenomenon of bagging. This is the reason why the simulation of bagging
was made before. A correction of bagging through simulation is also discussed
here.
Acknowledgements. Data on which the model is tested are obtained from
a clinical study concerning the evaluation of the oxidative stress to prema-
ture newborns comparing with on time newborns,performed in the neonatology
clinical section, the Clinic Obstetric-Gynecology I, from Cluj-Napoca, Roma-
nia, under the coordination of professor Antonia Popescu. Superoxide dismu-
tase activity and hemoglobin concentration were determined at the Department
of Pharmaceutical Biochemistry and Clinical Laboratory from the Faculty of
Pharmacy, Cluj-Napoca by Lecturer Cristina Gagyi. [4]

43.2 The problem and the principle of approach

43.2.1 The statistical inferential problem.

Two samples of small dimension are considered. The first one, X5=[495.63,
852.07, 468.67, 420.03, 480.2] is sampled from a population of in time newborns,
X. The second one, Y 5=[378.71, 337.83, 489.71, 422.29, 520.99] is sampled from
a population of premature newborns, Y. The values of X5 and Y 5 represents
doses of superoxide dismutase in both groups [4]. The sample mean of X5 must
be compared with sample mean of Y 5 and to infer that X > Y with 0.25.
Usually, the t test would be enough to prove this, but there is a big problem.
The dimensions of the two samples are very small, n = 5, and no assumptions
on the distributions can be made, especially on Y. In order to infer, alternative
methods must be used.

43.2.2 The principle of nonparametric bootstrap re-sampling.

It is not the intention of this paper to present a description of this relatively
new statistical technique. However, the principle of the nonparametric boot-
strap re-sampling is enunciated here. Re-sampling aims to re-construct the
distribution of a population starting from one or some selected real samples.
The principle of bootstrap re-sampling is sampling with replacement from the
real original sample. On the basis of these pseudo-samples a new distribution is
built. This is called bootstrap distribution. From the four variants of bootstrap
re-sampling methods (nonparametric, parametric, smoothed and Bayesian) the
nonparametric one is used in this statistical study. [1,2]
Observation. To be reliable, this algorithm must be tried for a large num-
ber of times, b = 1..B, B of order 103, 104, .... In the sequel, an important
phenomenon appears that must be explored, namely, the bootstrap aggregation.
The phenomenon is studied through simulation in the next section. [3]
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43.3 Simulation of the bootstrap aggregation

Bootstrap aggregation is commonly called in short as ”bagging”. This means
the reduction of the variation in the bootstrap distribution comparatively with
the real variation. Bagging is observed no matter the distribution of the pop-
ulation is [1,3]. The simulation will underline that the bootstrap distribution
tends to a normal shape, with smaller variation, even if the bootstrapped sam-
ple doesn’t proceed from a normal one. Applying a nonparametric bootstrap
algorithm, the Matlab simulation script builds, through B re-sampling itera-
tions, the bootstrap distribution, BootSampleX, on the basis of a randomly
selected sample, SampleX, from the generated distribution X. The statistic
applied to each pseudo-sample is the mean.
Simulation: Inputs for bagging from a small sample.Population, X ∼
Exp(µ): N = 10000, µ = 2.5; Sample from X, SampleX: n = 10; Bootstrap
distribution, BootSampleX: B = 1000. Below are shown the numerical results
of the simulation and the comparatively distributions: the theoretical one, the
sampling and the bootstrap distribution, (Figure 43.1).

Simulated Population: Simulated Sample: Bootstrap distribution:
X ∼ Exp(2.5) SampleX BootSampleX

X = 2.4934 ≈ µ SampleX = 2.9913 BootSampleX = 2.9846
SX = 2.4843 SSampleX = 2.5532 SBootSampleX = 0.7755

Observation.There is a small difference between the simulated theoretical
mean X and the elected parameter µ = 2.5 of the exponential distribution.
For the purposes of this simulation this difference is negligible.
In the next application bagging will be corrected in order to make inference
more reliable.

43.4 Application: Bootstrapping to compare two small
groups of newborns

The inferential problem.The means of the selections X5 and Y 5 are com-
pared. The tested hypothesis is: the mean of X is 0.25 bigger than the mean
of Y. Formally, this means Y

X
= 0.80.

43.4.1 The bootstrap algorithm for hypothesis testing

1. A number of B re-samples are constructed from each selections, X5 and Y 5,
with the same dimensions as the original ones. For this application with n=5
the value of B will be taken as B = 3125 = nn = 55.
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Figure 43.1: Bagging from a small sample

2. For each pair of re-samples (X5
b , X5

b ) the ratio Y 5
b

X5
b

is calculated. This is the

statistic of interest for comparing the groups X and Y.
3. From the b iterations, b = 1..B results the bootstrap distribution of the
statistic calculated at point (2), see Fig.43.1.
4. A confidence interval for the bootstrap distribution’s mean is calculated.
In the last part of the algorithm will be necessary to take into account the
phenomenon of bootstrap aggregation. The importance of the simulation of
bagging will be revealed.
Numerical results. By implementing the algorithm above through a Matlab

script, the bootstrap distribution of the statistic Y 5
b

X5
b

, b=1..B, is obtained. Its

shape is similar with the one obtained in Fig.43.1. For concision, the elements of

this distribution will be referred as Boot(Y/X), { Y 5
b

X5
b

|b = 1..B} =not Boot(Y/X).

After bootstrapping the statistic of interest, the mean of the distribution is
calculated. This will be called TestBoot, Boot(Y/X) =not TestBoot = 0.8029.
The confidence interval for TestBoot is calculated on the basis:Boot(Y/X) ∼
N(TestBoot, SBoot(Y/X)). For unknown theoretical mean µ and the standard
deviation calculated from the bootstrap distribution, Boot(Y/X), the confi-
dence interval for µ is considered as: TestBoot ± 1.96 · SBoot(Y/X)√

B
. The value

1.96 is the quantile zα/2 of the standard normal distribution for a confidence
level α = 0.05. For the standard deviation of the bootstrap distribution, called
bootstrap standard deviation, is obtained the value SBoot(Y/X) = 0.113. Thus,
the confidence interval for TestBoot is TestBoot ∈ [0.7989, 0.8068]



Bootstrapping Small Samples 247

43.4.2 Correcting bagging through simulation.

Considering the simulation of bagging experienced in the previous section, the
bootstrap aggregation is expected to be present in this distribution too. In order
to make bootstrapped inference more reliable a correction of the bootstrap
standard deviation would be an appropriate solution. This can be made by
studying the variation of SBoot(Y/X) when the bootstrap algorithm is repeated
for a large number of times (see Fig.43.2).
Result: SBoot(Y/X) ∈ [0.11, 0.1182]. This is a narrow interval but this reflects the
stability of the bootstrap technique. Correction: SBoot(Y/X) can be corrected
to a value between 0.11 and 0.2872 = S( Y 5

X5 ). The corrected confidence interval
for TestBoot is obtained for the bootstrap standard deviation taken as 2 ·
max[SBoot(Y/X)] = 2 · 0.1182 = 0.2364: [0.7984, 0.8150].
The more exact information is known about variation in the real sample, the
more the process of correcting bagging can be adjusted.
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Figure 43.2: Correction of bagging; SBootY/X is calculated 500 times for
the same B = 3125.

43.5 Discussion and Conclusions

Analyzing the results obtained from this approach it can be concluded that
the ratio Y

X
in the population is close enough to the expected value 0.80. The

argument is that the mean of the re-sampled distribution Boot(Y/X) is very
close to this value, TestBoot = 0.8029.
The confidence interval, for a good significance level α = 0.05, is a narrow one,
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which strengthen the idea that the mean of the bootstrap distribution is a good
estimator for the theoretical mean of the population.
The phenomenon of bootstrap aggregation must be taken into account. In
the majority of problems the study of variation is needed, so the bootstrap
aggregation must be corrected.
In several cases bootstrap simulation can be a valid alternative to classical
methods.
For this kind of approach, computer implementation is compulsory due to the
large number of calculations.
Inferring from small samples is a common problem for many biomedical prob-
lems. In these situations classical statistical methods can be replaced with new
ones. The bootstrap re-sampling method is one of these alternatives.
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44.1 Extended Abstract

Repair processes in tissues are known to be regulated by cytokines in opposite
directions: cell proliferation or apoptosis (4, 6, 7). Organotypic tissue culture is
successfully used to evaluate rapidly and quantitatively the effect of a substance
to be tested (3, 9). The dose dependence of the effect of cytokines usually fit a
non-linear dome-shared curve. In other words, the stimulating effects of these
agents are observed at specific effective concentrations, whereas at both lower
and higher concentrations, the response remains at the control level (1, 2, 5, 8,)
The question arises as to what mechanisms underlie stimulating and inhibiting
effects observed in tissue culture.

To determine the stimulating and inhibiting dose-dependent effects of var-
ious biologically active substances we studied the effect of neurite-stimulating
components (destsbilase) secreted by the medicinal leech (effective concentra-
tions 0.05-1 ng/ml) and the effect of the mitogen concanavalin A (effective
concentrations 0.01-0.1 mg/ml) on the organotypic culture of the nervous and
lymphoid tissues.

It was demonstrated, that at concentrations exceeding the optimal ones,
cytokines inhibited cell proliferation when applied alone. In combination with
the stimulating agent- nerve growth factor , - the effective concentrations of
cytokines had a similar effect. Tissue fragments prepared under sterile condi-
tions were cut to smaller fragments (approximately 1-mm3 pieces) that were
placed on Petri dishes containing a collagen substrate. The culture medium
contained Eagles basal medium with Earl salt (BME), supplemented with 2
mg/ml glucose, 10 ng/ml insulin, 75 IU penicillin and 25% fetal calf serum.
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The control explants were grown in the nutrition medium without additives.
The Petri dishes were incubated at 36.5o C for 48 h and then examined under
a phase-contrast microscope. We determined the area index (AI), which was
expressed in relative units and calculated as the ratio between the total area
of all explant (together with the zone of migrating cells) and the central area
of the explant. To detect apoptosis, the explants were stained with 0.1% acri-
dine orange, and their fluorescence intensity was examined under a luminescent
microscope. The data were processed using Student’s t-test.

In spinal ganglia cultivated with 1 ng/ml destabilase the axon outgrowth
was stimulated and AI values increased by 52 ± 5% as compared to the control
(n = 23, p< 0.05). However, the higher concentrations of destabilase reduced
the growth-stimulating effect. Beginning from a concentration of 2 ng/ml, the
explant outgrowth was inhibited. Nerve growth factor added at the concentra-
tion 100 ng/ml significantly stimulated the axon outgrowth of sensory neurons:
AI values were by 58 ± 11% (n = 22, p< 0.05) higher as compared to the
control (n = 25). However, when this neurotrophic factor was used in combina-
tion destabilase added at the stimulating concentrations, no stimulation of the
explant growth was observed: AI values were by 30 ± 9% (n = 24, p< 0.05)
lower as compared to the control (n = 23).

The growth of spleen explants was also significantly stimulated by addition
of concanavalin A at concentration 0.1 mg/ml to the culture medium and AI
values increased by 158 ± 15% (n = 25, p< 0.05). as compared to the control (n
= 21). However, like wit the cultivation of the sensory ganglia, the concanavalin
A concentrations higher than the effective once reduced the stimulating effect,
which was reversed to induce growth inhibition at concentration higher than
0.4 mg/ml. At the mitogen concentration of 0.5 mg/ml, the AI was by 28 ±
15% (n = 23, p< 0.05) lower as compared to the control (n = 25).

Thus, overstimulation of the tissue cultures ”switched off” the proliferative
processes, which reflects the cell system adaptability. So the overstimulation
provided by the biologically active agents caused the reversion of the response
in tissue culture. This problem accounts for the fact that the dose dependen-
cies of the various agents on the tissue cultures are described by dome-shaped
curves, rather than monotonous curves with plateauas, because, at large con-
centrations the stimulating effect of cytokines reverse to inhibition ones. This
is a manifestation of one of the generals biological laws: overstimulation caused
reversed effect.
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Abstract: In estimating the proportion of people bearing a sensitive attribute,
following Warner’s (1965) pioneering work certain randomized response (RR)
techniques are available. These are intended to ensure efficient and unbiased
estimation protecting a respondent’s privacy when it touches a person’s socially
stigmatizing feature like induced abortion, testing HIV positive, illegal drug use,
etc. Lanke (1976), Leysieffer and Warner (1976), Anderson (1977) and Nayak
(1994) among others have discussed how maintenance of efficiency is in conflict
with protection of privacy. In their RR-related activities the sample selection is
traditionally by simple random sampling with replacement. Following Chaud-
huri (2001), here is reported an extension in case of unequal probability sample
selection even without replacement.

Observing that multiple responses are feasible in addressing such a dichoto-
mous situation especially with Kuk’s (1990) and Christofides’ (2003) RR de-
vices, an average of the response-specific jeopardizing measures is proposed.

Keywords and phrases: Efficiency vs privacy, equal and unequal probability
sampling, measures of jeopardy, randomized response models

45.1 Introduction

Let U = (1, . . . , i, . . . , N) denote a finite population of labelled individuals. Let
Y = (y1, . . . , yi, . . . , yN ) be a vector of real numbers defined on U as

yi =
{

1 if i bears a sensitive attribute A
0 if i bears the complementary attribute Ac; i ∈ U .

The problem is to unbiasedly and accurately estimate θ = Y/N or Y =
∑

yi

where
∑

denotes summation over i in U , on surveying a sample s of units of
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U selected with probability P (s) according to a chosen design P . We briefly
review two randomized response techniques which can be used for that purpose.

45.1.1 Warner’s (1965) randomized response scheme

A box with cards marked A and its complement Ac in proportions p : (1− p),
0 < p < 1, is offered to a sampled respondent i and the randomized response is

Ii =
{

1 if the card type matches the attribute A or Ac

0 else; i ∈ U

with the random outcome undivulged. Writing ER, VR as operators for expec-
tation and variance with respect to the RR device, we have,

ER(Ii) = pyi + (1− p)(1− yi) = Prob(Ii = 1)

VR(Ii) = ER(Ii) (1− ER(Ii)) = p(1− p), i ∈ U.

Then for ri = [Ii − (1− p)] /(2p − 1), on ensuring p 6= 1
2 , ER(ri) = yi and

Vi = VR(Ii) = [p(1− p)]/(2p− 1)2, i ∈ U .

45.1.2 Kuk’s (1990) randomized response technique

A sampled person i reports fi which is the RR, namely the number of red cards
found in k (k ≥ 1) random draws with replacement from either a box with red
and black cards in proportions p1 : (1− p1) if the respondent bears A or from a
second box if he/she bears Ac in which these proportions are p2 : (1− p2) with
0 < pi < 1, i = 1, 2. Then

ER(fi) = k[p1yi + p2(1− yi)],

VR(fi) = k[p1(1− p1)yi + p2(1− p2)(1− yi)].

For ri =
(

fi

k − p2

)
/(p1 − p2), ensuring p1 6= p2, ER(ri) = yi and

Vi = VR(ri) =





p1(1−p1)

k(p1−p2)2
if yi = 1

p2(1−p2)

k(p1−p2)2
if yi = 0.

We should note that the variance Vi depends heavily on the parameters
of the randomization device and in essence could be regarded as one of the
technical aspects of the device. We may also note that the variance of an
estimator for θ involves Vi and increases as Vi itself increases too. It is therefore
appropriate to examine the behavior of Vi in relation to the device dependent
measure of jeopardy to be introduced n Section 45.3.
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45.2 Protection of Privacy

Lanke (1976), Leysieffer and Warner (1976), Anderson (1977) and Nayak (1994)
along with many others, in particular with Warner (1965), Kuk (1990), Green-
berg et al (1969), and Christofides (2003) confined to SRSWR of the respon-
dents from the population. Under SRSWR, let P (y = 1) = θ = Y/N = P (A),
be the probability that a person chosen from U at random bears the sensitive
attribute A. By letting Prob(Yes|A) = a and Prob(No|Ac) = b Nayak (1994)
noted that

Prob(A|Yes) =
θa

θa + (1− θ)(1− b)
, P rob(A|No) =

θ(1− a)
θ(1− a) + (1− θ)b

.

Departures of Prob(A|Yes) from θ and Prob(Ac|No) from 1 − θ could be
treated as measures of revelation of secrecy. Treating R as a response ”Yes” or
”No”, and writing Prob(·|·) as P (·|·),

P (A|R) =
θP (R|A)

θP (R|A) + (1− θ)P (R|Ac)

and

P (Ac|R) =
(1− θ)P (R|Ac)

(1− θ)P (R|Ac) + θP (R|A)

could be respectively regarded as ”revealing probabilities” in announcing R
about a person’s response concerning A or Ac. If P (A|R) > θ, R is jeopardizing
with respect to A and if P (Ac|R) > (1− θ), then R is jeopardizing with respect
to Ac. Combining these two,

J(R) =
P (A|R)/θ

P (Ac|R)/(1− θ)

is treated as a ”measure of jeopardy” inherent in a response R concerning A or
Ac. The higher its value is, the more its deviation from ”unity”.

The previous discussion applies to the case of selecting the respondents with
simple random sampling with replacement. To cover sampling of respondents
from U by arbitrary probabilities we proceed in the following way.

Suppose Li (0 < Li < 1) to be the probability that yi is assigned the value
”1” for the unit labelled i according to a certain probability mechanism which
need not be further specified. Let Li(R) denote the ”conditional probability”
that the ith respondent has the stigmatizing characteristic given that his/her
randomized response is R. Then

Ji(R) =
Li(R)/Li

[1− Li(R)] /(1− Li)
, i ∈ U
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will be defined as the ”response-specific” ”jeopardy measure” for the RR ob-
tained as R from respondent i. However, since a measure of jeopardy quantifies
the risk of revealing his/her status (i.e., whether he/she belongs to the stigma-
tizing group)which a person undertakes by agreeing to use the randomization
device, it should be made known to the participants before they agree to partic-
ipate in the survey, i.e, before any response is available. It is therefore justified
to use a measure which is not response-specific but rather could be regarded as
a technical characteristic of the device. We propose as an alternative measure
of jeopardy the quantity J̄i, i.e., the arithmetic average of Ji(R) over the alter-
native forms of R for a given i. The closer J̄i is to unity, the more the privacy
is protected. In addition, J̄i does not depend on Li.

45.3 Measures of Jeopardy

For the two RR models, Li(R), Ji(R) and J̄i in terms of the relevant parameters
are now presented. The quantity Li(R) is given only for a specific value of R.
For example, for Warner’s model we give only Li(1). The calculations for Li(0)
are omitted for reasons of brevity.

45.3.1 Warner’s model

Observe that Li(1) = pLi/ [(1− p) + (2p− 1)Li]. As p → 1
2 , Li(1) → Li as is

desirable for privacy to be protected but Vi = VR(ri) →∞, destroying efficient
estimation. In addition, Ji(1) = p/(1− p) , Ji(0) = (1− p)/p. Thus,

J̄i = [Ji(1) + Ji(0)] /2 = [p/(1− p) + (1− p)/p] /2

and Ji(1) = Ji(0) = J̄i = 1 if p = 1
2 .

45.3.2 Kuk’s model

Li(fi) =
Li

[
p1

fi(1− p1)
k−fi

]

p2
fi(1− p2)

k−fi + Li

[
p1

fi(1− p1)
k−fi − p2

fi(1− p2)
k−fi

] .

As p1 → p2, Li(fi) → Li but Vi →∞. In addition,

Ji(fi) =
[
p1

fi(1− p1)
k−fi

]
/

[
p2

fi(1− p2)
k−fi

]

with Ji(fi) = 1 if p1 = p2. Thus J̄i = 1
k+1

∑k
fi=0 Ji(fi) with J̄i = 1 if p1 = p2.



Protection of Privacy in Randomized Response 257

45.4 Concluding Remarks

Since for the RR models illustrated, the parameters p, p1, p2, k are the deter-
mining factors for the criteria for protection of privacy, we should specify their
values as far as practicable to keep Li(·)/Li, Ji(·) , J̄i correspondingly close to
unity. Trying alternative values of yi, it is possible to check if the Vi’s also may
be kept in check. The following tables showing the values of Li, Li(·), Ji(·), J̄i,
Vi for various design parameters provide a handy guidance.

Table 1 (Warner’s Model)
Values of Li(1), Vi, Ji(1), Ji(0), J̄i for various values of p and Li

Li 0.2 0.4 0.5 0.7

p Li(1) Vi Ji(1) Ji(0) J̄i

0.44 0.164 0.343 0.440 0.647 17.111 0.785 1.272 1.029
0.52 0.213 0.419 0.520 0.716 156 1.083 0.923 1.003
0.59 0.264 0.489 0.590 0.770 7.466 1.439 0.694 1.066
0.71 0.379 0.620 0.710 0.851 1.167 2.448 0.408 1.428

Table 2 (Kuk’s Model)
Values of Li(fi), Vi, Ji(fi) J̄i for various values of p1, p2 and Li

Li 0.2 0.4 0.5 0.7 Vi

p1 p2 Li(fi) yi = 1 yi = 0 Ji(fi)

k = 2, fi = 0
0.65 0.90 0.753 0.890 0.924 0.966 1.820 0.720 12.250
0.52 0.58 0.246 0.465 0.566 0.752 34.666 33.833 1.306
0.40 0.22 0.128 0.282 0.371 0.579 3.703 2.648 0.591

k = 2, fi = 1
0.65 0.90 0.387 0.627 0.716 0.855 1.820 0.720 2.527
0.52 0.58 0.203 0.405 0.506 0.705 34.666 33.833 1.024
0.40 0.22 0.259 0.482 0.583 0.765 3.703 2.648 1.398

k = 2, fi = 2
0.65 0.90 0.115 0.258 0.342 0.548 1.820 0.720 0.521
0.52 0.58 0.167 0.348 0.445 0.652 34.666 33.833 0.803
0.40 0.22 0.452 0.687 0.767 0.885 3.703 2.648 3.305

k = 3, fi = 0
0.59 0.73 0.466 0.700 0.777 0.890 4.113 3.352 3.501
0.50 0.44 0.151 0.321 0.415 0.624 23.148 22.814 0.711
0.52 0.69 0.481 0.712 0.787 0.896 2.878 2.467 3.712

k = 3, fi = 1
0.59 0.73 0.317 0.554 0.650 0.813 4.113 3.352 1.863
0.50 0.44 0.184 0.376 0.475 0.678 23.148 22.814 0.905
0.52 0.69 0.311 0.546 0.643 0.808 2.878 2.467 1.806

k = 3, fi = 2
0.59 0.73 0.198 0.398 0.497 0.698 4.113 3.352 0.991
0.50 0.44 0.223 0.434 0.535 0.729 23.148 22.814 1.152
0.52 0.69 0.180 0.369 0.467 0.672 2.878 2.467 0.879

k = 3, fi = 3
0.59 0.73 0.116 0.260 0.345 0.551 4.113 3.352 0.527
0.50 0.44 0.268 0.494 0.594 0.773 23.148 22.814 1.467
0.52 0.69 0.096 0.221 0.299 0.499 2.878 2.467 0.428
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Table 3 (Kuk’s Model)
Values of J̄i for the values
of p1, p2 of Table 4 and
for k = 2 and k = 3

k 2 3

p1 p2 J̄i

0.65 0.90 5.099
0.52 0.58 1.044
0.40 0.22 1.764

0.59 0.73 1.720
0.50 0.44 1.058
0.52 0.69 1.706
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Abstract: A problem of the statistical estimation of the stochastic process
functionals is considered. The Sufficient Empirical Averaging method is used.
The method requires the existence of the complete sufficient statistics for un-
known parameters. Some examples are considered.
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46.1 Introduction

The problems of the calculation of optimal points estimates for characteristics
of random processes functionals, characteristics of scattering of these estimates,
and also estimates observed significance levels for a criteria adequacy of model
and experimental data occasionally can be successfully solved by using Suffi-
cient Empirical Averaging (SEA) method. The method of obtaining statistical
results on the basis of the SEA-method consists of the following steps. Let a
statistical model (Y,B,P) generates a sample data y ∈ Y and admits a complete
sufficient statistic S(y). Here Y is a sampling space, B = {A} is sigma-algebra
on Y , P = {P{A; θ}, θ ∈ Θ} is a family of probability measures, Θ is paramet-
ric space. It is proposed that y is generated by a probability measure with the
unknown parameter θ0, y is a trajectory of Y (t), 0 ≤ t ≤ T , Y (t) is a random
process. Let us define conditional distribution Q(A; s0) = P{A|S(y) = s0; θ0}.
Note that Q(·; s0) is free of θ0 ∈ Θ. Suppose also that we can simulate a
sequence variants of data y∗1, . . . , y

∗
B, where i.i.d. random variables y∗i are gen-

erated by Q(·; s0). It is well known that each data variant y∗i is statistically

259



260 E.Chepurin, A.Andronov, A.Hajiyev

equivalent to y. Consider at first problems of unbiased point estimation of
g(θ0) = E{G(T, Y (t) for 0 ≤ t ≤ T ; θ0)}, where G(T, Y (t), 0 ≤ t ≤ T ) is
interesting for us functional of Y (t). Let z(y) be an easily calculated unbiased
estimator for g(θ0) that is E{z(y); θ0} = g(θ0). Then SEA-estimate of g(θ0) is

ĝB = B−1
B∑

i=1

z(y∗i ). (46.1.1)

Let ĝ0(S) = E{z(y)|S}. It is the uniformly minimum variance unbiased
estimator of g(θ). If V {z(y); θ0} < ∞ then Eq.(46.1.1) gives the consistent
estimate of ĝ0(S) as B →∞, E{ĝB(S); θ} = g(θ) and

VB{ĝB(S); θ0} = V {ĝ0(S); θ0}+
1
B

(V {Z(y); θ0} − V {ĝ0(S); θ0}) (46.1.2)

From Eq.(46.1.2) it is easy to choose B for essential proximity ĝB(s) and ĝ0(s).
Often one can get also unbiased estimator for V {ĝ0(s); θ} and other scattering
characteristics of ĝ0(s). Notice that many of the unbiased estimation problems
can be solved without difficult calculation of probability measures Q(·; s0) and
E{G(T, Y (t) for 0 ≤ t ≤ T ; θ0)}.

Further, every where it is supposed that

z(y) = G(T, Y (t) for 0 ≤ t ≤ T ).

46.2 Base Model

We consider the labeled random process Y (t) that is determined by the sequence
{τn, ηn}, n = 1, 2, ..., where τn ∈ R1

+ is a moment of the process events (of the
process jumps), ηn = (ηn,1, ηn,2, ..., ηn,m)T is the corresponding label, ηn ∈ Rm.
Note that a part of ηn can be integers. It is supposed that the sequences {τn}
and {ηn} are independent. Furthermore let K(t) = max{n : τn ≤ t} be a
number of the process events on the interval [0, t]. It is known the sample
trajectory of the process K(t) is statistically equivalent to an evolution of the
sequence {τn} - the jump moments of the process K(t).

Many problems of the queueing theory, reliability, insurance, inventory etc.
can be presented as searching problem of the expectation for a functional
G(T, Y (t), 0 < t ≤ T ) where T is a fixed time moment. Let θ0 be a generating
parameter of the process Y (t). If its value is unknown then there arises a search-
ing problem of the optimal unbiased estimate for E{G(T, Y (t), 0 < t ≤ T ); θ0}.
Note that the corresponding unbiased estimate exists for special observation
plans about the process Y (t) only. So it exists for the following plans, for ex-
ample:
- Plan of A-type: the process Y (t) is observed in the interval {0, T};
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- Plan of B-type: a time moment of observation ending coincides with τn(0)

where n(0) is such that

P{K(T ) ≤ n(0); θ0} = 1.

Unfortunately for the substantial practical problems usually it is impossible
to find an analytical expression for the optimal unbiased estimate. On the
other hand it is often possible to find the unbiased estimate that is plenty of
close to the optimal one. These estimates can be gotten by using the Sufficient
Empirical Averaging method that has been proposed by Chepurin (1994, 1995,
1999).

46.3 On a Class of Processes with the Complete
Sufficient Statistics for the Plans of A-Type

In the current section it is supposed that θ0 = (θ0,1, θ0,2) where θ0,1 deter-
mines the distribution of the sequence {τn}, θ0,2 determines the distribution
of the label sequence {ηn}. We suppose that the statistical model generating
the process Y (t) admits a complete sufficient statistic S1 = K(T ) for the se-
quence {τ1, τ2, ..., τK(T )}. It means that joint probability density of the random
sequence {τ1, τ2, ..., τK(T ); K(T )} can be represented in the following way:

Lc′(τ1, τ2, ..., τK(T );K(T )) = V (t1, t2, ..., tk)exp{−θ0,1k + a1(θ0,1) + b1(k)},

where V (t1, t2, ..., tk) is an arbitrary joint probability density of the vector
{τ1, τ2, ..., τk} on the set 0 < t1 < t2 < ... < tk ≤ T .

Here and below ai(.) and bi(.) are components of density representation for
the one-index exponential family.

Furthermore let S2 be a restrictedly complete sufficient statistic for the
family of the conditional random sequence of the labels {η1, η2, ..., ηK(T )|K(T ) =
k}. It is simply to show that S = (S1, S2) is the complete sufficient statistic.
As for a structure of Y ∗(t) (a date variant for the labeled random process), it is
described in the following way: Y*(t) is determined uniquely by the sequence

(t∗1, η
∗
1), (t

∗
2, η

∗
2), ..., (t

∗
k, η

∗
k),

where (t∗1, t
∗
2, ..., t

∗
k) are generated by the probability density V (.),

(η∗1, η
∗
2, ..., η

∗
k) are a date variant for the sequence of the labels (η1, η2, ..., ηk)

provided fixed values of the complete sufficient statistic S2.

Let us consider an important particular example of the point process, for which
K(t) is the complete sufficient statistic.

Example 1. Mixed Poisson process.
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Let K(t), 0 ≤ t ≤ T , be the standard Poisson process with the parameter
λ > 0, 0 ≤ t ≤ T , with that λ is a realization of the random variable Λ with
the probability density from the one-index exponential family:

Lc′(Λ) = exp{−λ/σ0 + a2(λ) + b2(σ0)},
so θ0,1 = 1/σ0.

Let us show that K(T ) is the complete sufficient statistic and the conditional
probability density Lc′(τ1, τ2, ..., τK(T )|K(T ) = k) coincides with the probability
density of the order statistic set for a sample from k independent but distributed
on [0, T ] random variables. Actually

Lc′(τ1, τ2, ..., τK(T )|K(T ) = k) =

∞∫

0

(
k∏

i=1

λe−λti

)
exp

{
−λ

(
T −

k∑

i=1

ti

)}

exp

{
− λ

σ0
+ a2(λ) + b2(σ0)

}
dλ =

k!
T k

∞∫

0

1
k!

(λT )ke−λT exp

{
− λ

σ0
+ a2(λ) + b2(σ0)

}
dλ.

If we take in mind that

Lc′(POIS(ΛT )) =

∞∫

0

1
k!

(λT )ke−λT exp

{
− λ

σ0
+ a2(λ) + b2(σ0)

}
dλ

is the unconditional probability density of the random variable K(T ) then above
formulated statement about the structure of Lc′(τ1, τ2, ..., τK(T )|K(T ) = k) be-
comes obvious.

Note if we set

a2(λ) = ln
λa0−1

Γ(a0)
, b2(σ0) = −lnσa0

0 ,

in other words to suppose that Λ has gamma distribution with known form pa-
rameter a0 and unknown scale parameter σ0, then for the unconditional prob-
ability we have the negative binomial distribution:

PS{K(T ) = k; θ0,1} =
(

a0 + k − 1
k

)(
1

σ0T + 1

)k (
σ0T

σ0T + 2

)a0

.

Let us show the completeness of the unconditional distribution of K(T ). Ac-
tually let we have E{dK(T ); θ0,1 ≡ 0} for some sequence {d0, d1, ...} and for all
σ0. Then

∞∑

k=0

dk

∞∫

0

(λT )k

k!
e−λT exp

{
− λ

σ0
+ a2(λ) + b2(σ0)

}
dλ =
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=

∞∫

0

( ∞∑

k=0

dk
(λT )k

k!
e−λT

)
exp

{
− λ

σ0
+ a2(λ) + b2(σ0)

}
dλ.

Now from the completeness of the distribution of the random variable Λ follows
that ∞∑

k=0

dk
1
k!

(λT )keλT = 0 almost probably for all λ.

In one’s turn, from the completeness of the Poisson distribution follows that
dk = 0 for k = 0, 1, ..., so K(T ) is the complete sufficient statistic. Note that
an example of the B-type plan has been considered by Andronov et al. (2005).

46.4 On Procedures of Data Variant Generation

The problems of a data variants simulation are crucial for possibility of the
supposed method realization. To simulate data variant it is necessary to know
the conditional distribution of the data variant and to generate correspond-
ing random variables. Usually it is very difficult to find explicit form for the
conditional distribution, since it is a distribution on hypersurface in space of
high dimension. On the other hand, to generate corresponding random vari-
ables is complicated problem too. Here two ways are possible. Firstly, often
we can generate the random variables of interest directly, without knowledge of
the corresponding distribution. Such examples were given by Chepurin (1995,
1999), Engen and Lillegard (1997).

Secondly, it is possible to apply the Gibbs sampling. This approach uses a
decomposition of the multivariate probability density into a marginal and then
a sequence of conditionals. We begin with the univariate marginal distribution
(provided fixed value of the corresponding complete sufficient statistic) and
generate the first random variable χ∗n. Then we recount the value of the statistic
and use one for the generation of the next random variable χ∗n−1 etc.

We illustrate this approach for a sample χ1, χ2, ..., χn from the normal pop-
ulation N(µ, σ). In this case the complete sufficient statistic is S = (µ∗n, σ2∗

n ),

µ∗n =
1
n

n∑

i=1

χi, σ
2∗
n =

1
n− 1

n∑

i=1

(χi − µ∗n)2.

The conditional random variable χ∗n by the condition S = (µ∗n, σ2∗
n ) has the

following probability density:

Lc′
(
χ∗n|µ∗n, σ2∗

n

)
=

√
nΓ

(
n−1

2

)

(n− 1)
√

πσ2∗
n Γ

(
n−2

2

)
(

1− n

(n− 1)2σ2∗
n

(x− µ∗n)2
)n

2
−2

,

µ∗n −
n− 1√

n

√
σ2∗

n ≤ x ≤ µ∗n +
n− 1√

n

√
σ2∗

n .
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Now we generate χ∗n using, for example, Acceptance/Rejection or Inverse Cu-
mulative Distribution Function methods. Furthermore we recount the value of
the statistic S by the formulas

µ∗n−1 =
1

n− 1
(nµ∗n − χ∗n), σ∗n−1 =

n− 1
n− 2

(
σ∗n −

1
n

(χ∗n − µ∗n−1)
2

)
.

The consequent iterations give the sequence χ∗n, χ∗n−1, ..., χ
∗
4, χ

∗
3. Two last values

are calculated by formulas

χ∗2 = µ∗2 −
√

1
2
σ2∗

2 , χ∗2 = µ∗1 −
√

1
2
σ2∗

2 .

Finally it is possible to conclude that the supposed approach allows efficiency
to apply the various models of queueing theory, reliability, inventory, insurance
etc. for practical problem solving.
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47.1 Introduction

In 1998, the National Surgical Adjuvant Breast and Bowel Project (NSABP)
demonstrated that TAM treatment reduced the incidence of both invasive and
noninvasive breast cancer in women at high risk for the disease(1). Following
the results of this study, women at high risk for developing breast cancer are pre-
scribed TAM to prevent breast cancer. TAM is also prescribed to those women
with ER positive breast cancer who have undergone chemotherapy to prevent
secondary tumors. In recent years, health conscious women from Europe and
USA began consuming soy protein or taking soy isoflavones as supplements
for their apparent benefits against breast cancer and cardiovascular disease.
Consequently, a group of women that are prescribed TAM may also consume
soy products or take a mixture of isoflavones, composed mainly of genistein and
daidzein, as dietary supplements. The majority of previous studies have focused
on genistein, due to its relatively strong binding (in comparison to daidzein) to
ER and its estrogenic/antiestrogenic activities which are stronger than those
of other isoflavones (2-4). At relatively high concentrations and in vitro, genis-
tein is known to inhibit enzymatic activities that are crucial for tumor cell
proliferation (5), such as the receptor tyrosine kinases (6) and topoisomerase
II (7-9). Genistein has also been found to be effective in preventing DMBA-
induced mammary tumorigenesis in female rats, but only when administered to
neonatal or prepubescent rats less than 35 days old (10,11). However, another
study found genistein to have no protective effect on DMBA-induced mammary
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tumors in mice and even suggested a potentially adverse effect on tumor devel-
opment when high levels of genistein are consumed (12). Two studies reported
no significant differences in the effects of isoflavone-containing or -depleted soy
protein isolate in DMBA-induced mammary carcinogenesis (13,14).

47.2 Results

It is unknown at present how the risk of breast cancer is affected by combin-
ing TAM with soy phytoestrogens. To address this question, female Sprague-
Dawley rats were placed on diets supplemented with TAM, genistein, daidzein,
or a combination of each isoflavone with tam; a week later the rats were given
the carcinogen 7, 12 dimethylbenz[a]- anthracene (DMBA). The most effective
diet was the TAM/daidzein combination: it reduced tumor multiplicity by 76%,
tumor incidence by 35%, tumor burden by over 95%, and it increased tumor la-
tency by 62% compared to the control basal diet. The TAM/daidzein combina-
tion diet was in all aspects more effective while theTAM/genistein combination
was less effective than the TAM diet. The expression of ER in the mammary
glands of rats fed daidzein tripled in comparison to those fed the basal diet
according to Western data. There was a significant decrease in the expression
of ER in the tam-fed rats. The TAM/daidzein diet significantly decreased 8-
oxo-dG levels (an indicator of oxidative DNA damage) in the mammary glands.
This study conclusively shows for the first time the combination of daidzein with
TAM produces increased protection against mammary carcinogenesis, while the
combination of genistein with TAM produces an opposing effect when compared
to TAM alone. The daidzein metabolite equol may account for the benefit pro-
duced by the daidzein diets. The data also suggest that up-regulation of ER
may lead to increased protection against carcinogenesis. The effects of these
diets in endometrial tumor parameters have been determined (and will be re-
ported here) to determine how equol affects the anticipated adverse effects of
tamoxifen in the uterus.
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Abstract:In the multi-state system (MSS) each system element may have many
different states. Therefore the computational burden becomes the crucial fac-
tor by using multi-state models when there is a ”dimension damnation” prob-
lem caused by the element state increase. To avoid this problem, the states
of a system element are usually reduced into the specified binary- state or
three-state model. However the main disadvantage of this approach is that
the specified binary- state or three-state model cannot fully represent the per-
formance or/and statistical behavior of all the actual states. In this paper a
fuzzy based reduction technique has been developed to cluster system states
and simplify computational complexity for a MSS. It can be seen from the il-
lustrative example that the proposed technique is accurate and achieves much
better performance than the conventional approximation method.

Keywords and phrases: Fuzzy, reliability, multi-state system, state reduction

48.1 Introduction

There are many technical systems in the world, which are designed to perform
their intended tasks in a given environment. One type of these technical systems
is Multi-state Systems (MSS). MSSs have a finite number of performance rates
(intensity of the task accomplishment). They are able to perform their task with
various performance rates. Failures of some system elements only lead to the
degradation of the system performance. The basic concepts of MSS reliability
were primarily introduced by Murchland (1975), El-Neveihi et al. (1978), and
Barlow and Wu (1978). The comprehensive up-to-date presentation of the MSS
reliability theory and its applications were discussed by Lisnianski and Levitin
(2003).
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In the multi-state system (MSS) each system element may have many dif-
ferent states. Therefore the computational burden becomes the crucial factor
by using multi-state models when there is a ”dimension damnation” problem
caused by the element state increase. Some achievements like Billinton and Wee
(1985) can drastically reduce the number of states and the computation burden.
By using these approaches, the original multi-state model of a system element
can be simplified as a revised binary-state model or a revised multi-state model.
However by using the revised binary-state model, the performance rate (level)
can only function in either a perfect functioning rate (level) or a complete fail-
ure, or by using a revised multi-state model, the performance rates (level) of
the specified derated states are usually simplified defined as the average value
in a specified interval. This kind of simplification may have an inaccurate re-
sult to reliability evaluations in some cases. How to optimally determine the
specified states that represent the characteristics of original states has not been
considered in the previous research.

In this paper a fuzzy based reduction technique has been developed to sim-
plify the computational burden of MSS reliability assessment. In this technique
fuzzy-c-means (FCM) algorithm has been used to partition the original states
of the system element or the subsystem into different specified clusters accord-
ing to their characteristics. The method for determining the probabilities and
associated rates (level) of the specified clustering states has been proposed. In
the illustrative example the computational results are compared with results
obtained by the exact method.

48.2 Fuzzy-c-means Algorithm

The fuzzy-c-means (FCM) is a data clustering technique and provides a method
to group data points into a specific number of different clusters introduced by
Bezdek et al. (1984). In this paper, the FCM technique is used to partition the
original states of the system element or the subsystem into different specified
clusters according to their characteristics. The specified fuzzy states are used
to represent the characteristics of the corresponding clusters.

The objective of FCM algorithm is to minimize the specified function F:

minF =
N∑

i=1

S∑

s=1

(Usi)m ‖gi − cs‖2, 1 ≤ m < ∞ (1.1)

where N is the number of original states, S is the number of specified clusters
(specified fuzzy states), gi represents the performance rate (level) of the ith

original state, cs signifies the performance rate (level) of the center of the sth

cluster, m is any real number greater than 1, Usi is the membership grade,
which represents the weighting factor between gi and cs, and || ? || is any norm
expressing the similarity between any measured data and the center.
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The objective function F represents the distance from any given gi to a
cluster center cs, which is weighted by the membership value of gi. While F
is minimized, the N original states can be partitioned into S clusters (fuzzy
states). An iteration algorithm was developed by Bezdek (1984) to minimize
the F :

1. For each cluster center cs, guess an initial value; for each gi and each cs,
initialize the membership grade Usi

2. For each iteration h, the cs and Usi can be calculated by the following
equations, respectively:

c(h)
s =

N∑
i=1

(U (h−1)
si )m · gi

N∑
i=1

(U (h−1)
si )m

(1.2)

U
(h)
si =

1
S∑

j=1

[
||gi−c

(h)
s ||

||gi−c
(h)
j ||

]2/(m−1)
(1.3)

3.
∥∥∥U

(h)
si − U

(h−1)
si

∥∥∥ ≤ ε, stop the iteration; else go to step 2; where ε is the
specified tolerance level of convergence.

48.3 Proposed Method for MSS Reliability Assess-
ment

Let the polynomial
N∑

i=1
pi · zgi represent the performance distribution of the

system element or the system. pi represents the probability of the ith original
state. Such polynomial will be also called as individual universal generating
function (UGF) representation by Lisnianski and Levitin (2003).

