Visualisation of graphs Hierarchical layouts Sugiyama framework

Antonios Symvonis · Chrysanthi Raftopoulou Fall semester 2022

The original slides of this presentation were created by researchers at Karlsruhe Institute of Technology (KIT), TU Wien, U Wuerzburg, U Konstanz, ... The original presentation was modified/updated by A. Symvonis and C. Raftopoulou

Hierarchical drawings – motivation

Hierarchical drawings – motivation

Problem statement.

- Input: digraph G = (V, E)
- Output: drawing of G that "closely" reproduces the hierarchical properties of G

Problem statement.

Input: digraph G = (V, E)

Output: drawing of G that "closely" reproduces the hierarchical properties of G

Problem statement.

- Input: digraph G = (V, E)
- Output: drawing of G that "closely" reproduces the hierarchical properties of G

Desireable properties.

vertices occur on (few) horizontal lines

Problem statement.

- Input: digraph G = (V, E)
- Output: drawing of G that "closely" reproduces the hierarchical properties of G

- vertices occur on (few) horizontal lines
- edges directed upwards

Problem statement.

- Input: digraph G = (V, E)
- Output: drawing of G that "closely" reproduces the hierarchical properties of G

- vertices occur on (few) horizontal lines
- edges directed upwards
- edge crossings minimized

Problem statement.

- Input: digraph G = (V, E)
- Output: drawing of G that "closely" reproduces the hierarchical properties of G

- vertices occur on (few) horizontal lines
- edges directed upwards
- edge crossings minimized
- edges upward, straight, and short as possible

Problem statement.

- Input: digraph G = (V, E)
- Output: drawing of G that "closely" reproduces the hierarchical properties of G

- vertices occur on (few) horizontal lines
- edges directed upwards
- edge crossings minimized
- edges upward, straight, and short as possible
- vertices evenly spaced

Problem statement.

- Input: digraph G = (V, E)
- Output: drawing of G that "closely" reproduces the hierarchical properties of G

- vertices occur on (few) horizontal lines
- edges directed upwards
- edge crossings minimized
- edges upward, straight, and short as possible
- vertices evenly spaced
- Criteria can be contradictory!

Hierarchical drawing – applications

yEd Gallery: Java profiler JProfiler using yFiles

ossion View	Profiling <u>G</u> o To <u>W</u> indow <u>H</u> elp	۲
🗟 🍕 🔚	Add Record Record Start Session View Help Take Snapshot Settings Were CPU Tracking Settings Settings	
4	Heap Walker Object Graph	
Memory Views	The object graph is not cleared when the current object set is changed. You can add objects from different object sets and explore their relationships and connections.	
-	Use V A Show Paths To GC Root of Find path between two selected nodes	
Heap Walker		_
CPU Views		ę, r
) Monitor Views		9
I Telemetry Views		6 6
JEE & Probes		
		•
		3
		10 10
		*
	Selection step 2 : Class 1 instance of y.view.Graph2D	
Prof	Selection step 1: All objects after full GC 39240 objects in 1104 classes, 15172 arrays	
	📝 Classes 🖳 Allocations 🗟 Biggest Objects 🔄 References 💽 Time 🍸 Inspections 🔂 Graph	
	63:17 🔊	Profiling

Hierarchical drawing – applications

yEd Gallery: Java profiler JProfiler using yFiles

Hierarchical drawing – applications

yEd Gallery: Java profiler JProfiler using yFiles

Source: Visualization that won the Graph Drawing contest 2016. Klawitter & Mchedlidze

Source: "Design Considerations for Optimizing Storyline Visualizations" Tanahashi et al.

[Sugiyama, Tagawa, Toda '81]

Input

[Sugiyama, Tagawa, Toda '81]

Input — Cycle breaking

Approach.

Find minimum set E* of edges which are not upward.
Remove E* and insert reversed edges.

Approach.

- Find minimum set E^{\star} of edges which are not upward.
- **Remove** E^{\star} and insert reversed edges.

Problem MINIMUM FEEDBACK ARC SET(FAS).

- Input: directed graph G = (V, E)
- Output: min. set $E^* \subseteq E$, so that $G E^*$ acyclic

Approach.

- Find minimum set E^{\star} of edges which are not upward.
- **Remove** E^{\star} and insert reversed edges.

Problem MINIMUM FEEDBACK ARC SET(F/S).

- Input: directed graph G = (V, E)
- Output: min. set $E^* \subseteq E$, so that $G = E^*$ acyclic $G = E^* + E_r^*$

Approach.

- Find minimum set E^{\star} of edges which are not upward.
- **Remove** E^{\star} and insert reversed edges.

Problem MINIMUM FEEDBACK ARC SET(F/S).

Input: directed graph G = (V, E)

Output: min. set $E^* \subseteq E$, so that $G = E^*$ acyclic $G = E^* + E_r^*$

... NP-hard :-(

Problem MINIMUM FEEDBACK ARC SET(FAS).

- Input: directed graph G = (V, E)
- Output: min. set $E^* \subseteq E$, so that $G E^*$ acyclic

Problem MINIMUM FEEDBACK ARC SET(FAS).

- Input: directed graph G = (V, E)
- Output: min. set $E^{\star} \subseteq E$, so that $G E^{\star}$ acyclic

Problem MINIMUM FEEDBACK ARC SET(FAS).

Input: directed graph G = (V, E)
 Output: min. set E^{*} ⊆ E, so that G - E^{*} acyclic

$$G - E^{\star} + E_r^{\star}$$
 not acyclic

Problem MINIMUM FEEDBACK ARC SET(FAS).

Input: directed graph G = (V, E)Output: min. set $E^* \subseteq E$, so that $G - E^*$ acyclic

If E^{\star} is minimum: $G - E^{\star} + E_r^{\star}$ is acyclic

Problem MINIMUM FEEDBACK ARC SET(FAS).

Input: directed graph G = (V, E)
Output: min. set E^{*} ⊆ E, so that G - E^{*} acyclic

If E^{\star} is minimum: $G - E^{\star} + E_r^{\star}$ is acyclic

Problem MINIMUM FEEDBACK SET(FS).

Input: directed graph G = (V, E)
Output: min. set E^{*} ⊆ E, so that G - E^{*} + E^{*}_r acyclic

Problem MINIMUM FEEDBACK ARC SET(FAS).

Input: directed graph G = (V, E)
Output: min. set E^{*} ⊆ E, so that G - E^{*} acyclic

If E^* is minimum: $G - E^* + E_r^*$ is acyclic

Problem MINIMUM FEEDBACK SET(FS).

