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Upward planar drawings – motivation

■ What may the direction of edges in a digraph represent?
■ Time
■ Flow
■ Hierarchie
■ . . .

PERT diagram Petri net Phylogenetic network
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Upward planar drawings – motivation

■ What may the direction of edges in a digraph represent?
■ Time
■ Flow
■ Hierarchie
■ . . .

PERT diagram Petri net Phylogenetic network

■ Would be nice to have general direction preserved in drawing.
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Upward planar drawings – definition

Definition.
A directed graph G = (V, E) is upward planar
when it admits a drawing Γ (vertices = points,
edges = simple curves) that is
■ planar and
■ where each edge is drawn as an upward,

y-monotone curve.
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Upward planarity – necessary conditions

■ For a digraph G to be upward planar, it has to be:
■ planar
■ acyclic
■ bimodal
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Upward planarity – necessary conditions

■ For a digraph G to be upward planar, it has to be:
■ planar
■ acyclic
■ bimodal

bimodal vertex not bimodal

■ . . . but these conditions are not sufficient.
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Upward planarity – characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]
For a digraph G the following statements are equivalent:
1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.
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Upward planarity – characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]
For a digraph G the following statements are equivalent:
1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.︸ ︷︷ ︸︸ ︷︷ ︸

no crossings

acyclic digraph with
a single source s and single sink t

Additionally:
Embedded such that
s and t are on the
outerface f0.
or:
Edge (s, t) exists.
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Upward planarity – characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]
For a digraph G the following statements are equivalent:
1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.

(2) ⇒ (1) By definition. (1) ⇔ (3) Example:
(3) ⇒ (2) Triangulate & construct drawing:
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Upward planarity – characterisation

Theorem 1. [Kelly 1987, Di Battista, Tamassia, 1988, see GD Ch. 6]
For a digraph G the following statements are equivalent:
1. G is upward planar.
2. G admits an upward planar straight-line drawing.
3. G is the spanning subgraph of a planar st-digraph.

Proof.
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(3) ⇒ (2) Triangulate & construct drawing:
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t
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Upward planarity – complexity

Theorem. [Garg, Tamassia, 1995]
For a planar acyclic digraph it is in general NP-hard to
decide whether it is upward planar.



6 - 2

Upward planarity – complexity

Theorem 2. [Bertolazzi et al., 1994]
For a combinatorially embedded planar digraph it can be
tested in O(n2) time whether it is upward planar.
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Upward planarity – complexity

Corollary.
For a triconnected planar digraph it can be tested in O(n2)
time whether it is upward planar.
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Upward planarity – complexity

Corollary.
For a triconnected planar digraph it can be tested in O(n2)
time whether it is upward planar.

Theorem. [Hutton, Libow, 1996]
For a single-source acyclic digraph it can be tested in O(n)
time whether it is upward planar.

Theorem 2. [Bertolazzi et al., 1994]
For a combinatorially embedded planar digraph it can be
tested in O(n2) time whether it is upward planar.

Theorem. [Garg, Tamassia, 1995]
For a planar acyclic digraph it is in general NP-hard to
decide whether it is upward planar.
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The problem

Fixed embedding upward planarity testing.
Let G = (V, E) be a plane digraph with the embedding
given by the set of faces F and the outer face f0.
Test whether G is upward planar (wrt to F, f0).
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The problem

Fixed embedding upward planarity testing.
Let G = (V, E) be a plane digraph with the embedding
given by the set of faces F and the outer face f0.
Test whether G is upward planar (wrt to F, f0).

Idea.

■ Find property that any upward planar drawing of G
satisfies.

■ Formalise property.
■ Find algorithm to test property.
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Angles, local sources & sinks

Definitions.
■ A vertex v is a local source wrt to a face f if v has two

outgoing edges on ∂ f .
■ A vertex v is a local sink wrt to a face f if v has two

incoming edges on ∂ f .
■ An angle α is large when α > π and small otherwise.
■ L(v) = # large angles at v
■ L( f ) = # large angles in f
■ S(v) & S( f ) for # small angles
■ A( f ) = # local sources wrt to f

= # local sinks wrt to f
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Angles, local sources & sinks

Definitions.
■ A vertex v is a local source wrt to a face f if v has two

outgoing edges on ∂ f .
■ A vertex v is a local sink wrt to a face f if v has two

incoming edges on ∂ f .
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Angles, local sources & sinks

Definitions.
■ A vertex v is a local source wrt to a face f if v has two

outgoing edges on ∂ f .
■ A vertex v is a local sink wrt to a face f if v has two

incoming edges on ∂ f .
■ An angle α is large when α > π and small otherwise.
■ L(v) = # large angles at v
■ L( f ) = # large angles in f
■ S(v) & S( f ) for # small angles
■ A( f ) = # local sources wrt to f

= # local sinks wrt to f

Lemma 1.
L( f ) + S( f ) = 2A( f )
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Assignment problem

■ Vertex v is a global source for f1 and f2.
■ Has v a large angle in f1 or f2?

f2

f1
v
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Angle relations

Lemma 2.