The FCM algorithm is used by the operator φ̃FS to obtain the specified
fuzzy states:

φ̃FS(
N∑

i=1

pi · zgi) =
S∑

s=1

ps · zg̃s =
S∑

s=1

ps · z{gi,Usi|gi∈Gi} (1.4)

where g̃s is the performance rate (level) of fuzzy state s, which is represented
by a fuzzy value, ps is the probability of fuzzy state s and Gi are collection of
objects denoted generically by gi. Equation 1.4 is the representation of fuzzy
universal generating function (FUGF). ps can be calculated by the following
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equation:

ps =
N∑

i=1

 Usi

S∑
s=1

Usi

· pi

 (1.5)

From the equation 1.5, it can be seen that the calculation of ps is based on
apportioning the probabilities of the original states into the specified fuzzy
states. The closer an original state to a cluster center which represents that Usi

is a relatively high value, the more contribution it gives to the probability of
that fuzzy state.

However it can be seen from (1.5) that the performance rate (level) g̃s of
fuzzy state s is a discrete fuzzy number with N elements, which will result in a
heavy computational burden. To reduce the computational complexity, the g̃s

can be approximated by some kind of continuous membership function. In this
paper, it is supposed that g̃s can be approximated by a moving up triangular
as shown in Fig. 1.
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Fig. 1. The approximation of a discrete fuzzy number by a moving up triangular

It is supposed that the interval confidence of g̃s at l-cut level g̃l
s is determined

as
[
al

s, b
l
s

]
shown in Fig.1. The membership function of g̃s approximation is

defined as:
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s
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s ≤ x ≤ cs,
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s−x

bl
s−cs

+ l, cs ≤ x ≤ bl
s,

0, x > bl
s

(1.6)
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Especially notice that when l is defined as 1, the g̃s approximation is reduced
into a crisp value - cluster center cs, which can be seen as the pseudo perfor-
mance rate (level) of the specified state s.

The operator φ̃app is defined to approximate g̃s to a moving up triangular:

φ̃app(gi, Usi|gi ∈ Gi) = (al
s, cs, b

l
s)l (1.7)

When l = 1, φ̃app(gi, Usi|gi ∈ Gi) = cs. The (al
s, cs, b

l
s)l can be seen as that the

triangular represented by the conventional triplet (al
s, cs, b

l
s) moves up a vertical

level l.
After obtaining the FUGF of the system element or the system, the mathe-

matical calculations for the FUGF discussed by Ding and Lisnianski (2006) can
be used to calculate the system reliability indices.

48.4 Illustrative Example

In the example, the availability of a generation company (Genco) is evaluated
by the fuzzy based reduction technique. It is supposed that the Genco has
four generating units: two same coal units, one gas unit and one oil unit. The
reliability data of generating units come from Israel power system. The coal
unit, the gas unit and the oil unit have 10 states, 10 states and 11 states,
respectively. Therefore the Genco totally has 10 ∗ 10 ∗ 10 ∗ 11 = 11000 states.

Obviously the Genco is a parallel system. In the first step, the two coal units
are combined into a subsystem 1 and the gas unit and oil unit are combined
into a subsystem 2. For each subsystem, the derated states are clustered into
8 fuzzy states by using fuzzy based reduction technique. The characteristics of
the subsystem are represented by a state of total failure, a state of full capacity
and 8 fuzzy derated states. The fuzzy value of the performance level for the
fuzzy derated state is calculated by FCM and approximated by a triangular
with a moving up vertical level l. The probability for the fuzzy derated state is
evaluated by (1.5). There are only 10∗10 = 100 items in the system FUGF. The
system availabilities with different demand levels evaluated by exact method, in
which there is no state reduction and all the 11000 system states are evaluated
and fuzzy based reduction technique with l level 0.95 and 0.6 respectively are
shown in Fig.2.
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Abstract: The analysis of correlated binary responses for two independent
groups is considered here. We focus on the case where the only available in-
formation are the marginal 2 × 2 crosstabulations between a group variable
and the response for two separate occasions (usually time sequences) and not
the individual responses. Assuming independent binomial distributions in the
k -th table, our objective is to estimate the success probabilities for each group
at each occasion as well as the corresponding odds ratios θk, comparing the
responses of the two groups at each occasion k. In order to deal with the miss-
ing information of each subject’s response and to estimate the corresponding
transition probabilities, a Bayesian procedure is adopted.

Keywords and phrases: Repeated binary response, marginal tables, latent
individual information, MCMC

49.1 Introduction

Let us consider a binary characteristic (response) measured successively at two
time points for two independent groups. To establish notation, the k -th table
(k=1, 2) is of the form

Response (Yk)
Group (X) 1 2

1 n11.k n1 − n11.k n1

2 n21.k n2 − n21.k n2

In the table above, nij.k represent the cell counts of the k -th (k=1, 2) table
for group i (i=1, 2) and category response j (j=1, 2). Since we have two
independent groups we assume that n11.k and n21.k are independently binomial

275



276 Eleftheraki, Kateri & Ntzoufras

distributed, i.e. n11.k ∼ Bin(n1, π11.k) and n21.k ∼ Bin(n2, π21.k). Our objec-
tive is to estimate the success probabilities π11.k and π21.k as well as the odds
ratios θk, comparing the responses of the two groups at each occasion k.

This setup occurs commonly in many clinical and epidemiological studies,
where the main issue is the comparison of two independent groups of subjects,
in terms of two correlated binary responses for each of them. For example,
this type of tables result as marginal tables in case of repeated binary measure-
ments on the same subjects (e.g. before-after treatment) or of simultaneous
measurements on the same subjects (e.g. recording of two side-effects).

Here we focus on the case where the individual information, that is (X,Y1, Y2)
for each subject, is not available. Having observed only the marginal tables
of the above type and the corresponding frequencies nij.k, two features need
special treatment; the correlation between the two crosstabulations and the
non-availability of the complete records for each subject. Such data often arise
in practice mainly for reasons of confidentiality protection or due to storage
management. Problems of full data availability are also common when the
data sources are reports of Governmental Institutes (official statistics). There
is no doubt that for categorical data, the traditional and most common form of
reporting has been that of marginal tables (Fienberg and Slavkovic, 2004).

If the individual responses are known, many models have been developed in
the literature to analyze repeated measurements in the framework of longitu-
dinal studies. Most of them model the marginal expectation of the binary re-
sponses using the generalized estimating equations (GEE) methodology (Liang
and Zeger, 1986). For example, Fitzmaurice and Laird (1993) modelled time-
dependent multivariate binary data by a marginal logistic model. Bayesian
models using MCMC algorithms for the analysis of longitudinal data are rec-
ommended by Chib and Carlin (1999). In a different framework, Agresti and
Klingenberg (2005) proposed a multivariate test comparing the binomial prob-
abilities of two groups in a safety study where each subject was examined in 11
adverse events. However, the methods mentioned so far require the availability
of the joint distribution of the multivariate responses for each group.

When analyzing several independent 2×2 tables the Mantel-Haenszel test is
often employed. However this approach is not valid in case of intraclass and/or
interclass correlation. Most of the modifications of the Mantel-Haenszel test
deal with the intraclass correlation. An exception is a procedure given by Begg
(1999), which accounts for dependence within and between strata. However,
her variance correction factor is based on individual subject information, which
is unavailable in the present context (our second special feature). At the same
time, Liao (1999) proposed a hierarchical Bayesian model for multiple 2 × 2
tables, which allows the tables to borrow information from each other. Liao’s
model is not full Bayesian, since the nuisance parameters are eliminated by
conditioning instead of integration.
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The estimation of the probabilities π11.1 and π21.1 is straightforward, using
the cell frequencies of the first table. However, the estimation of π11.2 and π21.2

need to take into consideration not only the frequencies of the second table but
the correlation between the probabilities πi1.1 and πi1.2 (i=1, 2) as well.

Let wij be the conditional probability of a subject to remain in the same
response category at the second measurement, i.e.

wij = P (Y2 = j|X = i, Y1 = j).

Then, the probabilities for the second table are given by Π2 = W ·Π1, where

Πk = (π11.k, π12.k, π21.k, π22.k)
′ , k = 1, 2

and

W =




w11 1− w12 0 0
1− w11 w12 0 0

0 0 w21 1− w22

0 0 1− w21 w22


 .

Note that πi2.k = 1− πi1.k for i = 1, 2 and k = 1, 2.
The Bayesian approach is a natural and convenient choice to deal with

missing information. In order to estimate the conditional probabilities wij we
will impose sensible priors to our parameters, which will be non-informative
when no prior information is available but can also incorporate prior information
otherwise.

49.2 Estimation of Cell Probabilities and Odds Ra-
tios

Let zij be the unknown number of subjects from the i-th group (i = 1, 2) that
remained in the j-th response category (j = 1, 2) at the second measurement.
Since we consider two independent groups, we will describe in detail the analysis
for the first one. The results for the second group will be analogous. Thus, the
table with the unknown transition frequencies for the first group will be

k = 2
k = 1 Y2 = 1 Y2 = 2
Y1 = 1 z11 n11.1 − z11 n11.1

Y1 = 2 n1 − n11.1 − z12 z12 n1 − n11.1

n11.2 n1 − n11.2 n1

Given the cell frequency n11.1, z11 is a binomial observation with parameters
n11.1 and w11. Similar, given the cell frequency n12.1(= n1−n11.1), z12 is a bino-
mial observation with parameters n1−n11.1 and w12. Under this consideration,
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the full likelihood of the data is

L(n11.1, n12.1, z11, z12) ∝ πn11.1
11.1 · (1− π11.1)

n1−n11.1 · wz11
11 · (1− w11)

n11.1−z11

z11! · (n11.1 − z11)!

·w
z12
12 · (1− w12)

n1−n11.1−z12

z12! · (n1 − n11.1 − z12)!
· I(zmin

11 ≤ z11 ≤ zmax
11 )

where z12 = z11 + n1 − n11.1 − n11.2, zmin
11 = max{0, n11.1 + n11.2 − n1} and

zmax
11 = min{n11.1, n11.2}.

The priors imposed on the parameters ϑ1 = (π11.1, w11, w12) of interest are
independent beta, the usual choice for binomial probabilities

π11.1 ∼ Beta(a, b),
w11 ∼ Beta(a1, b1),
w12 ∼ Beta(a2, b2).

When no information is available we set a1 = b1 = a2 = b2 = 0.5, to represent
prior ignorance.

In this context, the joined posterior distributions is given by

f(ϑ1|n11) = f(π11|n11.1)f(w1|n11),

where n11 = (n11.1, n11.2) and w1 = (w11, w12). The marginal posterior distri-
bution of π11 is a simple beta distribution

f(π11|n11.1) = Beta(n11.1 + a, n1 − n11.1 + b)

while the posterior distribution of w1 is given by

f(w1|n11) =
zmax
11∑

z11=zmin
11

f1(w11|z11, n11.1)f2(w12|z11, n11)fz(z11|n11) ,

where the conditional posteriors f1(w11|z11, n11.1) and f2(w12|z11,n11) are beta
density functions. The posterior f(w1|n11) is estimated using a simple MCMC
scheme. Note that the conditional posterior fz(z11|w1, n11) is a non-central
hypergeometric distribution.

Although the resulting posteriors fi(w1i|n11) (i = 1, 2) are not of a recog-
nizable form, it is possible to derive their moments in closed-form expressions.
Thus, for the first moments we proved that

E(w11|n11) = E(w11|n11.1) = E
{

E
(
w11

∣∣z11, n11.1

)}
=

E(z11) + a1

n11.1 + a1 + b1
,

E(w12|n11) = E
{

E
(
w12

∣∣z11, n11

)}
=

E(z11) + n1 − n11.1 − n11.2 + a2

n1 − n11.1 − n11.2 + a2 + b2
.
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Having estimates of the posterior distributions fi(w1i|n11), i = 1, 2, as well as
the above expected means, it is possible to estimate the posterior distribution
of the success probability π11.2. The parameter vector for the second group
ϑ2 is defined analogously and the posterior distribution of the corresponding
success probability π21.2 can be estimated accordingly. Finally, the posterior
distribution of the odds ratio θ2 of the second table is derived.

49.3 Example

For illustrative purposes, we analyze a subset of a longitudinal study on the
health effects of air pollution carried out at six cities (Ware et al., 1984). This
example is very popular in the literature and has been studied under various
models for longitudinal data. The data set contains complete records on 537
children from Ohio, each of whom was examined at ages 7 through 10. We
will use the summary data for the first and last measurement at ages 7 and 10.
The binary response is the wheezing status (1=yes, 0=no) of a child. Maternal
smoking (1=if mother was a regular smoker, 0=else) is treated as a fixed variable
and forms the two independent groups of children.

49.4 Discussion

In the analysis described so far we assumed that the group sizes (n1 and n2)
remained fixed for k = 1 and k = 2, i.e. we assumed that measurements were
available on all subjects on both occasions. In case of missing data, if ni.k

(i, k = 1, 2) denotes the size of group i at occasion k, then n1.1 6= n1.2 and/or
n2.1 6= n2.2. This context is also under consideration.

It is straightforward to extend our procedure to the case of a response
variable with more than two categories. It is also possible to consider the case
of analysis of more than two correlated tables (k > 2). Finally, we intend
to proceed to Bayesian hypothesis testing comparing the probabilities and the
odds ratios of the correlated tables.
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Abstract:

The latent class model is a common alternative to evaluate the accuracy
of diagnostic tests in the absence of a true gold standard. In this paper, we
adjusted a latent class model with constraints to a data set of stray dogs in order
to estimate sensitivities and specificities of four diagnostic tests for Leishmania
infection. The constraints incorporate certain properties of the parasitological
tests. In the adjusted model, the values of sensitivity and specificity for the
parasitological test (applied to liver and spleen) and bone marrow PCR are the
same. In practice, spleen and liver biopsies can only be done in dead dogs.
Consequently, we recommend bone marrow PCR as a good test to detect this
infection.

Keywords and phrases: Latent class analysis, Sensitivity, Specificity, Leish-
maniasis

50.1 Introduction

Leishmaniasis is a group of diseases caused by parasites of the genus Leishmania
(Campino, 2002). These parasites transmitted by sand fly can infect a variety
of hosts, including humans and dogs. Farrell (2002) focuses that “human leish-
maniasis occurs in tropical, sub-tropical and temperate regions of the world with
an estimated 1.5 to 2 million new cases each year”. The dog is an important
reservoir that serves as the source of human infection (Campino, 2002).

In this work, we considered a set of n = 132 stray dogs collected in the
outskirts of Lisbon. A dog can be infected without showing any clinical signs
of the disease. Consequently, clinical diagnosis must be confirmed or assessed
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through laboratory tests. Serologic tests (indirect immunofluorescence, IFI, and
counterimmunoelectrophoresis, CIE), parasitological tests (parasite detection in
traditionally affected tissues through microscopy and cultures, ParTissue) and
DNA tests (Polymerase Chain Reaction, PCR) are common in the laboratory
diagnosis of leishmaniasis in dogs (and humans), but the results obtained are
not confirmatory.

In medical applications, diagnostic tests give indications of whether or not
an individual has a certain disease (or infection). Consequently, the study of
their performance is a common problem of major importance. Suppose that
p diagnostic tests are applied independently to each subject and let Xi (i =
1, . . . , p) be the result of the i-th diagnostic test, taking the value 1 if the
subject is diagnosed as having the disease (positive result) and 0 (negative
result) otherwise. For each subject, the true state of the disease is a variable,
Y , that can take one of two values: 1 indicates that the subject has the disease,
and 0 that the subject does not have the disease. Sensitivity and specificity are
measures of the performance of a diagnostic test. Sensitivity is the probability
of a diseased individual to be correctly identified by the test, P (Xi = 1|Y = 1),
and specificity is the probability of a healthy individual being correctly identified
by the same test, P (Xi = 0|Y = 0).

Usually, these measures are calculated comparing tests with a reference test
known as “gold standard”. In an ideal situation, this gold standard is known
to be capable of correctly classifying an individual as diseased or non-diseased
(infected or non-infected). However, in practice, gold standards are rare and
due to this, the true state of the disease cannot be assessed. Thus, it can be
seen as a latent variable, and the sensitivity and specificity of the diagnostic
tests being studied can be estimated using latent class analysis (Bartholomew
and Knott, 1999; Hadgu and Qu, 1998).

In Section 50.2 we introduce the latent class model with constraints that
express certain properties of the parasitological tests. In Section 50.3 the main
results as well as the validation of the models are discussed. The paper ends
with some conclusions.

50.2 Latent Class Model

Let η1 = P (Y = 1) be the prevalence of the disease (or infection) and πij =
P (Xi = 1|Y = j), i = 1, . . . , p and j = 0, 1. Using this notation, the sensitivity
and the specificity of the i-th test can be written as πi1 and 1−πi0, respectively.

The latent class model assumes that, given the true state of the disease,
the results of the diagnostic tests are independent. This assumption is called
hypothesis of conditional independence (HCI) and in some medical problems
may not be a realistic assumption, which is the reason it has to be validated. In
this work, goodness-of-fit tests as well as the correlation residual plot suggested
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by Qu et al. (1996) are performed to validate this hypothesis.
It is known that if a parasite is detected in a tissue then the subject is

infected. However, if a parasite is not detected, we cannot conclude that the
subject is not infected. Let Xk (k = 1, . . . , q and q < p) be the result of the k-th
parasitological test applied to a certain type of tissue. Thus, if the parasite is
detected in the k-th tissue, Xk = 1, then the subject is infected, Y = 1, and
due to this we can write: P (Y = 1|Xk = 1) = 1. This is equivalent to stating
that the specificity of the k-th parasitological test is equal to 1, i.e. πk0 = 0,
k = 1, . . . , q. Incorporating these constraints in the latent class model we can
estimate its parameters using the EM-algorithm. Let xh = (xh1, . . . , xhp)t be
the response vector associated with the h-th subject. Given some initial values,
the iterative estimation procedure can be formulated as follows:

d̂(1|xh) =

η̂1

p∏

i=1

(π̂i1)
xhi (1− π̂i1)

1−xhi

P̂ (X = xh)

where

P̂ (X = xh) = η̂1

p∏

i=1

(π̂i1)
xhi (1− π̂i1)

1−xhi +

+(1− η̂1)δ(
q∑

k=1

xhk)
p∏

i=q+1

(π̂i0)
xhi (1− π̂i0)

1−xhi

and δ(x) = 1 if x = 0 and δ(x) = 0 if x 6= 0. Note that d̂(0|xh) = 1− d̂(1|xh),
and

η̂j =
1
n

n∑

h=1

d̂(j|xh), π̂ij =

n∑

h=1

d̂(j|xh)xhi

n η̂j
,

i = 1, . . . , p j = 0, 1.

50.3 Results and Discussion

Several diagnostic tests were applied independently to each dog, but only p = 4
variables were considered in this study. The two serological tests (IFI and CIE)
were used to build a new variable, named CIE IFI, such that CIE IFI=CIE*IFI.
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η̂1 ParLS PCRMar ParMar CIE IFI
n = 132 0.243 Specificity 1.000 1.000 1.000 0.960

Sensitivity 0.968 0.906 0.781 0.813
n = 130 0.231 Specificity 1.000 1.000 1.000 0.960

Sensitivity 0.966 0.966 0.833 0.867

Table 50.1: Estimates of the prevalence, sensitivities and specificities when we
consider n = 132 (all data set) and n = 130, when we exclude two problematic
dogs from the analysis.

This means that CIE IFI is positive only if both CIE and IFI are positive. These
variables were combined in order to overcome the violation of HCI.
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(a) n = 132. (b) n = 130.

Figure 50.1: Correlation residual plot with a 95% bootstrap confidence band,
estimated using a percentile method (Davison and Hinkley, 1997).

Three parasitological tests were performed on different tissues: bone marrow
(ParMar), liver (ParL) and spleen (ParS). Since the liver and spleen were not
our major concern, a new parasitological variable was built, ParLS, such that
whenever a parasite is detected in the liver or in the spleen then ParLS=1, and
ParLS=0 only if no parasite is detected in either of these two tissues. The other
variable under study was the PCRMar, the PCR done on the bone marrow of
each dog. The results of the analysis on the n = 132 dogs are summarized in
Table 50.1. In order to validate these results we considered two goodness-of-
fit tests: likelihood ratio test (p-value: 0.023) and a bootstrap test (p-value:
0.002). The tests indicate that we should reject the adequacy of the model to
the data. Figure 50.1 (a) shows that the correlation residual between ParMar
and PCRMar touches the 95% bootstrap confidence band (Davison and Hinkley,
1997), indicating violation of the HCI. Looking at the data more carefully, we
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conclude that the model is rejected mainly because of two dogs. In both cases,
only ParS detected the parasite and all the other tests (ParMar, PCRMar,
CIE IFI) gave negative results. According to the latent class model, a response
vector like this would be very unlikely, and an observed frequency of 2 is quite
large when compared with the corresponding expected frequency, 0.12.

In order to overcome this difficulty we eliminated the two problematic dogs
from the data set and repeated the latent class analysis. The new results are
summarized in Table 50.1 (n = 130). In this case, all the tests accepted the
adequacy of the model to the data (the p-values for the log-likelihood ratio
and bootstrap tests are 0.533, 0.173, respectively) and the Qu et al. (1996)
correlation residual plot gives no indication of the violation of the HCI (see
Figure 50.1 (b)). When we exclude the two dogs the specificities are unchanged,
however, the estimated sensitivities of ParMar, PCRMar, CIE IFI get higher
and the estimated sensitivity of ParLS gets slightly lower. This was expected
since we removed two infected dogs from the analysis that ParMar, PCRMar
and CIE IFI have not detected. Note that the new estimated prevalence is
lower, which was also expected.

50.4 Conclusions

Dogs can be infected without showing any clinical signs of the disease. Conse-
quently, their clinical diagnosis has to be assessed through diagnostic laboratory
tests. In order to evaluate the accuracy of diagnostic tests forLeishmaniasis we
presented the latent class model with constraints that express certain properties
of the parasitological tests (specificity equal to 1).

We studied a data set of 132 stray dogs, but all the models were rejected
by the goodness-of-fit tests and by the correlation residual plot. The main
reason seems to be the two problematic dogs. Repeating the whole analysis
without the two correspondent response vectors we did not find any evidence
to reject the latent class model. Through this we may conclude that the best
diagnostic tests are bone marrow PCR (PCRMar) and the parasitological test
that combines results obtained from liver and spleen (ParLS). Despite having
the same values of sensitivity and specificity (1.00 and 0.966, respectively), we
choose PCRMar as the recommended diagnostic test because, in practice, it is
more feasible than ParLS, since spleen and liver biopsies can only be done in
dead dogs.

In addition, we conclude that the prevalence is approximately 23 − 24%.
This may be explained by the fact that all the analysed dogs are stray, living
under bad hygiene and health conditions.
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Abstract: Accurate estimates of future age-specific incidence and mortality
are critical for allocation of resources to breast cancer control programs and
evaluation of screening programs. There has been very little advancement in
developing statistical methodological for cancer projections in recent years. The
aim of this study is to apply a new approach proposed by Erbas, Hyndman and
Gertig (2006) to forecast age-specific breast cancer mortality in the US and
UK. This method has potential application as an alternative tool to evaluate
the effectiveness of mammographic screening on mortality from breast cancer.
Moreover, these models have broader application to other cancers and chronic
diseases.
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51.1 Introduction

Despite increased utilization of mammographic screening and continual im-
provements in treatment options, breast cancer remains one of the main causes
of mortality and morbidity in women. Each year millions of dollars are spent on
development of effective strategies for cancer control programs and planning of
services, and accurate estimates of future age-specific incidence and mortality
are necessary to support health care organisations in preparing recommenda-
tions for allocation of resources to breast cancer control programs. Furthermore,
the widespread use of mammographic screening raises important policy ques-
tions regarding the mortality benefits of early detection and is a major factor
to be considered when estimating future incidence and mortality.

There has been little advancement in developing statistical methodologies
for cancer projections in recent years. Variants of age-period-cohort methods
have been used to project mortality and incidence from breast cancer (Dyba and

287



288 Erbas, Hyndman, Akram & Gertig

Hakulinen (2000); Blanks et al. (2000); Bashir and Esteve (2001); Moller et al.
(2002)). However, these methods are inadequate in capturing the shape of the
mortality-age relationship as it varies with time and projections are sensitive
to the most recent changes in cohort effects.

The objective of this study is to apply functional data analysis techniques to
model trends in US and UK breast cancer mortality rates, treating the observed
data as curves with age as a functional covariate. These trends will be used
to forecast the entire age-specific mortality function for future time periods
using an exponential smoothing state-space approach for forecasting. This new
method allows the shape of the incidence-age curve to vary with time so that,
at different ages, mortality declines at different rates, a phenomenon which is
particularly apparent for breast cancer. Current methods simply extrapolate
most recent trends into the future but our approach forecasts the entire age-
mortality function with features that will likely increase forecast accuracy.

51.2 Methods

We use functional data analysis techniques (Ramsay and Silverman, 2005)
where time trends of mortality are modelled as annual curves with age as a func-
tional covariate. Specifically, let yt(x) denote the curve over x for time period t.
Time is considered to be discrete and x is assumed to be continuous. However,
usually the curves are observed for discrete values of x. We assume there is an
underlying smooth function ft(x) that we are observing with error. Thus, we
observe the functional time series {xi, yt(xi)}, t = 1, . . . , n, i = 1, . . . , p where

yt(xi) = ft(xi) + σt(xi)εt,i , (51.2.1)

εt,i is an iid random variable with zero mean and unit variance and σt(xi) allows
the amount of noise to vary with x. In cancer epidemiology {x1, . . . , xp} usually
denote 5-year age groups. The smooth curves {ft(x)} can be estimated using
nonparametric regression techniques such as regression splines.

Erbas, Hyndman and Gertig (2006) and Hyndman and Ullah (2005) pro-
posed the following functional time series model

ft(x) = µ(x) +
K∑

k=1

βt,k φk(x) + et(x) (51.2.2)

where µ(x) is a measure of location of ft(x), {φk(x)} is a set of orthonormal
basis functions, and βt,k is a univariate time series. They computed {φk(x)} us-
ing functional principal components decomposition (Ramsay and Dalzell, 1991)
applied to the smooth curves {ft(x)} as this approach gives a small number of
basis functions, enables informative interpretations and gives coefficients which
are uncorrelated with each other.
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The coefficients {βt,k} are each forecast using a univariate time series model,
thus giving forecasts of fn+h(x), h = 1, 2, . . . . We use exponential smoothing
state space models due to Hyndman et al. (2002).

The models are applied to US and UK age-specific breast cancer mortality
data. We obtained US breast cancer mortality data (1950–2001) from the Na-
tional Cancer Institute and UK (including Wales) data (1950–2003) from the
Office for National Statistics. We use crude (unadjusted) age-specific mortality
rates from breast cancer expressed as per 100,000 people.

51.3 Results

51.3.1 US age-specific breast cancer mortality

A functional regression model with K = 2 basis functions accounts for 92.5% of
the variation around the mean mortality curve. (The first two basis functions
explain 68.4% and 24.1% of the proportion of variation respectively.) A set
of K = 4 basis function minimized the mean integrated square error (MISE).
Diagnostics of the model with two basis functions show an adequate fit of the
data.

Ten year forecasts of the first basis function for US all-race breast cancer
mortality and corresponding 80% prediction intervals are presented in Figure
51.1. Preliminary analysis suggests overall breast cancer mortality rates in the
US will continue to decline. Figure 51.2 shows age-specific mortality projections.
The early years are represented as red, orange, yellow, green, blue with violet
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Figure 51.1: Ten year forecasts of the first coefficient using an exponential
smoothing model for US age-specific breast cancer mortality. The shaded region
gives 80% prediction intervals.
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Figure 51.2: US age-specific mortality from breast cancer.

representing the most recent year. Mortality rates for women less than 80 years
of age will continue to decline. However, mortality rates are expected to slightly
increase for women between 80 and 90 years of age.

51.3.2 UK age-specific breast cancer mortality

Preliminary analysis suggests a functional time series model with K = 3 basis
functions explain 96.8% of variation around the mean mortality curve. (The
first three basis functions represent 71.6%, 21.4% and 3.8% of total proportion
of variation respectively.)

Figure 51.3 displays ten year forecasts of UK breast cancer mortality rates
using a damped trend exponential smoothing forecasting model. These predic-
tions suggest a continual decline in breast cancer mortality rates but at a slower
rate compared to recent years. The age-specific 10 year forecasts are displayed
in Figure 51.4. Mortality rates are expected to continue to decline (slightly) for
women between 50 and 75 years of age, while mortality is expected to remain
constant for women over 80 years of age.

51.4 Discussion

Future predictions of mortality and incidence from breast cancer aid public
health administrators in formulating policy on allocation of resources to screen-
ing or treatment in different age groups of women. This approach, proposed by
Erbas, Hyndman and Gertig (2006), has never been applied to study age-specific
mortality of breast cancer in the US and UK. In this study we demonstrate the
utility of these methods in further understanding the behaviour of age-specific
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Figure 51.3: Ten year forecasts of UK age-specific breast cancer mortality for
the first coefficient using an damped trend exponential smoothing model. The
shaded region gives 80% prediction intervals.
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Figure 51.4: UK age-specific mortality from breast cancer.

mortality trends of both US and UK data, and estimate future predictions of
the breast cancer burden on these populations.

As mammographic screening is the main form of early detection, it is im-
portant to assess the impact of screening on mortality and incidence and incor-
porate the effects of screening in future predictions. With the large investment
in mammographic screening, tools that can reliably provide accurate estimates
of future predictions of incidence and mortality in the presence of screening are
essential. These models have the potential to incorporate both screening and
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treatment effects. Furthermore, in our future work we will extend these models
to incorporate cohort effects, important components of the overall age-specific
mortality and incidence trends.
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Abstract: Considering the social consequences of speech and language disor-
ders, the demand of a statistical analysis is imperative. In this analysis, basic
statistics for the types of speech and language disorders, for their frequency in
the two genders, for the duration of the treatment and for the results of the
treating procedure are derived and discussed.
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52.1 Introduction

Speech and language disorders are defined as the disabilities (inborn or
acquired) of children to use their mother tongue in the considered normal rules
of their development. It should be noted that speech and language disorders
can be transient, long running or permanent and can be extended to one or
more of the fundamental levels of speech.

The quality of life relies greatly on the ability of speaking correctly. Speech
and language disorders can disturb the normal development of children and
affect their emotional and psychological status as well as their social adaption.

Worldwide researches, claim that speech and language disorders emerging
among children at preschool age, reach 25%. This percentage decreases to 10%
when children enter school and constitutes the basic set of the children needing
systematic treatment.

The statistical analysis of data related to speech and language disorders
helps to plan effectively the treating of these disorders. The following study
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attempt to serve this purpose, analyzing a collection of observations relevant to
the ability of children of age at most 16, to speak correctly.

52.2 Description of data

The data is derived from a diagnostic and treatment center located in Thessa-
loniki, Greece, treating children with speech and language disorders, from 1999
until 2005. The statistically significant size of the sample and the wide chronic
spectrum of the observations, render the conclusions efficient and reliable (ad-
hering to the findings of the most recent relevant studies and researches). The
data are organized in four variables, fundamental for the analysis:

Disorder : This variable describes the type of speech and language disorder.
The most frequent disorders have been included in the analysis and have been
categorized into eight groups: Learning disorders, Articulation disabilities, De-
velopmental delay, Autism, Stuttering, Hearing disorders, Cerebral palsy, Rare
syndromes.

Sex : This variable indicates the gender of each participant.

Therapy duration: The duration of the therapy until its completion, imply-
ing the achievement of the maximum degree of improvement, until the day the
child is withdrawn from the treating procedure (for reasons irrelevant to this
study) or until today, if the treating procedure is still in progress. The validity
of the analysis is secured, discarding the observations corresponding to very
small periods of therapy (less than 25 days) in which the determination of a
child’s problem and the evaluation of its progress is not feasible.

Outcome: The outcome of the therapy until its completion, the withdrawal
of the participant or until today if the therapy is still in progress. There are
three levels indicating the improvement of each participant: slight improvement,
satisfying improvement and significant improvement.

52.3 Descriptive statistics

The following pie graph indicates the allocation of the observations amongst
the 8 basic disorders.
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It is derived that 70,1% of participants are males and only 29,9% females.
The significant discrepancy of the percentages of the two sexes is predictable.
Various statistical researches confirm that the ratio of males and females with
speech and language disorders is approximately 7/3. Thus, the above percent-
ages are indicative of the validity of the data. It is also obvious that 45,2% of
the participants are currently in therapy. The percentage of participants who
conclude successfully the therapy is approximately equal to that of participants
who quitted the therapy before its completion.

It is derived that the mean value of therapy duration significantly differs not
only among the two sexes but also among the eight basic categories of speech
and language disorders. However it is easily verified that due to a large number
of outliers, a most representative estimation of the mean value would be offered
by the M-estimators. All of them suggest a mean value for males around 300
and for females close to 500 days.

It is interesting to test statistically the equality of mean values of therapy
duration in the categories of sex and disorder. Considering the populations of
the two sexes as independent, a t-test was conducted and rejected the hypothesis
of equal mean values. For the disorder variable, our interest was focused on the
most frequent disorders, learning disorders and articulation disabilities. The
t-test verifies that the mean values of therapy duration in these two categories,
differ significantly. It must be noted that the use of t-test is validated due to
the large number of participants.
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Considering that a significant percentage of the participants (45,2%) cor-
respond to unfinished treatment, it is of major priority to attempt one more
exploration of the data discarding them. The t-test for one more time indi-
cates the significant difference of the mean value of therapy duration in the
categories both of sex and disorder. It is also derived that the mean values of
therapy duration differ in the categories of outcome for the same selection of
data, implying that the duration of therapy straightforwardly affects its final
outcome.

Aiming at a comprehensive exploration of the data, we conducted a two-
way independent ANOVA procedure, attempting to reveal the significance of
the factors and their interactions. Firstly, the following table of all coefficients
and their interactions is presented. Obviously, the only significantly unequal to
zero coefficients are sex, disorder and the interaction of outcome and disorder.
This model would explain the 25,2% of the data variability. This percentage is
not statistically significant but it is indicative of the role of the type of disorder
and of gender in the configuration of therapy duration.

The Post Hoc tests verify that the mean value of therapy duration was
different for the observations of slight and significant improvement, as well as
for the observations of satisfying and significant improvement. That means that
the improvement is greater as longer as the therapy is. This conclusion can also
be affirmed by planned comparisons. It is also indicated by the Post Hoc tests
that the learning disorders-articulation disabilities and articulation disabilities-
developmental delay are pairs with significantly different mean values of therapy
duration.

It is also important to examine how the outcome varies by sex or disor-
der. A crosstabulation procedure leads us to the conclusion that outcome,
sex and disorder probably are not significantly dependent for these data. Few
of the symmetric directional measures however reject the null hypothesis of
independence, for the males. This fact indicates dependence of the disorder
and outcome which may not be clear due to bias of the data. Moreover the
crosstabulation procedure confirms the dependence of the type of disorder by
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sex. More girls suffer from learning disorders and articulation disabilities while
more boys seem to suffer from more serious and harder to treat disorders like
developmental delay, autism etc.

52.4 Survival analysis

Considering the therapy duration as survival time and consequently the
data as survival data, a Kaplan-Meier model can be constructed. The event of
completing successfully the therapy corresponds to a ”death” event.

The observations corresponding to therapy in progress and termination of
the therapy represent the censored data. Any point of the graph above derived
by Kaplan-Meier procedure, shows the probability that a child of a given gender
will not have reached full treatment by that time. The plot also suggests that
boys may be treated faster than girls when the therapy procedure is less than
1000 days. After this time the girls seem to attain successful results easier than
boys. This difference between the two curves is statistically significant as the
Breslow (generalized Wilcoxon) test verifies.
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The plot above represents the survival curves of all types of speech and
language disorder. Any point of it shows the probability that a child suffering
from the given disorder will remain in the therapy procedure. Focusing on
the two basic disorders, learning disorders and articulation disabilities, it is
obvious that children suffering from articulation disabilities achieve treatment
faster than the children with learning disorders. Pairwise comparisons lead
us to conclude that the survival curves of learning disorders and articulation
disabilities are statistically different.

52.5 Conclusions

Although the current analysis is focused on narrow geographical margins, it
has the prospect to illuminate and verify the statistics relevant to the area of
speech and language disorders. It presents the allocation of speech and language
disorders in the two genders, verifying that boys have a stronger tendency to
suffer from them. Mean values of therapy duration were derived for the two
genders and the basic speech and language disorders and were examined for
statistically significant deviance. It has been shown that girls achieve successful
treatment faster than boys while articulation disabilities are treated faster than
the next most frequent disorder, learning disorders. Obviously the degree of
treatment varies by gender and disorder.
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Abstract: We consider the problem of sequential quality control and propose
nested plans for the early detection, with low false alarm rate, of a change in
a stochastic system. The nested plan includes two phases: a variable plan and
an attributes plan. For the proposed specific nested plan we present the exact
(non-asymptotic) expressions for the mean and the standard deviation of the
run length to false alarm and the delay in detection. We assume that the initial
and the final distributions come from an exponential family of distributions.
The multivariate normal distribution is considered specifically.
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53.1 Introduction and Notation

There are extensive references in statistics and engineering on the subject of
early detection, with low false alarm rate, of parameter changes in stochastic
systems on the basis of sequential observations from the system. Such prob-
lems are very important in the context of quality and reliability control(see
Lai (1995), Zacks (1991)). In this talk we consider nested plans for the early
detection of a parameter change assuming an exponential family situation. We
continue research which was started in articles Feigin et al. (2005), Lumelskii
and Feigin (2005), Lumelskii et al. (2006).

Often instead of individual observations X1, X2, . . . one has a sequence of
samples of n observations. We assume that the process under investigation
yields independent samples, each of n independent observations (X11, X12, . . . , X1n),
(X21, X22, . . . X2n), . . . . Initially these observations follow a distribution F (x |
θ1). At m, an unknown point in time, something happens to the process,
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causing the distribution of the sample’s observations to change to F (x | θ2);
F (x | θ1) 6= F (x | θ2). In this article we assume that the distribution F (x | θ)
is of exponential family form.

A common performance measure for any inspection scheme is the average
run length (ARL). Let T be the time when the scheme signals that the process
is out of control (distribution of the observations has changed). The ARL is
defined by EF (x|θ1)T where we define EF (x|θh)T ≡ E(T | θh) the expectation
of the stopping time T under the assumption that the observations come from
some distribution F (x | θh).

Clearly, one wants E(T | θ1) to be large and E(T | θ2) to be small. For
the situation with univariate observations there are known optimal CUSUM
control charts. Alternatively, Shiryayev-Roberts control charts have also been
recommended as nearly optimal. However, the practical design of such charts
is not simple because there are no simple explicit expressions for the ARL and
E(T | θ2). As a result, these schemes are geared toward detecting small changes,
whereas for large changes Shewhart charts are typically designed.

We propose nested plans, denoted
∏

nes(Π
G1 |ΠG2), for the quick detection

of a change in the distribution of observations. It consists of two steps, ΠG1

and ΠG2 : ΠG1 is a variables plan; whereas ΠG2 is an attributes plan (see Feigin
et al. (2005)).

We consider the fist step of the nested plan with parameters n and C (n is
natural number, size of sample; C is real constant). Using sequential observa-
tions (X11, X12, . . . , X1n), (X21, X22, . . . , X2n), . . . . with distribution F (x | θh),
the first step of the nested plan is given by

Yi(θ1, θ2) = ln
n∏

j=1

f(Xij | θ2)
f(Xij | θ1)

, i = 1, 2, . . . (53.1.1)

and

Zi =
{

1, if Yi(θ1, θ2) > C,
0, if Yi(θ1, θ2) ≤ C.

(53.1.2)

Defining

Ph ≡ P (Zi = 0 | θh) ≡ P (Yi(θ1, θ2) ≤ C | θh), Qh = P (Zi = 1 | θh), (53.1.3)

we have a binary sequence of observations Z1, Z2, . . . with probability of zero
equal to Ph.

53.2 Second Stage and Characteristics of Nested Plans

The second step is an attributes plan ΠG2 , which is based on Zi = 0 or Zi = 1
i = 1, 2, .... We consider the plan Π2(d; 2) for which the stopping rule is defined
as T = min{n : Zn−d+1 + · · · + Zn = 2}; that is, the first time that two ones
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appear among the last d observations. For nested sampling plans it is possible
to evaluate exact expressions for the ARL and EF (x|θ2)T . We demonstrate
such calculations for the multi-normal case, and show that for this example the
speed of detection of a change is close to that of the CUSUM procedure.

Theorem 53.2.1 For Π2(d; 2) the expectation and standard deviation of the
stopping time T are given by

E(T | Π2(d; 2); θh) ≡ Eh(T) =
n

(
2− Ph

d−1
)

Qh

(
1− Ph

d−1
) , (53.2.4)

σ(T | Π2(d; 2); θh) ≡ σh(T) =
n

[
2Ph + Ph

2d−1 + Ph
d−1((2d + 1)Qh − 2)

]0.5

Qh

(
1− Ph

d−1
) .

(53.2.5)

53.3 Multivariate Normal and One-parameter Ex-
ponential Distributions

We consider a situation where the observations (Xi1, Xi2, . . . Xin), i = 1, 2, . . .
have the k-variate normal distributions with means µ1 and µ2 and covariance
matrices Σ1 and Σ2. If Σ1 = Σ2 ≡ Σ then the logarithm of the likelihood ratio
(from 53.1.1) is given by

Yi(µ1, µ2, Σ) = n(µ2 − µ1)
′
Σ−1X̄i − 0.5n(µ2 − µ1)

′
Σ−1(µ2 − µ1), (53.3.6)

where X̄i = 1
n

∑n
j=1 Xij .

Theorem 53.3.1 Let µ1, µ2 and Σ be known. Then for any µh the probability
(53.1.3) is given by the following formula:

Ph = P (Zi = 0 | µh) = Φ

(
C + 0.5n(µ2 − µ1)

′
Σ−1(µ2 + µ1 − 2µh)√
nR2

)
.

(53.3.7)
Here R2 = (µ2 − µ1)

′
Σ−1(µ2 − µ1) and Φ(x) is the the standard normal distri-

bution function.

Corollary 53.3.1

P1 = Φ
(

C√
nR2

+ 0.5
√

nR2

)
, P2 = Φ

(
C√
nR2

− 0.5
√

nR2

)
. (53.3.8)
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Note that the probabilities P1 and P2 do not depend on the parameters µ1,
µ2, and Σ. These probabilities depend only on R2. If µh 6= µ1, µh 6= µ2 then
according to (53.3.7) Ph will depend on all the parameters µh, µ1, µ2, Σ.

We consider also the one-parameter exponential families of distributions
with density function

f(x | θ) = u(x) exp{a(θ)s(x) + b(θ)}. (53.3.9)

Here a(θ) and b(θ) are continuous functions of the parameter θ, θ ∈ Θ ⊂ R1,
x ∈ A ⊂ R1. Normal, Rayleigh, Pareto, Weibull and other one-parameter
families of distributions have such density functions (53.3.9).