Input: directed graph G = (V, E)
Output: min. set E^{*} ⊆ E, so that G - E^{*} + E^{*}_r acyclic

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph G = (V, E)) $E' \leftarrow \emptyset$

for each $v \in V$ do $\begin{vmatrix} \mathbf{if} \ |N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)| \text{ then} \\ | E' \leftarrow E' \cup N^{\rightarrow}(v) \end{vmatrix}$ else $| E' \leftarrow E' \cup N^{\leftarrow}(v)$

remove v and N(v) from G.

return (V, E')

 $N^{\rightarrow}(v) := \{(v, u) | (v, u) \in E\}$ $N^{\leftarrow}(v) := \{(u, v) | (u, v) \in E\}$ $N(v) := N^{\rightarrow}(v) \cup N^{\leftarrow}(v)$

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph G = (V, E)) $E' \leftarrow \emptyset$ foreach $v \in V$ do if $|N^{\rightarrow}(v)| \geq |N^{\leftarrow}(v)|$ then $| E' \leftarrow E' \cup N^{\rightarrow}(v)$ else $| E' \leftarrow E' \cup N^{\leftarrow}(v)$ remove v and N(v) from G. return (V, E')

 $\blacksquare \ G' = (V, E') \text{ is a DAG}$

 $N^{\rightarrow}(v) := \{(v, u) | (v, u) \in E\}$ $N^{\leftarrow}(v) := \{(u, v) | (u, v) \in E\}$ $N(v) := N^{\rightarrow}(v) \cup N^{\leftarrow}(v)$

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph G = (V, E)) $E' \leftarrow \emptyset$ foreach $v \in V$ do if $|N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)|$ then $| E' \leftarrow E' \cup N^{\rightarrow}(v)$ else $| E' \leftarrow E' \cup N^{\leftarrow}(v)$ remove v and N(v) from G. return (V, E')

• G' = (V, E') is a DAG

$$N^{\rightarrow}(v) := \{(v, u) | (v, u) \in E\}$$
$$N^{\leftarrow}(v) := \{(u, v) | (u, v) \in E\}$$
$$N(v) := N^{\rightarrow}(v) \cup N^{\leftarrow}(v)$$

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph G = (V, E)) $E' \leftarrow \emptyset$ foreach $v \in V$ do if $|N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)|$ then $| E' \leftarrow E' \cup N^{\rightarrow}(v)$ else $| E' \leftarrow E' \cup N^{\leftarrow}(v)$ remove v and N(v) from G. return (V, E')• G' = (V, E') is a DAG

$$N^{\rightarrow}(v) := \{(v, u) | (v, u) \in E\}$$
$$N^{\leftarrow}(v) := \{(u, v) | (u, v) \in E\}$$
$$N(v) := N^{\rightarrow}(v) \cup N^{\leftarrow}(v)$$

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph G = (V, E)) $E' \leftarrow \emptyset$ foreach $v \in V$ do if $|N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)|$ then $| E' \leftarrow E' \cup N^{\rightarrow}(v)$ else $| E' \leftarrow E' \cup N^{\leftarrow}(v)$ remove v and N(v) from G. return (V, E')

• G' = (V, E') is a DAG

 $N^{\rightarrow}(v) := \{(v, u) | (v, u) \in E\}$ $N^{\leftarrow}(v) := \{(u, v) | (u, v) \in E\}$ $N(v) := N^{\rightarrow}(v) \cup N^{\leftarrow}(v)$

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph G = (V, E)) $E' \leftarrow \emptyset$ foreach $v \in V$ do if $|N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)|$ then $| E' \leftarrow E' \cup N^{\rightarrow}(v)$ else $| E' \leftarrow E' \cup N^{\leftarrow}(v)$ remove v and N(v) from G. return (V, E')• G' = (V, E') is a DAG \blacksquare we create an order on V

$$N^{\rightarrow}(v) := \{(v, u) | (v, u) \in E\}$$
$$N^{\leftarrow}(v) := \{(u, v) | (u, v) \in E\}$$
$$N(v) := N^{\rightarrow}(v) \cup N^{\leftarrow}(v)$$
[Berger, Shor '90]

GreedyMakeAcyclic(Digraph G = (V, E)) $E' \leftarrow \emptyset$ foreach $v \in V$ do if $|N^{\rightarrow}(v)| \geq |N^{\leftarrow}(v)|$ then $| E' \leftarrow E' \cup N^{\rightarrow}(v)$ else $| E' \leftarrow E' \cup N^{\leftarrow}(v)$ remove v and N(v) from G. return (V, E')• G' = (V, E') is a DAG \blacksquare we create an order on V

 $\blacksquare \ E \setminus E' \text{ is a feedback arc set}$

 $N^{\rightarrow}(v) := \{(v, u) | (v, u) \in E\}$ $N^{\leftarrow}(v) := \{(u, v) | (u, v) \in E\}$ $N(v) := N^{\rightarrow}(v) \cup N^{\leftarrow}(v)$

8 - 7

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph G = (V, E)) $E' \leftarrow \emptyset$ foreach $v \in V$ do if $|N^{\rightarrow}(v)| \geq |N^{\leftarrow}(v)|$ then $| E' \leftarrow E' \cup N^{\rightarrow}(v)$ else $| E' \leftarrow E' \cup N^{\leftarrow}(v)$ remove v and N(v) from G. return (V, E')• G' = (V, E') is a DAG Time: \blacksquare we create an order on V $\blacksquare E \setminus E' \text{ is a feedback arc set}$

 $N^{\rightarrow}(v) := \{(v, u) | (v, u) \in E\}$ $N^{\leftarrow}(v) := \{(u, v) | (u, v) \in E\}$ $N(v) := N^{\rightarrow}(v) \cup N^{\leftarrow}(v)$

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph G = (V, E)) $E' \leftarrow \emptyset$ foreach $v \in V$ do if $|N^{\rightarrow}(v)| \geq |N^{\leftarrow}(v)|$ then $| E' \leftarrow E' \cup N^{\rightarrow}(v)$ else $| E' \leftarrow E' \cup N^{\leftarrow}(v)$ remove v and N(v) from G. return (V, E')• G' = (V, E') is a DAG \blacksquare we create an order on V \blacksquare $E \setminus E'$ is a feedback arc set

 $N^{\rightarrow}(v) := \{(v, u) | (v, u) \in E\}$ $N^{\leftarrow}(v) := \{(u, v) | (u, v) \in E\}$ $N(v) := N^{\rightarrow}(v) \cup N^{\leftarrow}(v)$

Time: $\mathcal{O}(|V| + |E|)$

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph G = (V, E)) $E' \leftarrow \emptyset$ foreach $v \in V$ do if $|N^{\rightarrow}(v)| \geq |N^{\leftarrow}(v)|$ then $| E' \leftarrow E' \cup N^{\rightarrow}(v)$ else $| E' \leftarrow E' \cup N^{\leftarrow}(v)$ remove v and N(v) from G. return (V, E')• G' = (V, E') is a DAG \blacksquare we create an order on V \blacksquare $E \setminus E'$ is a feedback arc set

 $N^{\rightarrow}(v) := \{(v, u) | (v, u) \in E\}$ $N^{\leftarrow}(v) := \{(u, v) | (u, v) \in E\}$ $N(v) := N^{\rightarrow}(v) \cup N^{\leftarrow}(v)$

Time: $\mathcal{O}(|V| + |E|)$

• Quality guarantee: $|E'| \ge$

[Berger, Shor '90]

GreedyMakeAcyclic(Digraph G = (V, E)) $E' \leftarrow \emptyset$ foreach $v \in V$ do if $|N^{\rightarrow}(v)| \geq |N^{\leftarrow}(v)|$ then $| E' \leftarrow E' \cup N^{\rightarrow}(v)$ else $| E' \leftarrow E' \cup N^{\leftarrow}(v)$ remove v and N(v) from G. return (V, E')• G' = (V, E') is a DAG \blacksquare we create an order on V \blacksquare $E \setminus E'$ is a feedback arc set

 $N^{\rightarrow}(v) := \{(v, u) | (v, u) \in E\}$ $N^{\leftarrow}(v) := \{(u, v) | (u, v) \in E\}$ $N(v) := N^{\rightarrow}(v) \cup N^{\leftarrow}(v)$

