Visualisation of graphs Upward planar drawings Flow methods

Antonios Symvonis · Chrysanthi Raftopoulou Fall semester 2022

Upward planar drawings – motivation

What may the direction of edges in a digraph represent?

- Time
- Flow

. . .

Hierarchie

Phylogenetic network

Upward planar drawings – motivation

- What may the direction of edges in a digraph represent?
 - Time
 - Flow
 - Hierarchie
 - ...
 - Would be nice to have general direction preserved in drawing.

Petri net

Phylogenetic network

Upward planar drawings – definition

Definition.

A directed graph G = (V, E) is **upward planar** when it admits a drawing Γ (vertices = points, edges = simple curves) that is planar and where each edge is drawn as an upward,

y-monotone curve.

For a digraph G to be upward planar, it has to be:
 planar

For a digraph G to be upward planar, it has to be:
 planar

acyclic

For a digraph G to be upward planar, it has to be:
 planar

acyclic

For a digraph G to be upward planar, it has to be:

- planar
- acyclic
- bimodal

- For a digraph G to be upward planar, it has to be:
 - planar
 - acyclic
 - bimodal
- ... but these conditions are not sufficient.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]

For a digraph G the following statements are equivalent:

- 1. *G* is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

no crossings

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Additionally: Embedded such that s and t are on the outerface f_0 .

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent: 1. *G* is upward planar.

- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Additionally: Embedded such that s and t are on the outerface f_0 . or:

Edge (s, t) exists.

no crossings acyclic digraph with a single source s and single sink t

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

(2) \Rightarrow (1) By definition.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]
For a digraph G the following statements are equivalent:

G is upward planar.

- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent: 1. *G* is upward planar.

- 2 C admite an unward planar straig
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. *G* is the spanning subgraph of a planar *st*-digraph.

Proof.

(2)
$$\Rightarrow$$
 (1) By definition. (1) \Leftrightarrow (3) Example:
(3) \Rightarrow (2) Triangulate & construct drawing:

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2)
$$\Rightarrow$$
 (1) By definition. (1) \Leftrightarrow (3) Example:
(3) \Rightarrow (2) Triangulate & construct drawing:

Claim.

Can draw in prespecified triangle.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2)
$$\Rightarrow$$
 (1) By definition. (1) \Leftrightarrow (3) Example:
(3) \Rightarrow (2) Triangulate & construct drawing:

Case 1:

Claim. Can draw in prespecified triangle.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2)
$$\Rightarrow$$
 (1) By definition. (1) \Leftrightarrow (3) Example:
(3) \Rightarrow (2) Triangulate & construct drawing:

Case 1:

Claim. Can draw in prespecified triangle.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

$$(2) \Rightarrow (1)$$
 By definition. $(1) \Leftrightarrow (3)$ Example:
 $(3) \Rightarrow (2)$ Triangulate & construct drawing:

Claim. Case 1: Can draw in prespecified triangle. Apply induction.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

$$\begin{array}{l} \textbf{(2)} \Rightarrow \textbf{(1)} \hspace{0.1cm} \text{By definition.} \hspace{0.1cm} \textbf{(1)} \Leftrightarrow \textbf{(3)} \hspace{0.1cm} \text{Example:} \\ \textbf{(3)} \Rightarrow \textbf{(2)} \hspace{0.1cm} \text{Triangulate} \hspace{0.1cm} \& \hspace{0.1cm} \text{construct drawing:} \end{array}$$

Claim. Case 1: Can draw in prespecified triangle. Apply induction.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. G is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

$$\begin{array}{l} \textbf{(2)} \Rightarrow \textbf{(1)} & \text{By definition. (1)} \Leftrightarrow \textbf{(3)} & \text{Example:} \\ \textbf{(3)} \Rightarrow \textbf{(2)} & \text{Triangulate \& construct drawing:} \end{array}$$

Claim. Can draw in prespecified triangle. Apply induction.

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2)
$$\Rightarrow$$
 (1) By definition. (1) \Leftrightarrow (3) Example:
(3) \Rightarrow (2) Triangulate & construct drawing:

Claim. Case 1: 4 Can draw in prespecified triangle. Apply induction.