According to the formula (53.1.1) in this case

Yi(θ1, θ2) = ln
n∏

j=1

f(Xij | θ2)
f(Xij | θ1)

= Si(n)[a(θ2)−a(θ1)]+n[b(θ2)−b(θ1)], (53.3.10)

where Si(n) =
∑n

j=1 s(Xij) is the sufficient statistic for the family of distri-
butions (53.3.9). Using the distribution of the sufficient statistic Si(n) the
probability (53.1.3) has the form

Ph = P (Yi(θ1, θ2) ≤ C | θh) = P (Si(n)[a(θ2)− a(θ1)] + n[b(θ2)− b(θ1)] ≤ C | θh) .
(53.3.11)

Example 53.3.1 Let the random variable Xij have the one-parameter Pareto
distribution (λ is known) with density function

f(x|θ) =
θ λθ

xθ+1
=

1
x

exp{−θ ln x + ln(θλθ)}; x ≥ λ > 0; θ > 0. (53.3.12)

In this case the sufficient statistic is Si(n) =
∑n

j=1 ln(Xij). If θ1 > θ2 then the
probability (53.3.11) can be written in the form

Ph = P (Yi(θ1, θ2) ≤ C | θh) = G
(
θh

(
[C + n ln(θ2θ1

−1λθ1−θ2 ](θ1 − θ2)−1 − n ln λ
))

.

(53.3.13)
Here G(x) =

∫ x
o tn−1e−tdt is the cumulative distribution function of the Gamma

distribution.

53.4 Numerical examples and comparisons

Example 53.4.1 Consider the nested plan with n = 4, d = 3 and the Xij have
tri-variate normal distributions with in-control and out-of-control means µ1, µ2

respectively, and covariance matrix Σ given by:

µ1 = (0, 0.5, 0.7)′ ; µ2 = (0.8, 1.7, 1.5)′ ; Σ = diag(2, 4, 2).
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Table 53.1: Out-of-control mean and standard deviation of the run length of nested plans
when the initial and the final distributions are multivariate normal with known different means
and the same covariance matrix

E1(T) d R n E2(T) P1 C P2 σ1(T) σ2(T)
1000 3 0.5 8 40.58 0.9315 1.1032 0.5291 985.42 28.53
1000 3 0.5 16 43.12 0.8999 0.5618 0.2360 971.79 18.01
1000 4 0.5 6 43.56 0.9511 1.2773 0.6666 986.56 33.22
1000 4 0.5 12 40.86 0.9281 1.0324 0.3936 974.17 21.07
1000 3 2.0 1 4.64 0.9770 1.9909 0.4982 998.07 3.14
1000 3 2.0 4 8.08 0.9527 -1.3137 0.0099 992.52 0.58
1000 4 2.0 1 4.63 0.9811 2.1524 0.5304 997.61 2.97
1000 4 2.0 4 8.10 0.9607 -0.9644 0.0125 990.87 0.64
2000 3 0.5 8 51.54 0.9527 1.3640 0.6016 1985.05 39.39
2000 3 0.5 16 48.32 0.9315 0.9744 0.3040 1970.84 23.71
2000 4 0.5 6 57.72 0.9663 1.4901 0.7272 1986.15 47.09
2000 4 0.5 12 47.84 0.9511 1.3670 0.4694 1973.11 27.98
2000 3 2.0 1 5.52 0.9839 2.2825 0.5562 1998.05 4.01
2000 3 2.0 4 8.13 0.9671 -0.6410 0.0154 1992.38 0.73
2000 4 2.0 1 5.45 0.9868 2.4377 0.5866 1997.58 3.77
2000 4 2.0 4 8.15 0.9728 -0.3051 0.0189 1990.63 0.79

Table 53.2: Out-of-control ARL of the multivariate CUSUM parametric procedures (by
simulation) and those of the proposed nested plan for detecting a change in the mean of the
bivariate normal distribution

R E1(T) Rule E2(T)
1 200 CUSUM 9.35
1 200

Q
nes(n = 2; d = 3) 9.43

2 200 CUSUM 3.48
2 200

Q
nes(n = 1; d = 3) 3.29

3 200 CUSUM 1.69
3 200

Q
nes(n = 1; d = 3) 2.19

We thus obtain

R2 = (µ2 − µ1)
′
Σ−1(µ2 − µ1) =

0.82

2
+

1.22

4
+

0.82

2
= 1

For example for setting the ARL at E1(T ) ≡ EF (x|mu1, Σ)(T ) = 1000, we use
(53.2.4) and n = 4, d = 3 to obtain

4
(
2− P1

2
)

Q1P1

(
1− P1

2
) = 1000,

and hence P1 = 0.95270. By (53.3.8) we get C = 1.343152 and P2 = 0.37130.
According to the formulas (53.2.4) and (53.2.5) E2(T ) = 13.74, σ1(T ) = 992.52,
σ2(T ) = 7.67. If µ3 = (1.4 2.6 2.1)

′
then from (53.3.7) the probability P3 is

P3 = Φ

(
1.343152 + 2(0.8 1.2 0.8)

′
Σ−1(−2 − 3 − 2)

2

)
' Φ(−1.83) = 0.034.

In Table 53.1 we provide the results of computing, using (53.2.4, 53.2.5) and
(53.3.8), some values for the out-of-control mean and the standard deviation
of the run length for different (given) values of in-control ARL and for various
values of d, n, and R. From Table 53.1 we conclude that for a given value of
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in-control ARL the influence of d on the out-of-control ARL is smaller than the
influence of n. Obviously, increasing R yields a decrease in the out-of-control
ARL. In addition, it is possible to see that for small values of R large values
of n are required in order to decrease the out-of-control ARL. We conclude also
that the standard deviation of the in-control run length is a little smaller than
the corresponding mean run length but, roughly, the values are quite similar.
Note that the optimal choice of d and n for the proposed nested plan, in order
to minimize the out-of-control ARL, remains an important open question and
demands further special consideration.

The change point problem for multivariate normal observations was also
considered by Crosier (1988) in the context of the CUSUM procedure. We
compare in Table 53.2 the nested plan and the multivariate CUSUM procedure
(see Crosier (1988))for detecting a change in the mean of the bivariate normal
distribution, assuming all parameters ( µ1, µ2 and Σ) are known.
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Abstract:
One of the tools that have been implemented for classification tasks in

biomedical applications is the Probabilistic Neural Network (PNN). In order
for the PNN to work adequately, an optimum selection of spread parameters of
the PNN must be made. In this contribution, two bayesian models are proposed
for the selection of the spread parameters. The mean of the posterior distri-
bution of the spread parameters is used in the PNN. The proposed approach
is applied to three biomedical real–world datasets and the obtained results are
compared with the ones obtained from feed–forward neural networks.

Keywords and phrases: Probabilistic neural networks, Spread parameter

54.1 Introduction

During the past few years there has become a rapid development of the research
in bioinformatics and medical tasks. Some of the tools that have been used
extensively in these fields of science are Neural Networks, and especially Proba-
bilistic Neural Networks (PNN). PNNs have been implemented to perform can-
cer classification in Huang (2002). Also, PNNs are employed to develop accurate
NMR-based metabonomic models for the prediction of xenobiotic-induced tox-
icity in experimental animals and their possible future use in accelerated drug
discovery programs is highlighted in Holmes et al. (2001).

PNNs were introduced by Specht (1990) and constitute a class of neural
networks that combine some of the best attributes of statistical pattern recog-
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nition and feed–forward neural networks. PNNs are the neural network imple-
mentation of kernel discriminant analysis. In contrast to feed–forward neural
networks that are black-box systems, PNNs use the Bayes decision rule for pat-
tern classification. A PNN not only classifies a new pattern but also provides
a measure of the uncertainty of that classification, since it provides the class
posterior probabilities given the new pattern.

One drawback of the performance of PNNs is the need to estimate a promis-
ing spread parameter of the network’s kernel. This is usually obtained by a
trial-and-error procedure, although several alternative methods have been pro-
posed in the literature. Georgiou et al. (2006), Gorunescu et al. (2005). In this
contribution, a new approach for the estimation of the PNN’S spread parame-
ters is proposed. We confront this task by a Bayesian approach. We model the
centered data using simple bayesian models with conjugated priors and take
for spread parameter the mean of its posterior distribution. The approach has
been implemented on three biomedical datasets from the UCI repository with
encouraging results.

54.2 Probabilistic Neural Networks

The PNN was introduced by Specht as a new neural network type, although
it was already widely known in the statistical literature as kernel discrimi-
nant analysis, Hand (1982). What Specht introduced was the neural network
approach of kernel discriminant analysis which incorporates the Bayes deci-
sion rule and the non–parametric density function estimation of a population,
Parzen (1962).

The training procedure of the PNN requires only a single pass of the patterns
of the training data, which results in a very small training time. In fact, the
training procedure is just the construction of the PNN from the available data.
The structure of the PNN has always four layers; the input layer , the pattern
layer , the summation layer, and the output layer . An input feature vector,
X ∈ Rp, is applied to the p input neurons and is passed to the pattern layer.
The pattern layer is organized into K groups, where K is the number of classes
present in the data set. Each group of neurons in the pattern layer consists of
Nk neurons, where Nk is the number of training vectors that belong to class
k, k = 1, . . . , K. The ith neuron in the kth group of the pattern layer computes
its output using a kernel of the form,

fik(X) = exp
(
−1

2
(X −Xik)

T Σ−1
k (X −Xik)

)
, (54.2.1)

where Xik ∈ Rp is the center of the kernel and Σk is the matrix of spread
(smoothing) parameters of the kernel. The summation layer has K neurons
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and estimates the conditional class probabilities as

Gk(X) ∝
Nk∑

i=1

πkfik(X), k ∈ {1, . . . , K}, (54.2.2)

where πk is the prior probability of class k,
∑K

k=1 πk = 1. So a vector X is
classified to the class that has the maximum output of its summation neuron.
Another variant of the PNN is to train it not by using the whole training data set
but a part of it. Such a training set can be obtained either by randomly sampling
from the available data or by finding some “representatives” of the training
data through a clustering technique. In this implementation, we identified
some informative representatives (mean centers) from each class by using the
K-means clustering algorithm , MacQueen (1967), on the training data of each
class. So, instead of using all the available training data, we extracted a few
centers from each class and used these vectors as centers for the kernels of the
PNN. The number of centers we extracted using K-means was the 10% of the
size of each class. This resulted in a PNN with size ten times smaller than the
PNN using all the available training data as centers of its kernels.

As we mentioned earlier, a spread parameter must be set to the PNN in
order to achieve an adequate performance. It is assumed that each class has its
own matrix of spread parameters Σk = diag(σ2

1k, . . . , σ2
pk), k = 1, . . . , K.

In the next section, a new approach to the task of identifying Σk is presented.

54.3 Proposed Approach

We consider two different bayesian models for each dimension of the centered
data in each one of the K classes, since it is assumed that the matrix of spread
parameters is diagonal.

First, we consider the following simple model:

Xik
iid∼ Np(0, Σk), i = 1, . . . , Nk,

τjk
iid∼ G(α, β), j = 1, . . . , p,

where τjk = σ−2
jk and α, β > 0 are known parameters.

The posterior distribution of τjk given the data is:

τjk|Xjk ∼ G
(

Nk

2
+ α,

∑Nk
i=1 X2

ijk

2
+ β

)
.

Hence, τjk is obtained by the mean of the posterior distribution. So, we use for

the spread parameter, the quantity
PNk

i=1 X2
ijk/2+β

Nk/2+α .
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Second, we consider the following two–parameter bayesian model:

Xik
iid∼ Np(µk, Σk) i = 1, . . . , Nk,

µjk ∼ N (0, 1),
τjk ∼ G(α, β), j = 1, . . . , p,

where α, β are known parameters. It is assumed that Xik are conditionally
independent given µk, τjk and µk and τjk are themselves independent. The
joint posterior distribution of µjk and τjk is:

π(µjk, τjk|Xjk) ∝ τNk/2+α−1 exp

(
−τjk

(∑Nk
i=1 (Xijk − µjk)

2

2
+ β

)
− µ2

jk

2

)

In order to estimate τjk, we use Gibbs sampler, Geman and Geman (1984),
with transition kernel the product of the full conditional for µjk and τjk, which
produces a markov chain with stationary distribution the posterior of them.
In these models, the prior distributions are conjugated to the likelihood so the
full conditional distributions reduce analytically to closed form distributions.
It is not of great importance to choose conjugated prior distributions to the
likelihood. Any distribution can be chosen for prior. In these cases, we can use
other Monte Carlo or Markov Chain Monte Carlo simulation methods such as
Importance Sampling, Metropolis Hastings in order to estimate τjk, Gilks et
al. (1996).

54.4 Experimental Results

The proposed approach has been applied to three biomedical problems. The
three datasets come from the UCI data repository and are implemented accord-
ing to the Proben1 rules, Prechelt (1994). The results are compared with the
ones obtained by feed–forward neural networks from Proben1. The first data
set is “The Breast Cancer Data Set”. There are two possible classes for each
record: benign or malignant. The input features are the uniformity of cell size
and shape; bland chromatin; single epithelial cell size; and mitoses. There are
9 continuous inputs and 699 instances. Also, there are no missing values.

The second is “The Pima Indians Diabetes Data Set”. It concerns the
Pima Indians diabetes and the input features are the diastolic blood pressure;
triceps skin fold thickness; plasma glucose concentration in a glucose tolerance
test; and diabetes pedigree function. The 8 inputs are all continuous without
missing values and there are 768 instances. The aim is to classify whether
someone is infected by diabetes or not, therefore, there are two classes.

The aim of the third dataset, named “Heart Disease”, is to decide whether
at least one of four major vessels of the heart is reduced in diameter by more
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Cancer
α β Model 1 Model 2

0.001 0.001 1.15 1.15
0.01 0.01 1.15 1.15
0.1 0.1 1.72 1.15
0.01 0.1 1.72 1.15

Heart
α β Model 1 Model 2

0.01 0.01 19.13 20.44
0.1 0.1 18.69 20.44

0.001 3.65 21.73 17.83

Diabetes
α β Model 1

0.001 0.001 26.56
0.01 0.01 26.56
1 1 25.52
3 1 25.52

Proben1 results
Dataset Mean St.Dev
Cancer 1.47 0.60

Diabetes 24.57 3.53
Heart 19.89 2.27

Table 54.1: Misclassification Proportions (%) using PNN for several parameters
α and β and Proben1 Neural Networks

than 50%. The binary decision is made based on personal data such as age,
sex, smoking habits, subjective patient pain descriptions and results of various
medical examinations such as blood pressure and electro cardiogram results.
There are 35 inputs and 920 instances. The misclassification proportions of the
proposed approach of the PNNs for the three medical datasets are presented
in Table 54.1. They are presented for each one of the two proposed models
for several values of α and β and compared with the ones obtained by neu-
ral networks. In two out of the three datasets, PNNs have reached a better
performance compared to neural networks performance obtained by Proben1.

It must also be noted that the performance of PNNs implemented by the
proposed approach is quite robust to the selection of parameters α and β and
especially to the parameter α. Another important advantage of the proposed
approach of PNNs is the robustness of the estimation of the spread parameters
given α and β. The estimation is quite robust to the initial values compared to
the initialization of feed–forward neural networks that don’t always converge
to the same values of parameters. That is why only one value of the misclas-
sification proportion of the PNNs is presented compared to neural networks
where the mean and standard deviation of the misclassification proportions is
presented.

54.5 Conclusion

PNNs have been widely used in various fields of science. In order for the PNN
to achieve an adequate performance, a good choice of spread parameters must
be made. In this contribution a new approach for the estimation of the spread
parameters of a PNN is proposed. This approach incorporates two bayesian
models for the estimation of the spread parameters. This approach is applied
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to three real-world biomedical datasets, namely breast cancer, diabetes and
heart disease with encouraging results. The results are compared with the
ones obtained by feed–forward neural networks and in breast cancer and heart
disease datasets, the performance of PNNs is superior.
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Abstract: We consider the problem of estimating the distribution of a pair
of random variables (X, σ), where X represents a lifetime and σ a birth time,
when the pair (X,σ) is observed only conditionally on being in a Borel subset
S of R×R+. Most of the sampling pattern in survival analysis can be described
via a set S. Considering in addition the possibility of random censoring, we
construct estimators for the distribution functions of X and σ based on our
biased sample. We show weak convergence theorems for both estimators.

Keywords and phrases: Selection bias, Product-limit estimation, Martin-
gale, Gaussian process, Weak convergence

55.1 Introduction

Consider a population of individuals i ∈ I. Let the random variable (r.v.) σi

be the birth date of individual i and the non-negative r.v. Xi its lifetime. As
described by Keiding (1990) and Lund (2000), consider a coordinate system
with the calendar time as abscissa and the age as ordinate, it will be referred
to as the Lexis diagram (Lexis, 1875). In this diagram, a life-line L(σ,X) is
defined by:

L(σ,X) = {(σ + y, y), 0 ≤ y ≤ X}.
The population I is then represented in the Lexis diagram as the set of all
life-lines L(σi, Xi) for i ∈ I.

In classical survival analysis, one would consider that an i.i.d. sample (pos-
sibly censored) from population I could be drawn and then would estimate the
distribution of X on the basis of this i.i.d. sample. In practice however, it
may happen that the way individuals are chosen for the study prevent from
observing a i.i.d. sample directly from population I.
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As carefully described by Lund (2000), most of the sampling patterns in
survival analysis can be described as follows. Let S be a deterministic Borel set
in the Lexis diagram. Consider now that only the individuals whose life-lines
intersect the Borel set S can be included in the study, i.e. the individuals with
a pair (σ,X) such that L(σ,X) ∩ S 6= ∅.

Let σS denote the birth time and XS the lifetime for the included individ-
uals. For now on, the pair (σS , XS) will be referred to as the observable r.v. as
opposed the unobservable pair (σ,X).We show in Section 2 that, under some
condition on the collection (σi)i∈I , we have, for all t ≥ 0:

FS(t) = P (XS ≤ t) =

∫
[0,t] w(v)dF (v)

µS
, (55.1.1)

where F is the distribution function (d.f.) of the r.v. X and w is a non-
negative weight function, which depends only on the distribution of the r.v. σ
and µS =

∫∞
0 w(v)dF (v).

The problem addressed here is to estimate the d.f. F of the r.v. X and
the weight function w on the basis of an i.i.d. censored (in a way to be defined
later) sample of (σS , XS).

The r.v. XS with d.f. FS given in Equation (55.1.1) is usually said to
suffer from a selection bias. In the case where the weight function w is known,
the problem of estimating the cumulative distribution function (c.d.f.) F of
X given an i.i.d. biased sample XS,1, . . . , XS,n has received a lot of attention.
We refer to Gill et al.(1988) and Efromovich (2004) for theoretical results
in the general case. The special case where w(x) = x for all x > 0, called
“length-biased sampling”, has received a particular attention, see Vardi (1982),
de Uña-Àlvarez (2002,2004) and Asgharian et al. (2002). Unfortunately these
results cannot be applied here as w is not assumed to be known.

On the other hand, Winter and Fldes (1988) have constructed and studied
a product-limit type estimator of the d.f. F on the basis of a censored biased
sample of (σS , XS), without assuming that w is known. They still considered
the particular case where S = {(t0, y), y ≥ 0} and a deterministic censoring.

55.2 Sampling in the Lexis diagram

55.2.1 Modeling the Lexis diagram

Consider the Lexis diagram for a population of individuals i ∈ I as described
in Section 1 and a Borel set S in BR×R+ (the Borel σ-algebra on R × R+)
describing the sampling pattern. As mentioned earlier, an individual i in the
population, with birth date σi and lifetime Xi, is included in the sample if its
life-line L(σi, Xi) intersects the Borel set S.
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Let the age aS(s) at inclusion for the birth time s in R be defined as:

{
aS(s) = inf{y ≥ 0, (s + y, y) ∈ S}
aS(s) = ∞ if the infinimum does not exist.

The individual i with birth date σi and lifetime Xi is then included in the
sample if:

L(σi, Xi) ∩ S 6= ∅ ⇔ aS(σi) < ∞ and Xi ≥ aS(σi). (55.2.2)

Now, following Lund (2000), we assume that the point process η =
∑

i∈I εσi ,
with the collection of birth times as occurrence times, is a non-homogeneous
Poisson process on R with intensity ϕ (where εa is the Dirac measure at point
a). We assume furthermore, that the lifetimes Xi, for i ∈ I, are i.i.d. with
common probability density (p.d.f.) function f .

The properties of Poisson processes assure that we have, for all s ∈ R and
t ∈ R+:

P (σS ≤ s,XS ≤ t) (55.2.3)

=

∫ ∫
]−∞,s]×[0,t] I ({aS(u) < ∞}) I ({aS(u) ≤ v})ϕ(u)f(v)dudv

µS
,

where

µS =
∫ ∫

R×R+

I ({aS(u) < ∞}) I ({aS(u) ≤ v}) ϕ(u)f(v)dudv.

Hence the marginal distribution of the r.v. XS is given, for all t ∈ R+, by:

FS(t) = P (XS ≤ t) =
1

µS

∫ t

0
w(v)f(s)ds, (55.2.4)

with

w(t) =
∫ ∞

−∞
I ({aS(u) ≤ t}) ϕ(u)du. (55.2.5)

On the other hand, the marginal distribution of the r.v. σS is given, for all
s ∈ R, by:

ΦS(s) = P(σS ≤ s) =
1

µS

∫ s

−∞
ϕ(u)F̄ (aS(u))du, (55.2.6)

where F̄ = 1 − F . Our aim is then to estimate the functions F and w on the
basis of a biased (censored) sample from (σS , XS).
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55.2.2 Censored observations

Now only the individuals, whose life-lines intersect the Borel set S, are included
in the study. For included individual i, with birth date σS,i and lifetime XS,i,
we assume that its age at inclusion aS(σS,i) is observable. The lifetime XS,i

can straightforwardly be written as follows:

XS,i = aS(σS,i)︸ ︷︷ ︸ + (XS,i − aS(σS,i))︸ ︷︷ ︸ .

age at inclusion time spent in the study

As the time spent in the study is given by XS,i − aS(σS,i), we shall assume
that this time can be censored. It would indeed be the case, for example, if
individual i leaves the study before its death. We follow here Asgharian (2003)
and Winter and Fldes (1988).

For that matter, we introduce a non-negative r.v. C with d.f. H and
independent of XS and aS(σS), such that the observable time for individual
i is Zi = aS(σS,i) + (XS,i − aS(σS,i)) ∧ Ci. As usual, we assume furthermore
that the r.v. I (XS,i − aS(σS,i) ≤ C}) (where I(.) is the indicator function) is
observable. As a consequence, the available data consists for i = 1, . . . , n in:





σS,i

Zi = aS(σS,i) + (XS,i − aS(σS,i)) ∧ Ci

I ({XS,i − aS(σS,i) ≤ Ci})
.

We seek to estimate the d.f. F of the unbiased r.v. X as well as the weight
function w defined in Equation (55.2.5) with the data described above.

55.3 Inference for the distribution of the r.v. X

Considering the situation of interest described in Section 55.2, we now introduce
the counting process D defined, for all t ≥ 0, as follows:

D(t) =
n∑

i=1

I ({Zi ≤ t,XS,i − aS(σS,i) ≤ Ci}) . (55.3.7)

Notice that, for t ≥ 0, the r.v. D(t) is the “number of observed deaths before
age t” in the sample. Let furthermore the process O be defined, for all t ≥ 0,
by:

O(t) =
n∑

i=1

I ({aS(σS,i) ≤ t ≤ XS,i, t ≤ aS(σS,i) + Ci}) (55.3.8)

The r.v. O(t) represents the “number of individuals at risk at age t”.
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Mimicking the construction of the Kaplan-Meier estimator in classical sur-
vival analysis, we define the estimator F̂n for the d.f. F of the r.v. X., for all
t ≥ 0, by:

F̂n(t) = 1−πs≤t

(
1− dD(s)

O(s) + nεn

)
(55.3.9)

where π is the product-integral (see Andersen et al. - 1993 - for a review on
this topic) and (εn)n≥1 is a sequence of positive numbers such that εn → 0 as
n →∞.

Theorem 55.3.1 Let τ be defined as τ = sup{t > 0, (1 − F (t))(1 − H(t)) >
0}. The following convergence holds, for all τ ′ ≤ τ , as n goes to infinity:
supt≤τ ′ |F̂n(t)− F (t)| P→ 0.
Moreover the following weak convergence holds in the space D[0, τ ′] of càdlàg
functions on [0, τ ′] as n goes to infinity:

√
n(F̂n−F ) D→ L, where L is a gaussian

process with mean zero and variance function given, for all (s, t) ∈ [0, τ ′]2, by:

< L(s), L(t) >

(1− F (s))(1− F (t))
=

∫ s∧t

0

dF (x)
(1− F (x))2θ(H, w)(x)

,

where, for t ≥ 0 : θ(H,w)(t) = (1/µw)w(t)− ∫ t
0 w(t− c)dH(c).

55.4 Inference for the weight function

The weighting function w has been defined, for all t ≥ 0, by:

w(t) =
∫ ∞

−∞
I ({aS(u) ≤ t})ϕ(u)du

and Equation (55.2.6) states that ΦS(s) = P(σS ≤ t) = (1/µS)
∫ t
−∞ ϕ(u)(1 −

F )(aS(u))du. Hence, for all t ≥ 0, we have:

w(t)
µS

=
∫ ∞

−∞

I {aS(u) ≤ t})
(1− F )(aS(u))

dΦS(u).

An natural estimator for the function w/µS based on the i.i.d. sample described
in Section 55.2.2 is then given by:

ŵ(t)
µS

=
1
n

n∑

i=1

I {aS(σS,i) ≤ t})
1− F̂n(aS(σS,i))

, (55.4.10)

where F̂n has been defined in Equation 55.3.9.
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Theorem 55.4.1 As n goes to infinity, the following weak convergence holds
in the space of càdlàg functions D[0,∞]:

√
n

(
ŵ(·)
µS

− w(·)
µS

)
D→

∫ ·

0

1
1− F (aS(s)

dK(s)) +
∫ ·

0

L(s)dP (aS(σS ≤ s))
(1− F (aS(s)))2

,

where K(·) = B ◦ P (aS(σS ≤ ·)) is a brownian bridge.
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Abstract The combination of some specific amino-and nucleic-acids+ enzymes+radical
scavenger chinons show a great immuno-stimulation up to immuno-regulation!
By this way most of chronic bacterial and viral infections in different organs
and tissues and their connected healthproblems can be solved! The patients
come back to a normal life, to health and wealth!

A demand of the WHO!
I present also comparative statistics in graphicform!

The GERUSCITH (German-Russian Cooperation for Immunotherapy, Hy-
perthermia and Neuro-Immuno-Modulation) has proved clinically and scietifi-
cally the successful application of BIO-MEDICINE in ultralow dosage of im-
munoregulative amino-and nucleic-acids.
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Abstract: Breast cancer is a complex disease and it shows extensive hetero-
geneity with respect to clinical, histological biological and genetic features. In
the mid 1990s two genes, were discovered namely BRCA1 and BRCA2, that
predispose to familial cases of the disease. Both these genes are inherited in an
autosomal dominant manner and show high penetrance. Germline mutations in
these genes substantially increase the risk of breast cancer development, char-
acteristically at an early age. In Cyprus breast cancer is the most frequent
malignancy in the female population but no data exist, as yet on the role of the
BRCA genes in familial cases. This paper presents the first molecular study on
the mutations identified in the BRCA1 and BRCA2 genes in Cypriot families
with breast cancer. The entire coding regions of the two breast cancer sus-
ceptibility genes BRCA1 and BRCA2 were sequenced in breast cancer patients
from 40 Cypriot families with multiple cases of breast and ovarian cancer. In
total four protein truncating mutations were found in six families. In BRCA1
a novel truncating mutation 5429delG was found in exon 21. In BRCA2 three
truncating mutations were detected; a frameshift 8984delG in exon 22 and two
nonsense mutations C1913X in exon 11 and K3326X in exon 27. It is noted that
mutation 8984delG was found in 3 unrelated families and haplotype analysis
showed that this may be a founder mutation in the Cypriot population.

Keywords and phrases: Familial breast cancer, BRCA mutations, Cypriot
families
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57.1 Introduction

57.1.1 Breast cancer: incidence, mortality and epidemiology

Breast cancer is the most common cancer in women in the world and in 2000
there were over 1 million new cases; this accounts for 1/5 of the global burden
of female cancers world-wide. There are regional differences and geographic in
incidence rates and in the more developed countries the age standardized rate
is 63 per 100,000 versus 23 per 100,000 in the less developed countries, Parkin
(2001). Overall it is estimated that 25% of women with breast cancer will die
because of the disease.

The epidemiology of breast cancer has been studied more extensively than
any other human disease. A spectrum of risk factors has been identified that
increase the risk of developing breast cancer, including duration of estrogen
exposure, late first pregnancy and family history. In contrast higher parity
and longer duration of lactation lower the risk but other potential risk factors
such as smoking, alcohol and fat intake remain controversial, Dumitrescu and
Cotarla (2005). However in most women with breast cancer, a specific risk
factor cannot be identified.

57.1.2 Breast cancer: familial genetics and genetic epidemiol-
ogy

The most important risk factor is a family history and it has been recognized
for many years that about 15% of breast cancer patients present with a positive
family history, Collaborative Group (2001). Hereditary Breast Ovarian Cancer
syndrome (HBOC, MIM113705) is the most common form of inherited breast
cancer and in the mid 1990stwo breast cancer susceptibility genes were identi-
fied. These were named BReast CAncer 1, BRCA1 gene, Miki et al. (1994), and
BRCA2 gene, Wooster et al. (1995). Both of these are novel, highly penetrant
genes and encode large proteins with pleiotropic cellular functions, Venkitara-
man (2002). These two genes are inherited as autosomal dominant and germline
mutations in the BRCA1 and BRCA2 genes greatly increase the risk of devel-
oping not only breast, and ovarian, but also other types of cancer. Ten years
after their discovery a plethora of pathogenic mutations, 800 in BRCA1 and
400 in BRCA2, and numerous other variants have been characterized (see BIC
database http://www.nhgri.nih.gov/Intramural research/Lab transfer/BIC).

The proportion of HBOC attributable to BRCA1 and BRCA2 mutations is
poorly defined and estimates depend upon the population studied, the number
of breast and ovarian cancer cases in the family and the mutation detection
techniques used. Szabo and King (1997); Neuhausen (1999); Hodgson et al.
(2000). In some populations founder mutations have been identified, as in
the Ashkenazi-Jews, Struewing et al. (1997) and in the Icelandic population,
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Thorlacius et al. (1996). In selected breast cancer families it is estimated
that about 20% will have a pathogenic mutation in the BRCA1 or BRCA2
genes, but in founder populations the prevalence may be higher. For ovarian
cancer families the figures range between 10-40% depending on the population
studied. In addition a significant proportion of early onset breast cancer cases,
unselected for family history, will carry a BRCA1 or a BRCA2 mutation and
this rises to 20% in women from founder populations, Sanjose et al. (2003).
The prevalence of BRCA mutations in the general population is estimated to
be between 1 in 500 and 1 in 1000, but again in founder populations, such
as the Ashkenazi Jews, this rises to 2.5%. The current average estimates of
risk to BRCA1 mutations carriers is 65% for developing breast cancer and
40% for ovarian cancer. The respective risk for BRCA2 mutation carriers is
lower, being 45% for breast cancer and 11% for ovarian cancer, Antoniou et
al. (2002). In addition a minority of HBOC are due to germline mutations in
other genes such as TP53, CHK2, ATM and PTEN, Ingvarsson (2004). Finally
a more comprehensive model of inherited breast cancer susceptibility proposes
that disease risks are affected by mutations in a small number of genes causing
a high risk, as well as larger number of lower risk gene variants interacting
together, Antoniou et al. (2002).

57.1.3 Breast cancer in Cyprus

Breast cancer is the most frequent malignancy in Cypriot women with about
300 new cases diagnosed every year. The aim of this work was to determine the
contribution of deleterious BRCA1 and BRCA2 mutations in the development
of breast/ovarian cancer in Cypriot families with breast and ovarian cancers.

57.2 Materials and Methods

57.2.1 Patients

For this study, 40 Cypriot families with multiple cases of breast / ovarian cancer
were selected, from a database containing 1800 consecutive patients, diagnosed
with breast cancer. The probands were selected on the basis of having multiple
first degree relatives affected with breast/ovarian cancer and all the patients
were recruited after signing a consent form. In total, 75 DNA samples, at least
one from each family, were collected from affected individuals. In addition DNA
samples were obtained from 50 unrelated healthy Cypriots, with no history of
breast or ovarian cancer and matched for age and sex to the patients. These
controls were used to estimate the population frequency of the detected BRCA1
and BRCA2 variants.
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57.2.2 Mutation analysis

Mutation analysis was performed using PCR and sequencing of all exons, as
well as intron boundaries of both BRCA genes. The PCR products were se-
quenced using the same forward and reverse primers, as the ones used for the
PCR amplification. Sequencing was carried out using ABI PRISM di-Deoxy
Terminator Cycle sequencing kit on an ABI 9700 thermal cycler and an ABI
310 Genetic Analyzer, (Applied Biosystems). Haplotype analysis was carried
out on the affected members from 3 families, who were carriers of the 8984 delG
mutations in the BRCA2.

57.3 Results

Analysis of BRCA1 and BRCA2 in the 40 Cypriot families, revealed the pres-
ence of 18 variants in BRCA1 and 37 variants in BRCA2. The 18 BRCA1 vari-
ants include 1 truncating mutation, 8 missense mutations, 3 polymorphisms and
6 intronic variants. The one truncating mutation, 5429delG in exon 21, is novel
and was found in a family with 8 breast cancers. The 8 missense mutations are
Q356R, P871L, E1038G, S1040N, L1183K, D1344G, S1512I and S1613G. It is
noted that missense mutations Q356R and S1512I occur simultaneously in two
families.

The 37 BRCA2 variants include 3 truncating mutations, 14 missense muta-
tions, 8 polymorphisms and 12 intronic variants. The 3 truncating mutations
include two nonsense mutations, which were found in two separate families.
The first is a novel nonsense mutation at codon 1913, in exon 11, a cysteine to
a STOP, and the second at codon 3326 in exon 27, a lysine to a STOP. The
frameshift mutation 8984delG was detected in five patients from three different
families. This mutation appears to be the most frequent deleterious BRCA2
mutation in the families studied so far. Haplotype analysis revealed that this
mutation is likely to originate from a common founder in the Cypriot popula-
tion.

57.4 Discussion

The incidence of breast cancer in Cyprus is about 45 cases per 100,000 popula-
tion which is similar to other countries in Southern Europe, Parkin et al. (1999).
In several of these countries including Italy, De Benedeti et al. (1998), Turkey,
Yazici et al. (2000), Yugoslavia, Papp et al. (1999), and Greece, Ladopoulou et
al. (2002) genetic studies in familial breast/ovarian cancer have characterized
a number of different mutations in the two breast cancer susceptibility genes.
Mutation 5382insC in BRCA1 appears to be the most frequent deleterious mu-
tation in these countries as is the case with most European populations. In
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preliminary studies of the Cypriot population, this mutation was not found in
breast cancer patients with a moderate to strong family history, Hadjisavvas et
al. (2001). Therefore we undertook a more detailed molecular study and this
manuscript presents the genetic data, of a comprehensive BRCA1 and BRCA2
mutation analysis in 75 patients from 40 Cypriot families with multiple cases
of breast/ovarian cancer.

In the 40 Cypriot families investigated, 4 BRCA deleterious mutations were
characterized. One mutation, 5429delG was detected in the BRCA1, and two
mutations, C1913X frameshift 8984delG were detected in BRCA2. The BRCA2
8984delG occurred in three unrelated families, so in total, 3 deleterious muta-
tions were found in 5 of the 40 families analysed. This gives a percentage of
12.5% positive families, which is similar to other European high risk popula-
tions. It appears that in the Cypriot population, BRCA2 plays a more signif-
icant role in the familial breast cancer phenotype since fewer mutations were
found in BRCA1, Hadjisavvas et al. (2001, 2003).

Of particular interest is the BRCA2 frameshift mutation, 8984delG, that
appears to be a recurrent mutation in our population, as it was detected in 3
unrelated families. Although no population has demonstrated founder effects
as striking as those observed in Ashkenazi Jews or of Icelandic origin, haplotype
analysis showed that this mutation is a founder mutation in the Cypriot popu-
lation. This is a new and important finding that has implications for screening
families that are at a high risk for developing breast and ovarian cancer. Two
of the three deleterious mutations detected are novel, namely the BRCA1 trun-
cating mutation 5429delG and the BRCA2 C1913X, so they could be unique to
the Cypriot population.

In conclusion it appears that the BRCA2, plays a more important role than
BRCA1 in the familial breast cancer phenotype in the Cypriot population. The
identification of a founder mutation in our population has important implica-
tions, for screening breast/ovarian cancer within Cyprus.
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Abstract: Classification tree analysis partitions a population or sample into
homogeneous groups based on a set of predictors. This technique is utilized in
the current study to identify high-risk subgroups for smoking dependency and
alcohol consumption among adolescents. The data (N=3,610) were generated
from cross-sectional surveys of the Florida Anti-Tobacco Media Evaluation. A
classification tree was built based on two types of smokers namely, established
(smoking dependent) and situational (less smoking dependent). Another tree
model was constructed for alcohol consumption, drinkers versus non-drinkers.
The predictor variables included sociodemographic characteristics, peer smok-
ing, social and health risks, tobacco counter-marketing exposure, role modeling,
parent-child interaction, parental monitoring, monetary resources and accessi-
bility. The results support the important role of peer influence in smoking and
alcohol consumption among adolescents. Knowing where to illegally purchase
cigarettes was essential in the classification of both established and situational
smokers. Accessibility to purchasing alcohol and parental monitoring were some
of the primary predictors in identifying high-risk subgroups for alcohol use. This
study demonstrates the use of classification trees in profiling smoking depen-
dency and alcohol consumption in adolescents.

Keywords and phrases: Classification trees, smoking dependency, alcohol
consumption, adolescents
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58.1 Introduction

Identifying high-risk subgroups of adolescents or young adults who are at an
increased risk of smoking dependency or excessive alcohol consumption has
been one of the primary goals of numerous studies in the field of substance
abuse. The tools of data analysis in these studies have been mainly multiple
and logistic regression, Chi-square statistics, structural equation modeling and
discriminant function analysis. Regardless of the use of the analytical technique
and research design (e.g., longitudinal or cross-sectional), various studies have
identified a large number of similar psychosocial risk factors associated with
onset and higher-level smoking or alcohol abuse. Although studying risk factors
using these methodologies has increased our understanding of substance abuse
among young adults, little is known about the interactive nature of risk factors
and their ability to define high-risk subgroups of individuals who are at risk
of excessive alcohol consumption or smoking uptake/dependency. One method
that could uncover the hidden interactive nature of a data set and identify
segments of a population that are most likely to engage in risky behaviors is
classification and regression trees (CART).

CART analysis (Breiman et al., 1984) has the ability to partition popula-
tions or samples into subgroups of subjects that share similar characteristics.
This methodology has increasingly been applied to health related fields and
clinical settings (Bachur and Harper, 2001) where the goal is to produce an
accurate classifier and provide understanding into the predictive structure of
the data. The CART methodology systematically investigates the effects of all
covariates and describes the manner in which they interact with each other.
The resulting model is visualized as a tree with daughter and terminal nodes
that have been assigned to a class based on the response variable. Tree models
can be evaluated using cross validation or test-sample estimation.

Although it is an explorative technique, it can be used to profile adolescents’
smoking dependency levels and alcohol consumption by revealing the interactive
nature of various risk factors. In the current study, the interactive nature
of various predictor variables in identifying high-risk subgroups for smoking
dependency and alcohol use among adolescents is explored using classification
trees.

58.2 Methods

58.2.1 Subjects and procedure

The data (N=3,610) were generated from two cross-sectional surveys of the
Florida Anti-Tobacco Media Evaluation (FAME), which represents an evalu-
ative component for the Florida Tobacco Pilot Program (FTPP). The FTPP
was financed with funds received from the tobacco industry as part of the set-
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tlement reached with the State of Florida (Settlement Agreement et al., 1997).
The FAME evaluation design involved repeated cross-sectional telephone sur-
veys of youth (between ages 12 and 17) to track and monitor ad and campaign
awareness. These telephone surveys were conducted after the informed consent
was read to the parents and children and permission was obtained. Specific
information regarding sampling procedures, and the reliability and validity of
the surveys are available elsewhere (Sly et al., 2000; Sly et al., 2001; Sly et
al., 2002). The FAME cross-sections that were utilized in this study included
the October 2000 (n=1,810) and the May 2001 (n=1,800) surveys. We selected
these two cross-sections because their survey instruments were identical as well
as for their close temporal proximity. Comparisons among a wide variety of
sample characteristics indicated that no significant differences existed between
these two cross-sections.

58.2.2 Measures

The smoking dependency variable was the result of locating natural break points
within a matrix cross-referencing the number of days smoked in the past month
by the number of cigarettes smoked per day on those days. If they smoked
five or more cigarettes per day on six or more days in the past month, they
were coded as established smokers. The remaining smokers were coded as situ-
ational smokers. The outcome variable for alcohol consisted of those who drank
at least twice in the past month, namely drinkers, versus those who have never
had a drink or non-drinkers. The predictor variables used in the construction
of the smoking dependency and alcohol consumption tree models comprised
a combination of factors that have shown a discriminative power in predict-
ing the outcome variables. The selection of independent variables was based
upon significant bivariate associations, and a priori considerations of the litera-
ture. The selected factors represent nine major variable categories including so-
ciodemographic characteristics, peer smoking, social and health risks, tobacco
countermarketing exposure, role modeling, parent-child interaction, parental
monitoring, monetary resources and accessibility.

58.2.3 Data analysis

In the current study, two classification trees were built: established versus sit-
uational smokers; and drinkers versus non-drinkers. The same set of predictor
variables was used to build both of these models. In constructing the classifi-
cation trees, the Gini Index was used in the splitting process, while misclassi-
fication costs for each class were set equal. Cross validation was implemented
to evaluate the predictive performance of each classifier. The selection of these
criteria were based on the size of the data set (e.g., cross validation is commonly
used for smaller samples) and prior theoretical considerations of the analytical
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technique. The CART software (Salford Systems, 2000) was employed to build
classification trees for each outcome measure.

58.3 Results

58.3.1 Established versus situational smokers model

The established vs. situational smokers model (Figure 58.1) consisted only of
established smokers (class = 1, n = 207 or 50.6 percent) and situational smok-
ers (class = 0, n = 202 or 49.4 percent). This model revealed three established
smoker subgroups, and another three which were associated with situational
smokers. The variable categories, which were important in the construction of
this model, included peer smoking, accessibility and social and health risks. One
subgroup of established smokers was characterized as having at least one friend
who smoked, and considered their identity as smokers unimportant (70.4 per-
cent). Established smoking was also more likely among those who consider their
identity as smokers important, knowing where to illegally purchase cigarettes,
and not receiving an allowance. Receiving an allowance, however, was asso-
ciated with situational smoking (58.5 percent). Situational smokers were also
classified as having no best friends who smoked, and reportedly wearing their
seat belt ”most of the time” (80.6 percent).

58.3.2 Drinkers versus non-drinkers

The tree model in Figure 58.2 shows a classifier built for drinkers (class = 1, n =
615 or 80.8 percent) versus non-drinkers (class = 0, n = 2594 or 19.2 percent).
The variable categories which were important in the construction of this model
included peer smoking, accessibility (knowing anyone with a fake ID or a store
that sells alcohol), and parental monitoring. Drinkers were characterized as
having friends who smoke, are aware of a store that sells alcohol and did not
think that friends’ parents would tell on them if they saw them smoking.