Time: $\mathcal{O}(|V| + |E|)$

• Quality guarantee: $|E'| \ge |E|/2$

[Berger, Shor '90]

```
E' \leftarrow \emptyset
foreach v \in V do
\left| \begin{array}{c} \text{if } |N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)| \text{ then} \\ L' \leftarrow E' \cup N^{\rightarrow}(v) \end{array} \right|
else
\left| \begin{array}{c} E' \leftarrow E' \cup N^{\leftarrow}(v) \\ \text{remove } v \text{ and } N(v) \text{ from } G. \end{array} \right|
return (V, E')
```


[Berger, Shor '90]

```
E' \leftarrow \emptyset
foreach v \in V do
\left| \begin{array}{c} \text{if } |N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)| \text{ then} \\ L' \leftarrow E' \cup N^{\rightarrow}(v) \end{array} \right|
else
\left| \begin{array}{c} E' \leftarrow E' \cup N^{\leftarrow}(v) \\ \text{remove } v \text{ and } N(v) \text{ from } G. \end{array} \right|
return (V, E')
```


[Berger, Shor '90]

```
E' \leftarrow \emptyset
foreach v \in V do
\left| \begin{array}{c} \text{if } |N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)| \text{ then} \\ L' \leftarrow E' \cup N^{\rightarrow}(v) \end{array} \right|
else
\left| \begin{array}{c} E' \leftarrow E' \cup N^{\leftarrow}(v) \\ \text{remove } v \text{ and } N(v) \text{ from } G. \end{array} \right|
return (V, E')
```


[Berger, Shor '90]

```
E' \leftarrow \emptyset
foreach v \in V do
\left| \begin{array}{c} \text{if } |N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)| \text{ then} \\ L' \leftarrow E' \cup N^{\rightarrow}(v) \end{array} \right|
else
\left| \begin{array}{c} E' \leftarrow E' \cup N^{\leftarrow}(v) \\ \text{remove } v \text{ and } N(v) \text{ from } G. \end{array} \right|
return (V, E')
```


[Berger, Shor '90]

```
E' \leftarrow \emptyset
foreach v \in V do
\left| \begin{array}{c} \text{if } |N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)| \text{ then} \\ L' \leftarrow E' \cup N^{\rightarrow}(v) \end{array} \right|
else
\left| \begin{array}{c} E' \leftarrow E' \cup N^{\leftarrow}(v) \\ \text{remove } v \text{ and } N(v) \text{ from } G. \end{array} \right|
return (V, E')
```


[Berger, Shor '90]

```
E' \leftarrow \emptyset
foreach v \in V do
\left| \begin{array}{c} \text{if } |N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)| \text{ then} \\ L' \leftarrow E' \cup N^{\rightarrow}(v) \end{array} \right|
else
\left| \begin{array}{c} E' \leftarrow E' \cup N^{\leftarrow}(v) \\ \text{remove } v \text{ and } N(v) \text{ from } G. \end{array} \right|
return (V, E')
```


[Berger, Shor '90]

```
E' \leftarrow \emptyset
foreach v \in V do
\left| \begin{array}{c} \text{if } |N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)| \text{ then} \\ L' \leftarrow E' \cup N^{\rightarrow}(v) \end{array} \right|
else
\left| \begin{array}{c} E' \leftarrow E' \cup N^{\leftarrow}(v) \\ \text{remove } v \text{ and } N(v) \text{ from } G. \end{array} \right|
return (V, E')
```


[Berger, Shor '90]

```
E' \leftarrow \emptyset
foreach v \in V do
\left| \begin{array}{c} \text{if } |N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)| \text{ then} \\ L & E' \leftarrow E' \cup N^{\rightarrow}(v) \end{array} \right|
else
\left| \begin{array}{c} E' \leftarrow E' \cup N^{\leftarrow}(v) \\ \text{remove } v \text{ and } N(v) \text{ from } G. \end{array} \right|
return (V, E')
```


[Berger, Shor '90]

```
E' \leftarrow \emptyset
foreach v \in V do
\left| \begin{array}{c} \text{if } |N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)| \text{ then} \\ L' \leftarrow E' \cup N^{\rightarrow}(v) \end{array} \right|
else
\left| \begin{array}{c} E' \leftarrow E' \cup N^{\leftarrow}(v) \\ \text{remove } v \text{ and } N(v) \text{ from } G. \end{array} \right|
return (V, E')
```


[Berger, Shor '90]

```
E' \leftarrow \emptyset
foreach v \in V do
\left| \begin{array}{c} \text{if } |N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)| \text{ then} \\ L' \leftarrow E' \cup N^{\rightarrow}(v) \end{array} \right|
else
\left| \begin{array}{c} E' \leftarrow E' \cup N^{\leftarrow}(v) \\ \text{remove } v \text{ and } N(v) \text{ from } G. \end{array} \right|
return (V, E')
```


[Berger, Shor '90]

```
E' \leftarrow \emptyset
foreach v \in V do
\left| \begin{array}{c} \text{if } |N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)| \text{ then} \\ L' \leftarrow E' \cup N^{\rightarrow}(v) \end{array} \right|
else
\left| \begin{array}{c} E' \leftarrow E' \cup N^{\leftarrow}(v) \\ \text{remove } v \text{ and } N(v) \text{ from } G. \end{array} \right|
return (V, E')
```


[Berger, Shor '90]

```
E' \leftarrow \emptyset
foreach v \in V do
\left| \begin{array}{c} \text{if } |N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)| \text{ then} \\ L' \leftarrow E' \cup N^{\rightarrow}(v) \end{array} \right|
else
\left| \begin{array}{c} E' \leftarrow E' \cup N^{\leftarrow}(v) \\ \text{remove } v \text{ and } N(v) \text{ from } G. \end{array} \right|
return (V, E')
```


[Berger, Shor '90]

```
E' \leftarrow \emptyset
foreach v \in V do
\left| \begin{array}{c} \text{if } |N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)| \text{ then} \\ L' \leftarrow E' \cup N^{\rightarrow}(v) \end{array} \right|
else
\left| \begin{array}{c} E' \leftarrow E' \cup N^{\leftarrow}(v) \\ \text{remove } v \text{ and } N(v) \text{ from } G. \end{array} \right|
return (V, E')
```


[Berger, Shor '90]

```
E' \leftarrow \emptyset
foreach v \in V do
\begin{bmatrix} \mathbf{if} \ |N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)| \text{ then} \\ E' \leftarrow E' \cup N^{\rightarrow}(v) \end{bmatrix}
else
\begin{bmatrix} E' \leftarrow E' \cup N^{\leftarrow}(v) \\ \text{remove } v \text{ and } N(v) \text{ from } G.
return (V, E')
```


[Berger, Shor '90]

```
E' \leftarrow \emptyset
foreach v \in V do
\left| \begin{array}{c} \text{if } |N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)| \text{ then} \\ L' \leftarrow E' \cup N^{\rightarrow}(v) \end{array} \right|
else
\left| \begin{array}{c} E' \leftarrow E' \cup N^{\leftarrow}(v) \\ \text{remove } v \text{ and } N(v) \text{ from } G. \end{array} \right|
return (V, E')
```


[Berger, Shor '90]

```
E' \leftarrow \emptyset
foreach v \in V do
\left| \begin{array}{c} \text{if } |N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)| \text{ then} \\ L' \leftarrow E' \cup N^{\rightarrow}(v) \end{array} \right|
else
\left| \begin{array}{c} E' \leftarrow E' \cup N^{\leftarrow}(v) \\ \text{remove } v \text{ and } N(v) \text{ from } G. \end{array} \right|
return (V, E')
```