L( f )− S( f ) =

{
−2, f ̸= f0
+2, f = f0
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Proof by induction.
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■ L( f ) ≥ 1

Split f with edge from a large angle at a “low” sink u to

Lemma 2.
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+2, f = f0
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Angle relations

Proof by induction.
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Angle relations
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■ L( f ) = 0 ⇒ S( f ) = 2

■ L( f ) ≥ 1

Split f with edge from a large angle at a “low” sink u to

■ sink v with small/large angle:

u

v

f2f1

Lemma 2.
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Angle relations

Proof by induction.

■ L( f ) = 0 ⇒ S( f ) = 2

■ L( f ) ≥ 1

Split f with edge from a large angle at a “low” sink u to

■ sink v with small/large angle:

L( f )− S( f ) = L( f1) + L( f2) + 1

− (S( f1) + S( f2)− 1)

= − 2

u

v

f2f1

Lemma 2.

L( f )− S( f ) =

{
−2, f ̸= f0
+2, f = f0
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Angle relations

Proof by induction.

■ L( f ) = 0 ⇒ S( f ) = 2

■ L( f ) ≥ 1

Split f with edge from a large angle at a “low” sink u to

■ sink v with small/large angle:

L( f )− S( f ) = L( f1) + L( f2) + 1

− (S( f1) + S( f2)− 1)

= − 2

u

v

u

vf2f1

f2

f1

Lemma 2.

L( f )− S( f ) =

{
−2, f ̸= f0
+2, f = f0
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Angle relations

Proof by induction.

■ L( f ) = 0 ⇒ S( f ) = 2

■ L( f ) ≥ 1

Split f with edge from a large angle at a “low” sink u to

■ source v with small/large angle:

u

v

Lemma 2.

L( f )− S( f ) =

{
−2, f ̸= f0
+2, f = f0
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Angle relations

Proof by induction.
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■ source v with small/large angle:

u

v

Lemma 2.

L( f )− S( f ) =

{
−2, f ̸= f0
+2, f = f0



10 - 11

Angle relations

Proof by induction.

■ L( f ) = 0 ⇒ S( f ) = 2

■ L( f ) ≥ 1

Split f with edge from a large angle at a “low” sink u to

■ source v with small/large angle:

u

v L( f )− S( f ) = L( f1) + L( f2) + 2

− (S( f1) + S( f2))
= − 2

u

v

Lemma 2.

L( f )− S( f ) =

{
−2, f ̸= f0
+2, f = f0



10 - 12

Angle relations

Proof by induction.

■ L( f ) = 0 ⇒ S( f ) = 2

■ L( f ) ≥ 1

Split f with edge from a large angle at a “low” sink u to

u

v

f2f1

L( f )− S( f ) = L( f1) + L( f2) + 1

− (S( f1) + S( f2)− 1)

= − 2

■ vertex v that is neither source nor sink:

Lemma 2.

L( f )− S( f ) =

{
−2, f ̸= f0
+2, f = f0
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Angle relations

Proof by induction.

■ L( f ) = 0 ⇒ S( f ) = 2

■ L( f ) ≥ 1

Split f with edge from a large angle at a “low” sink u to

u

v

f2f1

L( f )− S( f ) = L( f1) + L( f2) + 1

− (S( f1) + S( f2)− 1)

= − 2

■ vertex v that is neither source nor sink:

■ Otherwise “high” source u exists.

Lemma 2.

L( f )− S( f ) =

{
−2, f ̸= f0
+2, f = f0
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Number of large angles

Proof.
Observation and from Lemma 1: L( f ) + S( f ) = 2A( f )

and from Lemma 2: L( f )− S( f ) = ±2.

Lemma 3.
In every upward planar drawing of G holds that

■ for each vertex v ∈ V : L(v) =

{
0 v inner vertex,

1 v source/sink;

■ for each face f : L( f ) =

{
A( f )− 1 f ̸= f0,
A( f ) + 1 f = f0.
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Assignment of large angles to faces

■ Let S and T be the sets of sources and sinks,
respectively.
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Assignment of large angles to faces

Definition.
A consistent assignment Φ : S ∪ T → F is a mapping
where

Φ : v 7→ incident face, where v forms large angle

such that
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respectively.
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A( f )− 1 if f ̸= f0,
A( f ) + 1 if f = f0.