58.4 Conclusion

In this study, we employed classification trees to identify high-risk subgroups for
smoking dependency and alcohol consumption among adolescents. The results
support the important role of peer influence and accessibility (knowing where
to illegally purchase cigarettes or alcohol) in smoking and alcohol use. Research
evidence indicates that peer, parent and family influences are of major impor-
tance in stages of smoking greater than experimental (Jackson and Henriksen,
1997). The repetition of variables across the two models also suggests that
one should expect to identify similar characteristics in profiling both smoking



Classification Tree Models of Smoking and Alcohol Use 331

dependency and alcohol use levels. This indicates that smoking cessation pro-
grams should consider accessibility and peer influence factors at higher levels
of smoking dependency and alcohol use.
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Figure 58.1: Established vs. Situational Smoker Model (class 0 = situational
smokers, class 1 = established smokers)
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Figure 58.2: Drinkers versus Non-Drinkers (class 0 = non-drinkers, class 1 =
drinkers)
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Abstract: The target of this paper is to discuss the Logit model and the
Logistic regression, when are applied on data set related to cancer (Ca). The
sequential principle is adopted. The paper is part of the research results we are
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59.1 Introduction

We study the case, when performing an experiment, the response, Y say, has two
outcomes, usually denoted 0 1. Such a response is known as binary response,
and is linked with the explanatory variable X, through a probabilistic model
T (x; θ) of the form:

T (x; θ) = P (Y = 1 |x) = 1− P (Y = 0 |x) (59.1.1)

with θ being the vector of involved parameters and x a value of X. Typical
examples in Cancer Bioassays, Kitsos (2005), for T (x; θ) are the Logit and
Probit models, and the explanatory variable, denoting exposure to risk, to be
binary i.e. x = 0 or 1. For discussion on such cases see Breslow and Day (1980).
Usually we denote by p(x) = T (x; θ) = P (Y = 1 |x), the conditional probability
that a person suffers from Ca, with x being the value of the exposure. Then, a
well known, 2× 2 contigency table is obtained, Kotti and Rigas (2005) for the
Logistic Regression model of the form:

p(x) =
eβ0+β1x

1 + eβ0+β1x
≡ T (x; β0, β1) (59.1.2)

Model (59.1.2) is within the class of the multistage models, Kitsos (1999) and
has been investigated under the sequential principle of designing, when the 100%
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percentile, Lp say, is to be estimated. In this paper some theoretical results are
provided in Sections 2 and 3, while an application is, briefly, discussed in Section
4.

We are refering to Logit Methods to cover both Logit model and Logistic
Regression.

59.2 Optimal Designs For The Logit Model

Notice that the Logit Model (59.1.2) is of the form P (Y = 1 |x) = T (θT u), with
θ = (β0, β1), u = (1, x). For the parameter θ = (β0, β1) ∈ R2 and ξ a design
measure from a family of design measures Ξ the following is true:

Proposition 59.2.1 For the logistic model as in (59.1.2) Fisher’s information
matrix I(θ, ξ), is of the form

I(θ, ξ) = T ′2[T (1− T )]uut (59.2.3)

with ut the transpose of u and T ′ the derivative of T .

Proof. If we let z = θtu then the log-likelihood function is of the form

` = log{T (z)Y [−T (z)]1−Y + const

Therefore
I(θ, ξ) = E{(∇`)(∇`)t} = T ′2[T (1− T )]uut

With T (x; θ) the probit model (59.2.3) is still true. For the D-optimal
design the design measure is ξ = 1/2 and the optimal points are of the form
(±1.54 − β0)/β1, provided that belong to the design space, otherwise are the
endpoints of the design space S ⊂ R, see Kitsos (1986) for details. For the
Logit model, the “canonical form” has been introduced, Kitsos (1986), Ford et
al. (1992). This is based on the fact that c-optimality remains invariant, when
the data is transformed by

g =
(

1 0
β0 β1

)
(59.2.4)

That is considering the transformation of the vector u as w = gu, under c-
optimality with the ray c defined as c = (1, x)t then it can be proved, Kitsos
(1986).

Proposition 59.2.2 Under c-optimality, with Mi, i = u,w as above, being the
corresponding average per observation information matrices in u and z coordi-
nate system then

ctM−1
u c = ct

wM−1
w cw (59.2.5)

with cw = gct.
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Now, for this affine transformation g we prove the following

Proposition 59.2.3 The set of the (affine) transformations G as

G =
{

g =
(

1 0
β0 β1

)
, β0, β1 ∈ R

}
(59.2.6)

forms a group, under matrix multiplication.

Proof. Considering h ∈ G as

h =
(

1 0
α0 α1

)
, α0, α1 ∈ R

then it can be proved easily that

hg =
(

1 0
γ0 γ1

)
∈ G

with γ0 = α0 + α1β0 ∈ R, γ1 = α1β1 ∈ R. Similarly if k ∈ G then it can
be proved (hg)k = h(gk), the unit transformation i is the identity matrix, the
inverse transformation g−1 ∈ G is the inverse matrix of g and gi = ig = g.

This theoretical result practically means that we can work as follows: per-
form the experiment with the “easiest” scale and position parameters. Per-
forming the experiment at the optimal design points as in c-optimality a prior
knowledge on β0, β1 is needed. Then, transfer the results with an element
within the group of affine transformations and still you have an optimal design.
Go back to the initial etc. still you are moving within a class of optimal de-
signs. That is perform the remaining experiments within the class of designs
generated by the group of transformations G.

From the above discussion for the Logit model and link function defined
by the Logit transformation the D-optimal design allocates half observations
(i.e. ξ = 1/2) at the optimal design points ±1.5434, when the vector of coeffi-
cients in θ = (0, 1). Different c-optimal designs can be produced with different
θ = (β0, β1) and “direction ray” c. For θ = (1, 1), c = (1, 3) and the explana-
tory variable within [−3, 3] the c-optimal design is a two point design at −3
and 1.4164, with the corresponding weights to be equal to 0.1826 and 0.8174
respectivelly. With the group of affine transformations the experimenter can
move to different “orbit”, adopting the gct “direction ray”, when he had already
evaluated only one set of experiments. That is he saves experiments, when the
appropriate theory discussed already is adopted.

59.3 Sequential Logit Methods

As it has been pointed out by Breslow and Day (1980), among others, under
the Logit Model the 2 × 2 contigency table is related to the relative risks, as



338 Christos P. Kitsos

well as to the odds ratio. Actually the relative risk is the odd ratio relative
to the binary value of x, see Section 1. The involved X 2 test is equivalent on
test proportions, that is relative risks. That is why we propose the sequential
principle of design to test proportions. The technique can be adopted from the
early work of Cox (1963), for testing the odds-ratio or log-odds as

ln ψ = ln
P1Q0

P0Q1
(59.3.7)

with
P1 =

B0B1

1 + B0B1
, P0 =

B0

1 + B0

B0 = exp(β0), B1 = exp(β1), Qi = 1 − Pi, i = 0, 1 see also Breslow and Day
(1980, p. 194) for the notation and Ghosh (1970, p. 363) for a brief discription
of the method. Either batch sequential or fully sequential Logistic Regression
Methods can be adopted if the logit transform is used to regress the explanatory
variable ie

y = logitP = ln
P

1− P
= β0 + β1x (59.3.8)

The parameters can be interpeted as relative risks, Breslow and Day (1980, p.
194), while a sequential design can be applied for the regression model (59.3.8),
with the main idea being in Ghosh (1970, p. 359). We are working on this and
some results on the augmentation of the relative risks are available.

We believe that Logit Methods can be applied with the sequential principle.
In the sequence an example of the classical Logist Regression method is briefly
discussed, while a sequential approach is under investigation, as well as the
biological interpretation. Moreover the sequential character of the model can
be discussed on the basis that the k regressors in the model are increased to
k+1. Then we can prove that the relative risk of the k+1 regressors, RRk+1, is
a function of RRk, the relative risk of k regressors. We believe that this result
influences the risk analysis for the multiple Logistic Regression.

59.4 Logistic Regression Analysis for Ca

Various studies have been carried out to investigate the genetic polymorphisms,
metabolizing enzymes and risk of Ca patients, see Rossi et al. (2003) among
others. On a data set communicated with experts the Logistic Regression fit was
crucial: to investigate the age of a woman, the weight, the beginning and end of
her period, the age of first child, CYP17(A1/A1, A1/A2, A2/A2), COMT(G/A,
A/A, G/G), ER(PP, pp, pP) plus other biological characteristics. Emphasis was
given on CYP17 and COMT polymorphisms. The data were collected under
Dr. Voutsinas supervision in the area of Patras, Greece, in the year 2004. They
include 51 breast Cancer cases and 66 controls. As far as CYP17 concerns
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there were 17 cases of type A1/A1, 29 cases of type A1/A2 and 5 cases of type
A2/A2. As far as COMT concerns, there were 10 cases of A/A, 30 cases of G/A
and 11 cases of G/G. The age of the women that had a baby born was also
recorded among other characterestics. We are not going to produce the results
here and provide a full analysis. Most of the results on the biological references,
as Rosi et al. (2003) cover some points of statistical analysis. But what if the
data set increased sequentially, or even by batches. How much do we gain on
information? Practically at each stage we can evaluate Fisher’s information.
But we do not know how “better” are the relative risks evaluated.

This paper tries to cover such questions, or rather to offer new lines of
thought on such questions. We also focus on the case when k explanatory
variables are needed. We are working on it, evaluating how the log-odds is
influenced when the k + 1 variable enters the k-variable logistic model.
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Abstract:
In this article the so-called Sufficient Empirical Averaging (SEA) method

is used for inventory control problems solving. It assumes the existence of the
complete sufficient statistics for unknown parameters of the distributions. The
application of this method allows getting unbiased estimates with minimum
variance.
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60.1 Introduction

The basic aspect of operation of any company is connected with the inventory
control problems. Any mistakes in the planning of inventory control process
result in a considerable decrease of the efficiency of a company’s operation and
of the quality of customers’ service. To describe costs, associated with the
positive shortage, we could create some safety stock of goods. On the other
hand the supplementary stock increases the holding costs.

Different types of stochastic inventory models are considered by Chopra and
Meindl (2001), Ross (1992) etc. In practice it is common for inventory manager
to answer on two basic questions: how many to order and when to order.
There are many different types of inventory control models, which provide the
decision-maker with a satisfactory solution.

Statistical problems of the inventory control are considered very seldom
though their application is practically impossible without an estimation of
stochastic models. In this article one statistical problem of the inventory con-
trol on the finite interval of time (0, T ) is considered. The similar problems
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were described earlier by Kopytov and Greenglaz (2004). We consider a singe-
product inventory control model under the following conditions. Initially there
are k items of goods in the warehouse. In the course of time the quantity of
goods will be decreased. Demand for goods is described by a recurrent flow of
arrived claims. The interarrival time has the exponential distribution with the
parameter λ, shifted with the value δ:

f(x) =
{

λe−λ(x−δ), x > δ,
0, otherwise.

Each arrived claim requires a random quantity of goods. We supposed that
it has normal distribution with parameters µ, σ.

The current claim will be rejected, if the required quantity of goods is too
great, namely, it will be greater then the value of function rej(k, t) where k
is the current stock level (quantity of goods in the stock) and t is the current
time moment. Obviously, rej(k, t) ≤ k. The problem consists in an estimation
of expectation of numbers of the rejected claims on the interval (0, T ). This is
our efficiency criterion. Thus parameters λ, µ and σ are unknown, but for them
the complete sufficient statistics are fixed. Note, that if we are able to solve the
given problem, we can consider a problem of function rej(k, t) definition that
optimizes efficiency criterion.

60.2 The Method of Problem Solving

We shall solve this problem by means of the SEA method. The mentioned
method Chepurin (1994, 1995, 1999) offered in his works. It can be used when
the unknown parameters of distributions admit the complete sufficient statis-
tics. This method is based on the fact, that conditional distributions of the
random variables, calculated with fixed values of sufficient statistics, don’t de-
pend on the unknown parameters of distributions. So, the necessary random
variables could be produced according to their conditional distributions. If the
applied sufficient statistics are complete this parametrical method gives unbi-
ased estimators with minimum variance.

If we have the exponential distribution, the sufficient statistics for the pa-
rameter λ and the sample X = (X1, X2, ..., Xn) is the sum A = X1+X2+...+Xn.

The conditional probability density function (p.d.f.) of the sample X(s) at
the point x = (x1, x2, ..., xn) is calculated by the formula:

fX(x, λ|A = s) =
(n− 1)!

sn−1
, ∀xi ≥ 0, x1 + x2 + ... + xn = s. (60.2.1)

We can see that the conditional p.d.f. of the sample X(s) doesn’t depend
on the unknown parameter λ.
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Often for generation the conditional distributions ”special ways” can be
used. E.g., for the exponential case, Engen and Lillegard (1997) suggested
the following way. Let the value s of the Sn is fixed. Firstly we generate n
exponential distributed random variables X0

1 , X0
2 , ..., X0

n with parameter λ = 1.
Secondly we calculate their sum: S0

n =
∑n

i=1 X0
i . Then random variables of

interest X∗
1 , X∗

2 , ..., X∗
n may be calculated by the formula X∗

i = X0
i −s

S0
n

, i =
1, 2, ..., n.

If we have normal distributed sample X1, X2, ..., Xn with the sufficient statis-
tics an = 1

n

∑n
i=1 Xi and S2

n = 1
n−1

∑n
i=1(Xi − an)2, then the conditional p.d.f

of the sample elements Xi is calculated by the formula:

fan,S2
n
(x) =

Γ
(

n−1
2

)
√

πΓ
(

n−2
2

)
√

n

S2
n

1
n− 1

[
1− n

(n− 1)2S2∗
n

(x− an)2
]n

2
−2

,(60.2.2)

an − n− 1√
n

√
S2

n < x < a +
n− 1√

n

√
S2

n, n ≥ 3. (60.2.3)

60.3 Algorithm of Estimation

We will solve considered inventory problem using of the SEA method. In our
case the two different distributions are taking place. Let’s describe the proce-
dure of generation of random variables with respect to process of demands for
goods. The complete sufficient statistics for the exponential distribution are
the sum of the sample elements A and the sample size na. Then the simulation
of the considered process during the given time T is applied. The time inter-
vals between the neighboring demands for goods are generated according to the
appropriate conditional distributions of the given fixed values (A,na).

In the beginning of suggested procedure na random variables are generated
according to the exponential distribution with the parameter λ=1. Let’s define
them as X0

1 , X0
2 , ..., X0

na
. Then let’s calculate their sum

A0 =
na∑

i=1

X0
i . (60.3.4)

The needed values of the intervals X∗
1 , X∗

2 , ..., X∗
na

between claims for goods
are calculated by the formula

X∗
i = X0

i (A− δna)
1

A0
+ δ, i = 1, 2, ..., na. (60.3.5)

Due to the other way, according to the Eq.(60.2.2) - (60.2.3) the required
size of goods for sequence of claims Y ∗

1 , Y ∗
2 , ..., Y ∗

n are generated.



344 E. Kopytov, C. Zhukovskaya

Let’s describe the algorithm of the inventory process simulation within one
run. Firstly we introduce the following notation: Ai is the moment of the i-th
claim for goods

Ai =
i∑

j=1

X∗
j . (60.3.6)

Let’s define Na as the number of the next claim for goods, which takes
place for the present moment t. Let R define the number of claims, which were
rejected for the current run.

The modeling algorithm for one run is the following:
Initial date: the sufficient statistics A =

∑na
i=1 Xi and an, S2

n, which have
been calculated on the base of the sample of the size nd ≥ na, δ,K, T, rej(k, t),
0 < k < K, 0 < t < T .

Output date: R - number of rejected claims till the time moment T .
Step 1: Generation of arrived claims.
To generate the sequence {Ai} of arrival times by Eq.(60.3.4) - (60.3.6).
Step 2: Generation of demands values.
Using Eq.(60.2.2) - (60.2.3) for n = nd to calculate random variables Y ∗

1 , Y ∗
2 , ..., Y ∗

n

which are demands values.
To take Na = 1, R = 0, k = K, t = 0.
Step 3. If ANa > T then end,
otherwise:

3.1. To take t = ANa .
3.2. If Y ∗

Na
< rej(k, t) then k = k − Y ∗

Na
, otherwise R = R + 1.

3.3. To take Na = Na + 1 and go to step 3.

In the end of this run the number of rejected demands R is remembered.
Then we repeat steps 1−3, r times. According to the obtained results of the

runs, the frequencies of different values of rejected claims are calculated and the
average number of rejected claims as well. When changing the rejected function
we must define a function what gives minimal value of rejection probability.

60.4 Numerical Example

In this article a numerical example is considered. Let input data have the
following values na = 10, A = 12, n = 10, an = 7, S2

n = 4, δ = 0.6.
Three types of rejection functions were considered: the threshold rejection

function, where the value of the threshold is constant: r(k, t) = L, 0 < L ≤ K;
the linear rejection function r(k, t) = α + βk, and the polylinear rejection
function r(k, t) = α + βk + γt + ηkt.
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Let us consider the following numerical values of the coefficient of the re-
jected function: L = 4, α = 0.4, β = 0.3, γ = 0.2, η = 0.1. The obtained results
are presented in the tables 1 - 3. It can be seen that the polylineal rejection
function gives the best results. Note, that they admit the minimum variance
unbiased estimator.

Table 1

The average number of the rejected claims for the threshold rejection function

T = 2 T = 3 T = 4 T = 5 T = 6 T = 7 T = 8 T=9
K = 10 0.26 1.07 1.83 2.60 3.42 4.15 5.01 5.69
K = 12 0.25 1.02 1.77 2.58 3.30 4.07 4.85 5.58
K = 14 0.24 1.00 1.73 2.57 3.28 4.00 4.77 5.54
K = 16 0.23 1.00 1.72 2.56 3.21 3.99 4.75 5.48
K = 18 0.22 0.98 1.69 2.51 3.17 3.96 4.74 5.48
K = 20 0.19 0.95 1.66 2.41 3.11 3.94 4.73 5.32

Table 2

The average number of the rejected claims for the linear rejection function

T = 2 T = 3 T = 4 T = 5 T = 6 T = 7 T = 8 T=9
K = 10 0.30 1.06 1.87 2.63 3.33 4.14 4.96 5.67
K = 12 0.27 1.02 1.80 2.52 3.31 4.09 4.79 5.64
K = 14 0.25 0.94 1.74 2.48 3.21 3.95 4.68 5.47
K = 16 0.19 0.92 1.73 2.44 2.91 3.28 3.86 4.77
K = 18 0.00 0.17 0.75 1.54 2.23 3.06 3.79 4.51
K = 20 0.00 0.10 0.66 1.38 2.21 2.98 3.76 4.45

Table 3

The average number of the rejected claims for the polylinear rejection function

T = 2 T = 3 T = 4 T = 5 T = 6 T = 7 T = 8 T=9
K = 10 0.14 0.60 1.24 1.71 2.64 3.12 3.74 4.54
K = 12 0.05 0.02 0.75 1.51 2.01 2.37 3.14 3.76
K = 14 0.00 0.12 0.75 1.44 1.73 2.27 2.78 3.67
K = 16 0.00 0.10 0.55 1.00 1.57 2.20 2.77 3.65
K = 18 0.00 0.05 0.28 0.75 1.25 2.04 2.56 3.42
K = 20 0.00 0.01 0.19 0.52 0.83 1.23 1.91 2.59

According to the obtained results we can conclude that the proposed approach
allows to find the optimal solutions.
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60.5 Conclusion

In this article we considered some statistical problems of the inventory con-
trol and described the Sufficient Empirical Averaging method for their solving.
Numerical examples have been calculated. The results of our research showed
that the proposed method allows the solution of various practical problems of
inventory control efficiently.
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Optimal and Universally Optimal Two Treatment

Repeated Measurements Designs

Stratis Kounias and Miltiadis Chalikias
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Abstract:1,2 Optimal Repeated Measurements Designs (RMD(t,n,m)) are stud-
ied, for estimating direct and residual effects. Necessary and sufficient condi-
tions are presented and specific designs are given for 2, 3, periods. The model of
independent errors is considered with and without direct effect-period interac-
tions. Universally optimal designs, introduced by Kieffer (1975), are also given
for 3 periods.

Keywords and phrases: Repeated measurement designs, crossover, changeover,
optimal, universally optimal, uniform, balanced, direct effects, residual or car-
ryover effects, clinical trials

61.1 Introduction

Experimental designs in which there are t treatments, n experimental units
(e.u.) and an experimental unit is allocated to a sequence of the treatments
under investigation over m successive periods, one treatment at the beginning
of each period, are called Repeated Measurements Designs, RMD(t, n, m).
Other names used are crossover designs or changeover designs, an administered
treatment in one period might be administered again in another period.

A direct effect of a treatment, applied at the beginning of a period, is
measured at the end of the period, along with the other effects, a carryover effect
is the effect of the persistence of the treatment administered in the previous
period. We will assume that no treatment effect persists more than one period
after its application.

1Part of this work was done while the first author was Visiting Professor at the University
of Cyprus.

2For the second author the project is co-financed within Op. Education by the ESF
(European Social Fund) and National Resources.
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If Yijk is the response in the ith sequence of treatments, in period j, on the
kth experimental unit, then the model for the continuous response is,

Yijk = µ+τij+πj+δi,j−1+γi+eijk j = 1, . . . , m, i = 0, 1, . . . , 2m−1, k = 1, . . . , n

where µ is the general mean, τij ∈ {τA, τB} is the direct effect of the treatment
applied in the ith sequence and the jth period, πj is the effect of the jth period,
δi,j−1 ∈ {δA, δB} is the carryover effect of the treatment applied in the ith
sequence and the (j-1)th period, γi is the effect of sequence i and eijk the error,
considered continuous random variable with constant variance σ2 and mean 0.

In this paper we examine the case of t=2 treatments A, B. The observations
of a sequence of m treatments, administered on the same unit, are usually
dependent, in this work however we study the case of independent observations,
within and across units.

The ith sequence effect γi could have been taken as the effect γik of the kth
unit in sequence i, but for the study of optimality of the designs this distinction
makes no difference, then we will use .the ith sequence effect γi.

The restrictions imposed on the parameters for the uniqueness of the model
are: τB = πm = γd = 0, d = 2m − 1, no restrictions are imposed on carryover
effects because in the first period we do not have carryover effect, i.e. δi,0 = 0.

We are interested in estimating the direct treatment effect τA which actually
measures the difference (τA− τB) due to the imposed restriction τB = 0, we are
also interested in estimating the carryover effects {δA, δB} .

61.2 The Enumeration of Sequences

The dyadic system is used to enumerate the sequences, setting 0 for A and
1 for B, so in 3 periods the sequence AAA is sequence 0, denoted s(0,3), the
sequence ABB is s(6,3), in 6 periods the sequence ABBAAB is s(38,6) because
0 · 20 + 1 · 21 + 1 · 22 + 0 · 23 + 0 · 24 + 1 · 25 = 38.
There are 2m sequences in RMD(t=2,n,m), i.e. s(0,m), s(1,m), . . . , s(2m−1,m)
and a design is defined by the sequences which are administered.

61.3 Two-Treatment Designs

Model (1) was introduced by Hedayat and Afsarinejad (1975, 1978) who applied
the theory of optimal designs to RMD(t,n,m). Kiefer (1975) has given criteria
for a design d? to be universally optimal, i.e. φ(Cd∗) ≤ φ(Cd) for all convex
functions φ with some monotonic properties, then this design will be D,A,E
optimal.

Kershner and Federer (1981), give some designs with good properties, of
the 6 designs they give, with the names D2.3.3, D 2.3.4, D2.3.5, D4.3.1, D4.3.2,
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D4.3.3, D6.3.1, only D 2.3.4 is optimal, the remaining 5 are not optimal. Also
the optimal design, in 3 periods, ABB, BAA and for even n, was given by Laska
et all (1983), Laska and Meisner (1985), Mathews (1987, 1990), Kushner (1997).
This design is universally optimal as has been proved by Cheng and Wu (1980).

Quenouille (1953) has given, in 4 periods, the design ABBA, BAAB, AABB,
BBAA for n=0mod 4 with n/4 e.u. to every sequence, this solution has also
been given by Laska, Meisner and Kushner (1983) and Mathews (1990), Laska
and Meisner (1985).

The least squares estimator for direct effect is given by the relation:

(XT
1 X1 −XT

1 PX1)τ̂A = XT
1 (I−P)Y (2)

then

var(τ̂A) = σ2Q−1 , Q = (XT
1 X1 −XT

1 PX1) = XT
1 (I4n −P)X1 (3)

where Y = Xb + e, X = (X1,X2), P = X2(XT
2 X2)−1XT

2 and X1 is the col-
umn of X corresponding to the parameter τA.

Our task is to find the design minimizing var(τ̂A) i.e. maximizing Q, this
is called optimal design for estimating τA.

We denote by ui the number of e.u. administered to sequence I and the
problem is to find ui, i = 0, 1, . . . , 2m − 1 for which Q is maximized.

If PX1 is the orthogonal projection of X1 onto the linear space of the
columns of X2, then Q is the square of the X1 distance of X1 from PX1.

We find that Q can be expressed as Q = 1
m

[
R− qTM−1q

]
, where R,

q : mx1, M : mxm are functions of ui, i = 0, 1, . . . , 2m − 1 and M is non
negative definite.

61.4 Optimal Designs

A lot of work has been done on optimal RMD, see also Kunert (1983), Jones,
B. and Kenward, M.G. (2003).

61.4.1 Two Periods

a) n even: k e.u. to the sequences AA, AB and (n-2k)/2 e.u. to BA, BB. The
minimum variance is var(τ̂A − τ̂B) = σ28/n.

b) n odd: (n-1)/2 e.u. to AA and (n+1)/2 e.u. to AB, with var(τ̂A − τ̂B) =
σ28/(n− 1

n).
If in the model exists the interaction (τπ)A1, the we can only estimate

(τA − τB) − (τπ)A1 and the optimal design is the same as above and with the
same variance.
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For estimating the carry over effects δA, δB, we can only estimate δA − δB

and the optimal design is.

c) n even: n/2 e.u. to each of the sequences AA, BB with var(δ̂A− δ̂B) = σ28/n

d)n odd: (n-1)/2 e.u.. to AA and (n+1)/2 e.u. to BB with var(δ̂A − δ̂B) =
σ28/(n− 1

n).
If the interaction (τπ)A1 is in the model, then we can only estimate δA −

δB − 2(τ π)A1 and the optimal design is the same as that given in (c) and (d).
For estimating both parameters (τA, (δA− δB)) , the D optimal design is to

allocate equal or almost equal e.u. to each of the sequences AA, AB, BA, BB.

61.4.2 Three Periods

For estimating τA − τB or δA − δB, the optimal design is the same i.e.,

a) n even: n/2 e.u. to ABB and BAA with var(τ̂A − τ̂B) = σ23/(2n), and
var(δ̂A − δ̂B) = σ22/n

b) n odd: (n+1)/2 e.u. to ABB and (n-1)/2 e.u. to BAA, with variance
var(τ̂A − τ̂B) = σ2(3n)/(2(n2 − 1)) and var(δ̂A − δ̂B) = σ2(2n)/(n2 − 1).
The above design is universally optimal.

61.4.3 Four Periods

The optimal designs have 2 A and 2 B, we only mention that the optimal designs
for estimating direct effects are var(τ̂A − τ̂B) = σ2(Q?)−1, where,

1) n = 0mod4 : Q? = n,

2) n = 2mod4 : Q? = n− 4
11n

,

3) n = 1mod4 : Q∗ = n− 2(6n + 5)
11n(n + 1)

,

4) n = 3mod4 =: Q∗ = n− 2(6n2 − 3n− 1)
11n(n2 − 1)

.

61.5 Universally Optimal Designs

In the previous sections we have given optimal designs for estimating either
direct effects i.e. (τA − τB) or residual effects i.e. (δA − δB).

In special cases when the number of e.u. is n=0mod 2 or mod 4, there
exist universally optimal designs for estimating both parameters i.e. (τA− τB),
(δA − δB).

If a design is universally optimal then it is D, A, E optimal, Kiefer (1975).
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Cheng and Wu (1980), Theorem 3.1 and Theorem 3.3, give criteria for
universally optimal designs which are uniform and strongly balanced and they
refer to model (1).

The same authors show, Theorem 3.4, that universally optimal designs (i)
are also optimal for estimating (τA − τB) and in Theorem 3.5 they show that
universally optimal designs (ii) are optimal for estimating (δA − δB).

We show that in both cases, universally optimal designs are optimal for
estimating either (τA−τB) or (δA−δB). No designs exist that satisfy Theorems
3.1 and 3.2 of Cheng and Wu (1980) in two periods.

61.5.1 Three Periods

The only design which is uniform in the units in the first m-1=2 periods is
(AB, BA). In the 3 periods we have the design which is form by the sequences
s(1, 3) = BAA, s(2, 3) = ABA, s(5, 3) = BAB, s(6, 3) = ABB.

If u1, u2, u5, u6 is the number of e.u. allocated to each one of the above
sequences, then the total number of appearances of the pairs AA, BA, AB,
BB is:AA → u1 + u3, BA → u1 + u2 + u5, AB → u2 + u5 + u6, BB → u6.
Therefore, to have equality the following holds: u1 = u1 + u3 + u5 = u2 +
u5 + u6 = u6 ⇔ u3 = u5 = 0, u1 = u6 and the only universally optimal
design is d? = {BAA, ABB} with equal number of e.u. to each sequence,
then n=0mod 2. This design is universally optimal and var(τ̂A − τ̂B) = σ2 3

2n ,
var(δ̂A − δ̂B) = σ2 2

n .
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Abstract: When we observe random variables (marks) at random time points,
the data can be viewed as realisations of a marked point process. This paper
deals with generalized linear models describing the dependence of the mark
distribution on predictable covariates.
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62.1 Introduction

Consider n individuals observed over the time period [0, τ ]. Each of these
n subjects experiences a finite number of events occuring at random times

0 < Ti,1 < Ti,2 < · · · < τ.

At each event time Ti,k of the i-th individual, a random variable Zi,k, called
mark, is observed. Hence, the i-th observation consists of the pairs

(Ti,1, Zi,1), (Ti,2, Zi,2), . . . (62.1.1)

These pairs form a marked point process (MPP) whose behaviour is driven by
the intensity of the event time points and the conditional distribution of the
marks.

In addition to the pairs (Ti,k, Zi,k), we observe some covariates that serve as
explanatory variables in regression models for the conditional mark distribution
and for the intensity. Our main aim is to study the mark distribution which is
modeled by generalized linear models (GLM). We extend results of Martinussen
and Scheike (2001) who studied linear models.

353



354 David Kraus

The structure of the paper is following. Section 62.2 provides a summary of
the stochastic structure of marked point processes. In Section 62.3, regression
models for the mark distribution and time-process intensity are formulated.
Section 62.4 is devoted to the presentation of the estimation procedure. In
Section 62.5, the contribution is closed by comments on future plans.

62.2 Marked point processes

The set of the pairs (62.1.1) is called a marked point process. The time points
belong to the interval [0, τ ], the marks take values in a mark space (E, E). It is
advantageous to view a marked point process as a measure. Following Brémaud
(1981, Chapter VIII), we denote the MPP (62.1.1) by pi(dt× dzi). The object
pi(dt×dzi) is a random counting measure on the product [0, τ ]×E. The process

Ni(t, A) =
∫ t

0
pi(ds×A) =

∫ t

0

∫

A
pi(ds× dzi)

is a counting process (with respect to a filtration, say (Ft, t ∈ [0, τ ])) which
counts every event whose mark lies in A ∈ E .

We say that pi(dt × dzi) admits the intensity kernel λi(t, dzi), if for each
A ∈ E the counting process Ni(t, A) has the intensity

λi(t, A) =
∫

A
λi(t, dzi).

We will suppose that the intensity can be written in the form

λi(t, dzi) = λi(t)Φi(t, dzi),

where λi(t) = λi(t, E) is the intensity of the process Ni(t, E) counting all the
event points regardless of their marks, and Φi(t, dzi) is the conditional mark
distribution given the history up to t and given t is an event point.

62.3 Regression models

In the following, it is assumed that both components of the MPP depend on
a set of covariates. Hence, the conditional mark distribution Φi(t, dzi) as well as
the intensity λi(t) are described by regression models. We consider the following
model form.

62.3.1 Generalized linear models for marks

Assume that the mark distribution Φi(t, dzi) follows a generalized linear model
(McCullagh and Nelder, 1989). This means that its expectation µi(t) depends
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on the linear predictor ηi(t) through the link function g by

g(µi(t)) = ηi(t) = Xi(t)Tβ(t).

Here Xi(t) is a p-vector of (possibly time-dependent predictable) covariates and
β(t) is a vector of time-varying regression coefficients which are modeled non-
parametrically. Variance of Φi(t, dzi) equals ψ(t)V (µi(t)), where the dispersion
parameter ψ(t) is allowed to depend on time.

For example, for the Poisson regression, the natural (canonical) link is
g(µ) = log µ, the variance function is V (µ) = µ and the dispersion param-
eter is ψ ≡ 1. For the Gaussian linear model studied by Martinussen and
Scheike (2001), we have g(µ) = µ, V (µ) = 1 and ψ(t) = σ2(t).

62.3.2 Aalen’s regression for the time process

Similarly to Martinussen and Scheike (2001), the intensity λi(t) of the counting
process pi(dt× E) is supposed to follow the Aalen additive regression model

λi(t) = Yi(t)α(t)TUi(t),

where Ui(t) is an r-vector of covariates whose effects are α(t) and Yi(t) is the
risk indicator process. The Aalen model is easy to estimate yet flexible enough
for our purpose, as our main goal is to study the distribution of marks.

62.4 Estimation

We will estimate the cumulative regression coefficients B(t) =
∫ t
0 β(s)ds, t ∈

[0, τ ], by a piecewise constant estimator with jumps at the event times. The
estimation of its increments is based on an estimating equation. The reason for
estimating B(t) rather than β(t) is that we wish to make inference about the
whole regression functions.

62.4.1 Estimating equation

The estimating equation is

n∑

i=1

Xi(t)
g′(µi(t))ψ(t)V (µi(t))

[∫

E
zipi(dt× dzi)− λ̂i(t)µi(t)dt

]
= 0, (62.4.2)

where λ̂i(t) is an estimate of the intensity λi(t) of the i-th counting process
(based on kernel smoothing of standard estimates of the Aalen model). This
equation can be justified from the quasi-likelihood point of view because

Xi(t)λi(t)
g′(µi(t))

=
∂

∂β(t)
E

[∫

E
zipi(dt× dzi)

∣∣∣Ft−

]
=

∂

∂β(t)
λi(t)µi(t)dt
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and

ψ(t)V (µi(t))λi(t)dt = var
[∫

E
zipi(dt× dzi)

∣∣∣Ft−

]
.

It is seen that the dispersion parameter ψ(t) can be cancelled in the estimating
equation (62.4.2) and the problem can be solved without knowledge of ψ(t).

62.4.2 Algorithm: IRLS with smoothing

The estimation procedure is a combination of the Iteratively Reweighted Least
Squares (IRLS) algorithm and kernel smoothing between steps of the IRLS.

The idea of smoothing between iteration steps is inspired by Martinussen
et al. (2002) who use the Newton–Raphson algorithm with smoothing for the
Cox model with time-varying coefficients. We need to smooth estimates of the
cumulative coefficients because terms like µi(t) entering in the estimating equa-
tion (62.4.2) are evaluated in the original (noncumulative) functions. Another
reason for smoothing is following. At any time, at most one individual expe-
riences event, and, thus, the information is limited. Therefore, it is impossible
to iterate at each event time separately. Instead, Martinussen et al. (2002)
propose to use smoothing in order to stabilize the procedure.

Having a piecewise constant function B̃(t) (the previous iteration), we use
the kernel smoother of the form

β̃(t) =
∫ τ

0

1
bβ

K

(
s− t

bβ

)
dB̃(s),

where K is a zero-mean unit-variance kernel supported on [−1, 1] (e.g., Epanech-
nikov) and bβ is a bandwidth parameter.

Now we can describe the estimation algorithm. Denote the previous itera-
tion B̃(t). The iterations go as follows:

(1) Smooth B̃(t) to obtain β̃(t).

(2) Perform one step of the IRLS for all the event times t ∈ [0, τ ]:

(2i) Compute the ‘working response’

r̃i(t)dt = η̃i(t)dt +
g′(µ̃i(t))

λ̂i(t)

[∫

E
zipi(dt× dzi)− λ̂i(t)µ̃i(t)dt

]
.

(Here we denote by a tilde quantities with β(t) replaced by β̃(t).)

(2ii) Compute the weights

Wi(t) =
λ̂i(t)

g′(µ̃i(t))2V (µ̃i(t))
.

Set W (t) = diag [Wi(t)].
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(2iii) Regress r̃(t)dt on X(t): obtain the new iteration dB̃(t) by the weighted
least squares

dB̃(t) =
[
X(t)TW (t)X(t)

]−1
X(t)TW (t)r̃(t)dt

= β̃(t)dt +
[
X(t)TW (t)X(t)

]−1
X(t)TW (t)

×diag
[
g′(µ̃i(t))

λ̂i(t)

][∫

E
zp(dt× dz)− λ̂(t)µ̃(t)dt

]
.

(λ̂(t)µ̃(t) is a componentwise product of the two vectors.)

(3) Go to (1).

Of course, the algorithm requires some initial values. For the first iteration, we
replace (1) by computing a locally polynomial estimate of β(t).

Our experience based on simulations shows that the number of iterations
about 15 is usually enough (often, even after less than 10 iterations the proce-
dure stabilizes).

Note that when the link is canonical (i.e., g′(µ)V (µ) = 1), the IRLS algo-
rithm coincides with the Newton–Raphson algorithm.

62.5 Final comments

Simulations show that the described procedure yields consistent estimates. The-
oretic results on consistency and asymptotic distribution of the estimates are
in preparation.

Further topics of our interest in this kind of models include development of
tests of time-constancy of the regression functions and study of semiparametric
models with some of the coefficients constant and some time-varying.
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63.1 Introduction

Both discriminant analysis and logistic regression can be used to predict the
probability of a specified categorical outcome using several available variables.

The primary objective of this study was to investigate if these two methods
of analysis result in the same patients’ characteristics that are indicative of
patients admitting with Acute Coronary Syndrome (ACS) who are likely to
die during their hospitalization. Secondarily, we sought to compare the ability
of two procedures to classify subjects into one of two groups (those dying in-
hospital and those surviving).

63.2 Materials and Methods

63.2.1 Linear Discriminant Analysis (LDA) and Logistic Re-
gression Analysis (LR)

Linear discriminant analysis (LDA) can be used to determine which variable dis-
criminates between two or more groups of subjects, and to derive a classification
model for predicting the group membership of new observations (Tabachnink
B.G, Fidell L.S (1996)). In the simplest type of LDA, two-group LDA, a lin-
ear discriminant function (LDF) that passes through the centroids of the two
groups can be used to discriminate between the two groups.
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The LDF is represented by equation:

LDF = b0 + b1xi1 + b2xi2 + . . . + bkxik

bj : the value of the jth coefficient, j = 1, . . . , k.
xij : the value of the ith case of the jth predictor.

The LDF can also be written in standardized form, in which each variable
is adjusted by subtraction of its mean value and division by its standard devia-
tion. The standardized coefficients allow you to compare variables measured on
different scales. Coefficients with large absolute values correspond to variables
with greater discriminating ability. The value of the standardized form of LDF
called discriminant score and it is used to assign objects to groups by using a
cut-off for this score. The probability of an event occurring for a given object
is calculated as:

P (Yi = 1|Xi) =
1

1 + (ebT Xi)−1

On the other hand, logistic regression is useful for situations in which we
want to be able to predict the presence or absence of a characteristic or outcome,
based on values of a set of predictor variables (Hosmer, D.W. and Lemeshow,
S. (1989)). Since the probability of an event must lie between 0 and 1 (for
the binary case), it is impractical to model probabilities with linear regression
techniques, because the linear regression model allows the dependent variable
to take values greater than 1 or less than 0. The logistic regression model is
a type of generalized linear model that extends the linear regression model by
linking the range of real numbers to the 0-1 range. Define by p1 the probability
of an object is belonging to group 1 and by p0 the probability of an object
belonging to group 0.

The form of the logistic regression model is:

zi = log(pi1/pi0) = b0 + b1xi1 + b2xi2 + . . . + bkxik

where
pi1/pi0 : is called the odds ratio
bj : the value of the jth coefficient, j = 1, . . . , k.
xij : the value of the ith case of the jth predictor

The parameters of the logistic model (b0 to b1) are derived by the method
of maximum likelihood. From the logistic regression model we can derive the
probability of an event occurring as:

P (Yi = 1|Xi) =
ebT Xi

1 + (ebT Xi)
=

1
1 + e−bT Xi

Using a probability cut-off of 0.5, we can classify an object to group 1 if
p1 > 0.5 and to group 0 if p1 < 0.5.
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Hence, the two methods do not differ in functional form; they only differ
in the estimation of coefficients. Moreover, there are basic differences in the
statistical assumptions, which underlie those two methods. With discriminant
analysis, the assumptions are: a) the data for the independent variables rep-
resent a sample from a multivariate normal distribution. Therefore, predictor
variables should be interval or ratio variables, b) The variance of the predic-
tors and the correlations among the predictors within each group should be the
same (equal variance/covariance matrices), c) The predictors are not highly
correlated with each other. With logistic regression the assumptions are that a
logistic regression (i.e. a sigmoidal dependency) exists between the probabilities
of group memberships and a linear function of the predictor variables. It is also
assumed that observations are independent.

It has been shown that LDA is a more appropriate method when explanatory
variables are normally distributed. In the case of categorized variables, LDA
remains preferable and fails only when the number of categories is really small
(2 or 3). The results of LR, however, are in all these cases constantly close
and a little worse than those of LDA. But whenever the assumptions of LDA
are not met, the use of LDA is not justified, while LR gives good results since
LR can handle both categorical and continues variables, and the predictors do
not have to be normally distributed, linearly related or of equal variance within
each group regardless of the distribution. (Pohar M, Blas M, Turk S (2004)).

63.2.2 Application in epidemiological data

In this study, we compared the results of discriminant and logistic regression in
predicting in-hospital mortality among patients presenting with a range spec-
trum of acute coronary syndromes. The independent variables which were
available as potential predictors for in-hospital mortality was history of coro-
nary heart disease (CHD), hypertension (HTN) and diabetes mellitus (DM),
sex, age, body mass index (BMI), smoking habits, initial level of systolic blood
pressure (SBP), the estimated creatinine clearance rate (CrCl), the maximum
level of MB isoenzyme of creatinine kinase (CPKMBmax) and the time between
the onset of symptoms and the admission at the hospital.