7)

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6] For a digraph *G* the following statements are equivalent:

- 1. *G* is upward planar.
- 2. G admits an upward planar straight-line drawing.
- 3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2)
$$\Rightarrow$$
 (1) By definition. (1) \Leftrightarrow (3) Example:
(3) \Rightarrow (2) Triangulate & construct drawing:

Claim. Case 1: ^t Can draw in prespecified triangle. Apply induction. s

7)

Upward planarity – complexity

Theorem. [Garg, Tamassia, 1995] For a *planar acyclic* digraph it is in general NP-hard to decide whether it is upward planar.

Upward planarity – complexity

Theorem. [Garg, Tamassia, 1995]

For a *planar acyclic* digraph it is in general NP-hard to decide whether it is upward planar.

Theorem 2. [Bertolazzi et al., 1994]

For a combinatorially embedded planar digraph it can be tested in $\mathcal{O}(n^2)$ time whether it is upward planar.

Upward planarity – complexity

Theorem. [Garg, Tamassia, 1995]

For a *planar acyclic* digraph it is in general NP-hard to decide whether it is upward planar.

Theorem 2. [Bertolazzi et al., 1994]

For a combinatorially embedded planar digraph it can be tested in $\mathcal{O}(n^2)$ time whether it is upward planar.

Corollary.

For a *triconnected* planar digraph it can be tested in $O(n^2)$ time whether it is upward planar.
Upward planarity – complexity

Theorem. [Garg, Tamassia, 1995]

For a *planar acyclic* digraph it is in general NP-hard to decide whether it is upward planar.

Theorem 2. [Bertolazzi et al., 1994]

For a combinatorially embedded planar digraph it can be tested in $\mathcal{O}(n^2)$ time whether it is upward planar.

Corollary.

For a *triconnected* planar digraph it can be tested in $O(n^2)$ time whether it is upward planar.

Theorem. [Hutton, Libow, 1996] For a *single-source* acyclic digraph it can be tested in O(n) time whether it is upward planar.

The problem

Fixed embedding upward planarity testing. Let G = (V, E) be a plane digraph with the embedding given by the set of faces F and the outer face f_0 . Test whether G is upward planar (wrt to F, f_0).

The problem

Fixed embedding upward planarity testing. Let G = (V, E) be a plane digraph with the embedding given by the set of faces F and the outer face f_0 . Test whether G is upward planar (wrt to F, f_0).

Idea.

- Find property that any upward planar drawing of G satisfies.
- Formalise property.
- Find algorithm to test property.

Definitions.

Definitions.

A vertex v is a local source wrt to a face f if v has two outgoing edges on ∂f .

Definitions.

- A vertex v is a local source wrt to a face f if v has two outgoing edges on ∂f .
- A vertex v is a local sink wrt to a face f if v has two incoming edges on ∂f .

Definitions.

- A vertex v is a local source wrt to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** wrt to a face f if v has two incoming edges on ∂f .
- An angle α is large when $\alpha > \pi$ and small otherwise.

•
$$L(v) = \#$$
 large angles at v

 $\blacksquare L(f) = \# \text{ large angles in } f$

Definitions.

- A vertex v is a local source wrt to a face f if v has two outgoing edges on ∂f .
- A vertex v is a local sink wrt to a face f if v has two incoming edges on ∂f .
- An angle α is large when $\alpha > \pi$ and small otherwise.
- $\blacksquare L(v) = \# \text{ large angles at } v$
- $\blacksquare L(f) = \# \text{ large angles in } f$
- S(v) & S(f) for # small angles

Definitions.

- A vertex v is a local source wrt to a face f if v has two outgoing edges on ∂f .
- A vertex v is a local sink wrt to a face f if v has two incoming edges on ∂f .
- An angle α is large when $\alpha > \pi$ and small otherwise.

•
$$L(v) = \#$$
 large angles at v

- $\blacksquare L(f) = \# \text{ large angles in } f$
- S(v) & S(f) for # small angles
- A(f) = # local sources wrt to f
 - = # local sinks wrt to f

Definitions.