[Berger, Shor '90]

```
E' \leftarrow \emptyset
foreach v \in V do
\left| \begin{array}{c} \text{if } |N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)| \text{ then} \\ L' \leftarrow E' \cup N^{\rightarrow}(v) \end{array} \right|
else
\left| \begin{array}{c} E' \leftarrow E' \cup N^{\leftarrow}(v) \\ \text{remove } v \text{ and } N(v) \text{ from } G. \end{array} \right|
return (V, E')
```


[Berger, Shor '90]

```
E' \leftarrow \emptyset
foreach v \in V do
\left| \begin{array}{c} \text{if } |N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)| \text{ then} \\ L' \leftarrow E' \cup N^{\rightarrow}(v) \end{array} \right|
else
\left| \begin{array}{c} E' \leftarrow E' \cup N^{\leftarrow}(v) \\ \text{remove } v \text{ and } N(v) \text{ from } G. \end{array} \right|
return (V, E')
```


[Berger, Shor '90]

```
E' \leftarrow \emptyset
foreach v \in V do
\left| \begin{array}{c} \text{if } |N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)| \text{ then} \\ L' \leftarrow E' \cup N^{\rightarrow}(v) \end{array} \right|
else
\left| \begin{array}{c} E' \leftarrow E' \cup N^{\leftarrow}(v) \\ \text{remove } v \text{ and } N(v) \text{ from } G. \end{array} \right|
return (V, E')
```


[Berger, Shor '90]

```
E' \leftarrow \emptyset
foreach v \in V do
\left| \begin{array}{c} \text{if } |N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)| \text{ then} \\ L' \leftarrow E' \cup N^{\rightarrow}(v) \end{array} \right|
else
\left| \begin{array}{c} E' \leftarrow E' \cup N^{\leftarrow}(v) \\ \text{remove } v \text{ and } N(v) \text{ from } G. \end{array} \right|
return (V, E')
```


[Berger, Shor '90]

```
E' \leftarrow \emptyset
foreach v \in V do
\left| \begin{array}{c} \text{if } |N^{\rightarrow}(v)| \ge |N^{\leftarrow}(v)| \text{ then} \\ L' \leftarrow E' \cup N^{\rightarrow}(v) \end{array} \right|
else
\left| \begin{array}{c} E' \leftarrow E' \cup N^{\leftarrow}(v) \\ \text{remove } v \text{ and } N(v) \text{ from } G. \end{array} \right|
return (V, E')
```


[Eades, Lin, Smyth '93]

 $E' \leftarrow \emptyset$ while $V \neq \emptyset$ do while in V exists a sink v do $E' \leftarrow E' \cup N^{\leftarrow}(v)$ remove v and $N^{\leftarrow}(v)$

while in V exists a sink v do $E' \leftarrow E' \cup N^{\leftarrow}(v)$ remove v and $N^{\leftarrow}(v)$

Heuristic 2 [Eades, Lin, Smyth '93]

 $E' \leftarrow \emptyset$ while $V \neq \emptyset$ do while in V exists a sink v do $E' \leftarrow E' \cup N^{\leftarrow}(v)$ remove v and $N^{\leftarrow}(v)$

while $V \neq \emptyset$ do

while in V exists a sink v do $\begin{array}{c}
E' \leftarrow E' \cup N^{\leftarrow}(v) \\
\text{remove } v \text{ and } N^{\leftarrow}(v)
\end{array}$

while $V \neq \emptyset$ do

while in V exists a sink v do $\begin{array}{c}
E' \leftarrow E' \cup N^{\leftarrow}(v) \\
\text{remove } v \text{ and } N^{\leftarrow}(v)
\end{array}$

[Eades, Lin, Smyth '93]

 $E' \leftarrow \emptyset$ while $V \neq \emptyset$ do while in V exists a sink v do $E' \leftarrow E' \sqcup N^{\leftarrow}(v)$

[Eades, Lin, Smyth '93]

 $E' \leftarrow \emptyset$ while $V \neq \emptyset$ do while in V exists a sink v do $E' \leftarrow E' \cup N^{\leftarrow}(v)$

[Eades, Lin, Smyth '93]

 $E' \leftarrow \emptyset$ while $V \neq \emptyset$ do while in V exists a sink v do $E' \leftarrow E' \cup N^{\leftarrow}(v)$

[Eades, Lin, Smyth '93]

 $E' \leftarrow \emptyset$ while $V \neq \emptyset$ do while in V exists a sink v do $E' \leftarrow E' \cup N^{\leftarrow}(v)$

[Eades, Lin, Smyth '93]

 $E' \leftarrow \emptyset$ while $V \neq \emptyset$ do while in V exists a sink v do

[Eades, Lin, Smyth '93]

 $E' \leftarrow \emptyset$ while $V \neq \emptyset$ do while in V exists a sink v do

 $E' \leftarrow E' \cup N^{\leftarrow}(v)$ remove v and $N^{\leftarrow}(v)$

Remove all isolated vertices from ${\cal V}$

[Eades, Lin, Smyth '93]

 $E' \leftarrow \emptyset$ while $V \neq \emptyset$ do while in V exists a sink v do

 $E' \leftarrow E' \cup N^{\leftarrow}(v)$ remove v and $N^{\leftarrow}(v)$

Remove all isolated vertices from ${\cal V}$

[Eades, Lin, Smyth '93]

 $E' \leftarrow \emptyset$ while $V \neq \emptyset$ do while in V exists a sink v do

 $E' \leftarrow E' \cup N^{\leftarrow}(v)$ remove v and $N^{\leftarrow}(v)$

Remove all isolated vertices from ${\cal V}$

[Eades, Lin, Smyth '93]

 $E' \leftarrow \emptyset$
while $V \neq \emptyset$ do

while in V exists a sink v do $E' \leftarrow E' \cup N^{\leftarrow}(v)$ remove v and $N^{\leftarrow}(v)$

Remove all isolated vertices from ${\cal V}$

while in V exists a source v do $\begin{vmatrix} E' \leftarrow E' \cup N^{\rightarrow}(v) \\ \text{remove } v \text{ and } N^{\rightarrow}(v) \end{vmatrix}$

[Eades, Lin, Smyth '93]

 $E' \leftarrow \emptyset$
while $V \neq \emptyset$ do

while in V exists a sink v do $\begin{bmatrix} E' \leftarrow E' \cup N^{\leftarrow}(v) \\ \text{remove } v \text{ and } N^{\leftarrow}(v) \end{bmatrix}$

Remove all isolated vertices from ${\cal V}$

[Eades, Lin, Smyth '93]

 $E' \leftarrow \emptyset$
while $V \neq \emptyset$ do

while in V exists a sink v do $\begin{bmatrix} E' \leftarrow E' \cup N^{\leftarrow}(v) \\ \text{remove } v \text{ and } N^{\leftarrow}(v) \end{bmatrix}$

Remove all isolated vertices from ${\cal V}$

while in V exists a source v do $\begin{vmatrix} E' \leftarrow E' \cup N^{\rightarrow}(v) \\ \text{remove } v \text{ and } N^{\rightarrow}(v) \end{vmatrix}$

Step 2: Leveling

Problem.

- Input: acyclic, digraph G = (V, E)
- Output:
- Mapping $y: V \to \{1, \dots, |V|\}$, so that for every $uv \in A$, y(u) < y(v).