Initially, we entered in both discriminant and logistic regression models
only the predictors, which were statistically significant in univariate analysis.
We used the standardized canonical discriminant function coefficients for dis-
criminant analysis and z statistic (standardized coefficients, Wald statistic) for
logistic regression, to evaluate the contribution of each one variable to the dis-
crimination between two groups. The larger the standardized coefficients, the
greater are the contribution of the respective variable to the discrimination.
We, also, compared the sign and magnitude of coefficients. Secondarily, we
performed stepwise discriminant and logistic regression analysis including all
available predictors mentioned above. For discriminant analysis, the selection
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criterion for entry was the Wilks’ Lambda, with a value F-to-enter of 3.84 and
a value F-to-remove of 2.71. For logistic regression, was used the set of 0.05
significance levels for entry and 0.1 for removal of variables; these p values were
selected to approximate the F values used in the discriminant analysis. We
compared the variables selected, the order of selection and the sign and magni-
tude of coefficients. Equality of the covariance matrices was checked with the
Box’s M test and it was revealed that they were not equal (p < 0.001), thus
this assumption for discriminant analysis was not met.

Response operating characteristics (ROC) curves were plotted for each model.
An ROC curve graphically displays sensitivity and 100% minus specificity (false
positive rate) at several cut-off points. By plotting the ROC curves for two
models on the same axes, one is able to determine which test is better for clas-
sification, namely, that test whose curve encloses the larger area beneath it. All
analyses were performed using the SPSS version 13.0 software.

63.3 Results

Univariate analysis revealed that the CPKMBmax levels, the SBP, the CrCl,
gender, age, and DM contribute significantly in the discrimination of patients
in those dying during their hospitalization and those surviving. Using in dis-
criminant and logistic regression only these variables; both techniques revealed
that CPKMBmax levels, SBP and DM were the most important contributors
(Table 1). Moreover, we observe that the direction of the relationships was
the same and there were not extreme differences in the magnitude of the coef-
ficients. The correct classification rate was 79% for discriminant analysis and
96.6% for logistic regression. When we used not equal prior probabilities for
the two groups the correct classification rate was increased in 96.3%, however
in this case decreased the rate of correct classification of patients who died.
Figure 1, shows the ROC curves of the aforementioned models, indicating that
the logistic model is slightly superior in its classification ability.

The stepwise approach revealed that both models selected the same vari-
ables, with the same order of entry (Table 2). Furthermore, the sign of the
coefficients were the same and a slight difference was observed in the magnitude
of the coefficients. The correct classification rate was 81.4% for discriminant
analysis and 96.8% for logistic regression. Figure 2, shows that the logistic
model is slightly superior in its classification ability compared to discriminant
analysis model.

63.4 Discussion

In general, results from the logistic model agreed with those of discriminant
analysis. Both techniques selected the same variables when we performed the
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stepwise approach, while entering all significant variables from the univariate
analysis in these two methods, only slight differences were observed in the or-
der of predictors (from the most important for the discrimination between the
two groups to the less important) between those methods. The overall correct
classification rate was good for both, and either would be useful for the pre-
diction of the in-hospital mortality of patients presenting with acute coronary
syndromes. Moreover, although the assumption of equal covariance was not
hold in this dataset, both methods had similar results.

In conclusion, for this particular problem the logistic regression resulted in
the same model, as did discriminant analysis. However, given the slightly bet-
ter performance of logistic regression, it is preferable to discriminant analysis,
particularly when the assumptions are not hold.

Table 1: Variables, standardized and un-standardized coefficients for the 
discriminant analysis model and logistic regression models. 

Logistic Regression Discriminant analysis 

Predictors b coefficients z- statistic 
Unstandardized

coefficients 
Standardized
coefficients 

CPKMBmax 0.005 4.86 0.007 0.649 
SBP -0.021 3.49 -0.015 -0.390 
DM 1.076 3.22 0.812 0.375 
CrCl -0.020 2.55 -0.04 -0.196 
Age 0.04 2.14 0.029 0.372 
Sex -0.63 1.87 -0.625 -0.264 

DM: history of diabetes mellitus, SBP: initial level of systolic blood pressure, CrCl: 
the estimated creatinine clearance rate, CPKMBmax: the maximum level of MB 
isoenzyme of creatinine kinase  

Table 2: Variables, standardized and un-standardized coefficients for the 
discriminant analysis model and logistic regression models, after stepwise 
approach.

Logistic Regression Discriminant analysis 

Predictors b coefficients z- statistic 
Unstandardized

coefficients 
Standardized
coefficients 

CPKMBmax 0.005 5.22 0.007 0.692 
Age 0.071 3.96 0.036 0.457 
SBP -0.027 3.63 -0.017 -0.411 
Sex -0.938 2.48 -0.805 -0.340 
DM 0.901 2.42 0.594 0.274 
DM: history of diabetes mellitus, SBP: initial level of systolic blood pressure, 
CPKMBmax: the maximum level of MB isoenzyme of creatinine kinase  
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Figure 1: Receiver operating characteristics (ROC) curves for the discriminant 
analysis model and the logistic regression model.  
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Figure 2: Receiver operating characteristics (ROC) curves for the discriminant 
analysis model and the logistic regression model after stepwise approach.  
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A Nonparametric Test for an Accelerated Life
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Abstract: We consider the problem of testing whether survival data can be
modelled by an accelerated life time model with a prespecified parametric in-
fluence function. Using the relation of an accelerated life time model to a
regression model an asymptotic α-test of L2-type is proposed.
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64.1 The Problem

We consider a random life time T , which depends on some explanatory variables
or covariate X. Such covariate is for example a dose of a drug, temperature or
stress. The problem is to draw conclusions about the conditional distribution
of T given the covariate, i.e. about the probability that an individual survives
the time t when X takes the value x

S(t|x) = P(T > t|X = x)

on the basis of observations (T1, X1), . . . , (Tn, Xn). The function S is the condi-
tional survival function. Note that we assume that the covariates are random.

A popular model for describing the time of survival depending on a covariate
is the accelerated life time model, which describes the following situation: Let T0

be a basic life time whose survival function S0 does not depend on the covariate
x, and let ψ(·) be the function that depicts the influence of the covariates x. If
X reduces the life time T by a factor ψ(X) we can write

T =
T0

ψ(X)

367
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and the survival function of T is given by

S(t|x) = P(T > t|X = x) = P(T0 > tψ(X)|X = x) = S0(tψ(x)). (64.1.1)

In this talk we will consider the problem of testing whether S satisfies the
accelerated life time model with a prespecified parametric function ψ(·; ϑ). For
this purpose define the following set of accelerated life time survival functions:

S = {S(·|·) : S(t|x) = S0(tψ(x;ϑ)), S0 ∈ G, ϑ ∈ Rd}

where G is the set of all continuous survival functions and ψ(·; ϑ) is a (known)
function depending on an unknown d-dimensional parameter ϑ. For example,
ψ(·; ϑ) can be a polynomial of degree d. The test problem has the form

H : S ∈ S against K : S /∈ S. (64.1.2)

The proposed test procedure is based on the following well-known fact: Set
µ = E(log T0), then a random variable T with survival function (64.1.1) satisfies
the equation

log T = − log(ψ(X)) + µ + ε

where the random error ε has expectation zero and a variance σ2 which is
independent of X. In other words: The relationship between Y = log T and X
is described by the regression function

m(x) = E(Y |X = x) = − log(ψ(x)) + µ.

Using this relation the test problem (64.1.2) can be re-formulated into

H̃ : m ∈M against K̃ : m /∈M, (64.1.3)

where M = {m : m(x) = − log ψ(x;ϑ)+µ, ϑ ∈ Rd, µ ∈ R} is the parametric
class of regression functions.

Thus, we can apply results obtained for testing a regression function in
the nonparametric setting to solve the test problem in the underlying survival
model.

64.2 The Test Procedure

As test statistic for testing (64.1.3) one has to choose a distance between a good
estimator for m ∈M and a good estimator for m /∈M, in other words, a good
parametric estimator and a good nonparametric estimator based on smoothing
methods.

Let us start with the parametric estimator. It seems to be useful to estimate
the unknown parameters in our regression model by the least squares method,
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i.e. the estimators µ̂ and ϑ̂ of the parameters of the hypothetical regression are
solutions of

min
ϑ,µ

n∑

i=1

(log Ti − µ + log ψ(Xi; ϑ))2 .

Thus, m ∈M is estimated by

m̂n(·, ϑ̂) = − log ψ(·; ϑ̂) + µ̂.

To characterize the regression under the alternative we choose an estimator
which is suitable for all possible regression functions, i.e. we apply nonparamet-
ric techniques. Nonparametric regression estimators can be written as weighted
average of the response variables Yi, here Yi = log Ti:

m̃n(x) =
n∑

i=1

Wbni(x,X1, . . . , Xn)Yi

Roughly speaking, the weights Wbni are chosen such that Yi gets a large weight,
if the corresponding Xi is near the point x, and this, what is ”near” is controlled
by the smoothing parameter bn. There are many, many papers on nonparamet-
ric estimation of the regression function; as examples we mention Härdle (1990),
Fan and Gijbels (1996).

For simplicity of presentation we will suppose that the covariate X is one-
dimensional. Furthermore, as nonparametric estimator for m we take the clas-
sical Nadaraya-Watson kernel estimator, which is widely investigated. The
weights are given by

Wbni(x,X1, . . . , Xn) =
K

(
x−Xi

bn

)

∑n
j=1 K

(
x−Xj

bn

)

K : R→ R is a kernel function, and bn is a sequence of bandwidths tending to
zero as n →∞.

Under suitable conditions on the distribution of the underlying random vari-
ables, on the smoothness of the regression function, on the kernel and the band-
width several asymptotic properties, such as consistency, asymptotic expression
for the mean squared error and limit theorems, are proved. Two of these results
are essential for the test procedure considered here: Nonparametric estimators
are biased estimators! The distribution of the standardized integrated squared
error converges to the standard normal distribution! This leads to the following
approach:

- As test statistic the integrated squared distance between the parametric
and the nonparametric estimator is proposed.
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- Instead of the difference between m̂n(·, ϑ̂) and m̃n we choose the distance
between m̃n and the smoothed version

m̃H(x) :=
n∑

i=1

Wbni(x,X)m̂n(Xi; ϑ̂) X = (X1, . . . , Xn)

of the parametric estimator m̂n to characterize the hypothesis H. Doing
this we avoid problems of the bias.

Thus, a L2-type test statistic is defined by

Qn =
∫ (

m̃n(x) − m̃H(x)
)2

a(x) dx

=
∫ ( n∑

i=1

Wbni(x,X)
(
Yi − m̂n(Xi; ϑ̂)

))2
a(x) dx.

Here a is a known weight function, which is introduced to control the region of
integration.

To construct the test procedure one has to derive the distribution of Qn

under the null hypothesis. It is impossible to do this exactly. One possibility is
to consider the limit distribution of Qn and to formulate an asymptotic α-test.
Based on results of the asymptotic behavior of quadratic forms it was shown
that the standardized Qn is asymptotically normally distributed, that is, under

- smoothness assumptions on the regression function m and the density
function of the covariates Xi

- regularity conditions on the kernel K and the bandwidth bn

- conditions ensuring the consistency of the l.s.e. for ϑ

we have
nb1/2

n (Qn − en) → N(0, τ2). (64.2.4)

Here

en = (nbn)−1σ2

∫
g−1(x) a(x) dxκ1 and τ2 = 2σ2

∫
g−2(x)a2(x) dxκ2,

where κ1 =
∫

K2(x) dx and κ2 =
∫

(K ∗K)2(x) dx are constants depending
on the kernel K and g denotes the density of Xi. This result can be found
in several papers and books about nonparametric regression estimation. A
detailed formulation is given in Liero (1992), see also Härdle and Mammen
(1993).

Now, let us consider the test problem: To apply (64.2.4) for the construction
of the test we have to replace the unknown term σ2 and the marginal density
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g in en and τ2 by suitable estimators. For the estimation of g one should use a
nonparametric kernel estimate, for the estimation of σ2 one can apply a method
for estimating the variance in a homoscedastic nonparametric regression model
with random design considered in Liero (2003).

Suppose, we have chosen good estimators σ̂2 and ĝn for these unknown
terms, then an asymptotic α- test is given by the rule:

Reject the null hypothesis m ∈M respectively S ∈ S if

Qn ≥ (nb1/2
n )−1 τ̂n zα + ên,

where

ên = (nbn)−1σ̂2
n

∫
ĝ−1
n (x) a(x) dxκ1, τ̂2

n = 2 σ̂2
n

∫
ĝ−2
n (x)a2(x) dxκ2,

and zα is the (1− α)-quantile of N(0, 1).

64.3 Closing Remarks and Open Problems

The procedure given above is a proposal for testing whether the underlying data
can be modelled by an accelerated life time model. To justify this approach
one has to study properties of this test. One important point is the power
under local alternatives. The asymptotic behavior of the power under local
alternatives in the regression model is investigated. These results have to be
translated into results for the power under alternatives defined in the survival
model.

Secondly, here we considered the uncensored case. Very often in survival
analysis we have censored data. Is there an appropriate modification of the
procedure for this case?

And finally, it is not clear, whether the approximation of the distribution
of Qn by its limit distribution is sufficiently good. So, the question arises,
whether resampling methods are a good alternative for the determination of
critical values for the test in practical situations.
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Abstract: The paper considers reliability measures for multi-state system
where the system and its components can have different performance levels
ranged from perfect functioning up to complete failure. The suggested ap-
proach presents a generalized reliability measure as a functional of trajectories
of two stochastic processes - output performance of the entire multi-state sys-
tem and corresponding demand. It is shown how the commonly used reliability
measures can be derived from this functional. The procedure for the system
reliability measures computation is based on the Markov Reward Model. Nu-
merical example is presented in order to illustrate the approach.
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ward model

65.1 Introduction

Traditional binary-state reliability models allow for a system and its compo-
nents only two possible states: perfect functionality (Up) and complete failure
(Down). However, many real-world systems are composed of multi-state com-
ponents, which have different performance levels and for which one cannot
formulate an ”all or nothing” type of failure criterion. Failures of some system
elements lead in these cases only to the performance degradation. Such systems
are called Multi-state Systems (MSS). The traditional reliability theory, which
is based on a binary approach, has recently been extended by allowing com-
ponents and system to have an arbitrary finite number of states. According
to generic Multi-state System (MSS) model (Lisnianski and Levitin (2003)),
any system element j ∈ {1, 2, . . . , n} can have kj different states correspond-
ing to the performance rates, represented by the set gj =

{
gj1, gj2, . . . , gjkj

}
,

where gji is the performance rate of element j in the state i, i ∈ {1, 2, . . . , k}.
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The performance rate Gj(t) of element j at any instant t ≥ 0 is a discrete-state
continuous-time stochastic process that takes its values from gj : G(t) ∈ gj. The
system structure function G(t) = φ(G1(t), . . . ,Gn(t)) produces the stochastic
process corresponding to the output performance of the entire MSS. In practice
a desired level of system performance (demand) also can be represented by a
discrete-state continuous-time stochastic process W (t). The relation between
the MSS output performance and the demand represented by two correspond-
ing stochastic processes should be studied in order to define reliability measures
for the entire MSS.

The list of MSS reliability measures, that were introduced till now, one
can find in Aven (1993). In practice the most commonly used MSS reliability
measures are probability of failure-free operation during time interval [0, t] or
MSS Reliability Function R(t), MSS instantaneous (point) availability, mean
time to MSS failure, mean accumulated performance deficiency for a fixed time
interval [0, t], etc.

In the paper generalized approach for the computation of main MSS reli-
ability measures was suggested. The approach is based on application of the
Markov Reward Model. The main MSS reliability measures can be found by
corresponding rewards definitions for this model and then by using standard
procedure for finding expected accumulated reward during time interval [0, t]
as a solution of system of differential equations.

65.2 Model description

65.2.1 Generalized MSS Reliability Measure

The MSS behavior is characterized by its evolution in the space of states. The
entire set of possible system states can be divided into two disjoint subsets cor-
responding to acceptable and unacceptable system functioning. MSS entrance
into the subset of unacceptable states constitutes a failure. The system state
acceptability depends on the relation between the MSS output performance and
the desired level of this performance - demand W (t) - that is determined out-
side of the W (t) is also a random process that can take discrete values from the
set w = {w1, . . . , wM}. The desired relation between the system performance
and the demand at any time instant t can be expressed by the acceptability
function Φ(G(t),W (t)). In many practical cases, the MSS performance should
be equal or exceed the demand. So, in such cases the acceptability function
takes the following form

Φ(G(t),W (t)) = G(t)−W (t) (1)

and the criterion of state acceptability can be expressed as Φ(G(t),W (t)) ≥ 0.
A general expression defining MSS reliability measures can be written in the
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following form
R = E{F [Φ(G(t), W (t))]} (2)

where E - expectation symbol, F - functional that determines corresponding
type of reliability measure, Φ - acceptability function.

Many important MSS reliability measures can be derived from the expres-
sion (2) depending on functional F that may be determined by different ways.
It may be a probability Pr{Φ(G(t),W (t)) ≥ 0} that within specified time in-
terval [0, t] the acceptability function (1) will be nonnegative. This probability
characterizes MSS availability. It may be also a time up to MSS first entrance
into the set of unacceptable states, where Φ(G(t), W (t)) < 0, a number of such
entrances within time interval [0, t] etc. If the acceptability function is defined
as F (Φ(G(t),W (t)) = W (t) − G(t), if W (t) > G(t) and F (Φ(G(t),W (t)) = 0

if W (t) ≤ G(t) a functional F (Φ(G(t), W (t)) =
t∫
0

Φ(G(t),W (t))dt will char-

acterize an accumulated performance deficiency during time interval [0, t]. In
the paper generalized approach for main reliability measures computation is
suggested.

65.2.2 Markov Reward Model: General Description

General Markov reward model considers the continuous time Markov chain with
set of states {1, . . . , k} and transition intensity matrix a = |aij |, i, j = 1, . . . , k.
It is assumed the while the process is in any state i during any time unit
some money rii should be paid. It is also assumed that if there is a transition
from state i to state j the amount rij will be paid. The amounts rii and rij

are called rewards. They can be negative while representing loss or penalty.
The main problem is to fined total expected reward accumulated up to time
instant T under specific initial conditions. Let Vi(t) be the total expected
reward accumulated up to time t at state i. According to Howard (1960), the
following system of differential equations must be solved under initial conditions
Vi(0) = 0, i = 1, . . . , k in order to find the total expected reward:

dVi(t)
dt

= rii +
k∑

j=1
j 6=i

aijrij +
k∑

j=1

aijVj(t), i = 1, ..., k (3)

65.2.3 Rewards Determination for MSS Reliability Computa-
tion

MSS instantaneous (point) availability A(t) is the probability that the MSS at
instant t > 0 is in one of the acceptable states:

A(t) = Pr{Φ(G(t),W (t)) ≥ 0}.
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A(t) is defined as mean part of time, when the system is staying in the set of
acceptable states during time interval [0, t]. In order to assess A(t) for MSS
the rewards in matrix r for MSS model should be determined by the following
manner.

• The rewards associated with all acceptable states should be defined as 1.

• The rewards associated with all unacceptable states should be zeroed as
well as all rewards associated with transitions.

The mean reward VK(t) accumulated during interval [0, t] will define a part of
time that MSS will be in the set of acceptable states in the case when the state
K is the initial state. This reward should be found as a solution of system (3).
After solving the (3) and finding VK(t), MSS instantaneous availability can be
obtained as A(t) = VK(t)/t .

Mean number Nf (t) of MSS failures during time interval [0, t]. This measure
can be treated as mean number of MSS entrances the set of unacceptable states
during time interval [0, t]. For its computation the rewards associated with
each transition from the set of acceptable states to the set of unacceptable
states should be defined as 1. All other rewards should be zeroed. In this
case mean accumulated reward VK(t) will define mean number of entrances in
unacceptable area during time interval [0, t] : Nf (t) = VK(t) .

Mean Time To Failure (MTTF) is the mean time up to the instant when
the MSS enters the subset of unacceptable states for the first time. For its
computation the combined performance-demand model should be transformed
- all transitions that return MSS from unacceptable states should be forbidden,
because for this case all unacceptable states should be treated as absorbing
states.

In order to assess MTTF for MSS the rewards in matrix r for the trans-
formed performance-demand model should be determined by the following man-
ner.

• The rewards associated with all acceptable states should be defined as 1.

• The reward associated with unacceptable (absorbing) states should be
zeroed as well as all rewards associated with transitions.

In this case mean accumulated reward VK(t) will define mean time accumulated
up to the first entrance into the subset of unacceptable states or MTTF.

Probability of MSS failure during time interval [0, t]. Model should be trans-
formed as in the previous case - all unacceptable states should be treated as
absorbing states and, therefore, all transitions that return MSS from unaccept-
able states should be forbidden. Rewards associated with all transitions to the
absorbing state should be defined as 1. All other rewards should be zeroed.
Mean accumulated reward VK(t) will define for this case probability of MSS



Markov Reward Model for Multi-State System Reliability Assessment 377

failure during time interval [0, t]. Therefore, MSS reliability function can be
obtained as R(t) = 1− VK(t).

65.3 Numerical Example

Consider the Air conditioning system, used in hospital. The system consists
of two 5 years old main conditioners and one conditioner in cold reserve. The
reserve conditioner begins to work only when one of the main conditioners has
failed. Conditioners failure and repair rates: λ = λ? = 10, µ = µ? = 100. The
state-space diagram for this system is presented in Fig. 1.

constant demand level w=1. Under this condition there is only one unacceptable 

Fig. 1 System with two on-line conditioners 
and one conditioner in cold reserve

State 6 - The 2 main conditioners are on-line and the reserved conditioner
is available. The system performance g6 = 2. State 5 - One of the main condi-
tioners is failed and replaced by reserved conditioner. The system performance
g5 = 2. State 4 - The second main conditioner is failed, only reserved conditioner
is on-line. The system performance g4 = 1. State 3 - The reserved conditioner
is failed, only one main conditioner is on-line. The system performance g3 = 1.
State 2 - The reserved conditioner is failed, two main conditioners are on-line.
The system performance g2 = 2. State 1 - Full system failure. The system
performance g1 = 0.
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We shall find MSS reliability measures for constant demand level w = 1.
Under this condition there is only one unacceptable state - state 1. The tran-
sition intensity matrix is as follows.

α =

������������

−(2µ + µ?) 0 2µ µ? 0 0
0 −(2λ + µ?) 2λ 0 0 µ?

λ µ −(λ + µ + µ?) 0 µ? 0
λ? 0 0 −(λ? + 2µ) 2µ 0
0 0 λ? λ −(λ + λ? + µ) µ
0 0 0 0 2λ −2λ

������������

(4)

In order to find the MSS instantaneous (point) availability A(t) and the mean
total number of system failures Nf (t) we should present the reward matrixes
rA and rN accordingly in the following form

rA = |rij | =

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0
0 0 0 1 0 0
0 0 0 0 1 0
0 0 0 0 0 1

∣∣∣∣∣∣∣∣∣∣∣∣

rN = |rij | =

∣∣∣∣∣∣∣∣∣∣∣∣

0 0 0 0 0 0
0 0 0 0 0 0
1 0 0 0 0 0
1 0 0 0 0 0
0 0 0 0 0 0
0 0 0 0 0 0

∣∣∣∣∣∣∣∣∣∣∣∣

(5)

By solving the system of differential equations (3) with transition intensity
matrix (4) and reward matrices (5) we can obtain MSS point availability and
mean total number of system failures. The results of calculation are presented
in Fig.2 and Fig. 3.
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Fig. 2 Calculation the MSS instantaneous 
(point) availability 

Fig. 3 Mean Total Number of System 
Failures

65.4 Conclusions

1. Generalized reliability measure for MSS that is an expectation of functional
from two stochastic processes - MSS output performance G(t) and demand
W(t) - was suggested in the paper. It was shown that many of usually used
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in practice MSS reliability measures can be easily derived from this generalized
measure.
2. The universal method was suggested to compute main MSS reliability mea-
sures. The method is based on different reward matrix determination for MSS
model that is interpreted as Markov reward model.
3. The approach suggested is well formalized and suitable for practical applica-
tion in reliability engineering. 4. The numerical example is presented in order
to illustrate the suggested approach.
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Unbiased Estimators for the Multivariate Pólya

and Wishart Distributions
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Abstract: A generalization of the classical random sampling scheme is sug-
gested. Unbiased estimators for functions of unknown parameters for the mul-
tivariate Pólya, and the Wishart distributions are derived.

Keywords and phrases:Unbiased estimators, multivariate Pólya distribution,
Wishart distribution

66.1 Introduction

Problems of unbiased estimation are typically solved by using a sample of n
independent identically distributed (i.i.d.) random variables or vectors (see,
e.g., Johnson et al. (1997), Kotz et al. (2003), Nikulin and Voinov (1996),
Voinov and Nikulin (1996)). This sampling strategy may be called the classical
random sampling. Unfortunately, this scheme is inapplicable for many discrete
probability distributions. In particular, it is inapplicable for the multivariate
Pólya distribution, since for n independent Pólya distributed vectors their sum
will not follow the Pólya distribution.
If a family of distributions possesses a complete sufficient statistic, the classical
random sampling scheme can be generalized. In this talk a generalization of the
classical random sampling scheme is suggested. In some sense, this generaliza-
tion is related to random walks in the space of a sufficient statistic ( see, e.g.,
Lumelskii (1973)), Lumelskii (1998)) however, the method can be introduced
without bringing the concept of random walks altogether. We consider some
applications of the above concept to the multivariate Pólya, and the Wishart
distributions.
Basing on the proposed generalization many new minimum variance unbiased
estimators for functions of unknown parameters for the multivariate Pólya and
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the Wishart distributions are constructed.

66.2 Multivariate Pólya distribution

The multivariate Pólya distribution is an important probability models, which
has numerous applications (see, Janardan and Patil (1972), Johnson et al.
(1997), Lumelskii (1973), and others). For the bibliography and applications of
this distribution see the monograph Johnson et al. (1997).
The multivariate Pólya distribution with parameters m, p and λ is defined as

P (x; m,p, λ) =
(

m

x1, ..., xk

) ∏k
i=1 p

[xi;λ]
i

1[m;λ]
, (66.2.1)

where

a[r;λ] =
r−1∏

h=0

(a + λh); a[0;λ] = 1,

p = (p1, p2, . . . , pk)
′
, pk = 1−

k−1∑

i=1

pi, 0 < pi < 1,

x is a random vector x = (x1, x2, . . . , xk)
′
such that xk = m−∑k−1

i=1 xi, λ is a
real valued constant (pi + λ(m− 1) > 0 for all i) , m and xi being nonnegative
integers.
Suppose a random vector U = (U1, ..., Uk)

′
, Uk = M −∑k−1

i=1 Ui, based on M >
m observations from the population distribution (66.2.1) is given. Parameters
m, M and λ are considered to be known. The vector U obviously possesses the
multivariate Pólya sampling distribution

P (U; M,p, λ) =
(

M

U1, ..., Uk

) ∏k
i=1 p

[Ui;λ]
i

1[M ;λ]
. (66.2.2)

Thus the distribution of U under the discussed sampling scheme coincides with
the population distribution (66.2.1) with parameter m replaced by M , the total
number of observations from (66.2.1). Since the multiplier

∏k
i=1 p

[Ui;λ]
i depends

on unknown parameters pi, i = 1, ..., k, through the vector U, from the defini-
tion of a sufficient statistic it follows that the random vector U is the sufficient
for pi statistic. Assuming that the parametric space ∆(p) of the family (66.2.2)
contains a k − 1-dimensional parallelepiped the following is valid.

Proposition 66.2.1 The UMVUE
∧
P (x; m,p, λ) of the probability (66.2.1) is

∧
P (x; m,p, λ) =

∏k
i=1

(
Ui
xi

)
(
M
m

) . (66.2.3)
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If λ = 0, then (66.2.1) represents the multinomial probability distribution

P (x; m,p) =
(

m

x1, ..., xk

) k∏

i=1

pxi
i . (66.2.4)

If

pi =
θi

N
, 0 ≤ θi < N,

k∑

i=1

θi = N, λ = − 1
N

,

then (66.2.1) reduces to the multivariate hypergeometric probability distribu-
tion

Pθ(x; m) =

∏k
i=1

(
θi
xi

)
(
N
m

) ,

The UMVUE (66.2.3) does not depend on parameter λ, which implies the fol-
lowing.

Corollary 66.2.1 Let the random vector U = (U1, ..., Uk)
′
have the multino-

mial distribution P (U; M,p) or the multivariate hypergeometric distribution
Pθ(U; M), then their UMVUEs are defined by the same formula (66.2.3).

Note that (see, Nikulin and Voinov (1996), Voinov and Nikulin (1996))) for the
multinomial distribution the classical random sampling scheme is applicable:
M = n×m, U =

∑n
j=1 Xj ; Ui =

∑n
j=1 Xij . U has a multinomial distribution

P (U; n×m,p). Using (66.2.3), we obtain the UMVUE in the form

∧
P (x; m,p) =

k∏

i=1

(
Ui

xi

)[(
nm

m

)]−1

. (66.2.5)

Example 66.2.1 Let independent random vectors X and Y have multivariate
Pólya distributions (66.2.1) with parameters mx, px, λx and my, py, λy, dimen-
sions of vectors X, a and Y, b being kx and ky, respectively. Given statistics

Ux, Uy, Mx > mx, My > my, we can construct the UMVUE
∧
P (ξ1 > 0) of the

probability

P (a
′
X+b

′
Y+c > 0) ≡ P (ξ1 > 0) =

∑

a
′
x+b

′
y+c>0

P (x;mx,px, λx)P (y;my,py, λy).

as
∧
P (ξ1 > 0) =

∑

a′x+b′y+c>0

∧
P (x; mx,px, λx)

∧
P (y; my,py, λy), (66.2.6)

where estimators
∧
P (x;mx,px, λx) and

∧
P (y; my,py, λy) are defined by formula

(66.2.3).
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If kx = ky = 1, λx = λy = 0 and c = 0, a = 1, b = −1, then the probability
R ≡ P (ξ1 > 0) = P (X < Y ) has the following form:

R =
m∑

x=0

my∑

y=x+1

(
mx

x

)
px

x(1− px)mx−x

(
my

y

)
py

y(1− py)my−yh(my − x− 1),

where m = min(mx,my) and h is the Heaviside function h(z) = 1, if z ≥ 0 and
h(z) = 0, if z < 0.
The UMVUE for R is defined by the formula:

∧
R=

m∑

x=0

my∑

y=x+1

(
mx

x

)(
Mx−mx

Ux−x

)
(
Mx

Ux

)
(
my

y

)(My−my

Uy−y

)
(My

Uy

) h(my − x− 1).

Example 66.2.2 Let U be a random vector, which has the multivariate Pólya
distribution P (U;M,p, λ). Let us construct unbiased estimators of the proba-
bility pi and the variance V ar(p̂i) , i = 1, ..., k, where M and λ are known, and
M > 2. Assuming in (66.2.1) m = 1 and x be such a vector, that its i-th compo-
nent is equal to one, while other components vanish, we have P (x; 1,p, λ) = pi.
According to the formula (66.2.3), the unbiased estimator of pi is

∧
pi=

Ui

M
. (66.2.7)

Similarly, we have

P (x; 2,p, λ) =
pi(pi + λ)

1 + λ
=

1
1 + λ

[
pi

2 + piλ
]
.

By using (66.2.3) and (66.2.7) we obtain the unbiased estimator for pi
2 as

follows:

∧
pi

2= (1 + λ)
Ui(Ui − 1)
M(M − 1)

− λ
Ui

M
. (66.2.8)

Applying (66.2.7) and (66.2.8) we obtain the estimator V̂ ar(p̂i) of V ar(p̂i) as

V̂ ar(p̂i) = (p̂i)2−
∧

pi
2=

Ui(M − Ui)(1 + Mλ)
M2(M − 1)

. (66.2.9)

Unlike (66.2.3), the estimator (66.2.9) depends on parameter λ.

66.3 The Wishart probability distribution

The notation
X ∼ W (Σ, k, r), r > k,
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means that a random k×k positive definite matrix X has the Wishart distribu-
tion with covariance matrix Σ and r degrees of freedom (see, Leung and Chan
(1998) and others).
Its density function is

w(x;Σ, k, r) = C(k, r)[detΣ]−
r
2 [detx]

r−k−1
2 exp{−0.5tr(xΣ−1)}, (66.3.10)

where

C(k, r) =


2

rk
2 π

k(k−1)
4

k∏

j=1

Γ
(

r + 1− j

2

)

−1

.

Everywhere below we assume that the properties of the parametric space imply
completeness of the family of the Wishart distributions.

Proposition 66.3.1 Let positive definite random matrix Y have the Wishart
distribution W (Σ; k, N) and N > r + k + 1. Then the UMVUE of density
function (66.3.10) has the following form:

∧
w (x;Σ, k, r) =

C(k, r)C(k, N − r) [detx]
r−k−1

2 [det(Y − x)]
N−r−k−1

2

C(k,N) [detY]
N−k−1

2

, (66.3.11)

if matrices x,Y,Y − x are positive definite (p.d.), and zero otherwise.

Corollary 66.3.1 Let X1,X2, ...,Xn be i.i.d sample k × k random matrices,
Xi ∼ W (Σ, k, r), i = 1, ..., n. Under this classical random sampling scheme the
UMVUE (66.3.11) becomes

∧
w (x;Σ, k, r) =

C(k, r)C(k, (n− 1)r) [detx]
r−k−1

2 [det(Yn − x)]
(n−1)r−k−1

2

C(k, nr) [detYn]
nr−k−1

2

,(66.3.12)

where the sufficient statistic

Yn =
n∑

i=1

Xi ∼ W(Σ, k, nr).

Consider the problem of unbiased estimating of the moment generating function
for the Wishart probability distribution. To the best of our knowledge it is also
an open problem in the case of the classical random sampling scheme.

Proposition 66.3.2 The UMVUE
∧
H (Ω) of the moment generating function

H(Ω) = EΣ exp tr(ΩX) =
∫

A
exp{tr(Ωx)}w(x;Σ, k, r)dx, (66.3.13)
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of the Wishart distribution is

∧
H (Ω) = 1F1

(
r

2
;
N

2
;−UYU

′
)

, (66.3.14)

where 1F1 is the confluent hypergeometric function of the matrix argument,
Ω1 = U

′
U = −Ω is a positive definite matrix, and Y is a sufficient statistic

for parameters of (66.3.10).
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Fitting Frailty Models via Linear Mixed Models

Using Model Transformation

Goele Massonnet, Paul Janssen and Tomasz Burzykowski

Hasselt University, Center for Statistics, Agoralaan 1, B-3590 Diepenbeek,
Belgium

Abstract: Frailty models are widely used to model clustered survival data.
Classical ways to fit frailty models are likelihood based. We propose an al-
ternative approach in which the original problem of ‘fitting a frailty model’ is
reformulated into the problem of ‘fitting a mixed model’ using model trans-
formation. Based on a simulation study, we show that the proposed method
provides a good and simple alternative for fitting frailty models for data sets
with a sufficiently large number of clusters and moderate to large sample sizes
within clusters.

Keywords and phrases: Frailty model, random treatment by center interac-
tion, model transformation, linear mixed model

67.1 Introduction

Frailty models are widely used to fit clustered survival data. Data from mul-
ticenter clinical trials are a typical example of clustered data; data within
the same center all share the same random cluster effect. The shared frailty
model provides an appropriate way to describe the within cluster dependence
of outcomes. Classical ways to fit frailty models are likelihood based: EM-
algorithm (Klein, 1992), penalized partial likelihood (Therneau and Grambsch,
2000; McGilchrist, 1993), Bayesian analysis (Ducrocq and Casella, 1996). In re-
cent papers more complex frailty models have been studied. Within the clinical
trials context typical examples are frailty models with a random center effect
and a random treatment by center interaction. To fit such frailty models, the
likelihood based methods mentioned above have been adapted to cover this ex-
tra complexity in the data: EM algorithm (Vaida and Xu, 2000; Cortinas and
Burzykowski, 2005), penalized partial likelihood (Ripatti and Palmgren, 2000),
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Bayesian approach (Legrand et al., 2005). We propose an alternative way to
fit frailty models. We start from the following observation: the integral of the
weighted (over time) conditional cumulative loghazard depends in a linear way
on the random effects describing the cluster and/or the interaction heterogene-
ity and on the factor levels and/or covariates. Using the data within a cluster
we can estimate the integral using nonparametric estimation techniques. Con-
sidering the estimated integral as a response we can reformulate the original
problem of ’fitting a frailty model’ into the problem of ’fitting a mixed model’.

67.2 From Frailty Model to Mixed Model

67.2.1 Model formulation

We consider clustered survival data with K different centers, center i having
ni patients. For each patient we observe the minimum of a failure time T 0

ij

and a right censoring time Cij independent of T 0
ij ; as notation we use Tij =

min(T 0
ij , Cij) for the observed time and δij for the censoring indicator which

is equal to 1 if Tij = T 0
ij and 0 otherwise. For each patient, we also have the

binary variable xij representing the treatment to which the patient has been
randomized with xij = 0 if the patient is in the standard arm and xij = 1 if
the patient is in the experimental arm.
The following mixed-effects proportional hazards model is considered:

λij(t) = λ0(t) exp (b0i + (β + b1i)xij) , (67.2.1)

where λ0(t) represents the unspecified baseline hazard at time t, β is the fixed
overall treatment effect, b0i is the random center effect and b1i is the random in-
teraction effect providing information on how the treatment effect within center
i deviates from the overall treatment effect captured by the regression coeffi-
cient β. The random effects b0i and b1i are assumed to follow zero-mean normal
distributions. The variance-covariance matrix of the vector of random effects
bT = (b01, b11, . . . , b0i, b1i, . . . , b0K , b1K) takes the form

G =
(

σ2
0 σ01

σ01 σ2
1

)
⊗ IK . (67.2.2)

In absence of a random treatment by center interaction and in absence of co-
variates, model (67.2.1) reduces to the shared frailty model

λi(t) = λ0(t) exp(b0i). (67.2.3)

In (67.2.3) b0i, i = 1, . . . , K, is a sample from a zero-mean normal density with
variance σ2

0, describing the heterogeneity between centers.
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67.2.2 The transformation

With Λij(t) =
∫ t
0 λij(s)ds the cumulative hazard for the jth patient in center i,

j = 1, . . . , ni and i = 1, . . . , K, and Λ0(t) =
∫ t
0 λ0(s)ds, we easily obtain from

(67.2.1) that
lnΛij(t) = ln Λ0(t) + b0i + (β + b1i)xij . (67.2.4)

Let w(.) be a weight function
(
W (t) =

∫ t
0 w(s)ds

)
satisfying w(s) ≥ 0, s ∈

[0,∞) and
∫∞
0 w(s)ds = 1. Integrating both sides in (67.2.4) with respect to

the weight function we obtain

Ωij =
∫ ∞

0
lnΛij(t)dW (t) = α + b0i + (β + b1i)xij ,

with α =
∫∞
0 lnΛ0(t)dW (t). Since the patients in center i are divided, by

the binary covariate xij , in a control and a treatment group we have that
Ωi0 = α + b0i (control) and Ωi1 = α + b0i + (β + b1i) (treated). We also have
that, for k = 0, 1,

Ωik =
∫ ∞

0
lnΛik(t)dW (t)

with Λi0(.), respectively Λi1(.), the cumulative hazard function shared by all
control, resp. treated, patients in group i. Following ideas in Grigoletto and
Akritas (1999) pseudo observations for the Ωik’s can be obtained as

Ω̂ik =
∫ ∞

0
ln Λ̂ik(t)dW (t)

where Λ̂ik(.) is the estimated cumulative hazard based on the observations
(Tij , δij) for all patients in center i with, for k = 0, xij = 0 and, for k = 1,
xij = 1. As concrete estimator we use Λ̂ik(t) = − ln Ŝik(t) with Ŝik(t) the
Kaplan-Meier estimator.
In terms of the pseudo observations we now can propose the model

Ω̂ik = α+ b0i +(β + b1i)xik +(Ω̂ik−Ωik) = α+ b0i +(β + b1i)xik + eik (67.2.5)

with xi0 = 0 and xi1 = 1. Since eik = Ω̂ik−Ωik it is clear that the random error
terms do not satisfy the heterogeneity assumption (since different subclusters
have different sample sizes). Based on a stochastic approximation we can obtain
(asymptotic) i.i.d. representations for the error terms and, hence, we obtain an
explicit expression for the variance of eik. By using the estimated variances of
the error terms, we account for the heterogeneity of the error terms when mixed
model software is used to fit the model.
For the special case (67.2.3) we obtain the following model after transformation:

Ω̂i = α + b0i +
(
Ω̂i − Ωi

)
= α + b0i + ei. (67.2.6)
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For this one-way random effects model we only have one observation per center.
At first glance this leads to identifiability problems. We, however, do have
estimators of the variances of the error terms so that estimation of the variance
components associated with the random center effect is possible.

67.3 Simulations

We investigate the performance of the proposed method based on a simulation
study. As a simulation model we consider the setting of a multicenter clini-
cal trial with treatment as a covariate. First, we consider the special case in
model (67.2.3) where there is only a random center effect. We compare the
results obtained by the proposed method with those obtained by the penalized
partial likelihood approach. We discuss the precision of the parameter esti-
mates for the varying number of clusters and the number of observations per
cluster, the percentage of censored observations, the size of σ2

0 and the value of
the baseline event rate λ0 (which we assume constant in time for simplicity).
The results indicate that σ2

0 is estimated well by the proposed method if the
cluster size is large enough. Both for the penalized partial likelihood approach
and the proposed method, the absolute relative bias decreases with increasing
cluster size but is not substantially influenced by the number of clusters. In
general, the absolute relative bias increases if the amount of censoring increases.
Further, the results illustrate that the point estimates of σ2

0 are biased if the
frailty distribution is misspecified. This is a problem for both methods (see
also Massonnet et al., 2006a). Next, the general model (67.2.1) is considered.
For this model, we allow for correlation between b0i and b1i. The effect of the
size of σ2

0 and σ2
1 on the precision of the parameter estimates is discussed. The

simulations show a good performance of the proposed method.

67.4 Conclusions

We propose an alternative approach to fit frailty models. Based on the original
data we obtain pseudo-data (the estimated integrals) on which we can apply
mixed model theory. The simulation study illustrates that the proposed method
provides a good and simple alternative for fitting frailty models for data sets
with a sufficiently large number of clusters and moderate to large sample sizes
within clusters.
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On Measures of Divergence and the Divergence

Information Selection Criterion

Kyriacos Mattheou and Alex Karagrigoriou

Department of Mathematics and Statistics, University of Cyprus, Cyprus

Abstract: The aim of this work is to develop a new model selection criterion
using a general discrepancy based technique, by constructing an asymptotically
unbiased estimator of the overall average discrepancy between the true and the
fitted models. Furthermore, the lower bound for the mean squared error of
prediction is established.

Keywords and phrases: DIC, power divergence, MSE of prediction

68.1 Introduction

The divergence measures are used as indices of similarity or dissimilarity be-
tween populations. They are also used either to measure mutual information
concerning two variables or to construct model selection criteria. A model se-
lection criterion can be constructed as an approximately unbiased estimator
of an expected ”overall discrepancy” (or divergence), a nonnegative quantity
which measures the ”distance” between the true model and a fitted approxi-
mating model. A well known discrepancy is Kullback-Leibler discrepancy that
was used by Akaike (1973) to develop Akaike Information Criterion (AIC).