- A vertex v is a local source wrt to a face f if v has two outgoing edges on ∂f .
- A vertex v is a **local sink** wrt to a face f if v has two incoming edges on ∂f .
- An angle α is large when $\alpha > \pi$ and small otherwise.

Lemma 1. L(f) + S(f) = 2A(f)

Assignment problem

Vertex v is a global source for f₁ and f₂.
Has v a large angle in f₁ or f₂?

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

$$L(f) = 0$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

$$L(f) = 0 \qquad \Rightarrow S(f) = 2$$

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

$$L(f) = 0 \qquad \Rightarrow S(f) = 2$$

 $\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

$$L(f) = 0 \qquad \Rightarrow S(f) = 2$$

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to

sink v with small angle:

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

$$L(f) = 0 \qquad \Rightarrow S(f) = 2$$

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to

sink v with small angle:

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

$$L(f) = 0 \qquad \Rightarrow S(f) = 2$$

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to

sink v with small angle:

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

- (S(f_1) + S(f_2) - 1)
= -2

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

$$L(f) = 0 \qquad \Rightarrow S(f) = 2$$

 $\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to

 \blacksquare sink v with small/large angle:

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

- (S(f_1) + S(f_2) - 1)
= -2

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

$$L(f) = 0 \qquad \Rightarrow S(f) = 2$$

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to
■ source v with small angle:

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

$$L(f) = 0 \qquad \Rightarrow S(f) = 2$$

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to
■ source v with small angle:

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

$$L(f) = 0 \qquad \Rightarrow S(f) = 2$$

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to

source v with small/large angle:

$$L(f) - S(f) = L(f_1) + L(f_2) + 2$$

- (S(f_1) + S(f_2))
= -2

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

$$L(f) = 0 \qquad \Rightarrow S(f) = 2$$

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to

• vertex v that is neither source nor sink:

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

- (S(f_1) + S(f_2) - 1)
= -2

Lemma 2.

$$L(f) - S(f) = \begin{cases} -2, & f \neq f_0 \\ +2, & f = f_0 \end{cases}$$

Proof by induction.

$$L(f) = 0 \qquad \Rightarrow S(f) = 2$$

$\blacksquare L(f) \ge 1$

Split f with edge from a large angle at a "low" sink u to

• vertex v that is neither source nor sink:

$$L(f) - S(f) = L(f_1) + L(f_2) + 1$$

- (S(f_1) + S(f_2) - 1)
= -2

• Otherwise "high" source u exists.

Number of large angles

Lemma 3. In every upward planar drawing of G holds that for each vertex $v \in V$: $L(v) = \begin{cases} 0 & v \text{ inner vertex,} \\ 1 & v \text{ source/sink;} \end{cases}$ for each face $f: L(f) = \begin{cases} A(f) - 1 & f \neq f_0, \\ A(f) + 1 & f = f_0. \end{cases}$

Proof.

Observation and from Lemma 1: L(f) + S(f) = 2A(f)and from Lemma 2: $L(f) - S(f) = \pm 2$.

Let S and T be the sets of sources and sinks, respectively.

Let S and T be the sets of sources and sinks, respectively.

```
Definition.
A consistent assignment \Phi: S \cup T \rightarrow F is a mapping where
```

 $\Phi \colon v \mapsto$ incident face, where v forms large angle

such that

$$\Phi^{-1}(f)| =$$

Let S and T be the sets of sources and sinks, respectively.

Definition. A consistent assignment $\Phi: S \cup T \rightarrow F$ is a mapping where

 $\Phi \colon v \mapsto$ incident face, where v forms large angle

such that

$$|\Phi^{-1}(f)| = L(f) =$$

Let S and T be the sets of sources and sinks, respectively.