■ Let S and T be the sets of sources and sinks,
respectively.
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Example of angle to face assignment

f1

f2

f3

f4

f5

f6

f7

f8

f9

f0
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Example of angle to face assignment

f1

f2

f3

f4

f5

f6

f7

f8

f9

f0

v1

v2

v3

v4

v5

v6
v7

v8

v9

global sources & sinks
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Example of angle to face assignment

A( f1) = 3

A( f4) = 2

A( f5) = 2

A( f2) = 1

A( f0) = 3

A( f7) = 2

A( f3) = 1

A( f6) = 1

A( f8) = 1

A( f9) = 1

f1

f2

f3

f4

f5

f6

f7

f8

f9

f0

v1

v2

v3

v4

v5

v6
v7

v8

v9

global sources & sinks

A( f ) # sources/sinks of f
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Example of angle to face assignment

L( f1) = 2

A( f1) = 3

L( f4) = 1

A( f4) = 2

A( f5) = 2

L( f5) = 1

L( f2) = 0

A( f2) = 1

L( f0) = 4

A( f0) = 3 L( f7) = 1

A( f7) = 2

L( f3) = 0

A( f3) = 1

L( f6) = 0

A( f6) = 1

L( f8) = 0

A( f8) = 1

L( f9) = 0

A( f9) = 1

f1

f2

f3

f4

f5

f6

f7

f8

f9

f0

v1

v2

v3

v4

v5

v6
v7

v8

v9

global sources & sinks

A( f ) # sources/sinks of f
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Example of angle to face assignment

L( f1) = 2

A( f1) = 3

L( f4) = 1

A( f4) = 2

A( f5) = 2

L( f5) = 1

L( f2) = 0

A( f2) = 1

L( f0) = 4

A( f0) = 3 L( f7) = 1

A( f7) = 2

L( f3) = 0

A( f3) = 1

L( f6) = 0

A( f6) = 1

L( f8) = 0

A( f8) = 1

L( f9) = 0

A( f9) = 1

f1

f2

f3

f4

f5

f6

f7

f8

f9

f0

v1

v2

v3

v4

v5

v6
v7

v8

v9

global sources & sinks

assignment
Φ : S ∪ T → F

A( f ) # sources/sinks of f
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Result characterisation

Theorem 3.
Let G = (V, E) be an acyclic plane digraph with embedding
given by F, f0.
Then G is upward planar (respecting F, f0) if and only if G is
bimodal and there exists consistent assignment Φ.
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Proof.
⇒: As constructed before.
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given by F, f0.
Then G is upward planar (respecting F, f0) if and only if G is
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Result characterisation

Proof.
⇒: As constructed before.
⇐: Idea:
■ Construct planar st-digraph that is supergraph of G.
■ Apply equivalence from Theorem 1.

Theorem 3.
Let G = (V, E) be an acyclic plane digraph with embedding
given by F, f0.
Then G is upward planar (respecting F, f0) if and only if G is
bimodal and there exists consistent assignment Φ.
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Refinement algorithm – Φ, F, f0 → st-digraph
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Let f be a face. Consider the clockwise angle sequence σf of
L/S on local sources and sinks of f .
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Let f be a face. Consider the clockwise angle sequence σf of
L/S on local sources and sinks of f .

■ For f ̸= f0 with |σf | ≥ 2 containing ⟨L, S, S⟩ at vertices x, y, z:

■ Goal: Add edges to break large angles (sources and sinks).

LL

S

S
S

S
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Refinement algorithm – Φ, F, f0 → st-digraph

Let f be a face. Consider the clockwise angle sequence σf of
L/S on local sources and sinks of f .
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Refinement algorithm – Φ, F, f0 → st-digraph

Let f be a face. Consider the clockwise angle sequence σf of
L/S on local sources and sinks of f .

■ For f ̸= f0 with |σf | ≥ 2 containing ⟨L, S, S⟩ at vertices x, y, z:

■ x source ⇒ insert edge (z, x)

■ Goal: Add edges to break large angles (sources and sinks).

L

S
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S
L

S

S
x

y

z
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Refinement algorithm – Φ, F, f0 → st-digraph

Let f be a face. Consider the clockwise angle sequence σf of
L/S on local sources and sinks of f .

■ For f ̸= f0 with |σf | ≥ 2 containing ⟨L, S, S⟩ at vertices x, y, z:

■ x source ⇒ insert edge (z, x)

■ Goal: Add edges to break large angles (sources and sinks).

■ x sink ⇒ insert edge (x, z).

LL
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x
y
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Refinement algorithm – Φ, F, f0 → st-digraph

Let f be a face. Consider the clockwise angle sequence σf of
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Refinement algorithm – Φ, F, f0 → st-digraph

Let f be a face. Consider the clockwise angle sequence σf of
L/S on local sources and sinks of f .