Measures of discrepancy or divergence between two probability distributions
have a long history. A unified analysis was recently provided by Cressie and
Read (1984) who introduced for both the continuous and the discrete case the
so called power divergence family of statistics that depends on a parameter
λ and is used for multinomial goodness-of-fit tests. The additive and non-
additive directed divergences of order α were introduced in the 60’s and the 70’s
(Renyi, 1961 and Rathie and Kannappan, 1972). It should be noted that for λ
tending to 0 and for α tending to 1 the above measures become the Kullback-
Leibler measure. Another family of measures is the Φ-divergence known also as

393
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Csiszar’s measure of information (Csiszar, 1963) the discrete form of which is
given by Ic(P ; Q) =

∑k
i=1 qiΦ(pi/qi), where Φ is a real valued convex function

on [0,∞] and P = (p1, p2, . . . , pk) and Q = (q1, q2, . . . , qk) are two discrete
finite probability distributions. For various functions for Φ the measure takes
different forms. The Kullback-Leibler measure is obtained for Φ(u) = u log(u)
while the additive directed divergence is obtained for Φ(u) = sgn(α − 1)uα

and for the transformation (α− 1)−1 log Ic. For a comprehensive discussion on
measures of divergence the reader is referred to Pardo (2006).

A new discrepancy measure was recently introduced by Basu et. al (1998).
In this paper, we develop a new model selection criterion which is an approx-
imately unbiased estimator of the expected overall power divergence that cor-
responds to Basu’s power divergence measure. Furthermore, we obtain a lower
bound for the mean squared error (MSE) of prediction.

68.2 Basu’s Power Divergence Measure

One of the most recently proposed discrepancies is Basu’s Power Divergence
[Basu et. al (1998)] which is defined as:

da(g, f) =
∫ {

f1+a(z)−
(

1 +
1
a

)
g (z) fa (z) +

1
a
g1+a (z)

}
dz, a > 0(68.2.1)

where g is the true model, f the fitted approximating model, and a a positive
number. The discrete form of the measure is given by

k∑

i=1

{
p1+a

i − (1 +
1
a
)pa

i qi +
1
a
q1+a
i

}
,

where pi and qi, i = 1, 2, . . . , k are as in Section 1.1. Observe that the above
measure takes the form

∑k
i=1 q1+a

i Φ(pi/qi) where Φ(u) = u1+a − (1 + a−1)ua +
a−1.

Lemma 68.2.1 The limit of (68.2.1) when a → 0 is the Kullback-Leibler di-
vergence. Furthermore, the discrete form of the measure tends to the Kullback-
Leibler measure for a → 0 and for Φ(u) = u log u.

It is easy to see that Basu’s measure satisfies the basic properties of mea-
sures, namely the properties of nonnegativity and the continuity. In particular,
the value of measure is nonnegative while small changes in the distributions re-
sult in small changes in the measure. Finally, the value of the discrete measure
is not affected by the simultaneous and equivalent reordering of the discrete
masses which confirms the symmetry property of the Basu’s measure.

Consider a random sample X1, . . . , Xn from the distribution g and a candi-
date model ft from a parametric family of models {ft}, indexed by an unknown



Measures of divergence and the DIC criterion 395

parameter t ∈ Θ. To construct the new criterion for goodness of fit we shall
consider the quantity:

Wt =
∫ {

f
1+a

t (z)−
(

1 +
1
a

)
g (z) f

a

t (z)
}

dz, a > 0. (68.2.2)

which is the same as (68.2.1) without the last term that remains constant
irrespectively of the model ft used. Observe that (68.2.2) can also be written
as:

Wt =
∫

f
1+a

t (z) dz −
(

1 +
1
a

)
Eg

(
f

a

t (z)
)
, a > 0. (68.2.3)

Our target theoretical quantity that would be estimated by the new criterion is

E
(
Wt

∣∣∣t = θ̂
)

(68.2.4)

which can be viewed as the average distance between g and ft up to a constant
and is known as the expected overall discrepancy between g and ft. In (68.2.4),
θ̂ is the estimator of t that minimizes an estimate of da (g, ft) with respect to
t. Note that the estimator of t is obtained by minimizing (68.2.3) when the
expectation is replaced by its sample analogue, namely n−1

∑n
i=1 fa

t (Xi). In
the theorem below, Basu et. al. (1998) provide the asymptotic properties of θ̂.

Theorem 68.2.1 (Basu et. al (1998)) Under regularity conditions, there ex-
ists estimator θ̂ which is consistent and asymptotically normal with mean zero
and variance J(θ)−2K(θ), where under the assumption that the true distribution
g belongs to the parametric family {ft}, θ being the true value of the parameter
and ξ =

∫
uθ (z) f

1+a

θ (z) dz,

J(θ) =
∫

[uθ (z)]2 f
1+a

θ (z) dz and K(θ) =
∫

[uθ (z)]2 f
1+2a

θ (z) dz − ξ2.

(68.2.5)

The Lemma below provides the derivatives of (68.2.3) in the case where g
belongs to the family {ft} (see Mattheou and Karagrigoriou (2006a)).

Lemma 68.2.2 For a > 0 and if the true distribution g belongs to the para-
metric family {ft}, the derivatives of (68.2.3) are:

(a)
∂Wt

∂t
= (a + 1)

[∫
ut (z) f

1+a

t (z) dz − Eg

(
ut (z) f

a

t (z)
)]

= 0,

(b)
∂2Wt

∂t2
= (a + 1)

{
(a + 1)

∫
[ut (z)]2 f

1+a

t (z) dz −
∫

itf
1+a
t dz

+Eg

(
it (z) f

a

t (z)
)− E g

(
a [ut (z)]2 f

a

t (z)
)}

= (a + 1)J

where ut = ∂
∂t (log (ft)), it = − ∂2

∂t2
(log (ft)) and J =

∫
[ut (z)]2 f

1+a

t (z) dz.
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Theorem 68.2.2 Under the assumptions of Lemma (68.2.2) and for a p-dimensional
parameter t, the expected overall discrepancy at t = θ̂ is given by

E
(

Wt| t = θ̂
)

= Wθ +
(a + 1)

2
E

[(
θ̂ − θ

)
J

(
θ̂ − θ

)′]
. (68.2.6)

68.3 The divergence information criterion

In this section we introduce the new criterion and prove that it is an approx-
imately unbiased estimator of (68.2.4). Due to the unknown true distribution
g, we estimate (68.2.3) by the empirical distribution function given by:

Qt =
∫

f
1+a

t (z) dz −
(

1 +
1
a

)
1
n

n∑

i=1

f
a

t (Xi). (68.3.7)

Lemma 68.3.1 The derivatives of (68.3.7) are:

(a)
∂Qt

∂t
= (a + 1)

[∫
ut (z) f

1+a

t (z) dz − 1
n

n∑

i=1

ut (Xi) f
a

t (Xi)

]
, a > 0,

(b)
∂2Qt

∂t2
= (a + 1)

{
(a + 1)

∫
[ut (z)]2 f

1+a

t (z) dz −
∫

itf
1+a
t (z) dz

+
1
n

n∑

i=1

it (z) f
a

t (z)− 1
n

n∑

i=1

a [ut (z)]2 f
a

t (z)

}

where ut = ∂
∂t (log (ft)) and it = − (ut)

′ = − ∂2

∂t2
(log (ft)).

It is easy to see that by the weak law of large numbers, as n →∞, we have:
[
∂Qt

∂t

]

θ

→P

[
∂Wt

∂t

]

θ

and
[
∂2Qt

∂t2

]

θ

→P

[
∂2Wt

∂t2

]

θ

. (68.3.8)

The consistency of θ̂ and (68.3.8) can be used to evaluate the expectation
of the empirical estimator evaluated at the true point θ.

Theorem 68.3.1 Under the assumptions of Lemma (68.2.2), the expectation
of Qt evaluated at θ is given by

EQθ ≡ E (Qt |t = θ ) = EQθ̂ +
a + 1

2
E

[(
θ − θ̂

)
J

(
θ − θ̂

)′]
.

The asymptotically unbiased estimator of E
(
Wt

∣∣∣t = θ̂
)

is provided in the the-
orem below (see Mattheou and Karagrigoriou (2006b)).
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Theorem 68.3.2 An asymptotically unbiased estimator of the expected overall
discrepancy evaluated at θ̂ is given by

DIC = Qθ̂ + (a + 1) (2π)−
a
2

(
1 + a

1 + 2a

)1+ p
2

p. (68.3.9)

68.4 Lower bound of the MSE of prediction

Let Xj be the design matrix of the model Y = Xjβ+ε where β = (β0, β1, β2, . . .)
′,

ε ∼ N(0, σ2I) and I is the infinite dimensional identity matrix.
Let V (j) = {β (j) , s.t. β (j) =

(
β0, 0, ..., βj1 , 0, ..., βjkj

, 0, ...
)
} be the

subspace that contains only the kj + 1 parameters βji involved in the model
and let β(n) to be the projection of β on V (j).

The prediction ŷ is given by ŷ = Xj β̂, where the estimator of β(n) obtained
through a set of observations (Xij1 , . . . , Xijkj

, yi), i = 1, 2, . . . , n is denoted by

β̂ =
(
β̂0, 0, ..., β̂j1 , 0, ..., β̂j2 , 0, ..., β̂jkj

, 0, ...
)′

.
The mean squared error (MSE) of prediction and the average MSE of pre-

diction are defined respectively by

Qn(j) = E
[
(ŷn+1 − yn+1)

2 |X
]
− nσ2 and Ln(j) ≡ E (Qn(j)) .

Lemma 68.4.1 Under the notation and conditions of this section we have that

Qn(j) =
∥∥∥β̂ − β

∥∥∥
2

Mn(j)
and Ln(j) = E

∥∥∥β̂ − β
∥∥∥

2

Mn(j)
,

where Mn (j) = X ′
jXj and ‖A‖2

R = A′RA.

The Lemma below provides a lower bound for the MSE of prediction. In
particular, we show that Qn(j) is asymptotically never below the quantity
Ln (j∗) = minjLn(j).

Lemma 68.4.2 Let Ln (j∗) = minj Ln(j). Under certain regularity conditions,
we have that for every δ > 0

lim
n→∞P

[
Qn (j)
Ln (j∗)

> 1− δ

]
= 1.

68.5 Discussion

Note that the family of candidate models is indexed by a single parameter a.
The value of a dictates to what extent the estimating methods become more
robust than the maximum likelihood methods. One should be aware of the fact
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that the larger the value of a the bigger the efficiency loss. As a result one
should be interested in small values of a ≥ 0, say between zero and one.

The proposed DIC criterion could be used in applications where outliers or
contaminated observations are involved. The prior knowledge of contamination
may be useful in identifying an appropriate value of α. Preliminary simula-
tions with a 10% contamination proportion show that DIC has a tendency of
underestimation in contrast with AIC which overestimates the true model.
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Application of Inverse Problems in Epidemiology

and Demography

A. Michalski

Institute of control sciences, Moscow

Abstract: Different problems in epidemiology and demography can be consid-
ered as solutions of inverse problems, when using observed data one estimates
the process caused the data. Examples are estimation of infection rate on dy-
namics of the disease, estimation of mortality rate on sample of survival times,
estimation of survival in wild on survival in laboratory. A specific property of
inverse problem - instability of solution is discussed, the procedure for stabiliza-
tion is presented. Examples of morbidity estimation on incomplete data, HIV
infection rate estimation on dynamics of AIDS cases and estimation of survival
function in wild population on survival of captured animals are presented.

Keywords and phrases: Inverse problem, Epidemiology, Demography, In-
complete follow-up, HIV infection rate, AIDS cases dynamics, Survival in wild

69.1 Introduction

Interpretation of observations in different disciplines of life sciences can be con-
sidered as a solution of mathematical inverse problem. Examples are epidemi-
ology, demography and biodemography. The important in epidemiology indica-
tors such as prevalence of a disease and incidence of it are related by cause-effect
relationship. This means that the process of a disease occurrence in formal way
causes process of accumulation of the disease cases in population. The other ex-
ample is relationship between rate of infection and the number of corresponding
diagnosed cases. In demography cause-effect relationship exists between mor-
tality and survival processes. Mortality process ’make influence’ on survival in
population.

In all these examples the value of the ’effect’ can be estimated on popu-
lation observations while the direct estimation of the ’cause’ is impossible or
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needs great funds. On the other hand information about the ’cause’ often is
important for better understanding of the phenomenon investigated and math-
ematical methods for estimation of ’cause’ on ’effect’ data are needed. The
report describes mathematical formulations of the ’cause-effect’ problem, diffi-
culties of estimation of the ’cause process’ on population data and a procedure
elaborated to overwhelm them. Three examples with results of calculations
are presented: estimation of morbidity on the results of incomplete follow-up,
estimation of HIV infection rate on the dynamics of AIDS cases, estimation of
survival in wild population on survival of captured animals in laboratory.

69.2 Mathematical formulation

Many problems from epidemiology and demography can be written as a rela-
tionship between an unobserved process Ψ(x) and an observed process U(x) in
form

U(x) = AΨ =

b∫

a

K(x, t)Ψ(t)dt, (69.2.1)

where A is the integral operator given by a kernel function K(x, t), which is de-
fined by the nature of the problem investigated. More detailed consideration for
this function is given bellow. The main property of the equation (69.2.1) with
continues kernel is that exact solution is unstable in respect to small variations
in the observed function U(x). In mathematical terms this means that there
exists a sequence of functions δU such that the sequence of corresponding solu-
tions of equation (69.2.1) δΨ = A−1δU do not tend to zero while the sequence
δU tends to zero. Such problems are called ill-posed problems by Tikhonov and
Arsenin (1977). In practical applications this means that a small disturbance
in observations U can lead to big disturbance in the exact solution A−1U . Such
property is well known in numerical solution of large sets of linear equations.
In this case A is a matrix such that matrix AT A has small eigenvalue, which
means that the inverse matrix

(
AT A

)−1 has large eigenvalue and disturbance in
the solution Ψ =

(
AT A

)−1
AT U is high. Often the sensitivity of the system is

so high that even machine arithmetic errors are enough to change the solution
Ψ dramatically.

To obtain the stable solution for the equation (69.2.1) one is to put addi-
tional restrictions to the solution. Tikhonov and Arsenin (1977) proposed to
put such restrictions by minimizing on Ψ a functional

‖U −AΨ‖2 + αΩ(Ψ) , (69.2.2)

where Ω (.) > 0 is a stabilization functional, defined such that for any constant
C the set {Ψ : Ω(Ψ) ≤ C} is a compact set and α is a positive stabilization
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parameter. The optimal value for α depends on the level of disturbance δ in
observed data U . It is proved that if δ2/α → 0 while δ → 0 and α → 0, then
the minimizer of (69.2.2) Ψα tends to the exact solution of equation (69.2.1).
The problem of proper selection value for the stabilization parameter α if the
level of disturbance δ does not tend to zero is still a challenging task. Different
approaches and methods are described in Evans and Stark (2002) including
cross-validation and Bayesian approaches.

The different approach to stabilization parameter selection is based on esti-
mate for mathematical expectation for quadratic functional value minimized on
finite sample, which is described in Michalski (1987). For the solution Ψα, which
minimizes the functional ‖U −AΨ‖2 + α ‖BΨ‖2 for α such that m > 2TrAα,
with probability no less than 1-η the inequality is valid

EY,U ‖Y −AΨα‖2 <
‖U −AΨα‖2

1− 2TrAα/m
+ const +

√
const

η
. (69.2.3)

Here U , Y are independent realizations of size m, generated from the same
distribution, A, B are matrices and Aα = A

(
AT A + αBT B

)−1
AT . The left

hand side of (69.2.3) is the mean value of disagreement between possible vectors
of experimental and predicted data. To get it small one can use for stabilization
parameter α value, which minimizes Iα = ‖U −AΨα‖2 / (1− 2TrAα/m). The
quantity ‖U −AΨα‖2 is a square residual for empirical data.

It is interesting to note that the cross-validation criterion takes the form
Icv
α = ‖U −AΨα‖2 / (1− TrAα/m)2. For a small amount of data it is demon-

strated in Michalski (1987), that the criterion Iα produces better results than
the cross-validation criterion Icv

α .

69.3 Estimation of morbidity on the results of in-
complete follow-up

Michalski et al. (1996) considered a problem of estimation morbidity on data
of irregular health examinations. This problem leads to solution of a matrix
equation

AΨ = U

with U the proportion of diagnosed cases among observed people by years of
investigation and Ψ the probability for healthy person to become sick by years.
A is a triangular matrix with 1 at the main diagonal and elements aij equal to
the proportion of people, examined in the year i and been healthy before, among
those, who skipped the examination in the year j after the last examination. In
the case of a complete follow-up study the matrix A is the identity matrix and
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the morbidity estimate for different years is just the ratio between the number
of cases and the number of people, examined in the same year.

Stabilization of the matrix equation was made by minimization (69.2.2)
with the stabilization functional Ω(p) = ‖BΨ‖2 = ΨT BT BΨ and B the matrix
with two non zero diagonals. It holds -1 at the main diagonal and 1 at the
second. This structure of stabilization functional reflects the hypothesis, that
the morbidity will not change significantly in consequent years.

The described approach was applied in Michalski et al. (1996) for the es-
timation of malignant neoplasm (ICD9 140-208) morbidity among participants
in the clean-up operations after the accident on the Chernobyl Nuclear Power
Station in 1986. The value for stabilization parameter α was selected using the
above described criterion Iα. Estimates show that observed morbidity increases
in time with higher rate than the real, unobserved one, because of ’morbidity ac-
cumulation’ effect among people skipping regular examinations. The described
approach adjusts estimates for this effect.

69.4 Estimation of HIV infection rate on the dynam-
ics of AIDS cases

Large latent period between HIV infection an AIDS manifestation makes it dif-
ficult to judge about the amount of HIV infected people in population. Specific
expensive surveys of risk groups are needed to get reliable information about
HIV prevalence. Implementation of inverse problems approach can help to es-
timate the number of HIV infected people from dynamics of AIDS cases, which
is reported for the health care system needs. The number of people infected by
HIV in year t at age x Ψ(t, x) is related with the number of AIDS diagnoses in
year t at age x U(t, x) by the integral equation

U (t, x) =

x∫

0

L (x, s) exp


−

x∫

s

µc (t− x + τ, τ) dτ


Ψ(t− x + s, s) ds

(69.4.4)
where µc(t, x) is the mortality in year t at age x, L(x, s) is the probability density
function for the distribution of AIDS diagnoses age x if at age s a person was
infected with HIV. Age specific mortality supposed to be known from national
data and the function L(x, s) can be estimated from the clinical data and data
about AIDS cases among patients which were infected with HIV during blood
transfusion. The most common models for L(x, s) are exponential, Weibull and
Markov chain model. Write equation (69.4.4) in matrix form

U = AΨ,
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where U and Ψ are vectors composed by values of functions U(.) and Ψ(.) for
the corresponding birth cohorts and A is the block-diagonal matrix composed
by triangular matrices with elements for k-th cohort

ak
ij =





0 sj > xk
i

β(tki , x
k
i )L(xk

i , sj) exp

(
−

xk
i∫

sj

µc (dk + τ, τ) dτ

)
sj ≤ xk

i

.

To stabilize the solution of (69.4.4) the stabilization functional was used in
the form

‖Y −AΨ‖2 + αΩ(Ψ)

with Ω (Ψ) =
∑
k

1
mk

mk∑
j=2

(
Ψk

j −Ψk
j−1

)2
. The stabilized solution takes the form

Ψα =
(
AT A + αD

)−1
AT Y,

where the matrix D is a block-diagonal matrix composed by three diagonal
matrices. For the k-th cohort the matrix holds 2/mk at the main diagonal,
−1/mk at the other two diagonals and 1/mk as the first and the last elements
of the matrix.

Results of HIV infection rate from AIDS diagnoses dynamics estimation on
simulated data are presented. The stabilization parameter value was selected
using the described criterion Iα.

69.5 Estimation of survival in wild population on
survival of captured animals in laboratory

A specific problem arises in connection with investigation of life span in wild
populations of different species. The problem of how to estimate the survival
curve in wild population of flies is considered in Muller et al. (2004). A portion
of wild flies were cached and kept in laboratory in conditions similar to condi-
tions in wild nature. The survival curve was calculated for cached cohort and
some mathematical technique is to be applied to produce the survival curve for
wild population. This is a typical inverse problem. If laboratory conditions
do not change, survival of fly then survival in laboratory Slab(.) is related with
survival in wild stable population Swild(.) by the integral equation

Slab(x) =
1
e0

ω∫

x

Swild(y)dy (69.5.5)
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where ω is the maximum life span and e0 is the life expectancy in wild popula-
tion. By differentiating the last equation on x one obtains the equation

Swild(x) =
d
dxSlab(x)
d
dxSlab(0)

.

One can estimate numerically the derivative from the survival function in lab-
oratory and calculate from it Swild(x). This is done in Muller et al. (2004).

The other possibility is to solve numerically equation (69.5.5) itself. The
corresponding matrix equation is

AX = Sl (69.5.6)

where X = 1
e0

Sw, Sw and Sl are vectors of values of survival functions observed
daily in wild and in laboratory populations respectively and A is a triangular
matrix with 0 bellow the main diagonal and 1 at the other places. Solution
of the system (69.5.6) was stabilized as described above. Results of estimation
with simulated and real data are presented. The stabilization parameter value
was selected using the described criterion Iα.
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Abstract: In this paper, the view is presented that statistics has evolved to
such an extent in the last decades that there are new areas in need of at-
tention, while traditionally central issues may have lost some of their former
urgency. For decades, there was an overwhelming need to develop ever more
general, refined and complex models. Considering the application of statistics,
many problems seem to result from an inadequate understanding and imple-
mentation of statistical models by their (non-specialist) users. Unreflected,
schematic, and hence inadequate application of well developed and statistically
well investigated models appear to be frequent. Moreover, little reference is
made to checking basic model assumptions. Indeed, it is often unclear whether
sufficient checks were performed, if any at all. In applications of statistics in
epidemiology and medicine, comparison with earlier results is mostly limited to
comparing the magnitude of certain isolated coefficients, while the full reporting
of the models applied is rare.

This paper raises these issues with the aim of initiating a discussion which
may hopefully lead in time to improvement of the situation.

Keywords and phrases: Applied, assumption, checking, full model, mod-
elling, quality, reporting

70.1 Introduction

This paper is not about a new technique or a new application of a known
technique, nor will it present new theorems or proofs. Its aim is rather to
bring to attention some often forgotten points in the application of statistics in
science. This is done at the hand of epidemiology and occasionally medicine.
The points raised are selected based on the experiences of the author in these
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fields of application. However, they likely apply more or less also to other fields
of application of statistics.

The following deliberations apply only to statistical models used to make
inferences about causes and effects. In statistical terms, they only concern
models based on regression approaches. These comments do not apply to other
procedures, such as multivariate correlational procedures treating all variables
involved in a symmetric way.

70.2 Model building

One important difference of the application of statistical models in epidemiology
as opposed to the exact sciences is the uncertainty about the appropriate model.
While in science, the form of the statistical model to be used is frequently (not
always, however!) given by theory, this is not so in fields like epidemiology
and other biology-based and social sciences. Here, the model is generally much
more ad hoc and, apart from offering the possibility of estimating possibly
causal effects, one of it’s main purposes is to provide a concise description of
an otherwise confusing heap of data.

There is a tendency to apply refined statistical models to complex data sets
in an uncritical manner. This trend is fuelled by the widespread availability of
statistical software of stupendous power, flexibility and ease of use. The avail-
ability of such sophisticated software is, however, not balanced by sufficient
efforts to educate the epidemiologist and medical users adequately in statistics.
As a consequence, these users have only limited ability to appreciate the neces-
sities and constraints of good modelling. Even simple facts, e.g. that the user
needs to provide a well reflected predictor function are, in my experience, not
well recognized. The situation is even worse with regard to knowledge about
the assumptions underlying specific procedures. These appear to be known only
on a most basic level. It is e.g mostly known that the scale of measurement of
the dependent variable is relevant for the choice of a model. With regard to the
limitations of any chosen model, knowledge appears to be very limited indeed.

The technology of “canned” statistical software is used by epidemiologists
and medical researchers in much the same way we all use our cars, mobile
phones and computers: without understanding the details of their functioning.
This is risky behaviour in all fields. The risks with statistical techniques and
software are special in that they do not only concern the users of statistical
techniques, but also the well-being of patients, the reputation of epidemiology
and medicine as sciences and of statistics as an academic discipline.

As a consequence of insufficient statistical training of epidemiologists, there
appears to prevail a general lack of understanding on how to proceed in order
to obtain a useful statistical model for a given epidemiological setting. Dummy
variables seem to be handled mostly in a correct way. Despite extensive available
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literature, most models with continuous covariates incorporate these either in
a grouped form or linearly, whether appropriate or not. The consequence is a
schematic, unimaginative and hence inappropriate, suboptimal use of statistical
models.

70.3 Model checking

The foregoing section on model building illustrates the importance of model
checking. If only little effort goes into selecting a suitable model, model check-
ing becomes all the more important. Model checking is implemented in epi-
demiological research to the extent that it has become commonplace to run
sensitivity analyses, using alternate models and/or excluding certain portions
of the data. Also, there are often efforts to simplify the model, either by drop-
ping insignificant variables, or by reporting them as such.

It is, in my experience, however, not commonplace to do extensive checks
of the assumptions the model is based on (e.g. linearity, absence of collinearity,
conformity of the residual variation with the form stipulated by the model,
distributional assumptions).

With regard to examining linearity and taking into account collinearity,
observational sciences such as epidemiology and econometrics are at a disad-
vantage, since intrinsic collinearities between important covariables pose an
obstacle difficult to surmount. However, often neither the available data, nor
the statistical models allow a realistic and checkable modelling of the underlying
process.

In some instances, the absence of model checking is due to the rarity and lack
of prominence of papers on appropriate methods. Thus, the annual plethora of
new models is not matched by an equal abundance of model checking proce-
dures.

The main obstacle to proper model checking is however, the lack of under-
standing of its importance on the part of researchers, authors, reviewers and
editors of scientific journals.

70.4 Model reporting

Proper reporting of the model(s) used along with the data fitted is often lacking
in epidemiology and medicine. An important reason in the past was lack of
journal space, limiting authors to reporting only the very “sexiest” parts of
their research. Here, the internet may (and already has) brought some relief.

The lack of information on the models used to reach conclusions in a publi-
cation is a significant handicap for combining the relevant information of several
studies using the tools of meta-analysis.
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The rise of meta-analysis has, however, had the beneficial effect of focussing
the attention of clinical epidemiologists on the necessity of reporting standards.
At the time these cover mainly procedural aspects of the studies to be re-
analysed.

70.5 What can be done?

Probably the most effective way to promote better standards in model building,
checking and reporting is by promoting the understanding and sensibility of the
boards and editors of scientific journals to these issues.

This could be achieved by some reputable scientific body representing statis-
tics setting up a “Committee on Good Statistical Practice”. Duty of this Com-
mittee would be to devise a set of ”state-of-the-art” guidelines on how to do
model building, checking and reporting for scientific studies and in scientific
reports.

To that end, some (statistical) research has to be undertaken in the corre-
sponding journals documenting the statistical quality and shortcomings of these
channels.

Another way of improving the statistical quality of epidemiological and med-
ical publications is to encourage the employment of trained statisticians in re-
search teams. Equally, involving trained statisticians (well versed in applying
statistics to epidemiology or medicine) on a regular basis in the reviewing pro-
cess would help too. A further-reaching proposal is to institute statistical peer
review by requiring the presentation of data of any publication for re-analysis
and by regular re-analysis. The implications of this last proposal must however
be investigated.

70.6 Discussion

It is hoped that the paper illustrates that statisticians cannot possibly limit
themselves to “do mathematics”, develop ever new models and investigate the
finer properties of well known procedures. Rather, a concerted effort has to
be made at several fronts (a) to bring to proper use models and procedures
developed by mathematical statisticians; (b) to intensify the research and pub-
lication efforts of mathematical statisticians on model checking procedures (it is
this authors belief that model averaging will not be the solution); (c) to assert
with scientists the importance necessity of proper model building, checking and
reporting; (d) to insist that paragraphs discussing these points be included in
publications as a matter of course.

Without these efforts, statistics risks losing it’s credibility as a scientific
discipline and as a consequence may also end up losing financial support.
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Abstract: Suppose we observe a semi-Markov process or a Markov renewal
process at certain time points only. Which observation patterns allow us to
identify the transition distribution of the embedded Markov chain or the condi-
tional inter-jump time distribution? In case we can identify them, how can we
estimate functionals of them from our observations? For smooth functionals,
what is the best use we can make of the observations, at least asymptotically?
We give an overview of possible approaches to these questions.

Keywords and phrases: Markov chain, semi-Markov process, Markov re-
newal process, partial observation, periodic skipping, random skipping, “skip-
ping at random”, empirical estimator, efficient estimator

71.1 Introduction

In this extended abstract, in order to simplify the exposition, we will concentrate
mainly on Markov chains (with arbitrary state space), and on nonparametric
models for them. We will not say much about efficiency. We will also restrict
attention to estimating linear functionals of two successive realizations under
the stationary law. This is not a serious restriction: The distribution of the
chain is determined by the values of a sufficiently large class of such functionals.

In Section 71.2 we recall the case of fully observing the chain up to a fixed
time. In the following sections we treat four different patterns of picking ob-
servations: periodic; random without knowing the clock of the chain; known
random time points; and skip lengths that depend on the previous state of the
chain.

Throughout, let X1, X2, . . . be realizations of a Markov chain with transition
distribution Q(x, dy). We assume that the chain is geometrically ergodic in L2
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and (for simplicity) strictly stationary. Let h(X1, X2) be square-integrable. We
consider the problem of estimating the expectation Eh(X1, X2).

71.2 Full Observations

Suppose we observe X1, . . . , Xn+1. A natural estimator of Eh(X1, X2) is the
empirical estimator

1
n

n∑

i=1

h(Xi, Xi+1).

It is efficient in the nonparametric model (i.e., if nothing is known about Q
aside from appropriate ergodicity properties and, perhaps, certain smoothness
assumptions); for different proofs see Penev (1991), Greenwood and Wefelmeyer
(1995) and Bickel and Kwon (2004); for Markov step processes and semi-Markov
processes see Greenwood and Wefelmeyer (1994, 1996).

71.3 Periodic Skipping

Suppose we observe only some of the realizations, in a deterministic pattern that
repeats itself periodically, say with period m. Specifically, in the first period
we observe at k times 1 ≤ j1 < · · · < jk ≤ m and then at times m + j1, . . . ,
2m + j1, . . . , for n + 1 periods, say. (Here it is understood that we know how
many realizations we skip. We will consider in Section 71.4 a pattern where we
do not have this information.) The skip lengths are

s1 = j2 − j1, . . . , sk−1 = jk − jk−1, sk = m + j1 − jk.

a) In the simplest case, some of the skip lengths are 1. For example, let
m = 3, k = 2, j1 = 1, j2 = 2. Then every third realization is missing. A simple
estimator of Eh(X1, X2) is the empirical estimator based on observed pairs of
successive realizations of the chain,

1
n

n∑

i=1

h(X3i−2, X3i−1).

This estimator is not efficient (unless the observations are independent). The
information in the non-adjacent pairs (X3i−1, X3i+1) can be used as follows.
Suppose the state space is real and Q(x, dy) has density q(x, y). Introduce

hl(x, z) = E(h(X2, X3)|X2 = x,X4 = z) =
∫

q(x, y)q(y, z)h(x, y) dy∫
q(x, y)q(y, z) dy

.
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We have Ehl(X2, X4) = Eh(X2, X3). Plug in a (kernel) estimator q̂ for the
transition density q, based on the pairs (X3i−2, X3i−1), to obtain an estimator
ĥl(x, z). This gives rise to a new estimator of Eh(X1, X2), namely

1
n

n∑

i=1

ĥl(X3i−1, X3i+1).

A third estimator is obtained from hr(x, z) = E(h(X3, X4)|X2 = x,X4 = z).
The three estimators can be combined to improve on the first.

b) Suppose that none of the skip lengths is 1, but they have no common
divisor. Then we can represent 1 as a linear combination of skip lengths. Sup-
pose, for example, that m = 5, k = 2, j1 = 1, j2 = 3. Then the skip lengths
are s1 = 2, s2 = 3, and, since 1 = 3− 2, we can write Q = Q−2Q3. To estimate
the inverse of a transition distribution, decompose the state space into a finite
number of sets and invert the corresponding empirical transition matrix.

c) If the skip lengths have a common divisor, Q is not identifiable. Suppose,
for example, that m = 2, k = 1, j1 = 1. Then we skip every second realization.
The remaining observations allow us to estimate Q2, but this does not identify
the root Q uniquely. (In certain parametric and semiparametric models we
can however still identify Q, for example if the chain follows a first-order linear
autoregressive model.)

71.4 Random Skipping, Unknown Times

Suppose that, after an observation at time j, we make the next observation at
time j + s with probability as, but we do not observe the skip length s. Then
our observations follow a Markov chain with transition distribution given by the
mixture R =

∑
s≥1 asQ

s. (This is a badly designed experiment. It is however
close to observing a semi-Markov process at fixed times, in which case we also
do not observe the number of jumps between successive observations of the
process. For Markov jump processes see Bladt and Sørensen, 2005.) Suppose
we know the probabilities as. (A geometric distribution might be plausible.)
Then we can try to solve R for Q. For example, if a1 = p and a2 = 1− p, then
R = pQ + qQ2 with q = 1− p, and

Q =
1
p

(
R− q

p2
R2 + 2

( q

p2

)2
R3 − . . .

)
.

.

71.5 Random Skipping

In the Markov chain setting, it is more realistic to observe also the skip lengths.
Write A({s}) = as for their distribution. Then we observe pairs (Si, Xi) that
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form a Markov chain with transition distribution

R(x, ds, dy) = A(ds)Qs(x, dy).

We can estimate A empirically. Estimation of Eh(X1, X2) is similar to the case
of periodic skipping in Section 71.3; it depends on the properties of the set of
skip lengths with positive probabilities. In particular, if a1 is positive, a simple
estimator is the empirical estimator

1
m

∑

Si=1

h(Xi, Xi+1)

with m the observed number of skip lengths Si = 1.

71.6 “Skipping At Random”

In the previous section we have assumed (implicitly) that the skip lengths are
independent of the Markov chain. It is however conceivable that the skip lengths
depend on the previous state. Let A(x, ds) denote the skip length distribution
out of state x. Then we observe pairs (Si, Xi) with transition distribution

R(x, ds, dy) = A(x, ds)Qs(x, dy).

This factorization is analogous to the factorization Q(x, dy)A(x, y, ds) of the
transition distribution of a Markov renewal process; for efficient estimation in
semiparametric models of the corresponding semi-Markov process see Green-
wood et al. (2004). The name “skipping at random” is chosen because of
the similarity with responses “missing at random” in regression models; for
efficient semiparametric estimation see Müller et al. (2006). The case of Sec-
tion 71.5, with A not depending on x, would correspond to “missing totally at
random”. Again, if a1(x) = A(x, {1}) is positive with positive probability, a
simple estimator of Eh(X1, X2) can be based on the observed pairs of successive
observations:

1
n

n∑

i=1

1(Si = 1)
â1(Xi)

h(Xi, Xi+1)

with â1(x) a (kernel) estimator of the conditional probability a1(x) = A(x, {1}).
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Abstract: A family of weakest-link models based on the assumption of a two-
stage failure process is derived. In the first stage initiation (either instant or
step by step) of some flaws in one or several links, and in the second stage
fracture of the weakest link take place. The offered models sometimes more
adequately describe the experimentally observed fiber strength scatter and the
strength dependence on fiber length than the traditional models.
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72.1 Introduction

Power-Weibull (PW) model of distribution

F (x) = 1− exp(−(l/l0)γ(x/β)α), (72.1.1)

which was intensively studied in literature , while providing a good empirical
fit to the strength data of specimens with different length l, lack the theoretical
appeal of the weakest-link models. We derive a new family of weakest-link
models based on the assumption of a two-stage failure process. For modelling
purposes we consider a specimen as a chain of n elements (links) of length l1.
First, the process develops along the specimen and in K elements, K ≤ n ,
flaws appear. In the second stage in the weakest element the accumulation of
elementary damages takes place in crosswise direction up to specimen failure.
We consider four different models: two versions of the first stage development
in time (flaws in some elements appear instantly or gradually); two versions of
the process development along the specimen (either in several crossections or
only in one crossection).
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72.2 Model of instant destruction

72.2.1 Model of instant destruction in the presence of several
flaws

Let K, 0 ≤ K ≤ n, be the number of elements in which flaws appear. K is a
random variable. Let Y1, Y2, ..., YK be strengths of these elements, X - strength
of specimen. In this model we define

X =
{

min(Y1, Y2, ..., YK) if 0 < K ≤ n,
−∞, if K = 0.

The mechanical stress is uniformly distributed along the fiber, therefore bino-
mial distribution of the random variable K is expected. The corresponding
probability mass function is pk = pk(1− p)(n−k)n!/k!(n− k)!, where p = F0(x),
F0(x) is the cumulative distribution function (cdf) of flaw initiation stress. Then
the cdf of specimen strength, F (x) , is defined by the equation

F (x) =
n∑

k=0

pk(1− (1− F1(x))k), (72.2.2)

where F1(x) is the strength cdf of the fiber element with length l1. If n is
sufficiently large then the binomial distribution can be replaced by the Poisson
distribution with λ = np. Note that this approximation of binomial distribution
is unsatisfactory if n is small. For this reason we suggest a modified version of
such an approximation

F (x) =
∞∑

k=0

λkexp(−λ)
k!

(1− (1− F1(x))k+1). (72.2.3)

Eq. (72.2.3) need not be treated only as an approximation of eq. (72.2.2).
It can be endowed with a specific interpretation. Namely, in eq. (72.2.2) the
cdf F1(x) is the cdf of tensile strength of one element (link) of length l1, and
as such it would be expected to depend on l1 which is rather inconvenient.
Contrarily, eq. (72.2.3) can be interpreted as the cdf of tensile strength of a
specimen in which during the first stage of the failure process K weak cross
sections (WCS) are initiated, K = 0, 1, 2, , in a corresponding Poisson process.
Then the function F1(x) is interpreted as the cdf of the tensile strength of a
WCS. Importantly, here F1(x) characterizes failure of the WCS, and therefore
should depend neither on the length of the link, l1 , nor on the total length
of specimen. Eqs. (72.2.2) and (72.2.3) present a family of two subfamilies of
distributions defined by the choice of either binomial or Poisson distribution
and by the choice of a pair of functions (F0(x),F1(x)).
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72.2.2 Model of instant destruction in the presence of at least
one flaw

It can be assumed also that the distribution of flaws is uniform only at the
beginning of the process but then the destruction process develops only in one
element. We make an additional assumption that the strength of this critical
element, Y , is random variable the cdf of which does not depend on the length
of specimen. Let Ij , j = 1, 2, ..., n, be random variables equal to 1 if there is a
flaw in jth element and equal to 0 if there is no flaw in this element. According
to these assumptions, the strength of specimen

X =
{

Y, if max(I1, I2, ..., In) = 1,
∞, if max(I1, I2, ..., In) = 0.

Then

F (x) = (1− (1− F0(x))n)F1(x), (72.2.4)

where F0(x) and F1(x) are the same as in previous subsection.

72.3 Model of step by step accumulation of flaws

72.3.1 Model of destruction in the presence of several flaws

We consider the process of accumulation of flaws as an inhomogeneous finite
Markov chain (MC) with finite state space I = {i1, i2, ..., in, in+1, in+2}. We
say that the MC is in state ik if there are (k − 1) flaws, k = 1, ..., n + 1. State
in+2 is an absorbing state corresponding to destruction of specimen. Usually we
suppose that the Markov chain starts in state i1 but in general case the initial
distribution is represented as a row vector π given by π = (π1, π1, ...πn+2). We
further assume that the loading (i.e. the process of nominal stress increase in the
specimen cross section) is described by an ascending (up to infinity) sequence
{x1, x2, ...} and the transition probabilities pij of the transition matrix

P =




p11 p12 p13 . . . p1(n+1) p1(n+2)

0 p21 p23 . . . p2(n+1) p2(n+2)

0 0 p31 . . . p3(n+1) p3(n+2)

. . . . . . . . . . . . . . . . . .
0 0 0 . . . p(n+1)(n+1) p(n+1)(n+2)

0 0 0 . . . 0 1




at the m-step are functions of xm. Let the sequance {xm} be fixed. Then we
denote them as function of m. The probability that in the some element a flaw
appears at the stress xm under the condition that it has not appeared at the
stress x(m−1)
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b(m) = (F0(xm)− F0(x(m−1)))/(1− F0(x(m−1)).

Consider the case of s flaws present. The probability that r new flaws appear,
0 ≤ r ≤ k = n− s, and the total number of flaws equals to t = s + r

p̃st(m) = (b(m))r(1− b(m))(k−r)k!/r!(k − r)!.

Conditional probability of some element destruction at the nominal stress xm

q(m) = (F1(xm)− F1(x(m−1)))/(1− F1(x(m−1)).

Corresponding probability that destruction of no element takes place when there
are flaws in t elements

ut(m) = ((1− q(m))t.

The probability of coincidence of these events, which we consider as indepen-
dent, is the probability of transition from state i = (s + 1) to state j = i + r

pij(m) = p̃(i−1)(j−1)(m)uj−1(m),

where i ≤ j ≤ (n + 1). Conditional destruction probability at state i

pi(n+2)(m) = 1−
n+1∑

j=i

pij(m).

Of course, pij(m) = 0 if j < i and p(n+2)(n+2)(m) = 1.

72.3.2 Model of destruction in the presence of at least one flaw

In this case in MC there are only three states: there are no flaws (state number
i = 1), there is at least one flaw (state number i = 2), absorbing state (state
number i = 3). Corresponding transition probabilities are: p11(m) = (1 −
b(m))n, p12(m) = 1 − p11(m), p13 = 0, p21 = 0, p22(m) = 1 − q(m), p23(m) =
q(m), p31 = p32 = 0, p33 = 1.