Step 2: Leveling

Problem.

- Input: acyclic, digraph G = (V, E)
- Output: Mapping $y: V \to \{1, ..., |V|\}$, so that for every $uv \in A$, y(u) < y(v).

Objective is to *minimize* . . .

Step 2: Leveling

Problem.

- Input: acyclic, digraph G = (V, E)
- Output: Mapping $y: V \to \{1, ..., |V|\}$, so that for every $uv \in A$, y(u) < y(v).
- **Objective** is to *minimize* . . .
- **number of layers**, i.e. |y(V)|
- length of the longest edge, i.e. $\max_{uv \in A} y(v) y(u)$
- width, i.e. $\max\{|L_i| \mid 1 \le i \le h\}$
- total edge length, i.e. number of dummy vertices

Algorithm.

Algorithm.

for each source qset y(q) := 1

Algorithm.

for each source qset y(q) := 1

for each non-source vset $y(v) := \max \{y(u) \mid uv \in E\} + 1$

Algorithm.

- for each source qset y(q) := 1
- for each non-source vset $y(v) := \max \{y(u) \mid uv \in E\} + 1$

Observation.

Algorithm.

- for each source qset y(q) := 1
- for each non-source vset $y(v) := \max \{y(u) \mid uv \in E\} + 1$

Observation.

 \blacksquare y(v) is length of the longest path from a source to v plus 1.

Algorithm.

- for each source qset y(q) := 1
- for each non-source vset $y(v) := \max \{y(u) \mid uv \in E\} + 1$

Observation.

- y(v) is length of the longest path from a source to v plus 1.
 ... which is optimal!
- Can be implemented in linear time with recursive algorithm.

Example

Example

Total edge length – ILP

Can be formulated as an integer linear program:

$$\begin{array}{ll} \min & \sum_{(u,v)\in E}(y(v)-y(u)) \\ \text{subject to} & y(v)-y(u) \geq 1 & \forall (u,v)\in E \\ & y(v)\geq 1 & \forall v\in V \\ & y(v)\in \mathbb{Z} & \forall v\in V \end{array}$$

Total edge length – ILP

Can be formulated as an integer linear program:

$$\begin{array}{ll} \min & \sum_{(u,v)\in E}(y(v)-y(u)) \\ \text{subject to} & y(v)-y(u) \geq 1 & \forall (u,v)\in E \\ & y(v)\geq 1 & \forall v\in V \\ & y(v)\in \mathbb{Z} & \forall v\in V \end{array}$$

One can show that:

Constraint-matrix is **totally unimodular**

- \Rightarrow Solution of the relaxed linear program is integer
- The total edge length can be minimized in polynomial time

Width

Drawings can be very wide.

Narrower layer assignment

Problem: Leveling with a given width.

- Input: acyclic, digraph G = (V, E), width W > 0
- Output: Partition the vertex set into a minimum number of layers such that each layer contains at most W elements.

Narrower layer assignment

Problem: Leveling with a given width.

Input: acyclic, digraph G = (V, E), width W > 0
 Output: Partition the vertex set into a minimum number of layers such that each layer contains at most W elements.

Problem: Precedence-Constrained Multi-Processor Scheduling

- Input: n jobs with unit (1) processing time, W identical machines, and a partial ordering < on the jobs.
- Output: Schedule respecting < and having minimum processing time.</p>
Narrower layer assignment

Problem: Leveling with a given width.

Input: acyclic, digraph G = (V, E), width W > 0
 Output: Partition the vertex set into a minimum number of layers such that each layer contains at most W elements.

Problem: Precedence-Constrained Multi-Processor Scheduling

- Input: n jobs with unit (1) processing time, W identical machines, and a partial ordering < on the jobs.
- Output: Schedule respecting < and having minimum processing time.</p>

NP-hard,
$$(2 - \frac{2}{W})$$
-Approx., no $(\frac{4}{3} - \varepsilon)$ -Approx. $(W \ge 3)$.

- jobs stored in a list L
 (in any order, e.g., topologically sorted)
- for each time t = 1, 2, ... schedule $\leq W$ available jobs
- a job in L is available when all its predecessors have been scheduled
- as long as there are free machines and available jobs, take the first available job and assign it to a free machine

Input: Precedence graph (divided into layers of arbitrary width)

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is W = 2.

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is W = 2.

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is W = 2.

 Output:
 Schedule

 M_1 M_2

 t 1
 2
 3
 4
 5
 6
 7
 8
 9
 10

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is W = 2.

Output: Schedule $\frac{M_1}{M_2} = 1$

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is W = 2.

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is W = 2.

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is W = 2.

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is W = 2.

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is W = 2.

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is W = 2.

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is W = 2.

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is W = 2.

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is W = 2.

Input: Precedence graph (divided into layers of arbitrary width)

Number of Machines is W = 2.

Output: Schedule

M_1	1	2	4	5	6	8	Α	С	Е	G
M_2		3	—		7	9	В	D	F	_
t	1	2	3	4	5	6	7	8	9	10

Question: Good approximation factor?

"The art of the lower bound"

"The art of the lower bound"

 $\mathsf{OPT} \geq$

"The art of the lower bound"

 $\mathsf{OPT} \geq \lceil n/2 \rceil$

"The art of the lower bound"

 $OPT \ge \lceil n/2 \rceil$ and $OPT \ge$

"The art of the lower bound"

 $\mathsf{OPT} \geq \lceil n/2 \rceil$ and $\mathsf{OPT} \geq \ell := \mathsf{Number of layers of } G_{<}$

"The art of the lower bound"

 $\mathsf{OPT} \geq \lceil n/2 \rceil$ and $\mathsf{OPT} \geq \ell := \mathsf{Number of layers of } G_{<}$

Goal: measure the quality of our algorithm using the lower bounds

"The art of the lower bound"

 $\mathsf{OPT} \geq \lceil n/2 \rceil$ and $\mathsf{OPT} \geq \ell := \mathsf{Number of layers of } G_{<}$

Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG \leq

"The art of the lower bound"

 $\mathsf{OPT} \geq \lceil n/2 \rceil$ and $\mathsf{OPT} \geq \ell := \mathsf{Number of layers of } G_{<}$

Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG \leq

"The art of the lower bound"

 $\mathsf{OPT} \geq \lceil n/2 \rceil$ and $\mathsf{OPT} \geq \ell := \mathsf{Number}$ of layers of $G_{<}$

Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG \leq insertion of pauses (-) in the schedule (except the last) maps to layers of $G_{<}$

"The art of the lower bound"

 $\mathsf{OPT} \geq \lceil n/2 \rceil$ and $\mathsf{OPT} \geq \ell := \mathsf{Number}$ of layers of $G_{<}$

Goal: measure the quality of our algorithm using the lower bounds

e

<

Bound. ALG
$$\leq \left\lceil \frac{n+\ell}{2} \right\rceil$$

insertion of pauses (-) in the schedul (except the last) maps to layers of *G*

"The art of the lower bound"

 $\mathsf{OPT} \geq \lceil n/2 \rceil$ and $\mathsf{OPT} \geq \ell := \mathsf{Number}$ of layers of $G_{<}$

Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG
$$\leq \left\lceil \frac{n+\ell}{2} \right\rceil \approx$$

insertion of pauses (-) in the schedule (except the last) maps to layers of $G_{<}$

"The art of the lower bound"