■ For f ̸= f0 with |σf | ≥ 2 containing ⟨L, S, S⟩ at vertices x, y, z:

■ x source ⇒ insert edge (z, x)

■ Goal: Add edges to break large angles (sources and sinks).

■ x sink ⇒ insert edge (x, z).
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Refinement algorithm – Φ, F, f0 → st-digraph

Let f be a face. Consider the clockwise angle sequence σf of
L/S on local sources and sinks of f .

■ For f ̸= f0 with |σf | ≥ 2 containing ⟨L, S, S⟩ at vertices x, y, z:

■ x source ⇒ insert edge (z, x)

■ Goal: Add edges to break large angles (sources and sinks).

■ x sink ⇒ insert edge (x, z).
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Refinement algorithm – Φ, F, f0 → st-digraph

Let f be a face. Consider the clockwise angle sequence σf of
L/S on local sources and sinks of f .

■ For f ̸= f0 with |σf | ≥ 2 containing ⟨L, S, S⟩ at vertices x, y, z:

■ x source ⇒ insert edge (z, x)

■ Goal: Add edges to break large angles (sources and sinks).

■ Refine outer face f0.

■ x sink ⇒ insert edge (x, z).

LL

S
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Refinement algorithm – Φ, F, f0 → st-digraph

Let f be a face. Consider the clockwise angle sequence σf of
L/S on local sources and sinks of f .

■ For f ̸= f0 with |σf | ≥ 2 containing ⟨L, S, S⟩ at vertices x, y, z:

■ x source ⇒ insert edge (z, x)

■ Goal: Add edges to break large angles (sources and sinks).

■ Refine outer face f0.

■ Refine all faces. ⇒ G is contained in a planar st-digraph.
■ Planarity, acyclicity, bimodality are invariants under construction.

■ x sink ⇒ insert edge (x, z).

LL

S

S
S

S
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Refinement example
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Result upward planarity test

Theorem 2. [Bertolazzi et al., 1994]
For a combinatorially embedded planar digraph G it can be
tested in O(n2) time whether it is upward planar.
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Result upward planarity test

Proof.

■ Test for bimodality.

■ Test for a consistent assignment Φ (via flow network).

■ If G bimodal and Φ exists, refine G to plane st-digraph H.

■ Draw H upward planar.

■ Deleted edges added in refinement step.

Theorem 2. [Bertolazzi et al., 1994]
For a combinatorially embedded planar digraph G it can be
tested in O(n2) time whether it is upward planar.
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Proof.

■ Test for bimodality.

■ Test for a consistent assignment Φ (via flow network).

■ If G bimodal and Φ exists, refine G to plane st-digraph H.

■ Draw H upward planar.

■ Deleted edges added in refinement step.

Theorem 2. [Bertolazzi et al., 1994]
For a combinatorially embedded planar digraph G it can be
tested in O(n2) time whether it is upward planar.
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Finding a consistent assignment

Idea.
Flow (v, f ) = 1 from global source/sink v to the
incident face f its large angle gets assigned to.
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Discussion

■ There exist fixed-parameter tractable algorithms to test
upward planarity of general digraphs with the parameter
being the number of triconnected components.
[Healy, Lynch 2005, Didimo et al. 2009]
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Discussion

■ There exist fixed-parameter tractable algorithms to test
upward planarity of general digraphs with the parameter
being the number of triconnected components.
[Healy, Lynch 2005, Didimo et al. 2009]

■ Finding assignment in Theorem 2 can be sped up to
O(n + r1.5) where r = # sources/sinks.
[Abbasi, Healy, Rextin 2010]

■ Many related concepts have been studied: quasi-planarity,
upward drawings of mixed graphs, upward planarity on
cyclinder/torus, . . .
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Literature

■ [GD Ch. 6] for detailed explanation

Orginal papers referenced:
■ [Kelly ’87] Fundamentals of Planar Ordered Sets
■ [Di Battista, Tamassia ’88] Algorithms for Plane Representations of Acyclic

Digraphs
■ [Garg, Tamassia ’95] On the Computational Complexity of Upward and Rectilinear

Planarity Testing
■ [Hutton, Lubiw ’96] Upward Planar Drawing of Single-Source Acyclic Digraphs
■ [Bertolazzi, Di Battista, Mannino, Tamassia ’94] Upward Drawings of

Triconnected Digraphs
■ [Healy, Lynch ’05] Building Blocks of Upward Planar Digraphs
■ [Didimo, Giardano, Liotta ’09] Upward Spirality and Upward Planarity Testing
■ [Abbasi, Healy, Rextin ’10] Improving the running time of embedded upward

planarity testing
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