For both models considered in subsections 72.3.1 and 72.3.2 the cdf of spec-
imen strength (defined on the sequence {xm}) is defined actually by the step
number to absorption

F (xm) = π(
m∏

j=1

P (j))u, (72.3.5)

where P (j) is transition matrix for step number j, column vector u = (0...01)
′

where only the last component is equal to 1 but all the others are equal to 0.
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72.4 Model parameter estimation.
Comparison of models

Considered models were used for processing of dataset described in Andersons
et al. (2002) and (2005) for glass fiber and flax fiber tests respectively. It was
assumed that

F0(x) = F1(x) = 1− exp(−exp((x− ϑ0)/ϑ1)),

where x = log(σ), σ is strength (MPa). In this case F (x) depends on l1 and
on location and scale parameters, ϑ0 and ϑ1, estimates of which (for fixed
l1) can be found using regression analysis of order statistics. The maximum
likelihood method can be used here also but it is excessively labor-consuming.
Our purpose is only comparison of the models, and we have limited ourselves
by the use of regression analysis.
Let Xij be jth order statistic in a sample corresponding to specimen length

L = Li, E(Xij) is expected value of Xij , E(
0
Xij) is the same but for ϑ0 = 0 and

ϑ1 = 1, ϑ̂0 and ϑ̂1 are estimates of ϑ0 and ϑ1, x̂ij = ϑ̂0+ ϑ̂1E(
0
Xij) is estimate of

E(Xij), x̄i =
∑ni

j=1 xij/n, x̂i =
∑ni

j=1 x̂ij/n, ni is number of specimens with L =
Li, i = 1, 2, ..., kL, where kL is number of different L. The values of l1, for which
we have minimum of values Q1 = (

∑kL
i=1(x̄i − x̂i)2/

∑kL
i=1(x̄i − x̄)2)1/2 or Q2 =

(
∑kL

i=1

∑ni
j=1(xij− x̂ij)2/

∑kL
i=1

∑ni
j=1(xij− x̄i)2)1/2, where x̄ =

∑kL
i=1 x̄i/kL,, can

be used as estimates of parameter l1. We use the corresponding values of Q1

and Q2 for model comparison (Remark. If only two parameters, ϑ0 and ϑ1,
are unknown, then the value Q2 can be used for goodness-of-fit test of cdf type
hypothesis testing).

It is appears that the best fit for the four samples of glass fiber strengths
(78,74, 50 and 60 observations, Andersons et al. (2002), with l equal to 10, 20,
40 and 80 mm correspondingly) was provided by eq. (72.1.1) for criterion Q2

and by eq. (72.2.3) for criterion Q1 . The best fit (Fig.1) for the three samples
of flax fiber strength (90, 70 and 58 observations, Andersons et al. (2005), with
L equal to 5,10 and 20 mm correspondingly) was provided by eq. (72.2.4) for
criterion Q2 (Q2 = 0.1718 and by eq. (72.2.3) for criterion Q1 (Q1 = 0.1261).
The models with the use of MC theory give approximately the same results.
Evidently, we have random conclusions because we have random test data.
But it seems that all four considered models deserve to be studied much more
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thoroughly, using much more test data.
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Figure 1: Comparison: xij (Andersons et al. (2005))and x̂ij , calculated using
eqs (72.1.1) and (72.2.4) denoted by (o) and (*) correspondingly.
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Bayes - Fiducial Approach For Quantile

Estimation And Specified Life Nomination

Yuri Paramonov

Aviation Institute of Riga Technical University

Abstract: An optimality of specified life, tSL, nomination decision is discussed.
Two criteria are considered: maximum of expectation of tSL under limitation
of failure probability and maximum of operation time expectation, when the
failure is estimated by some negative value. Numerical examples are given.

Keyword and phrases: quantile estimation, specified life, Bayes-fiducial ap-
proach

73.1 Introduction

In this paper we consider the case when some system should be discarded from
service if its service life exceeds some service time, tSL, to which we’ll refer as
the specified life (SL). It should be done in order to ensure the reliability of
the system or in order to have the maximum of some profit when the failure of
the system before tSL is connected with some big loss. SL should be specified
on the base of processing of some timetest data. The exposition is as follows.
Application of p-bound to solution of the problem of the SL nomination under
condition of failure probability limitation is discussed in section 2. Economics
approach is considered in section 3.

73.2 Specified life nomination under condition of fail-
ure probability limitation

P -bound is special case of p-set function, definition of which is given in Para-
monov and Paramonova (1998), where p-set function is used for inspection
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programme development.
The p-bound for random variable is defined in the following way.

P-bound definition. Let Z be a random variable (rv) and X = (X1, X2, ..., Xn)
be a random vector. We suppose that it is known the class {Pθ, θ ∈ Ω} to which
the probability distribution of the random vector W = (Z,X) is assumed to
belong. Of the parameter θ, which labels the distribution, it is assumed known
only that it lies in a certain set Ω, the parameter space.

Function τ(x) is called a p-bound for the rv Z if supθ P (Z < τ(X)) = p, θ ∈
Ω. It is called a parameter-free (p.f.) p-bound for r.v. Z if P (Z < τ(X)) = p
for all θ ∈ Ω.

So really, it is a p-quantile of cdf FZ(z) estimate. But it is very specific
estimate: expectation value E(FZ(τ(X))) = p. P.f. p-bound has close con-
nection with prediction interval (see Paramonov and Paramonova (1998)) but
in the problem considered we have very specific loss function. We are inter-
ested to get the maximum of expectation value of p-bound under condition
E(FZ(τ(X))) = p.

Later on the value x, observation of the random vector X, would be inter-
preted as result of some test, some sample; random value Z would be interpreted
as lifetime of the considered system in service; the value τ(x) as nominated spec-
ified life; the probability P (Z < τ(X)) as the probability of failure; condition
P (Z < τ(X)) = p as condition to provide the required reliability equal to
(1− p).

Let Z and every component of vector X have the following structure Z =

θ0 + θ1

0
Z , Xi = θ0 + θ1

0
Xi, where θ0, θ1 are unknown location and scale

parameters, cdf of r.v.
0
Z and

0
Xi, i = 1, ..., n, are known.

Let τ(x)) be linear function of order statistics τ(x) = ax(1,...,n), where a =
(a1,..., an) is row vector, x(1,...,n) = (x(1), ..., x(n))T is column vector of order
statistics X(1,...,n) = (X(1), ..., X(n))T (here the transpose (of a vector or of a
matrix) is denoted by a capital superscript T ). If aξ = 1, where ξ = (1, ..., 1)T

is column vector of n units, then τ(x) is p.f. p-bound for r.v. Z for some p,

because in this case τ(X) has the following structure: τ(X) = θ0 + θ1
0
τ ,

where
0
τ= τ(

0
X) = a

0
X(1,...,n),

0
X(1,...,n) has the same cdf as X(1,...,n) but

θ0 = 0, θ1 = 1. Let
0
ν is the expectation value of

0
τ . Using the theorem 1.f.1(II)

in Rao (1968) we can get the vector a = a(
0
ν) corresponding to the minimum

of variance of
0
τ at the fixed

0
ν:

a(
0
ν)T =

0
D
−1

BS−1W,

where
0
D is a matrix of covariance of order statistics

0
X(i), i = 1, ..., n; matrix
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B = (
0
µ, ξ),

0
µ= (

0
µ(1), ....,

0
µ(n))T is column vector of expectation values of order

statistics for θ0 = 0, θ1 = 1, matrix S = BT
0
D
−1

B, column vector W = (
0
ν, 1)T .

Then P (Z < τ(X)) = P (
0
Z −τ(

0
X) ≤ 0) = P (U ≤ 0) = p(

0
ν).

If random variable U has normal distribution then for fixed P (U ≤ 0), provided

P (U ≤ 0) ≤ 0.5, we have maximum of
0
ν and expectation value of τ(X). Evi-

dently, we have got only approximate optimum vector a if rv U has approximate
normal distribution, but for chosen a the true value of probability P (U ≤ 0)
can be calculated using, for example, Monte Carlo method.

Let us consider the following numerical example. Suppose that simulta-
neously fatigue tests of 6 airframes of the same type of aircraft have been
made but only until 4-th fatigue failure. So we know only 4 first minimal fa-
tigue lives: (t(1), ..., t(4)) = (59971; 72600; 77630; 80863) and correspondingly
x = (x(1), ..., x(4)) = (11.002; 11.193; 11.260, 11.3005), where x(i) = ln t(i),
i = 1, ...4,. There are m = 100 aircraft in operation. There is requirement,
that the probability of at least one fatigue failure up to specified life should not
exceed p = 0.05.

Let us suppose, that lognormal distribution functions can be used for fatigue
life data processing. We’ll use the logarithm scale and correspondingly consider
normal distribution. Expectation values and covariance matrix for first fourth
order statistics of 6 observations from standard normal distribution can be found
in special tabels or can be calculated using, for example, SAS or MATLAB .
Using Monte Carlo (MC) method we can find that

0
νp= −7.0 and vector a =

[3.8883; 1.5865; 0.3789;−4.8537] for p = 0.05. In logarithm scale τ = 9.9539. In
natural scale tSL = 21, 035.

Now we consider decision based on the use of sufficient statistics and Bayes-
fiducial approach. Let θ1 is known. The random variable θ̂t = τ(x) = θ̂0 + tθ1

is unbiased estimate of its own expectation (some quantile θt). If estimate θ̂t is
function of sufficient statistics then, as it is well known, we have minimum risk
if correspondent loss-function is convex. In considered problem the function
FZ(z) can be considered as a loss-function, which, for example, for normal
distribution is convex (and increasing one) if z < c = 0.5. Then expectation
EX{FZ(θ̂t)} = P (Z < τ(X)) is the risk function. Let us use such parameter
estimate θ̂t of θt, which gives minimum risk. Then if we set the mimimum risk
equal to p, we get the maximum value of E{τ(X)} corresponding to this p if p
is small enough (and probability P (τ(X) < c) is high enough, where c is such
that FZ(z) is convex if z < c ).

The straight way to get τ(x) as function of sufficient statistics is the use
of fiducial distribution (see Rao (1968)). Let τ(x, p0) be the solution of the
equation



424 Yuri Paramonov

E
eθ{FZ((τ − θ̃0)/θ1) = p0,

where θ̃ = (θ̃0, θ1), r.v. θ̃0 have fiducial distribution.

Let xi = θ0 + θ1
0
xi, i = 1, ..., n, then it is easy to show that there is such p0

that τ will be p.f.p-bound for Z and it is function of sufficient statistic.
Similar approach can be used if θ1 is not known also. Fiducial density for the
location and scale parameters in this case is defined in the following way (see
Paramonov (1992)):

f eθ0, eθ1
(s0, s1; x) = g(s0, s1; x)/

∫ ∫
g(s0, s1; x)ds0ds1,

where g(s0, s1; x) = f((x1 − s0)/s1)...f((xn − s0)/s1)/s
(n+1)
1 , −∞ ≤ s0 ≤ ∞,

0 ≤ s1 ≤ ∞.

73.3 Bayes-fiducial method in framework of economics
approach

We suppose that the income of aircraft successful service during time t is equal
to t, but in case of failure we suppose to have a loss, which is equal to some
value w = −b, where b is a very large positive number. Then income of one
aircraft service, r.v. U , is defined by formula

U =
{

tSL, if T > tSL,
T − b, if T ≤ tSL,

where T is r.v., fatigue life of SSI, tSL is some SL. Let FT (t, θ) be c.d.f. of r.v.
T . Then u, expectation value of r.v. U , as function of tSL, θ, b is defined by
formula

u(tSL, θ, b) =

tSL∫

0

(t− b)dFT (t, θ) + tSL(1− FT (t, θ)).

Maximum of u(tSL, θ, b) is reached at optimum value of SL, t∗SL, which is the
root of the equation

bfT (t, θ)/(1− FT (t, θ)) = 1.

Let us consider the normal distribution of X = lnT with c.d.f. FX(x) =
Φ((x − θ0)/θ1), where Φ(.) is standard normal c.d.f.. Then for the known t∗SL

corresponding θ0 is defined by formula

θ0 = t∗SL − θ1λ
−1(t∗SLθ1/b),
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where λ(z) is failure rate function for standard normal distribution, λ−1(.) is
inverse function. Now t∗SL can be defined as the corresponding inverse function
for wich we use the following notation :

t∗SL = S∗L(θ0, θ1, b). (73.3.1)

For b = 346000, θ1 = 0.346 and θ0 = 9.948 maximum value of u corresponds
to t∗SL = 7936 . It is interesting to note that this value corresponds to the
probability failure 0.0026. This can be interpreted in the following way. Failure
of 2.6 aircraft (in flight) from the park of 1000 aircraft can be considered as
equivalent to the loss of 346000 hours of service time or loss of 346000/7936 =
43.6 aircraft (on the ground) of the same types (the price of an aircraft is
considered to be equal to tSL = 7936). In other words, failure of one aircraft
(in flight) is equivalent to the loss of 43.6/2.6 ≈ 16 aircraft of the same type
(on the ground).

But we do not know the parameters and should estimate them using fa-
tigue test data. Usually maximum likelihood estimate is considered as most
appropriate. We show here that for the problem considered the Bayes-fiducial
approach proposed (see Paramonov, 1992) is much more appropriate. In ac-
cordance with Bayes approach the parameter θ is considered as some rv. For
the case of airframe it can be interpreted in the following way. Design stress
analysis of an airframe should be made in accordance with some requirements
(FAR, ...). These requirements in fact define only some mean value of θ0, but
of course, in every case there are some ”occasional mistakes” and we have some
specific (random) value of θ0 for every aircraft type. And then there is a scatter
of rv X at this random θ0. The parameter θ1 is function of technology level,
and if one is not changed, then the parameter θ1 is not changed also.

So suppose that θ1 is known constant but θ0 is random variable which we
denote by θ̃0. Denote by π(θ0) a priori distribution density of θ̃0, then c.d.f. of
new r.v. X̃ will be

F̃X̃(x) =

∞∫

−∞
FX((x− θ0)/θ1)π(θ0)dθ0.

It is easy to show that if θ1 is constant, rv θ̃0 has normal distribution with mean
τ0 and standard deviation τ1, then distribution of X̃ will be again normal with
mean τ0 and standard deviation ((τ1)2 +(θ1)2)1/2. In this case optimal SL, tSL,
again will be defined by the same eq. (73.3.1) but θ0 should be replaced by τ0

, θ1 should be replaced by ((τ1)2 + (θ1)2)1/2.
In fact we do not know a priori distribution of θ̃0, but we have sample from

FX(x) distribution. For this case the BF approach is offered. Instead of a
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priori distribution of θ̃0, we offer to use the already mentioned fiducial distribu-
tion. The main ideas of this approach in case of two unknown parameters are
described, for instance, in Paramonov (1992). In considered case, when θ1 is
known, it is enough to say that fiducial distribution of θ̃0 is normal again with
mean x̄ and standard deviation θ1/n1/2. Then for the purpose of calculation of
posterior tSL we again can use the same eq. (73.3.1), but θ0 should be replaced
by x̄ and θ1 should be replaced by θ̃1 = θ1(1 + 1/n)1/2.

Let us make comparison of BF approach with direct use of maximum like-
lihood (ML) estimates instead of θ. Let tSL(x) is some function of observation
vector x and random variable UX is defined by formula

UX = u(tSL(X), θ, b).

For BF approach
tSL(x) = S∗L(x̄, θ̃1, b).

If we use ML estimate of θ0 then

tSL(x) = S∗L(x̄, θ1, b).

By the use of Monte Carlo method for θ = (θ0, θ1) = (9.948, 0.346), b =
346, 000 for the sample size n = 1, 2, 4, 100 for BF approach we have got fol-
lowing expectation value of r.v. UX , E(UX) : 2310 4122 5571 6904. If we
use ML estimate of θ0 then the corresponding values of E(UX) are equal to
−8624 809 4422 6935. We see that for small n the expectation value of rv
UX is much more for BF method than for ML method. The value of E(UX) is
negative for the ML method and n = 1 because if tSL more than t∗SL then U
decreases very drasticly. Standard deviation of X̄ is equal to θ1/n1/2 and for
n = 100 it is very small. In this case we have nearly the same value of E(UX)
as for the known θ0 for both BF and ML methods.
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Abstract: Several modelling techniques have been proposed for non propor-
tional hazards. In this work we consider different models which can be classified
into two wide categories: models with time varying effects of the covariates and
frailty models. We present these different extensions of non-proportional haz-
ards models on an application of 2433 breast cancer patients with a long follow
up. We comment on the differences and similarities among the models and
evaluate their performance using survival and hazard plots, Brier scores and
pseudo-observations.
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74.1 Introduction

When analyzing survival data the Cox proportional hazards model is considered
the ‘null’ model. However, in studies with long follow up of the patients the
assumption of proportionality is often violated and alternative modelling strate-
gies have to be considered. To present some of these approaches we use data
from the breast cancer registry of IASO Woman’s hospital in Athens, Greece.
We consider a data set with 2433 patients operated for breast cancer with a
maximum follow-up of 21 years.

We will analyze the data using Cox models with time varying effects, reduced
rank models, the gamma frailty (Burr) model and the relaxed Burr model. We
will shortly present these approaches and discuss their properties. We will try
to highlight the similarities and pinpoint their differences when applied to the
data.

To evaluate the different modelling strategies, we will compare survival and
hazard plots computed from the models and discuss the use of Brier scores
combined with pseudo-observations.

427
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The data come from the registry of breast cancer patients of IASO Woman’s
hospital in Athens, Greece. From 1981 up to 2002, 2433 women with operable
breast cancer were treated in the department of breast oncology of the insti-
tution. More information about the data can be found in Perperoglou et al
(b,2006).

74.2 Time varying effects and reduced rank models

Perperoglou et al. (a,2006) introduced reduced rank regression models in sur-
vival analysis. A reduced rank model is a Cox model with time dependent
effects of the covariates written as:

h(t|X) = h0(t) exp(XΘF ′) (74.2.1)

with X a row-vector of p covariates, F a vector of q time functions, and Θ
is a p × q matrix of estimable coefficients. Written in this way, matrix Θ can
be factorized in several different ways, as the product Θ = BΓ′, where B is a
p× r and Γ a q × r matrix, and r is the rank of the reduced rank model. The
maximum rank of the model can be r =min(p, q) resulting in the very flexible
full rank model, while when the rank is smaller the model is more rigid since
the number of parameters used to model the time varying effects is smaller.

74.3 The Burr and relaxed Burr model

The gamma frailty (Burr) model is very often used to describe individual het-
erogeneity or in general to account for the possible lack of fit. However, the
assumption that frailties are constant might be restrictive and against biological
reasoning. To account for time dependent frailties Perperoglou et al (c,2006)
introduced the relaxed Burr model as an alternative more flexible model. Then
relaxed Burr model is defined as

h(t|X) =
h0(t) exp(Xβ)

1 + F (t|δ) exp(Xβ)
(74.3.2)

where F (t|δ) can be any continuous non-negative function starting at F (0|δ)=0.
We will always use a linear model F (t|δ) = f(t)δ where f(t) can be a simple
time function multiplied by an unknown but estimable coefficient δ. This gen-
eralization of the Burr model allows for more flexible forms of hazard functions,
depending on the functional form of F (t|δ).

74.4 Use of pseudo-observations and Brier scores

A Brier score measures average discrepancies between the true disease outcome
and the predictive values from the model. To avoid the complications of censor-
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ing weights are introduced when a case is censored at the time t where the scores
are evaluated. We propose to compute Brier scores on pseudo-observations (An-
dersen 2003). For that purpose define the Brier pseudo-observation score:

Bp.s(t) =
1
n

n∑

i=1

{[P.O(t)− Ŝ(t|Xi)]2} (74.4.3)

where P.O(t) are the pseudo-observations evaluated at time t. given by P.obsi(t) =
n ˆKM(t) − (n − 1) ˆKM−i(t) whith KM the Kaplan-Meier survival estimate at
time t and KM−i(t) the estimate at the same time, leaving individual i out.

74.5 Model comparison

The reduced rank model was fitted to the data using second degree B-splines
with 3 interior knots as time functions. All possible reduced rank models were
fitted, from the very rigid rank=1 model to the very flexible full rank model.
The rank=2 model has 22 free parameters and was chosen to analyze the data.
When dealing with time varying effects of the covariates, expressing relation-
ships with a single number is more complicated, as well as building prognostic
scores. However, a plot of the covariate effects through time can be very useful
and offer an insight on the nature of the data. In figure (74.1) the effects of
covariates under a rank=2 model are presented.

We fitted a gamma frailty model to the data and the relaxed Burr model
using cubic B-splines as time functions. The estimates of the coefficients and
their standard errors were very similar under the two models (data not shown).
However, the relaxed Burr model is more flexible and shows that the frailties are
not constant but change through time. To show this consider two hypothetical
group of patients that emerge from the data, a group of 50 year old individuals,
with tumor size of 15mm and 3 positive lymph nodes with the difference that
in the first group the tumor grading was I, while in the second the tumor was
of grade 3. Under a proportional hazards model, these two different group of
patients will have parallel hazards regardless of time. This can be seen in figure
(74.2) where the lower solid line presents the hazard under a Cox proportional
hazards model, for patients in the first group, and the upper solid line presents
the hazard for patients in the second group. In the same graph the dashed
lines present the hazards of the two different groups under the Burr model, and
the pointed lines are the hazards coming from a relaxed Burr model. As it is
expected the Burr model shows hazards that converge after approximately 10
years. The relaxed Burr model gives almost identical hazards to the Burr model
for the first 5 years, but from that point on the hazards start to diverge and
come closer to the ones given by the simple Cox model. That means that after
the elapse of some time, the group of people that remain do not have constant
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frailties anymore, instead that frailties change and the model comes close to
proportional hazards.

To compare the models with respect to survival we created several different
group of patients, running from good to worse prognosis, all of which emerge
from the data. In most of the cases the differences among the models were
hardly visible. Here we present a group of patients with aged 66 years old
with tumor size 30mm, 7 positive lymph nodes and grade 3, and present their
survival functions in Figure 74.3. As it can be seen, up to the fifth year of
follow-up the models give very similar estimates while from the sixth year and
on, the reduced rank model is giving larger probabilities of survival than the
rest as it is expected since the effects of the covariates are weakened under after
some time. The differences among the Burr model and relaxed Burr model are
hardly visible for up to 6 years in all patient groups, while from the seventh
year and on are very small.

The Brier pseudo-observation scores at different time points are presented
in table (74.1). The scores show that the reduced rank model is the best up
to the fifth year but from that point on that the relaxed Burr model is the
preferred one.

References

1. A. Perperoglou, S. le Cessie, and H. C. van Houwelingen, (2006). Reduced
Rank hazard regression for modelling non-proportional hazards, Statistics
in Medicine, in press, DOI: 10.1002/sim.2360

2. Perperoglou A, le Cessie S., van Houwelingen H.C. (2006). A fast rou-
tine for fitting Cox models with time varying effects of the covariates,
Computer methods and programs in biomedicine, 81, 154–161.

3. A. Perperoglou, H. C. van Houwelingen, and R. Henderson, (2006) A
relaxation of the gamma frailty (Burr) model Submitted

4. P. K. Anderesen, and J. P. Klein, (2003) Generalised linear models for
correlated pseudo-observations, with applications to multi-state models,
Biometrica, 15-27.



Analyzing Non-Proportional Hazards 431

Table 74.1: Brier score and R2 for different models estimated on pseudo-
observations. Time (t) in months.

KM PH Burr RBurr Rank=2
t = 24 0.0598 0.0563 0.0558 0.0561 0.0554
t = 36 0.1102 0.1013 0.1004 0.1006 0.1000
t = 48 0.1472 0.1359 0.1352 0.1352 0.1350
t = 60 0.1809 0.1657 0.1648 0.1646 0.1649
t = 72 0.2215 0.2041 0.2032 0.2027 0.2041
t = 84 0.2690 0.2478 0.2471 0.2463 0.2489
t = 96 0.3032 0.2797 0.2788 0.2780 0.2814
t = 120 0.3858 0.3602 0.3592 0.3581 0.3633
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Figure 74.1: Effects of covariates through time under the rank=2 model.
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Abstract:1 To model degradation processes in technical and biological objects
generalized birth and death processes are introduced and studied.
Keywords and phrases: Birth and death processes generalization, Degrada-
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75.1 Introduction and Motivation

Traditional studies of technical and biological objects reliability mainly deals
with their reliability function and steady state probabilities for renewable sys-
tems. Nevertheless, because there are no infinitely long leaving objects and
any repair is possible only from the state of partial failure, the modelling of
degradation process during a life period of an object is a mostly interesting
topic. From the mathematical point of view the degradation during object’s
life period can be described by the Birth and Death (B &D) type process with
absorbing state. For this process the conditional state probability distribution
given object’s life period is a mostly interesting characteristic.

During last years an intensive attention to the aging and degradation mod-
els for technical and biological objects has been attracted. The organization
of special scientific conferences devoted to this topics testifies it. The aging
and degradation models suppose the study of the systems with gradual failures
for which multi-state reliability models were elaborated (for the history and
bibliography see, for example, Lisniansky and Levitin (2003)). In some of our
previous papers (see Rykov and others (2004) and the bibliography therein)
the model of complex hierarchical system was proposed and the methods for its
steady state and time dependent characteristics investigation was done. Con-

1The paper was partially supported by the RFFI Grant No. 04-07-90115.
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trollable fault tolerance reliability systems were considered in Rykov Efrosinin
(2004) and Rykov Buldaeva (2004). In the present paper a generalized B & D
process as a model for degradation and aging processes of technical and bio-
logical objects is proposed. Conditional state probabilities given object’s life
period and their limiting values when t → ∞ are calculated. The variation of
the model parameters allows to consider various problems of aging and degra-
dation control.

75.2 Generalized Birth &Death Process

Most of up-to-date complex technical systems also as biological objects with
sufficiently high organization during their life period pass over different states
of evolution and existence. From reliability point of view these states can be
divided into three groups: the states of normal functioning, the dangerous
(degradation) states and the failure states, that can be joined into the sets
N, D, and F respectively.

In the simplest case if the nature of the degradation process allows to com-
pletely order the states to admit the transition possibilities only to neighboring
states it can be modelled by the process of B& D type.

75.2.1 Definition. Basic equalities

Suppose that the states of the object are completely ordered, its transitions
only into neighboring states are possible, and their intensities depend on the
time spend in the present state. Consider firstly the general case of the process
with denumerable set of states E = {1, 2, . . . }. To describe the object behavior
by a Markov process let us introduce an enlarged states space E = E × [0,∞)
and consider two dimensional process Z(t) = {S(t), X(t)}, where the first com-
ponent S(t) ∈ E shows the object’s state, and the second one X(t) ∈ [0,∞)
denotes the time spent in the state since the last entrance into it. Denote by
αi(x) and βi(x) (i ∈ E) the transition intensities from the state i to the states
i+1 and i− 1 respectively under the condition that the time spent at the state
i equals to x.

Remark. If the stay time at the state i is considered as a minimum of two
independent random variables (r.v): time Ai till to transition into the “next”
state i + 1 and time Bi till to transition into the “previous” state i − 1 with
cumulative distribution functions (c.d.f.) Ai(x), Bi(x), then the introduced
process can be considered as a special case of semi-Markov process (SMP)
(see Korolyuk and Turbin (1976)), with conditional transition p.d.f.’s αi(x)
βi(x). Nevertheless, the given formalization open the new possibilities for the
investigations and moreover in the degradation models we are studying the
conditional probability state distribution on given life period, that was not
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investigated previously.
Denote by πi(t, x) the p.d.f. of the process Z(t) at time t,

πi(t, x)dx = P{S(t) = i, x ≤ X(t) < x + dx}.

These functions satisfy to the Kolmogorov’s system of differential equations

∂πi(t, x)
∂t

+
∂πi(t, x)

∂x
= −(αi(x) + βi(x))πi(t, x), 0 ≤ x ≤ t < ∞, i ∈ E

(75.2.1)
with the initial and boundary conditions





π1(t, 0) = δ(t) +
t∫
0

π2(t, x)β2(x)dx,

πi(t, 0) =
t∫
0

πi−1(t, x)αi−1(x)dx +
t∫
0

πi+1(t, x)βi+1(x)dx, i ∈ E.

(75.2.2)
In the following we will suppose the process to be non reducible, non degen-

erated. The conditions for this in terms of SMP might be found for example
in McDonald (1978) and Jacod (1971). For the non reducible, non degenerated
generalized B &D process the Kolmogorov’s system of equations (75.2.1) with
initial and boundary conditions (75.2.2) has a unique solution over all time axis.

It is possible to show by the method of characteristics Petrovsky (1952) that
its solution has a form

πi(t, x) = gi(t−x)(1−Ai(x))(1−Bi(x)), 0 ≤ x ≤ t < ∞, i ∈ E, (75.2.3)

where the functions gi(t) in accordance with the initial and boundary conditions
(75.2.2) satisfy to the system of equations




g1(t) = δ(t) +
t∫
0

g2(t− x)(1−A2(x)b2(x))dx,

gi(t) =
t∫
0

gi−1(t− x)ai−1(x))(1−Bi−1(x))dx+

+
t∫
0

gi+1(t− x)(1−Ai+1(x)bi+1(x))dx, i = 2, 3, . . . .

(75.2.4)

The form of these equations shows that their solution should be found in
terms of its Laplace transforms (LT’s). Therefore by passing to the LT’s with
respect to both variables into relations (75.2.3) after the change of the integra-
tion order one can get

˜̃πi(s, v) ≡
∞∫

0

e−st

t∫

0

e−vxπ(t, x) dx dt = g̃i(s)γ̃i(s + v), (75.2.5)
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where g̃i(s) are the LT of the functions gi(t), and the functions γ̃i(s) are

γ̃i(s) =

∞∫

0

e−st(1−Ai(t))(1−Bi(t))dt.

From the other side by passing to the LT’s with respect to variable t in the
system (75.2.4) one get

{
g̃1(s)− g̃2(s)ψ̃2(s) = 1,

−g̃i−1(s)φ̃i−1(s) + g̃i(s)− g̃i+1(s)ψ̃i+1(s) = 0, i = 2, 3 . . .
(75.2.6)

where the functions φ̃i(s) and ψ̃i(s) are given by the relations

φ̃i(s) =

∞∫

0

e−sxai(x)(1−Bi(x))dx, ψ̃i(s) =

∞∫

0

(1−Ai(x))bi(x))dx, i = 1, 2, . . . .

In the case of finite number n + 1 of states in the above system one should put
φ̃n+1(s) = 0.

The closed form solution of this system in general case even in the simplest
case of usual B& D process does not possible. In spite of the above equations
not being possible to solve in closed form they provide calculation different
characteristics of the process. Consider some of them.

75.2.2 Stationary probability distribution

For calculation of the process Z(t) macro-states stationary probabilities

πi = lim
t→∞πi(t) = lim

t→∞

t∫

0

π(t, x)dx = lim
t→∞

t∫

0

gi(t− x)(1−Ai(x))(1−Bi(x))dx

we use the connection between asymptotic behavior of functions at infinity and
their LT’s at zero. Letting γ̃(0) = γ and taking into account that accordingly
to (75.2.5) π̃i(s) = ˜̃πi(s, 0), we find

lim
t→∞πi(t) = lim

s→0
sπ̃i(s) = γi lim

s→0
sg̃i(s).

Thus, for the problem solution it is necessary to calculate the values

gi = lim
s→0

sg̃i(s),

for what we use equations (75.2.6). By multiplying these equations by s, and by
passing to limit when s → 0 in them and taking into account that φi + ψi = 1
we get the recursive relations

giφi − gi+1ψi+1 = gi−1φi−1 − giψi, i = 2, 3 . . . , (75.2.7)
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where the notations φi = φ̃i(0), ψi = ψ̃i(0) were used. Now because φ1 = 1
from it follows from the first of equations (75.2.6) that g1φ1 − g2ψ2 = 0. With
the help of the last recursive relation it is possible to calculate coefficients gi

and find the stationary distribution, that is given in the following theorem.
Theorem 1. For the generalized B&D process stationary regime existence

it is necessary the convergence of the series

g−1
1 =

∑

1≤i<∞
γi

∏

1≤j≤i

φj−1

ψj
< ∞. (75.2.8)

In this case the stationary probabilities are given by the formula

π1 = g1γ1, πi = g1γi

∏

1≤j≤i

φj−1

ψj
, i = 2, 3, . . . . ♥ (75.2.9)

Moreover, from the form of stationary probabilities it follows the next im-
portant corollary

Corollary. The macro-states stationary probabilities of generalized B&D
process are insensitive to the shape of distributions Ai(x), Bi(x) and depend
on r.v. Ai, Bi and their distributions only by means of probabilities of jumps
embedded random walk up and down and mean time of the process stay in the
given state,

φi = P{Ai ≤ Bi}, ψi = P{Ai > Bi}, and γi = E[minAi, Bi]. ♥
(75.2.10)

For the process with finite number of states n+1 in the Kolmogorov’s system
of equations (75.2.1) one should put αn+1(x) ≡ 0. In this case the stationary
probabilities have the same form (75.2.9), but the normalizing constant (75.2.8)
should be changed by an appropriate finite sum. In the case of exponential
distributions Ai(x) = 1− e−αit and Bi(x) = 1− e−βit the formulas (75.2.9) are
reduced to the stationary probabilities of the usual B& D process.

75.2.3 Distribution of the process states given on life period

For many phenomenons especially for degradation processes more appropriate
is absorbing process model. For the generalized B & D process with absorbing
state n + 1 in the Kolmogorov’s system of equations (75.2.1) one should put
αn+1(x) = βn+1(x) ≡ 0. In this case the equation for the function πn+1(t) takes
the form

∂πn+1(t, x)
∂t

+
∂πn+1(t, x)

∂x
= 0, (75.2.11)
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with the initial and boundary condition

πn+1(t, 0) =

t∫

0

πn(t, x)αn(x)dx. (75.2.12)

Thus, all functions πi(t, x) (i = 1, n) have the same solution (75.2.3) as be-
fore. But the function πn+1(t, x), being a constant over the characteristics, is
πn+1(t, x) = gn+1(t − x), where due to the boundary conditions (75.2.12) it
follows that

gn+1(t) =

t∫

0

gn(t− x)an(x)(1−Bn(x))dx.

The solution πi(t) of the system of equations (75.2.1, 75.2.2, 75.2.11, 75.2.12)
gives the probability of the object to be in some state jointly with its life period
T ,

πi(t) = P{S(t) = i, t < T}, i = 1, 2, . . . , n.

For the degradation problems investigation more useful and adequate charac-
teristic is the conditional state probability distribution on given object’s life
period for which the following representation is true

π̄i(t) = P{S(t) = i |t < T} =
πi(t)
R(t)

, i = 1, 2, . . . , n

where R(t) = 1−πn+1(t) is the reliability (survival) function of the object. For
its LT R̃(s) one can find

R̃(s) =
1
s
− 1

s
g̃n(s)φ̃n(s) =

1
s
(1− g̃n(s)φ̃n(s)). (75.2.13)

We are interesting in limits of the conditional probabilities states given life
period. To calculate their we should evaluate the asymptotic behavior of the
functions πi(t) (i = 1, 2, . . . , n) and R(t) when t →∞. We will do that with the
help of their LT. Denote by ∆(s) the determinant of the matrix of coefficients of
n first equations of the system (75.2.6) and by ∆i(s) the determinant of the same
matrix in which i-th column is changed by the vector-column of the equation
right side (vector en). Then taking into account the expression (75.2.5), the LT
of the function πn+1(t), and the solution of the system (75.2.6) in terms of the
Kramer’s rule, we get

{
π̃i(s) = γ̃i(s)g̃i(s) = γ̃i(s)

∆i(s)
∆(s) (i = 1, n),

π̃n+1(s) = φ̃n(s)
s g̃n(s) = φ̃n(s)∆n(s)

s∆(s) .
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Theorem 2. Asymptotical behavior of the functions πi(t) and R(t) when
t → ∞ coincide and is determined by the maximal non-zero root s1 of the
characteristic equation ∆(s) = 0. This provide the existence of the limit

π̄i = lim
t→∞ π̄i(t) =

π̃i(s1)
R̃(s1)

.

Proof. The proof is based on the fact, that the asymptotic behavior of the
functions πi(t) and R(t) when t → ∞ is coincide, that follows from their LT
analysis. ♥

To illustrate the above results a system with only three states, which can
be considered as an example of the aggregated states model (see Korolyuk and
Turbin (1978), Korolyuk, and Korolyuk (1999)), where all states of each group:
normal functioning N , degradation D, and failure F are joined into one was
considered.

75.3 Conclusion

Generalized Birth& Death Processes, which are special class of Semi-Markov
Processes are introduced for modelling the degradation processes. The special
parametrization of the processes allows to give more convenient presentation of
the results. The special attention is focused to the conditional state probabilities
given life cycle, which are the mostly interesting for the degradation processes.
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76.1 Introduction

It has been established, that spontaneous changes of systemic blood pressure
(BP) and blood flow velocity (BFV) are characterized by four main wave pro-
cesses: heart rate (0.5-1.6 Hz), respiratory excursions (0.15-0.65 Hz), Meyer’s
waves (0.05-0.15 Hz) and B-waves (0.008-0.05 Hz)[2, 3, 6].

Impaired cerebral autoregulation (CA) is one of the leading links in patho-
genesis of disorders occurring in the system of cerebral circulation (SCC). CA
is a multi-component mechanism, ensuring stability of cerebral blood flow not
only in step changes of BP, but also in its spontaneous oscillations within the
middle-frequency range. From this point of view CA is considered to be a filter
system, normally transmitting only high-frequency oscillations (0.15-0.5 Hz) of
BP, which are characterized by high coherence and a smaller phase shift (PS)
as compared with analogous oscillations of BFV. At the same time this system
damps Meyer’s waves (M-waves) of BP. It results in low coherence and a large
PS between BP and BFV. The obtained data [3-6] reflect dependence of CA on
frequency. Thus, it is more effective within the middle-frequency range rather
than the high-frequency one. Disorders of CA lead to an increase of a transmit-
ting capacity of the filter and, as a result, to higher coherence and PS between
BP and BFV within the range of M-waves.

Information on B-waves is contradictory. B-waves are most probable to
reflect a state of mechanisms, responsible for regulation of SCC and mediated
by smooth-muscle cells of cerebral vessels or stem pacemakers, which change
cerebral blood flow with a certain rhythm by effecting activity of vasomotor
neurons.

It should be noted, that world literature sticks up for the conception of
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possible use of spectral analysis for estimation of CA. However, there are many
contradictions from a methodological point of view. Different authors use spec-
tral analysis for search after new informative parameters, allowing to estimate
a state of CA. It causes development of special programs of mathematical anal-
ysis (including spectral analysis), aimed at solution of definite problems. Today
some parameters of cross-spectral analysis have already been determined (PS,
coherence, gain). They can be calculated with the help of any of the above pro-
grams [4, 7-9] and used for routine diagnosis of normal and pathologic states
of CA. However, spectral analysis is used mainly in clinics with specialized re-
search centers, studying CA on the fundamental basis. From our point of view,
one of the causes, hampering wide introduction of this method into clinical
practice, is absence of available program which would allow to calculate PS,
coherence of slow oscillations of BP and BFV.

One of the most spread programs, used for analysis of data, is ”Statistica
for Windows”. It permits to solve general statistical problems (parametric and
non-parametric statistics, regression, discriminant analysis), which are of great
importance for conclusive medicine. Besides, it makes it possible to analyze
time series with the help of an autoregression model, an autoregressive mov-
ing average model, fast Fourier transformation in compliance with a standard
algorithm of operating mass data.

The goal of the present research consisted of estimation of cerebral hemo-
dynamics with cross-spectral analysis and use of ”Statistica 6.0 for Windows”.

76.2 Materials and Methods

The study was carried out on 30 healthy volunteers and 50 patients with dif-
ferent cerebrovascular pathology. The age of volunteers varied from 18 up to
51 years. They had normal blood pressure and HR; there were no chronic and
acute cardiac or cerebral pathology in their life history. The age of patients
varied from 18 up to 64 years. Intracranial aneurysms, arteriovenous malfor-
mations (AVM) and carotid-cavernous anastomosis were watched in 39, 10 and
1 cases respectively. The study was carried out both in an acute stage of the
disease and during a long-term period.

BFV in the middle cerebral artery was monitored with the Multi Dop X
system (DWL, Germany). BP was recorded, using a non-invasive method with
the Finapres-2300 apparatus (Ohmeda, USA). During monitoring a person was
in a supine position with his head lifted up to 30o. Continuous recording was
carried out during 5 min. It was done at rest and spontaneous breathing.

CA was estimated by calculating the rate of regulation (RoR) with a cuff
test [1]. This method lies in analysis of changes of cerebrovascular resistance
in response to acute reduction of BP, achieved by transient hyperemia in the
lower extremities, which follows thigh decompression with pneumatic cuffs.
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Spectral analysis was carried out, using standard procedures by ”Statistica
6.0 for Windows” program. PS between BFV and BP within the M-waves range,
B-wave spectral density (BWSD) and B-wave amplitude (BWA) were estimated.
While carrying out spectral analysis we proceeded from potentialities of digital
processing of data by the Multi Dop X system. A time series at an interval of
282 s was chosen for studying the spectrum of BFV. According to the theorem
of Kotelnikov-Shannon, estimation of the spectrum of low-frequency oscillations
demands analysis of a time series for a period, which is two times longer than a
maximum period of low-frequency oscillations (it is 120 s for B-waves). A time
series with duration of 282 s is optimum, as M- and B-waves are represented by a
sufficient number of harmonics, which allows to carry out detailed simultaneous
spectral analysis in both ranges.

Statistical processing of data was based on application of standard methods.
Parametric (Student t-criterion) and non-parametric (Kholmogorov-Smirnov
criterion, Wilcoxon criterion, Mann-Withney criterion) criteria were used. The
difference was considered to be reliable in p < 0.05.

76.3 Results

Mean values of spontaneous oscillations of systemic and cerebral hemodynamics,
RoR and cross-spectral analysis are given in Table 1.

BWSD of BFV did not exceed 1000 (cm/s)2/Hz in healthy individuals with
normal values of BFV and BP. PS between BFV and BP in the M-wave range
correlated with normal values of RoR and was within the limits of 1 rad (57o).
It confirmed a normal state of CA and agreed with data of authors, who used
another statistical programs of data processing [3, 5, 9].

As for patients with intracranial aneurysms in a remote period of hemor-
rhage, BWSD and BWA were practically identical to analogous values, watched
in healthy individuals. Probably, it could be explained by relative stabilization
of a whole SCC. At the same time values of PS and RoR were reliably lower,
than normal indices. It was indicative of preserved disorders of CA in this group
of patients, but there was a tendency to their normalization. In a hemorrhagic
period (i.e. at the stage of lesions of SCC, marked to the utmost) patients were
characterized by considerable increase of BWSD and BWA and more severe
disorders of CA, manifesting themselves in reliably low values of PS and RoR.

Cases with moderate vasospasm or its absence, observed in a hemorrhagic
period, had mean values of BWSD and BWA, which were reliably lower in
comparison with patients with severe or critical vasospasm; values of PS and
RoR were reliably higher (Table 1).

Severe and critical vasospasm is one of the most serious complications of
aneurysm rupture, determining a course of an early postoperative period after
open intracranial interventions to a considerable extent. Data of preoperative
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Table 1. Mean values of BP, HR, BFV, RoR and crosspectral analysis for a period of 282 s in volunteers and 

different groups of patients 

Data of systemic and cerebral homodynamics 

Mean values Data of crosscpectral analysis Groups of volunteers and 

patients 
BP

[mmHg] 

HR

[min-1]

BFV

[ m/s] 

RoR 

[%/s] 

PS

[rad] 

BW SD 

[(m/s)
2

/Hz]

BW A 

[ m/s] 

Volunteers (n=30) 90±3 82±1 68±3 34±5 1.0±0.1 557±70 3.0±0.2 

Cerebral aneurysms (n=39) 

>30 days after SAH (n=26) 89±3 83±1 62±3 20±1 0.6±0.1 520±33 3.5±0.2 

1-21 days after SAH (n=13) 94±3 78±2 120±17 13±1 0.4±0.1 2363±830 5.8±0.9 

0-1 grades of VS (n=6) 90±5 84±2 65±7 14±1 0.5±0.1 605±247 3.8±0.7 

2-3 grades of VS (n=7) 99±4 69±3 198±11 9±3 0.2±0.1 4875±1595 8.8±1.2 

AVM (n=10) 

Pathological side 131±9 8±1 0.5±0.1 429±103 2.5±0.3 

Contralateral side 
89±3 84±2.3 

67±6 21±1 0.9±0.1 413±118 1.9±0.4 

monitoring of BFV, analyzed retrospectively, demonstrated reliable difference
of indices of its BWSD in cases with severe and critical vasospasm and its
dependence on a course of an early postoperative period (Table 1).