 $\mathsf{OPT} \geq \lceil n/2 \rceil$ and $\mathsf{OPT} \geq \ell := \mathsf{Number of layers of } G_{<}$

Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG
$$\leq \left\lceil \frac{n+\ell}{2} \right\rceil \approx \left\lceil n/2 \right\rceil + \ell/2$$

insertion of pauses (-) in the schedule (except the last) maps to layers of $G_{<}$

"The art of the lower bound"

OPT $\geq \lceil n/2 \rceil$ and OPT $\geq \ell :=$ Number of layers of G_{\leq} Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG $\leq \left\lceil \frac{n+\ell}{2} \right\rceil \approx \left\lceil n/2 \right\rceil + \ell/2 \leq$ insertion of pauses (-) in the schedule (except the last) maps to layers of $G_{<}$

"The art of the lower bound"

OPT $\geq \lceil n/2 \rceil$ and OPT $\geq \ell :=$ Number of layers of G_{\leq} Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG
$$\leq \left\lceil \frac{n+\ell}{2} \right\rceil \approx \left\lceil n/2 \right\rceil + \ell/2 \leq 3/2 \cdot \text{OPT}$$

insertion of pauses (-) in the schedule
(except the last) maps to layers of $G_{<}$

"The art of the lower bound"

 $\mathsf{OPT} \geq \lceil n/2 \rceil$ and $\mathsf{OPT} \geq \ell := \mathsf{Number}$ of layers of $G_{<}$

Goal: measure the quality of our algorithm using the lower bounds

Bound. ALG $\leq \left[\frac{n+\ell}{2}\right] \approx \left[n/2\right] + \ell/2 \leq 3/2 \cdot \text{OPT}$ insertion of pauses (-) in the schedule (except the last) maps to layers of $G_{<}$

Step 3: Crossing minimization

Problem.

Input: Graph G, layering $y: V \to \{1, \ldots, |V|\}$

Output: (Re-)ordering of vertices in each layer so that the number of crossings in minimized.

Step 3: Crossing minimization

Problem.

- Input: Graph G, layering $y: V \to \{1, \ldots, |V|\}$
- Output: (Re-)ordering of vertices in each layer so that the number of crossings in minimized.
- NP-hard, even for 2 layers

[Garey & Johnson '83]

Iterative crossing reduction – idea

Observation.

The number of crossings only depends on permutations of adjacent layers.

Iterative crossing reduction – idea

Observation.

The number of crossings only depends on permutations of adjacent layers.

- Add dummy-vertices for edges connecting "far" layers.
- Consider adjacent layers (L₁, L₂), (L₂, L₃), ... bottom-to-top.
- Minimize crossings by permuting L_{i+1} while keeping L_i fixed.
21 - 1

Iterative crossing reduction – algorithm

(1) choose a random permutation of L_1

- (1) choose a random permutation of L_1
- (2) iteratively consider adjacent layers L_i and L_{i+1}

- (1) choose a random permutation of L_1
- (2) iteratively consider adjacent layers L_i and L_{i+1}
- (3) minimize crossings by permuting L_{i+1} and keeping L_i fixed

- (1) choose a random permutation of L_1
- (2) iteratively consider adjacent layers L_i and L_{i+1}
- (3) minimize crossings by permuting L_{i+1} and keeping L_i fixed
- (4) repeat steps (2)–(3) in the reverse order (starting from L_h)

- (1) choose a random permutation of L_1
- (2) iteratively consider adjacent layers L_i and L_{i+1}
- (3) minimize crossings by permuting L_{i+1} and keeping L_i fixed
- (4) repeat steps (2)–(3) in the reverse order (starting from L_h)
- (5) repeat steps (2)–(4) until no further improvement is achieved

- (1) choose a random permutation of L_1
- (2) iteratively consider adjacent layers L_i and L_{i+1}
- (3) minimize crossings by permuting L_{i+1} and keeping L_i fixed
- (4) repeat steps (2)–(3) in the reverse order (starting from L_h)
- (5) repeat steps (2)–(4) until no further improvement is achieved
- (6) repeat steps (1)-(5) with different starting permutations

- (1) choose a random permutation of L_1
- (2) iteratively consider adjacent layers L_i and L_{i+1}
- (3) minimize crossings by permuting L_{i+1} and keeping L_i fixed
- (4) repeat steps (2)–(3) in the reverse order (starting from L_h)
- (5) repeat steps (2)–(4) until no further improvement is achieved
- (6) repeat steps (1)-(5) with different starting permutations

- (1) choose a random permutation of L_1
- (2) iteratively consider adjacent layers L_i and L_{i+1}
- (3) minimize crossings by permuting L_{i+1} and keeping L_i fixed *one-sided crossing minimization*
- (4) repeat steps (2)–(3) in the reverse order (starting from L_h)
- (5) repeat steps (2)–(4) until no further improvement is achieved
- (6) repeat steps (1)-(5) with different starting permutations

One-sided crossing minimization

Problem.

Input: bipartite graph G = (L₁ ∪ L₂, E), permutation π₁ on L₁
 Output: permutation π₂ of L₂ minimizing the number of edge crossings.

One-sided crossing minimization

Problem.

- Input: bipartite graph $G = (L_1 \cup L_2, E)$, permutation π_1 on L_1
- Output: permutation π_2 of L_2 minimizing the number of edge crossings.
- One-sided crossing minimization is NP-hard. [Eades & Whitesides '94]

One-sided crossing minimization

Problem.

- Input: bipartite graph $G = (L_1 \cup L_2, E)$, permutation π_1 on L_1
- Output: permutation π_2 of L_2 minimizing the number of edge crossings.
- One-sided crossing minimization is NP-hard. [Eades & Whitesides '94]

Algorithms.

- barycenter heuristic
- median heuristic
- Greedy-Switch
 - ILP

. . .

Intuition: few intersections occur when vertices are close to their neighbours

- Intuition: few intersections occur when vertices are close to their neighbours
- The barycentre of u is the average x-coordinate of the neighbours of u in layer L_1 [$x_1 \equiv \pi_1$]

$$x_2(u) := bary(u) := \frac{1}{deg(u)} \sum_{v \in N(u)} x_1(v)$$

- Intuition: few intersections occur when vertices are close to their neighbours
- The barycentre of u is the average x-coordinate of the neighbours of u in layer L_1 [$x_1 \equiv \pi_1$]

$$x_2(u) := bary(u) := \frac{1}{deg(u)} \sum_{v \in N(u)} x_1(v)$$

• Vertices with the same barycentre of are offset by a small δ .