Definition. A consistent assignment $\Phi: S \cup T \rightarrow F$ is a mapping where

 $\Phi \colon v \mapsto$ incident face, where v forms large angle

such that

$$|\Phi^{-1}(f)| = L(f) = \begin{cases} A(f) - 1 & \text{if } f \neq f_0, \\ A(f) + 1 & \text{if } f = f_0. \end{cases}$$

• global sources & sinks

• global sources & sinks

 $A(f) \ \# \text{ sources/sinks of } f$

global sources & sinks

 $A(f) \ \# \text{ sources/sinks of } f$

Result characterisation

Theorem 3. Let G = (V, E) be an acyclic plane digraph with embedding given by F, f_0 . Then G is upward planar (respecting F, f_0) if and only if G is bimodal and there exists consistent assignment Φ .

Result characterisation

Theorem 3. Let G = (V, E) be an acyclic plane digraph with embedding given by F, f_0 . Then G is upward planar (respecting F, f_0) if and only if G is bimodal and there exists consistent assignment Φ .

Proof.

 \Rightarrow : As constructed before.
Result characterisation

Theorem 3. Let G = (V, E) be an acyclic plane digraph with embedding given by F, f_0 . Then G is upward planar (respecting F, f_0) if and only if G is bimodal and there exists consistent assignment Φ .

Proof.

- \Rightarrow : As constructed before.
- \Leftarrow : Idea:
- Construct planar st-digraph that is supergraph of *G*.
- Apply equivalence from Theorem 1.

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

Goal: Add edges to break large angles (sources and sinks).

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \ge 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \ge 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
 - x source \Rightarrow insert edge (z, x)
 - $x \operatorname{sink} \Rightarrow \operatorname{insert} \operatorname{edge} (x, z).$

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
 - x source \Rightarrow insert edge (z, x)
 - $x \operatorname{sink} \Rightarrow \operatorname{insert} \operatorname{edge} (x, z).$

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
 - x source \Rightarrow insert edge (z, x)
 - $x \operatorname{sink} \Rightarrow \operatorname{insert} \operatorname{edge} (x, z).$

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
 - x source \Rightarrow insert edge (z, x)
 - $x \operatorname{sink} \Rightarrow \operatorname{insert} \operatorname{edge} (x, z).$

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
 - x source \Rightarrow insert edge (z, x)
 - $x \operatorname{sink} \Rightarrow \operatorname{insert} \operatorname{edge} (x, z).$
- Refine outer face f_0 .

Let f be a face. Consider the clockwise angle sequence σ_f of L/S on local sources and sinks of f.

- Goal: Add edges to break large angles (sources and sinks).
- For $f \neq f_0$ with $|\sigma_f| \geq 2$ containing $\langle L, S, S \rangle$ at vertices x, y, z:
 - **x** source \Rightarrow insert edge (z, x)
 - $x \operatorname{sink} \Rightarrow \operatorname{insert} \operatorname{edge} (x, z).$
- **Refine outer face** f_0 .

Refine all faces. \Rightarrow G is contained in a planar st-digraph.
Planarity, acyclicity, bimodality are invariants under construction.

Result upward planarity test

Theorem 2. [Bertolazzi et al., 1994]

For a *combinatorially embedded* planar digraph G it can be tested in $O(n^2)$ time whether it is upward planar.

Result upward planarity test

Theorem 2. [Bertolazzi et al., 1994]

For a *combinatorially embedded* planar digraph G it can be tested in $O(n^2)$ time whether it is upward planar.

Proof.

- Test for bimodality.
- Test for a consistent assignment Φ (via flow network).

Result upward planarity test

Theorem 2. [Bertolazzi et al., 1994]

For a *combinatorially embedded* planar digraph G it can be tested in $O(n^2)$ time whether it is upward planar.

Proof.

- Test for bimodality.
- Test for a consistent assignment Φ (via flow network).
- If G bimodal and Φ exists, refine G to plane st-digraph H.
- Draw *H* upward planar.
- Deleted edges added in refinement step.

Idea.

Flow (v, f) = 1 from global source/sink v to the incident face f its large angle gets assigned to.

Idea.

Flow (v, f) = 1 from global source/sink v to the incident face f its large angle gets assigned to.

Flow network. $N_{F,f_0}(G) = ((W, E'); l; u; d)$ W = E' = l(e) =u(e) =

$$\blacksquare d(p) =$$

Idea.