BWSD of patients with early development of postoperative neurological
complications (7091 ± 2235 (cm/s)2/Hz) was reliably higher (p < 0.05) than
that of cases without complications (1921± 439 (cm/s)2/Hz).

Estimation of a PS between BFV and BP within the M-wave range, car-
ried out in patients with AVM in a preoperative period, revealed its reliable
asymmetry on the side of AVM localization and the contralateral intact side.
Low values of PS on the AVM side appear to be conditioned by a degree, to
which a shunting process is marked, and participation of an afferent vessel in
feeding intact area of the brain, adjacent to AVM (Table 1). Thus, one can
make the following supposition: the higher RoR and a value of PS, the greater
contribution of an afferent vessel to blood supply of cerebral areas, adjacent to
AVM, and its functional significance. It results in a higher risk of neurological
complication in radical embolization of AVM.

Changes of BWA were watched at different stages of endoavascular interven-
tions, performed in patients in a remote period of hemorrhage and craniocere-
bral trauma. Depending on a course of an intraoperative period, all the cases
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were divided into two groups: patients without complications and patients with
developed intraoperative neurological complications.

Mean values of BP, BFV and BWA, watched in cases at various stages of
endovascular intervention, are given in Table 2.

Changes of BFV and BP, irrespective of presence of complications in a peri-
operative period, were insignificant. The patients of both groups had spon-
taneous breathing. A preoperative value of BWA was considerably higher
(p < 0.05) in cases with complications. At the same time there were no ob-
jective signs of symptoms augmentation. The main stage of operation was
characterized by further increase of BWA on both sides, which was accom-
panied by development or augmentation of neurological symptoms. There was
inconsiderable reduction of BWA after completion of operation (coil and balloon
detachment, glue administration, catheter removal). There was no regression
of neurological symptoms.
Table 2. Mean values of BP, BFV and BWA on the different stages of endovascular intervention 

BF parameters 
Groups of patients and stages of operation 

BP
[mm Hg] BFV

[cm/s] 
BWA of BFV 

[cm/s] 

Patients without complications (n=6) 
Preoperative 
Intraoperative 
Postoperative 

79±9 
84±10 
84±11 

77±11 
85±12 
87±14 

3.9±0.6 
7.7±1.1 
4.2±0.8 

Patients with complication (n=6) 
Preoperative 
Intraoperative 
Postoperative 

85±11 
96± 9 
90± 7 

71±13 
89±18 
66±12 

9.6±1.1  
12.1±2.6 
10.4±2.9 

76.4 Discussion

The cross-spectral analysis of BFV and BP carried out with the help of ”Sta-
tistica for Windows” allowed getting mean values of BWSD and BWA, as well
as PS between BFV and BP within the M-wave range in healthy individu-
als. They were analogous to the results, obtained by different authors, who
used other statistical programs [3, 5, 6]. Indices of PS correlated with param-
eters of CA, estimated with a cuff test (RoR). BWSD values of less than 1000
(cm/s)2/Hz, ascertained with the help of classification trees, were indicative of
a normal state of stem structures, ensuring adequate functioning of SCC. The
above advantages of spectral analysis make it a preferable method in studying
SCC not only in healthy individuals, but also in cases with different neurosur-
gical pathology.

Patients with intracranial aneurysms, subject to open operations, had inter-
and intra-group difference in BWSD, BWA and PS within the M-wave range.
Dependence of BWSD on a degree of vasospasm is of peculiar importance. It
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is known, that determining indications for intracranial operations in a hemor-
rhagic period one should consider severity of a patient’s state, as well as presence
and a degree of vasospasm, diagnosed on the basis of angiographic and Doppler
examination. Sometimes data of Doppler examination play a decisive role, as
operations, performed in patients with severe or critical vasospasm, are accom-
panied by development of early postoperative neurological complications more
frequently in comparison with interventions in cases with moderate vasospasm
or its absence. Indications for an operation can be determined more precisely,
using results of BWSD estimation, which turned out to be much higher in cases
with postoperative neurological complications than in cases without postoper-
ative neurological complications. It should be noted, that there was no reliable
difference in BFV, PS between BFV and BP, RoR on the side of vasospasm
localization in two groups.

This fact allows to suppose, that there can be subsequent disorders of static
(according to values of a PS within the M-wave range) and dynamic (according
to results of a cuff test) CA, watched in SCC in an acute hemorrhagic period.
They can stabilize or regress against a background of treatment or involve stem
structures, regulating cerebral blood flow, into a pathologic process (increase
of BWSD and BWA) and form a vicious circle. Thus, values of BWSD and
BWA can be used as an additional criterion in choosing tactics of treatment,
i.e. an urgent operation with the purpose of preventing repeated hemorrhage
or conservative intensive care, aimed at reduction of BWSD and BWA, for
improvement of a patient’s initial preoperative state.

Considerable increase of BWA was observed in development of intra- and
postoperative neurological complications in cases, subject to intravascular in-
terventions in a remote hemorrhagic period. In such situations a growth of
BWSD and BWA may be conditioned by reflex spasm in short perforating
branches, supplying the brain stem. This spasm is a response to manipula-
tions, performed during an approach to a pathologic substrate through major
extra- and intracranial vessels, and direct contact with it. Timely detection
of increased BWSD and BWA would allow to prognosticate intra- and post-
operative neurological complications in intravascular interventions and to take
adequate measures for their prevention.

As for patients with AVM, information on a state of CA, obtained on the
basis of estimation of PS between BFV in an afferent vessel and BP in the
M-wave range, can be used for determination of its functional significance. It
will help to assess possibility of radical exclusion of AVM from circulation more
precisely. Today evaluation of functional significance is based on an invasive
method and consists in measuring blood pressure in an afferent vessel, volu-
metric blood flow velocity in an afferent vessel and using pharmacologic tests.
According to our opinion, functional insignificance of afferent vessels is char-
acterized by reduction of RoR and, as a result, by a small PS, which can be
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determined before operation. Thus, probability of safe exclusion of AVM can be
prognosticated with a simpler and non-invasive method. However, confirmation
of this supposition demands comparison of results of estimating PS and blood
pressure in an afferent vessel, which is a subject of an independent study.

76.5 Conclusion

We tried to reflect modern views on SCC, formed on the basis of a rather new,
but prospective method of estimation of cerebral hemodynamics, introduced
into clinical practice, i.e. spectral analysis of spontaneous oscillations of BP
and BFV. Thus, this carrying out spectral analysis of spontaneous oscillations
of BFV and BP, which includes successive determination of BWSD and BWA,
PS between BFV and BP within the M-wave range can be used for non-invasive
estimation of SCC.
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Dynamic Modeling of Greek Life Table Data
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Abstract: In this paper we formulate and apply a dynamic model expressing
the human life table data by using the first-passage-time theory for a stochastic
process. The model is based on the First Exit Time theory and is applied to
the mortality data in Greece. A stochastic simulation is also performed for the
Health State Function proposed and the related stochastic paths. Furthermore
the implications of the proposed model and the results derived are discussed.

Keywords and phrases: Life table data, Stochastic model, First passage
time densities.

77.1 Introduction

In previous studies (see Janssen and Skiadas (1995)) the concept of health state
was modeled by a continuous-time stochastic process. This means that they
started from a stochastic process

S = (S(t), t ≥ 0)

defined on a completed filtered probability space

(Ω, θ, (θt), P )

where the random variable S(t) represents the health state of an individual
at time t. The event ‘death’ is defined as the time that this state health hits for
the first time a minimal health level called a. Consequently, the life duration of
the individual is the value of this hitting time T of the set (0, a) for the process
S.
In this paper, we introduce briefly the general theory of dynamic models for
modelling the human life and we present a particularly good model fitting quite
well the Greek mortality tables.
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77.2 The Model

77.2.1 The stochastic model and the related parameters

The proposed model is a stochastic model of continuous time provided by the
stochastic differential equation:

dS(t) = µ(t)dt + σdW (t)

where S(t) is a stochastic variable expressing the state of health of an individual,
µ(t) a function of time expressing the infinitesimal mean development of the
state of human health, σ the infinitesimal variance of the human health that is
assumed to be constant in the proposed model and W (t) the standard Wiener
process. S(t) is easily obtained by direct integration from the above stochastic
differential equation. Then S(t) is given by:

S(t) = S0 +
∫ t

t0

µ(s)ds + σ[W (t)−W0]

where S0 is the value of S(t) at time t = 0.
Now our main task is to obtain an analytic form of the function µ(t). Con-

sider that the mean value of S(t) is a function H = H(t) given by:

H(t) = E[S(t)] = S0 +
∫ t

t0

µ(s)ds

The function µ(t) is related to H(t) by the formula:

µ(t) =
ϑH(t)

ϑt

We expect that the mean value H or the mean state of health function during
lifetime will follow a general growth and decline path. There is a fast improve-
ment of the state of human health after birth when H(t) is close to a low level.
Then it follows a period of slow improvement and then decline. The function
µ(t) as the derivative of H(t) must begin from very high values in the begin-
ning for time t close to zero and decline continuously reaching zero when H(t)
is at the maximum and then takes negative values. This function, as it must
have negative derivative (dµ/dt < 0), expresses the inevitable decline of the
infinitesimal mean of the state of human health and is proposed to be called as
the Mortality Function.
The main assumption regarding the function µ(t) is that this function may ex-
press two distinct time-processes related to the state of human health. The one
is the first period of life-time modelled by a function u = u(1/

√
t) that must

be a fast decreasing function of time expressing the fast improvement of the
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state of human health during the first years after birth. The other is a function
v = v(t) that expresses the gradually increasing and then decreasing state of
health during the total period of the life-time. The function µ(t) is then given
by:

µ(t) = u(
1√
t
) + v(t)

An approximation of µ(t) is achieved by expanding u(t) and v(t) in Taylor-
Maclaurin series and retaining the first two terms to the right for the fast
decreasing function u and four terms to the right for the function v. The two
series’ expansions give the form:

v(t) = a0 + 2a1t + 3a2t
2 + 4a3t

3

u(
1√
t
) = b0 +

b1

2
√

t

For both cases it is assumed that the parameters a0 and b0 are equal to zero,
because close to zero they don’t contribute much to the function µ(t) that takes
very high values due to the second term to the right of u. Then the selected
approximation for µ(t) has the following form:

µ(t) = 2a1t + 3a2t
2 + 4a3t

3 +
b1

2
√

t

Now H(t), the mean value of S(t), under the assumptions t0 = 1 and S0 = 0
is as follows:

H(t) = E[S(t)] =
∫ t

1
µ(s)ds = a1t

2 + a2t
3 + a3t

4 + b1

√
t− c

where
c = a1 + a2 + a3 + b1

The selection of the starting time t0 = 1 is done because our data series in
life tables for the deaths at age between x and x+1 denoted by d(x) begin from
the first year when t equals 1.

77.2.2 The hitting time density function

The main assumption regarding the state of human health is that it follows a
stochastic process expressed by S(t) and that the end of the life-time is reached
when the stochastic variable S(t) arrives at a minimum level of health state here
denoted by a. This level a in terms of the first passage time theory is expressed
by a single barrier located at a distance a from the origin. Then, the density
function g(t) expressing the distribution of the first passage from the barrier a
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is exactly the probability density function that provides the number of deaths
between t and t + dt where t is nothing else but the age of the individuals.
After the pioneering work of Siegert (1951) regarding analytic solutions of the
first-passage-time probability problem a quite extensive bibliography has ap-
peared in the last decades. The aim was either to derive analytic solutions or,
when this is not possible, to approximate satisfactorily the first-passage-time
density function under consideration. In most cases the task achieved by us-
ing an integral equation of the Volterra type (see Buonocore et al. (1987) and
Giorno et al. (1990)) of the form:

g(λ(t), t;x0) = −2ψ(λ(t), t; x0) + 2
∫ t

0
dτψ(λ(t), t;λ(τ), τ)g(λ(τ), τ ; x0)

where x0 < λ(0) ≡ a where λ(t) denotes a smooth function of time that cuts
the stochastic paths provided by the density function g(t).
Another approach (see a quite good review by Jennen (1985)) is the use of a
‘tangent approximation’ to the first exit density of the form:

ga(λ(t), t; x0, t0) =
λ(t)− (t− t0)λ́(t)

(t− t0)
f(λ(t), t; x0, t0)

For the case of the state of human health studied here Janssen and Skiadas
(1995) proposed the following form:

g(t) = k
|a|

σ
√

2πt3
exp

[
− [a− ∫ t

1 µ(s)ds]2

2σ2t

]

where k is a normalisation constant defined by the formula:
∫ ∞

0
g(t)dt = 1

An investigation of the above form of g(t) indicates that all the parameters
except k are divided by σ or in other words when estimated they are estimated
in units of σ. Thus we can let σ = 1 and use the expression for µ(t) to take the
final form of g(t) to be fitted on mortality table data. This form of g(t) is the
following:

g(t) = k
|a|√
2πt3

exp

[
−1

2

(
a + c√

t
− (b1 + a1t

√
t + a2t

2
√

t + a3t
3
√

t)
)2

]

77.2.3 Main parameters (Mean, Variance,...)

The parameters of the last formula are estimated by using a non-linear regres-
sion analysis technique. The mean and variance have no analytic expressions
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b1 a1 ∗ 10−2 a2 ∗ 10−4 a3 ∗ 10−6 ka MSE r2

4.990 -1.6459 2.6935 -1.7947 61.600 0.235 0.98

Table 77.1: Parameter Estimates MSE and R2 for Greek Life-Table data
(males, 1992)

for the general case. However, it is easy to obtain close approximations by
performing arithmetic methods. The mean that provides the mean life time is
estimated for each case during the applications that follow. The parameters of
g = g(t) are estimated by an iterative direct non-linear least squares method
that leads to the minimization of the sum of the squared errors.

77.3 Application to the Greek Life-Table data (males,
1992) and Stochastic Simulation

The application was based on mortality tables of Greece for men for the year
1992. The data used for the fitting are those expressing the instantaneous rate
of death d(x) and are usually provided for 1.000.000 inhabitants. A non-linear
regression analysis procedure was applied by using the formula for g(t). The
results for the cases studied are presented in Table 77.1.

The estimated model was used to generate a simulation procedure of various
paths expressing the state of health of individuals and of the resulting density
function for the hitting time. The simulation appears in Figure 77.1. The il-
lustration of the original data and the estimated values is given in Graph C.
The stochastic simulation is presented in Graph A. In Graph B the resulting
density function for the hitting time after performing a large number of simu-
lations appears. The total interval of the lifetime between 1 and 105 years is
divided in 20 subintervals each of duration of 5 years and the interval over 105
years is also included. The results of the simulation study coincide with the
real situation presented in Graph C. In Graph C the curves express the rate of
death dx (real and estimated). The fitting was quite good as also is is verified
by the high R2 = 0.98 and the small Mean Squared Error MSE = 2.351. The
Expected Life Time is found to be ELT = 71.93 years.

77.4 Conclusion

This paper presents a way of analysing mortality data using the concept of
health state so that there now exists a dynamic study instead of a static one.
With this application to Greek Life-Table data we show the high potentiality
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Figure 77.1: Stochastic simulation of Greek Life-Table data (males, 1992)

of such a dynamic stochastic approach, firstly to improve the present way of
analysing mortality tables and secondly to provide a systematic tool for the
comparison of several mortality tables in a time evolution or coming from dif-
ferent countries or regions. A more general study and a comparative study
between countries will follow.
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Abstract: The Independent Component Analysis (ICA) is a statistical and
computational technique used to identify hidden factors of observed multivari-
ate data. In this context the measured signals arise from functional Magnetic
Resonance Imaging (fMRI) studies. FMRI is a non-invasive method used to
study human brain functions by localizing activated brain areas and analyzing
the intensity and time courses of neuronal activities. The time series obtained
by fMRI studies are supposed to be linear mixtures of realizations of differ-
ent stochastic processes, e.g. the neuronal responses to stimuli and the task
performance of the subjects which are of special interest for neuroscientists.
Additionally, there are processes related to heart beat or breathing of the sub-
jects, motion artifacts, and noise caused by the tomograph. Since the exact
temporal behavior of such signals is not always predicable, we used the ICA,
a method without any hypothesis about the expected time courses, to extract
signals possibly reflecting learning related processes from an auditory fMRI
study with repeated measurements. First, we spatially localized the sources of
neuronal activation related to the auditory task. Then, the temporal structure
of the neuronal responses was analyzed with general time series statistics to
extract and describe the signals statistically related to the task performance of
the subjects. Performing the ICA to our data revealed activation cluster with
associated time courses in auditory areas, attention-related areas, and somato-
sensory areas, among others. The most interesting finding was, that the time
courses of these clusters showed different temporal behavior in the first two mea-
surements compared to the last two measurements which might be explained
by learning related effects. Classical methods for analyzing fMRI data like the
General Linear Model (GLM) might fail to detect such activations.

Keywords: Functional magnetic resonance imaging, Independent Component
Analysis, Time series
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78.1 Functional Magnetic Resonance Imaging

Functional Magnetic Resonance Imaging (fMRI) is a non-invasive method used
to study human brain functions by revealing which parts of the brain are in-
volved in solving certain tasks. The fMRI methodology is based on the physical
phenomenon that neural activity is expected to cause both a desoxygenation of
blood and an increase of blood flow in vessels within the activated regions of the
cortex. This effect is called ’blood oxygenation level dependent effect’ (BOLD-
effect) and is based on the different magnetic properties of deoxyhaemoglobin
(blood with a low level of oxygen) and oxyhaemoglobin (blood with a high
level of oxygen). Activated brain regions need more energy and thus consume
more oxygen and glucose resulting in a change in the concentration of deoxy-
haemoglobin and oxyhaemoglobin in this region (Ogawa et al., 1990) and con-
sequently changing the amplitude of the measured fMRI signal.

The time course of the fMRI signal is known as the Haemodynamic Response
Function (HRF), which is the response to a temporary increase in neuronal
activity. In typical fMRI measurements the stimuli are arranged in repeated
blocks of about 30 seconds separated by resting blocks. In general, the fMRI
signal is characterized by a delayed increase after the onset of stimulation,
reaching a plateau level after about 6 seconds, and decreases slowly to baseline
after the offset of stimulation in about 10 - 15 seconds.

During the fMRI measurement multiple slices of the brain are recorded, thereby
each slice consists of a number of voxels (3D data points). Consequently, the
fMRI images are composed of three-dimensional images at equidistant time
points. For each voxel vi, i = 1, . . . , N , at the anatomical coordinate (vi

x, vi
y, v

i
z)

in the human brain, we observe for each time point t (t = 1, . . . , T ) the gray
value xi(t), which can be represented as a function of the induced brain signal
ft(vi):

xi(t) = ft(vi), t = 1, . . . , T. (78.1.1)

How this signal behaves in the context of learning processes was investigated
in this paper.

78.2 Independent Component Analysis

The Independent Component Analysis (ICA) is a method for blind signal sep-
aration (BSS) formed on the basis of assumed statistical independence of the
source signals. This method transforms multidimensional data into compo-
nents that are as statistically independent from each other as possible without
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making any hypothesis about the theoretical time courses of the source sig-
nals. The observed signals x(t) = (x1(t), x2(t), . . . , xN (t))T are assumed to be
realizations of linear mixtures of stochastic processes. In the BSS problem,
the underlying mixture model generates the observed signals x(t) from the M
sources s(t) = (s1(t), s2(t), . . . , sM (t))T (M ≤ N) by

x(t) = As(t) (78.2.2)

where A = [aij ]i=1,...,N,j=1,...,M is the (unknown) mixing matrix. The source
signals are assumed to be non-gaussian distributed. In the case of gaussian dis-
tributed signals, the signal separation problem is reduced to a Principal Compo-
nent Analysis (PCA) using second-order statistics to estimate the source signals.
The ICA algorithm aimed to find non-gaussian distributed source signals. For
this purpose, the ICA uses either higher-order statistics like the kurtosis, which
measures the gaussianity of a random variable, or the more theoretical mutual
information. The mutual information is an information-theoretic function tak-
ing the whole dependency structure of the variables into account. Thus, finding
a transform that minimizes the mutual information between the components is
a natural way of estimating the ICA model (Comon, 1994).

Without knowing the source signals s(t) and the mixing matrix A, ICA aims
to recover the original sources from the observations x(t) by a linear invertible
transformation

y(t) = Wx(t), (78.2.3)

where y(t) are the estimates of the source signals s(t) (y(t) = ŝ(t)) and W =
[wji]j=1,...,M,i=1,...,N is the estimated unmixing matrix. W is determined such
that the mutual information of the independent components y(t) is minimized.
The matrix W is the pseudo-inverse of the mixing matrix, such that AW ≈ I.

Before performing the ICA algorithm the observations were standardized. The
standardization results in vectors z(t) = Zx(t) which all have mean zero and
equal unit variances. The matrix Z is given by Z = Λ− 1

2 UT , where Λ =
[λ(1), . . . , λ(n)] is a diagonal matrix with the eigenvalues of the data covariance
matrix E{x(t)x(t)T }, and U is a matrix with the corresponding eigenvectors at
its columns. At this step the dimension reduction can be performed by selecting
only the M most interesting eigenvectors. In terms of the transformed vectors
z(t), the model (78.2.2) becomes

z(t) = ZAs(t), (78.2.4)

and the solution becomes

y(t) = WTz(t), (78.2.5)



458 Sohr, M., Kahle, W., Brechmann, A.

An algorithm that can then be used to extract the independent components
is the FastICA algorithm proposed by Hyvarinen and Oja (1997). Since the
mutual information is more a theoretical function, the kurtosis is used as a
measure of gaussianity, which is defined by kurt(yi) = E{y4

i } − 3[E{y2
i }]2.

Considering a linear combination y = wTz of a random vector z, with ||w|| = 1,
then E{y2} = 1 and kurt(y) = E{y4} − 3, whose gradient with respect to
w is 4E{z(wT z)3}. The FastICA algorithm maximizes the absolute value of
the kurtosis, finds one of the columns w of the unmixing matrix W, and thus
identifies one independent component at a time using (78.2.5). The lth iteration
of the algorithm is defined as

w∗
l = E{z(wT

l−1z)
3} − 3wl−1

wl = w∗
l /||w∗

l ||. (78.2.6)

The ICA is an iterative method and to estimate more than one solution, and
up to a maximum of M solutions, the algorithm must be run repeatedly.

78.3 ICA Applied to an fMRI Auditory Learning
Study

The ICA was already successfully applied to fMRI data (see McKeown et al.,
2003 for review). In this paper the ICA was applied to an auditory learning
paradigm to characterize the fMRI signals, reflecting learning related neuronal
processes.

Therefore, six subjects were scanned in a 3 Tesla scanner (Siemens Trio). Each
subject was scanned five times over a period of five weeks. Frequency modulated
(FM) tones were used as acoustic stimuli. They were arranged in stimulation
blocks of 30 seconds. Each block consisted of 30 randomized FM tones, each 15
rising tones and 15 falling tones. The frequency range of the FM tones varied
between 0.5 - 2 kHz. Six different durations were used; 300 ms, 350 ms 400 ms,
550 ms, 600 ms, and 650 ms (525 ms gap between two tones). The FM tones
were presented at five different sound levels covering a range of 24 dB in steps
of 6 dB all at a comfortable loudness. One experimental session consisted of 15
alternating stimulus and resting blocks. The whole fMRI data set consisted of
310 volumes (time points) by recording an fMRI image every 3 seconds (repe-
tition time (TR) = 3000 ms; echo time (TE) = 30 ms; flip angle = 80◦; field of
view (FOV) = 192 mm; voxel size 64 × 64). 40 slices of 3 mm each (0.3 mm
gap) covering the whole brain were recorded.

The task of the subjects during the measurement was a one-back working mem-
ory task. The subjects continuously had to compare the actual tone with the
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tone presented one back in the sequence and had to indicate whether the two
tones matched in direction (rising or falling) by button pressing. Since all sub-
jects were naive according to FM tones, i.e. they never performed a discrimina-
tion task before this experiment, the task was quite difficult for the subjects at
the beginning, but all subjects showed strong improvements indicated by their
hit rates.

For each measurement and each subject an ICA with 30 independent compo-
nents was performed. The independent components consisted of an activation
map and associated time courses. According to their time-courses, the compo-
nents can be classified as oscillatory functions, trend functions, noise functions,
and some time courses possibly indicating neuronal processes. Considering the
activation cluster of the latter time courses reflecting the neuronal processing,
we found clusters in auditory areas, in many areas which are supposed to be in-
volved in maintenance and attention processes and in areas which are involved
in somato-sensory processes, caused by pressing a button to indicate targets.
In a next step we investigated whether there are changes in the time course of
these clusters over the five repeated measurements. A very interesting finding
was, that the time courses of the cluster of the first two measurements showed
the typical hemodynamic response function, i.e. the signal increases after stim-
ulus onset, reaches a plateau, and decreases slowly after stimulus offset. But
the time courses of the last two measurements showed a different behavior. The
signal also increases after stimulus onset, mostly on a higher level than the sig-
nals in the first measurements, but the signal does not stay on the plateau it
decreases immediately, such that at the end of stimulation the signal is already
at baseline. This was often found for the auditory regions and areas involved in
maintenance and attention processing and might be explained by adaptation,
habituation or learning effects.

Classical methods for analyzing fMRI data like the General Linear Model
(GLM) require a reference function describing the hypothetically expected time
course of activated voxels. This reference function may correspond to the time
course found in the first two measurements and is then correlated to the time
course of each voxel to detect significantly activated voxels. Using this function
also as reference function for the last two measurements may fail to detect pos-
sibly the most relevant activations.

Furthermore, simulation studies were performed using the signals reflecting dif-
ferent neuronal responses as source signals. These signals were linearly mixed
with other signals reflecting oscillatory, linear or noise processes. The ICA was
able to separate the signals reflecting different neuronal processing, i.e. signals
of the first two measurement and signals of the last two measurements as well
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as noise signals into independent components.

78.4 Summary

The ICA was applied to fMRI time series to detect signals reflecting learning
related processes. The ICA was able to reveal regions of interest even if the
time characteristics of these regions changed between repeated measurements.
An advantage of ICA is, that it requires no prior information of hypothetical
time courses of neuronal processes as it is needed in the General Linear Model
(GLM), for instance. Consequently, the ICA seems to be an useful tool to
investigate dynamic fMRI signals of repeated measurements.
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79.1 Extended Abstract

Data confirming the concept that an organism possesses sufficiently indepen-
dent regulatory systems-peptide and amino acid-have been accumulated to date
[1, 4, 5]. For example, the studies of the parameters of specific and nonspecific
resistance showed that lysine, arginine, glutamic and aspartic acids, and tryp-
tophane exhibit different immunity and phagocytosis-stimulating and detoxi-
cating properties [2]. The most adequate and convenient method for a rapid
quantitative estimation of the direction of the effect of biologically active com-
pounds is organotypic culturing of tissue fragments and analysis of the growth
zone of explants. This is due to the fact that changes in the number of cells
may serve as a criterion of primary integrated estimation of biological activ-
ity of substances, and a change in the number of cells itself may be the result
of stimulation or inhibition of proliferation. Inhibition of proliferation due to
apoptosis is studied by the methods of molecular biology, which allow detection
of expression of proapoptotic proteins [6, 8]. Experiments were performed in
organotypic culture with 1800 explants of fragments of the brain cortex, sub-
cortical structures, cerebellum, spleen, and liver of one-day-old Wistar rats and
1900 explants of the same tissues of 21-day-old rats. The effect of each amino
acid in each tissue was studied in 15–18 experimental transplants and in the
same number of control explants. Tissue fragments, prepared under sterile con-
ditions, were separated to smaller pieces which were placed into Petri dishes
with collagen support. Nutrient medium consisted of 35and 5Equimolar solu-
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tions of L-amino acids (Sigma, United States) were added to culture medium
at an effective concentration of 0.05 ng/ml. Petri dishes were incubated for 3
days and then examined using a phase-contrast microscope equipped with a
microtelemetric eyepiece. For each explant we determined the area index (AI),
which was calculated as the ratio between the total area of explant (together
with the zone of migrating cells) and the area of the central zone of explant
and expressed in arbitrary units. The expression of the proapoptotic protein
p53 was detected immunohistochemically [3, 7] using monoclonal antibodies to
the p53 protein (1 : 75, Novocastra). Biotinylated antimouse and antirabbit
immunoglobulins contained in the standard kit were used as secondary anti-
bodies. Proteins were visualized using the complex of avidin with biotinylated
horseradish peroxidase (ABC kit) with subsequent visualization of peroxidase
with diaminobenzidine. All reagents were from Novocastra. Morphometric
study was performed using the system of computer analysis of microscopic im-
ages. The results were statistically processed using the Statistika 5.0 software.
The analysis of growth of explants of the brain cortex, subcortical structures,
cerebellum, spleen, and liver of 1- and 21-day-old rats in the organotypic cul-
ture showed that the effects of different amino acids varied: the growth zone
increased, decreased, or remained unchanged (in the last case, AI remained at
the control level). The high-molecular-weight amino acids with low hydropho-
bicity (asparagine, lysine, arginine, and glutamic acid) had an inhibitory effect
on the growth zone of explants of the brain cortex, spleen, and liver of one-
day-old animals and an opposite, stimulatory effect on mature tissue of spleen
and liver of 21-day-old rats. As mentioned earlier, such oppositely directed
effects of the four amino acids, which depended on tissue maturity, were ob-
served solely in tissues of the mesodermal and entodermal origin. In explants
of subcortical structures, arginine and glutamic acid had a stimulatory effect
on tissues of one-day-old rats, whereas the stimulatory effect of cerebellum of
one-day-old rats was observed in the case of asparagine, lysine, arginine, glu-
tamic acid, proline, valine, isoleucine, glycine, and cysteine. In mature tissues
of subcortical structures of 21-day-old rats, the growth zone of explants in-
creased in the presence of glutamine, arginine, cysteine, threonine, isoleucine,
and tryptophane. In mature cerebellum, stimulatory effect was exerted only
by cysteine and threonine. The stimulatory effect on the brain-cortex explants
of 21-day-old rats was detected only for the low-molecular-weight amino acids
exhibiting high hydrophobicity: AIs in the presence of aspartic acid, tyrosine,
valine, threonine, methionine, and leucine increased by 42-57% compared to
the control explants. In the case of the liver-tissue culture of 21-day-old rats,
addition to nutrient medium of asparagine and arginine (0.05 ng/ml) statisti-
cally significantly (by 18-33%) increased the growth zone of explants compared
to the control. Analysis of immunohistochemical preparations showed that the
AI value was correlated with the expression of the p53 protein. When the
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growth zone was depressed (and, therefore, the AIs values decreased), the ex-
pression of the proapoptotic protein p53 increased. To analyze the diversity
of effects of amino acids, manifested in tissues of different genesis and differ-
ent degree of maturity (five tissues of rats of two ages), it was necessary to
calculate the frequencies of activity expression (stimulating either proliferation
or apoptosis) of every amino acid. It can be seen that, in immature tissue,
the highest frequencies of occurrence were characteristic of lysine, arginine, and
glutamic acid; the lowest frequency, of histidine. An opposite picture was ob-
served in mature tissues of 21-day-old rats: the highest frequency of occurrence
was recorded for histidine and aspartic acid; the lowest frequency, for lysine and
glutamic acid, which were the most active in immature tissue. Additionally, the
mirror-type pattern was also observed in other cases; i.e., the amino acids that
frequently occur in immature tissues rarely occur in mature tissues, and ”vice
versa.” For example, glycine, asparagine, phenylalanine, and tryptophane oc-
curred four times in immature tissues and two times in mature tissues; leucine
occurred two times in immature tissues and five times in mature tissues; proline
and isoleucine were detected two times in immature tissues and four times in
mature tissues; and tyrosine and methionine were detected once in immature
tissue and three times in mature tissues. The mirror-type proportion of the
frequencies of activity of polar and some other amino acids apparently reflects
the differences in the amino acid regulation of cell activity in immature and
mature tissue.
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80.1 Introduction

We consider Cox survival regression with error-prone covariates. It is known
that ignoring covariate error in regression analyses can lead to biased estimates
of the regression coefficients. We focus here on discrete covariates subject to
misclassification, which are of interest in many epidemiological studies. We also
allow additional error-free covariates, which may be either discrete or continu-
ous.

Three basic design setups are of interest: (1) the internal validation design,
where the true covariate values are available on a subset of the main survival
cohort, (2) the external validation design, where the measurement error dis-
tribution is estimated from data outside the main survival study, and (3) the
replicate measurements design, where replicate surrogate covariate measure-
ments are available, on either an internal or an external sample. Two types
of models for the measurement error are of interest: structural models, where
the true covariates are random variables, and functional models, where the true
covariates are fixed values. Structural model methods generally involve estima-
tion of some aspect of the distribution of the true covariate values; in functional
model methods, this process is avoided.

The Cox model with covariate error has been examined in various settings.
Our full paper gives a detailed review of the existing work. Much of this work
focuses on the independent additive error model, under which the observed co-
variate value is equal to the true value plus a random error whose distribution
is independent of the true value. For discrete covariates subject to misclassifi-
cation, this model practically never holds, and so the methods built upon it do
not apply. Other methods exist, but are subject to various limitations. There is
a need for a convenient method for all three study designs that can handle gen-
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eral measurement error structures, both functional and structural models, and
time-dependent covariates. The aim of our work is to provide such a method
for the case where the error-prone covariates are discrete, with misclassification
of arbitrary form. Our method builds on a corrected score approach developed
by Akazawa, Kinukawa, and Nakamura (1998) for generalized linear models.
We begin by reviewing their work, and we then present our extension to the
Cox model.

80.2 Review of the Corrected Score Technique

We work with a sample of n independent individuals. Associated with each
individual i is a response variable Ti and a p-vector of covariates Xi. The con-
ditional density or mass function of Ti given Xi is denoted by f(t|Xi, θ), where
θ is a q-vector of unknown parameters, which includes regression coefficients
and auxiliary parameters such as error variances. We have in mind mainly
generalized linear models such as linear, logistic, and Poisson regression, but
we present the theory in a general way. We denote the true value of θ by θ0.
Extending Akazawa et al. (1998), we partition the vector Xi into Wi and Zi,
where Wi is a p1-vector of error-prone covariates and Zi is a p2-vector of error-
free covariates. We denote the observed value of Wi by W̃i. The vector Wi is
assumed to be discrete, with its possible values (each one a p1-vector) denoted
by w1, . . . ,wK . The range of values of W̃i is assumed to be the same as that
for Wi. We denote by k(i) the value of k such that W̃i = wk. The vector Zi of
error-free covariates is allowed to be either discrete or continuous. We denote
A

(i)
kl = Pr(W̃i = wl|Wi = wk,Zi, Ti), which defines a square matrix A(i) of

classification probabilities. We assume for now that A(i) is known. We denote
by B(i) the matrix inverse of A(i), which is assumed to exist. When individual
i is a member of an internal validation sample, for the estimation of θ we set
W̃i = Wi and replace A(i) by the identity matrix.

Define u(t,w, z,θ) = [∂/∂θ] log f(t|w, z, θ) and ui(θ) = u(Ti,Wi,Zi,θ).
The classical normalized likelihood score function when there no covariate er-
ror is then given by U(θ) = n−1

∑
i ui(θ), and the maximum likelihood estimate

(MLE) is obtained by solving the equation U(θ) = 0. Under classical condi-
tions, E�0 [U(θ0)] = 0 and the MLE is consistent and asymptotically normal.
The idea of the corrected score approach is to find a function u∗(t, w̃, z,θ) such
that

E[u∗(Ti,W̃i,Zi, θ)|Wi,Zi, Ti] = u(Ti,Wi,Zi, θ). (80.2.1)

Then, with u∗i (θ) = u∗(Ti,W̃i,Zi, θ), we use the modified likelihood score
function U∗(θ) = n−1

∑
i u

∗
i (θ) in place of U(θ) as the basis for estimation.

The estimation equation thus becomes U∗(θ) = 0. In the case of discrete error-
prone covariates, as shown by Akazawa et al. (1998), a function u∗ satisfying
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(80.2.1) is given by a simple formula:

u∗i (θ) =
K∑

l=1

B
(i)
k(i)lu(Ti,wl,Zi, θ). (80.2.2)

Let Ji(θ) be the matrix with elements Ji,rs(θ) = (∂/∂θs)ui,r(θ) and let J∗i (θ)
be defined correspondingly with u∗i in place of ui.

Under the typical conditions assumed in generalized estimation equations
(GEE) theory, the estimator θ̂ will be consistent and asymptotically normal.
The limiting covariance matrix V of

√
n(θ̂−θ0) can be estimated using the sand-

wich estimator V̂ = D(θ̂)−1H(θ̂)D(θ̂)−1, where H(θ) = n−1
∑

i u
∗
i (θ)u∗i (θ)T

and D(θ) = −n−1
∑

i J
∗
i (θ).

The case where there are replicate measurements W̃ij of W̃ on the individ-
uals in the main study can be handled in various ways. A simple approach is to
redefine the quantity u∗i (θ) given in (80.2.2) by replacing B

(i)
k(i)l with the mean

of B
(i)
k(i,j)l over the replicates for individual i, with k(i, j) defined as the value

of k such that W̃ij = wk. The development then proceeds as before.

80.3 Application to the Cox Survival Model

80.3.1 Setup

We now show how to apply the foregoing corrected score approach to the
Cox model. Denote the survival time by T ◦i and the censoring time by Ci.
The observed survival data then consist of the observed follow-up time Ti =
min(T ◦i , Ci) and the event indicator δi = I(T ◦i ≤ Ci). We let Yi(t) = I(Ti ≥ t)
denote the at-risk indicator. We assume the failure process and the censoring
process are conditionally independent given the covariate process in the sense
described by Kalbfleisch and Prentice (1980, Sec. 5.3.2).

The covariate structure is as described in the preceding section, except that
the covariates are allowed to be time-dependent, so that we write k(i, t) and
Zi(t). We assume that the measurement error process is “localized” in the
sense that it depends only on the current true covariate value. More precisely,
the assumption is that, conditional on the value of Xi(t), the value of W̃i(t)
is independent of the survival and censoring processes and of the values of
Xi(s) for s 6= t. This assumption is plausible in many settings, e.g. when the
main source of error is technical or laboratory error, or reading/coding error,
as with diagnostic X-rays and dietary intake assessments. With no change in
the theory, the classification probabilities A

(i)
kl can be allowed to depend upon t.

This extension permits accounting for improvements in measurement techniques
over time. In addition, if internal validation data are available, this extension
allows us to dispense with the localized error assumption.
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In the proportional hazards model, the hazard function is taken to be of the
form λ(t|X(t)) = λ0(t)ψ(X(t);β), with λ0(t) being a baseline hazard function of
unspecified form. The function ψ(x; β), which involves a p-vector β of unknown
regression parameters which are to be estimated, represents the relative risk
for an individual with covariate vector x. The classical Cox model assumes
ψ(x; β) = e�

T x. We allow a general relative risk function satisfying ψ(x;0) = 1,
i.e. β = 0 corresponds to no covariate effect. We let β0 denote the true value
of β.

80.3.2 The Method

We now describe the method. Let ψ′r(x; β) denote the partial derivative of
ψ(x; β) with respect to βr and define ξr(x;β) = ψ′r(x; β)/ψ(x;β). Then the
classical Cox partial likelihood score function in the case with no measurement
error is given by

Ur(β) =
1
n

n∑

i=1

δi

(
ξr(Xi(Ti);β)− e1r(Ti)

e0(Ti)

)
, (80.3.3)

where

e0(t) =
n∑

j=1

Yj(t)ψ(Xi(t);β), e1r(t) =
n∑

j=1

Yj(t)ψ′r(Xi(t);β).

Now define

ψ∗i (t, β) =
K∑

l=1

B
(i)
k(i,t)lψ(wl,Zi(t);β), ηir(t, β) =

K∑

l=1

B
(i)
k(i,t)lψ

′
r(wl,Zi(t);β),

ξ∗ir(t,β) =
K∑

l=1

B
(i)
k(i,t)lξr(wl,Zi(t);β), e∗0(t) =

n∑

j=1

Yj(t)ψ∗j (t,β),

e∗1r(t) =
n∑

j=1

Yj(t)ηjr(t, β).

Then our proposed corrected score function is the following obvious analogue
of (80.3.3):

U∗
r (β) =

1
n

n∑

i=1

δi

(
ξ∗ir(Ti,β)− e∗1r(Ti)

e∗0(Ti)

)
. (80.3.4)

As before, the proposed corrected score estimator is the solution to U∗(β) = 0,
where U∗ denotes the vector whose components are U∗

r .
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Using an iterated expectation argument, under the localized error assump-
tion, we can show that

E[Yi(t)ψ∗i (t,β)|Xi(t)] = E[Yi(t)ψ(Xi(t);β)|Xi(t)], (80.3.5)
E[Yi(t)η∗ir(t,β)|Xi(t)] = E[Yi(t)ψ′r(Xi(t), β)|Xi(t)], (80.3.6)
E[Yi(t)ξ∗ir(t,β)|Xi(t)] = E[Yi(t)ξr(Xi(t),β)|Xi(t)]. (80.3.7)

Thus, referring to the quantity in parentheses in (80.3.4), the first term and the
numerator and denominator of the second term all have the correct expectation.
It follows that U∗(β) is an asymptotically unbiased score function.

Accordingly, under standard conditions like those of Andersen and Gill
(1982) and of Prentice and Self (1983), our corrected score estimator will be
consistent and asymptotically normal. The asymptotic covariance matrix of√

n(β̂−β0) may be estimated by the sandwich formula V̂ = D(β̂)−1H(β̂)D(β̂)−1.
Here D(β) is −1 times the matrix of derivatives of U∗(β) with respect to the
components of β and H(β) is an empirical estimate of the covariance matrix
of
√

nU∗(β).
The full paper gives the expressions for these matrices, an outline of the

asymptotic argument, and an extension of the theory to the case where the
classification matrix A(i) is estimated. We also give results of a finite-sample
simulation study under Weibull survival with a single binary covariate having
known misclassification rates. The performance of the method described here
was similar to that of related methods we have examined in previous work
(Zucker and Spielgelman, 2004; Zucker, 2005). Specifically, our new estimator
performed as well as or, in a few cases, better than the full Weibull maximum
likelihood estimator. We also present simulation results for our method for the
case where the misclassification probabilities are estimated from an external
replicate measures study. Our method generally performed well in these simu-
lations. We also illustrate the method on data from a study of the relationship
between dietary calcium intake and distal colon cancer. The new estimator
has a broader range of applicability than many other estimators proposed in
the literature, including those described in our own earlier work, in that it can
handle time-dependent covariates with an arbitrary misclassification structure.
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