- Intuition: few intersections occur when vertices are close to their neighbours
- The barycentre of u is the average x-coordinate of the neighbours of u in layer L_1 [$x_1 \equiv \pi_1$]

$$x_2(u) := bary(u) := \frac{1}{deg(u)} \sum_{v \in N(u)} x_1(v)$$

- Solution Vertices with the same barycentre of are offset by a small δ .
- linear runtime
- relatively good results
- optimal if no crossings are required
- $O(\sqrt{n})$ -approximation factor

- Intuition: few intersections occur when vertices are close to their neighbours
- The barycentre of u is the average x-coordinate of the neighbours of u in layer L_1 [$x_1 \equiv \pi_1$]

$$x_2(u) := bary(u) := \frac{1}{deg(u)} \sum_{v \in N(u)} x_1(v)$$

- Vertices with the same barycentre of are offset by a small δ .
- linear runtime
- relatively good results
- optimal if no crossings are required *exercise!*
- $O(\sqrt{n})$ -approximation factor

- Intuition: few intersections occur when vertices are close to their neighbours
- The barycentre of u is the average x-coordinate of the neighbours of u in layer L_1 [$x_1 \equiv \pi_1$]

$$x_2(u) := bary(u) := \frac{1}{deg(u)} \sum_{v \in N(u)} x_1(v)$$

- Vertices with the same barycentre of are offset by a small δ .
- linear runtime
- relatively good results
- $O(\sqrt{n})$ -approximation factor

- Intuition: few intersections occur when vertices are close to their neighbours
- The barycentre of u is the average x-coordinate of the neighbours of u in layer L_1 [$x_1 \equiv \pi_1$]

$$x_2(u) := bary(u) := \frac{1}{deg(u)} \sum_{v \in N(u)} x_1(v)$$

- Solution Vertices with the same barycentre of are offset by a small δ .
- linear runtime
- relatively good results
- optimal if no crossings are required *exercise!* O(\sqrt{n})-approximation factor

Worst case?

u, *v*

- Intuition: few intersections occur when vertices are close to their neighbours
- The barycentre of u is the average x-coordinate of the neighbours of u in layer L_1 [$x_1 \equiv \pi_1$]

$$x_2(u) := bary(u) := \frac{1}{deg(u)} \sum_{v \in N(u)} x_1(v)$$

- Vertices with the same barycentre of are offset by a small δ .
- linear runtime
- relatively good results
- optimal if no crossings are required *exercise!* O(\sqrt{n})-approximation factor

$$\{v_1, \dots, v_k\} := N(u) \text{ with } \pi_1(v_1) < \pi_1(v_2) < \dots < \pi_1(v_k)$$
$$x_2(u) := \operatorname{med}(u) := \begin{cases} 0 & \text{when } N(u) = \emptyset \\ \pi_1(v_{\lceil k/2 \rceil}) & \text{otherwise} \end{cases}$$

• move vertices u und v by small δ , when $x_2(u) = x_2(v)$

$$\{v_1, \ldots, v_k\} := N(u) \text{ with } \pi_1(v_1) < \pi_1(v_2) < \cdots < \pi_1(v_k)$$

$$x_2(u) := \operatorname{med}(u) := \begin{cases} 0 & \text{when } N(u) = \emptyset \\ \pi_1(v_{\lceil k/2 \rceil}) & \text{otherwise} \end{cases}$$

move vertices u und v by small δ , when $x_2(u) = x_2(v)$

linear runtime

- relatively good results
- optimal, if no crossings are required
- 3-approximation factor

$$\{v_1, \dots, v_k\} := N(u) \text{ with } \pi_1(v_1) < \pi_1(v_2) < \dots < \pi_1(v_k)$$
$$x_2(u) := \operatorname{med}(u) := \begin{cases} 0 & \text{when } N(u) = \emptyset \\ \pi_1(v_{\lceil k/2 \rceil}) & \text{otherwise} \end{cases}$$

move vertices u und v by small δ , when $x_2(u) = x_2(v)$

linear runtime

- relatively good results
- optimal, if no crossings are required
- 3-approximation factor proof in [GD Ch 11]

•
$$\{v_1, \ldots, v_k\} := N(u)$$
 with $\pi_1(v_1) < \pi_1(v_2) < \cdots < \pi_1(v_k)$

$$x_2(u) := \operatorname{med}(u) := \begin{cases} 0 & \text{when } N(u) = \emptyset \\ \pi_1(v_{\lceil k/2 \rceil}) & \text{otherwise} \end{cases}$$

move vertices u und v by small δ , when $x_2(u) = x_2(v)$

- linear runtime
- relatively good results
- optimal, if no crossings are required
- 3-approximation factor proof in [GD Ch 11]

•
$$\{v_1, \ldots, v_k\} := N(u)$$
 with $\pi_1(v_1) < \pi_1(v_2) < \cdots < \pi_1(v_k)$

$$x_2(u) := \operatorname{med}(u) := \begin{cases} 0 & \text{when } N(u) = \emptyset \\ \pi_1(v_{\lceil k/2 \rceil}) & \text{otherwise} \end{cases}$$

move vertices u und v by small δ , when $x_2(u) = x_2(v)$

- linear runtime
- relatively good results
- optimal, if no crossings are required
- 3-approximation factor proof in [GD Ch 11]

•
$$\{v_1, \ldots, v_k\} := N(u)$$
 with $\pi_1(v_1) < \pi_1(v_2) < \cdots < \pi_1(v_k)$

$$x_2(u) := \operatorname{med}(u) := \begin{cases} 0 & \text{when } N(u) = \emptyset \\ \pi_1(v_{\lceil k/2 \rceil}) & \text{otherwise} \end{cases}$$

move vertices u und v by small δ , when $x_2(u) = x_2(v)$

- linear runtime
- relatively good results
- optimal, if no crossings are required
- 3-approximation factor proof in [GD Ch 11]

- iteratively swap each adjacent node as long as crossings decrease
- runtime $O(L_2)$ per iteration; at most $|L_2|$ iterations
- suitable as post-processing for other heuristics

- iteratively swap each adjacent node as long as crossings decrease
- runtime $O(L_2)$ per iteration; at most $|L_2|$ iterations
- suitable as post-processing for other heuristics

- iteratively swap each adjacent node as long as crossings decrease
- runtime $O(L_2)$ per iteration; at most $|L_2|$ iterations
- suitable as post-processing for other heuristics

- iteratively swap each adjacent node as long as crossings decrease
- runtime $O(L_2)$ per iteration; at most $|L_2|$ iterations
- suitable as post-processing for other heuristics

- iteratively swap each adjacent node as long as crossings decrease
- runtime $O(L_2)$ per iteration; at most $|L_2|$ iterations
- suitable as post-processing for other heuristics

- iteratively swap each adjacent node as long as crossings decrease
- runtime $O(L_2)$ per iteration; at most $|L_2|$ iterations
- suitable as post-processing for other heuristics

[Jünger & Mutzel, '97]

Constant $c_{ij} := \#$ crossings between edges incident to v_i or v_j when $\pi_2(v_i) < \pi_2(v_j)$

[Jünger & Mutzel, '97]

- Constant $c_{ij} := \#$ crossings between edges incident to v_i or v_j when $\pi_2(v_i) < \pi_2(v_j)$
- Variable x_{ij} for each $1 \le i < j \le n_2 := |L_2|$

$$x_{ij} = \begin{cases} 1 & \text{when } \pi_2(v_i) < \pi_2(v_j) \\ 0 & \text{otherwise} \end{cases}$$

[Jünger & Mutzel, '97]

- Constant $c_{ij} := \#$ crossings between edges incident to v_i or v_j when $\pi_2(v_i) < \pi_2(v_j)$
- Variable x_{ij} for each $1 \le i < j \le n_2 := |L_2|$

$$x_{ij} = \begin{cases} 1 & \text{when } \pi_2(v_i) < \pi_2(v_j) \\ 0 & \text{otherwise} \end{cases}$$

$$\operatorname{cross}(\pi_2) = \sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji}) x_{ij} + \underbrace{\sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} c_{ji}}_{\operatorname{constant}}$$

Minimize the number of crossings:

minimize
$$\sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji}) x_{ij}$$

Minimize the number of crossings:

minimize
$$\sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji}) x_{ij}$$

Transitivity constraints:

$$0 \le x_{ij} + x_{jk} - x_{ik} \le 1$$
 for $1 \le i < j < k \le n_2$
Integer linear program