Flow (v, f) = 1 from global source/sink v to the incident face f its large angle gets assigned to.

Flow network. $N_{F,f_0}(G) = ((W, E'); \ell; u; d)$ $\blacksquare W =$ $\blacksquare E' =$ $\bullet \ \ell(e) =$ \square u(e) = $\blacksquare d(p) =$

Example.

Idea.

Flow (v, f) = 1 from global source/sink v to the incident face f its large angle gets assigned to.

Flow network. $N_{F,f_0}(G) = ((W, E'); \ell; u; d)$ $W = \{v \in V \mid v \text{ source or sink}\} \cup$ E' = $\ell(e) =$ u(e) =

$\blacksquare d(p) =$

Example.

Idea.

Flow (v, f) = 1 from global source/sink v to the incident face f its large angle gets assigned to.

Flow network. $N_{F,f_0}(G) = ((W, E'); \ell; u; d)$ • $W = \{v \in V \mid v \text{ source or sink}\} \cup \underline{F}$ $\blacksquare E' =$ $\ \ \, = \ \, \ell(e) =$ \square u(e) = $\blacksquare d(p) =$

Example.

Idea.

Flow (v, f) = 1 from global source/sink v to the incident face f its large angle gets assigned to.

Flow network. $N_{F,f_0}(G) = ((W, E'); \ell; u; d)$ $W = \{v \in V \mid v \text{ source or sink}\} \cup F$ $E' = \{(v, f) \mid v \text{ incident to } f\}$ $\ell(e) =$ u(e) =

 $\blacksquare d(p) =$

Idea.

Flow (v, f) = 1 from global source/sink v to the incident face f its large angle gets assigned to.

Flow network. $N_{F,f_0}(G) = ((W, E'); \ell; u; d)$ $W = \{v \in V \mid v \text{ source or sink}\} \cup F$ $E' = \{(v, f) \mid v \text{ incident to } f\}$ $\ell(e) = 0 \ \forall e \in E'$ $u(e) = 1 \ \forall e \in E'$

 $\blacksquare \ d(p) =$

Idea.

Flow (v, f) = 1 from global source/sink v to the incident face f its large angle gets assigned to.

Idea.

Flow (v, f) = 1 from global source/sink v to the incident face f its large angle gets assigned to.

Discussion

There exist fixed-parameter tractable algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components. [Healy, Lynch 2005, Didimo et al. 2009]

Discussion

There exist fixed-parameter tractable algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components. [Healy, Lynch 2005, Didimo et al. 2009]

Finding assignment in Theorem 2 can be sped up to $\mathcal{O}(n+r^{1.5})$ where r = # sources/sinks. [Abbasi, Healy, Rextin 2010]

Discussion

There exist fixed-parameter tractable algorithms to test upward planarity of general digraphs with the parameter being the number of triconnected components. [Healy, Lynch 2005, Didimo et al. 2009]

Finding assignment in Theorem 2 can be sped up to $\mathcal{O}(n+r^{1.5})$ where r = # sources/sinks. [Abbasi, Healy, Rextin 2010]

Many related concepts have been studied: quasi-planarity, upward drawings of mixed graphs, upward planarity on cyclinder/torus, ...

Literature

■ [GD Ch. 6] for detailed explanation

Orginal papers referenced:

- [Kelly '87] Fundamentals of Planar Ordered Sets
- [Di Battista, Tamassia '88] Algorithms for Plane Representations of Acyclic Digraphs
- [Garg, Tamassia '95] On the Computational Complexity of Upward and Rectilinear Planarity Testing
- [Hutton, Lubiw '96] Upward Planar Drawing of Single-Source Acyclic Digraphs
- [Bertolazzi, Di Battista, Mannino, Tamassia '94] Upward Drawings of Triconnected Digraphs
- [Healy, Lynch '05] Building Blocks of Upward Planar Digraphs
- [Didimo, Giardano, Liotta '09] Upward Spirality and Upward Planarity Testing
- [Abbasi, Healy, Rextin '10] Improving the running time of embedded upward planarity testing