Minimize the number of crossings:

minimize
$$\sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji}) x_{ij}$$

Transitivity constraints:

$$0 \le x_{ij} + x_{jk} - x_{ik} \le 1 \quad \text{for } 1 \le i < j < k \le n_2$$

i.e., if $x_{ij} = 1$ and $x_{jk} = 1$, then $x_{ik} = 1$

Integer linear program

Minimize the number of crossings:

minimize
$$\sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji}) x_{ij}$$

Transitivity constraints:

$$0 \le x_{ij} + x_{jk} - x_{ik} \le 1$$
 for $1 \le i < j < k \le n_2$
i.e., if $x_{ij} = 1$ and $x_{jk} = 1$, then $x_{ik} = 1$
0

Integer linear program

Minimize the number of crossings:

minimize
$$\sum_{i=1}^{n_2-1} \sum_{j=i+1}^{n_2} (c_{ij} - c_{ji}) x_{ij}$$

Transitivity constraints:

$$0 \le x_{ij} + x_{jk} - x_{ik} \le 1$$
 for $1 \le i < j < k \le n_2$
i.e., if $x_{ij} = 1$ and $x_{jk} = 1$, then $x_{ik} = 1$
0

Properties.

- branch-and-cut technique for DAGs of limited size
- useful for graphs of small to medium size
- finds optimal solution
- solution in polynomial time is not guaranteed

Step 4: Vertex positioning

Goal.

paths should be close to straight, vertices evenly spaced

Step 4: Vertex positioning

Goal.

paths should be close to straight, vertices evenly spaced

- **Exact:** Quadratic Program (QP)
- Heuristic: iterative approach

Consider the path $p_e = (v_1, \ldots, v_k)$ of an edge $e = v_1 v_k$ with dummy vertices: v_2, \ldots, v_{k-1}

Consider the path $p_e = (v_1, \ldots, v_k)$ of an edge $e = v_1 v_k$ with dummy vertices: v_2, \ldots, v_{k-1}

• x-coordinate of v_i according to the line $\overline{v_1 v_k}$ (with equal spacing):

$$\overline{x(v_i)} = x(v_1) + \frac{i-1}{k-1} (x(v_k) - x(v_1))$$

Consider the path $p_e = (v_1, \ldots, v_k)$ of an edge $e = v_1 v_k$ with dummy vertices: v_2, \ldots, v_{k-1}

• x-coordinate of v_i according to the line $\overline{v_1 v_k}$ (with equal spacing):

$$\overline{x(v_i)} = x(v_1) + \frac{i-1}{k-1}(x(v_k) - x(v_1))$$

$$\operatorname{dev}(p_e) := \sum_{i=2}^{k-1} \left(x(v_i) - \overline{x(v_i)} \right)^2$$

Consider the path $p_e = (v_1, \ldots, v_k)$ of an edge $e = v_1 v_k$ with dummy vertices: v_2, \ldots, v_{k-1}

• x-coordinate of v_i according to the line $\overline{v_1 v_k}$ (with equal spacing):

$$\overline{x(v_i)} = x(v_1) + \frac{i-1}{k-1}(x(v_k) - x(v_1))$$

$$\operatorname{dev}(p_e) := \sum_{i=2}^{k-1} \left(x(v_i) - \overline{x(v_i)} \right)^2$$

- Consider the path $p_e = (v_1, \ldots, v_k)$ of an edge $e = v_1 v_k$ with dummy vertices: v_2, \ldots, v_{k-1}
- x-coordinate of v_i according to the line $\overline{v_1 v_k}$ (with equal spacing):

$$\overline{x(v_i)} = x(v_1) + \frac{i-1}{k-1}(x(v_k) - x(v_1))$$

$$\operatorname{dev}(p_e) := \sum_{i=2}^{k-1} \left(x(v_i) - \overline{x(v_i)} \right)^2$$

•	
1	

- Consider the path $p_e = (v_1, \ldots, v_k)$ of an edge $e = v_1 v_k$ with dummy vertices: v_2, \ldots, v_{k-1}
- x-coordinate of v_i according to the line $\overline{v_1 v_k}$ (with equal spacing):

$$\overline{x(v_i)} = x(v_1) + \frac{i-1}{k-1}(x(v_k) - x(v_1))$$

define the deviation from the line

$$\operatorname{dev}(p_e) := \sum_{i=2}^{k-1} \left(x(v_i) - \overline{x(v_i)} \right)^2$$

• Objective function: $\min \sum_{e \in E} \operatorname{dev}(p_e)$

- Consider the path $p_e = (v_1, \ldots, v_k)$ of an edge $e = v_1 v_k$ with dummy vertices: v_2, \ldots, v_{k-1}
- x-coordinate of v_i according to the line $\overline{v_1 v_k}$ (with equal spacing):

$$\overline{x(v_i)} = x(v_1) + \frac{i-1}{k-1}(x(v_k) - x(v_1))$$

$$\operatorname{dev}(p_e) := \sum_{i=2}^{k-1} \left(x(v_i) - \overline{x(v_i)} \right)^2$$

- Objective function: $\min \sum_{e \in E} \operatorname{dev}(p_e)$
- Constraints for all vertices v, w in the same layer with wright of v: $x(w) - x(v) \ge \rho(w, v)$ — min. horizontal distance

Consider the path $p_e = (v_1, \ldots, v_k)$ of an edge $e = v_1 v_k$ with dummy vertices: v_2, \ldots, v_{k-1}

• x-coordinate of v_i according to the line $\overline{v_1 v_k}$ (with equal spacing):

$$\overline{x(v_i)} = x(v_1) + \frac{i-1}{k-1}(x(v_k) - x(v_1))$$

define the deviation from the line

$$\operatorname{dev}(p_e) := \sum_{i=2}^{k-1} \left(x(v_i) - \overline{x(v_i)} \right)^2$$

• Objective function: min $\sum_{e \in E} \text{dev}(p_e)$

Constraints for all vertices v, w in the same layer with w width can be exponential right of v: $x(w) - x(v) \ge \rho(w, v)$ min. horizontal distance

QP is time-expensive

Iterative heuristic

compute an initial layout

compute an initial layout

apply the following steps as long as improvements can be made: compute an initial layout

- apply the following steps as long as improvements can be made:
 - 1. vertex positioning,
 - 2. edge straightening,
 - 3. compactifying the layout width.

Step 5: Drawing edges

Possibility. Substitute polylines by Rézier (

Substitute polylines by Bézier curves

Classical approach – Sugiyama framework

[Sugiyama, Tagawa, Toda '81]

Classical approach – Sugiyama framework

[Sugiyama, Tagawa, Toda '81]

Literature

Detailed explanations of steps and proofs in [GD Ch. 11] and [DG Ch. 5] based on

- [Sugiyama, Tagawa, Toda '81] Methods for visual understanding of hierarchical system structures
- and refined with results from
- [Berger, Shor '90] Approximation alogorithms for the maximum acyclic subgraph problem
- [Eades, Lin, Smith '93] A fast and effective heuristic for the feedback arc set problem
- [Garey, Johnson '83] Crossing number is NP-complete
- Eades, Whiteside '94] Drawing graphs in two layers
- [Eades, Wormland '94] Edge crossings in drawings of bipartite graphs
- [Jünger, Mutzel '97] 2-Layer Straightline Crossing Minimization:
 - Performance of Exact and Heuristic Algorithms