Visualization of graphs

Force-directed algorithms
Drawing with physical analogies

Antonios Symvonis - Chrysanthi Raftopoulou

The original slides of this presentation were created by researchers at Karlsruhe Institute of Technology (KIT), TU Wien, U Wuerzburg, U Konstanz, ...

The original presentation was modified /updated by A. Symvonis and C. Raftopoulou
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B Which aesthetic criteria
would you optimize?




General Layout Problem

Input: Graph G = (V,E)
Output: Clear and readable straight-line drawing of G
Aesthetic criteria:

adjacent vertices are close

non-adjacent vertices are far apart

edges short, straight-line, similar length

densely connected parts (clusters) form communities

as few crossings as possible

nodes distributed evenly




General Layout Problem

Input: Graph G = (V,E)
Output: Clear and readable straight-line drawing of G
Aesthetic criteria:

adjacent vertices are close

non-adjacent vertices are far apart

edges short, straight-line, similar length

densely connected parts (clusters) form communities

as few crossings as possible

nodes distributed evenly

Optimization criteria partially contradict each other
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Input: Graph G = (V, E), required edge length £(e), Ve € E
Output: Drawing of G which realizes all the edge lengths
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Fixed edge lengths?

Input: Graph G = (V, E), required edge length £(e), Ve € E
Output: Drawing of G which realizes all the edge lengths

NP-hard for

B uniform edge lengths in any dimension [Johnson "82]

B uniform edge lengths in planar drawings |[Eades, WWormald '90]

B edge lengths {1,2} [Saxe '80]




Physical analogy

Idea 1.
“To embed a graph we replace the vertices by steel rings and replace each

edge with a spring to form a mechanical system ... The vertices are placed in
some initial layout
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“To embed a graph we replace the vertices by steel rings and replace each

edge with a spring to form a mechanical system ... The vertices are placed in
some initial layout and let go so that the spring forces on the rings move the

system to a minimal energy state.” [Eades '84]
B adjacent vertices u and v:
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fspring
Idea 2.
> Repulsive forces.
B non-adjacent vertices x and y:
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Physical analogy

Idea 1.
“To embed a graph we replace the vertices by steel rings and replace each

edge with a spring to form a mechanical system ... The vertices are placed in
some initial layout and let go so that the spring forces on the rings move the

system to a minimal energy state.” [Eades '84]
B adjacent vertices u and v:

%5, $%F oo ?

So-called spring-embedder algorithms that fspring
F work according to this or similar principles

are athong the most frequently used
graph-drawing methods in practice. B non-adjacent vertices x and v:

o e o
°Y

Idea 2.
Repulsive forces.



Outline

B Spring Embedder by Eades
B Variation by Fruchterman & Reingold
B Ways to speed up computation

B Alternative multidimensional scaling for large graphs



Spring Embedder by Eades — Algorithm

SpringEmbedder(G = (V,E), p = (pv)vev, € > 0, K € IN)

return p
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Spring Embedder by Eades — Algorithm

initial layout threshold

/iterations
SpringEmbedder(G = (V,E), p = (pv)vev, € > 0, K € IN)

<1
while ¢t < K and max,cy ||F,(t)|| > € do

foreach v € V do V‘
L Fy(t) < Luvg frep(Pu, Pv) + LuwuoeE fspring(Pw o) 0

et
return p
*— end layout



Spring Embedder by Eades — Algorithm

initial layout threshold

’/iterations
SpringEmbedder(G = (V,E), p = (pv)vev, € > 0, K € IN)

t <+ 1
while ¢t < K and max,cy ||F,(t)|| > € do
foreach v € V do

L Fv(t) N Zu:uvgéE frep(Pu, Pv) T Zu:uveE fspring(Pw Pv)
foreach v € V do
| Po < pot6(t) - Fo(t)
t<—t+1
re_turn p
*— end layout
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Spring Embedder by Eades — Algorithm

initial layout threshold

/iterations
SpringEmbedder(G = (V,E), p = (pv)vev, € > 0, K € IN)

t <+ 1
while ¢t < K and max,cy ||F,(t)|| > € do
foreach v € V do

L Fy(t) L uvd E frep(Pu, Pv) + X uuveE fspring(Pw Pv)
foreach v € V do
| Po < po+0(E) - Fo(t)
6(t)
|ttt \cooling factor 1}

return p k
*— end layout




Spring Embedder by Eades — Model

Notation.

B /= /(e) = ideal spring
lenght for edge e

B p, = position of vertex v

B ||p, — pu|| = Euclidean
distance between u and v

o pupvz — unit vector
pointing from u to v



Spring Embedder by Eades — Model

B repulsive force between two non-adjacent
vertices # and v

Crep —
= 5 " PuPv
[po — pull
B attractive force between adjacent vertices u

and v

[Py — poll S

fspring(i?u, Pv) — Cspring - log / PoPu

B resulting displacement vector for node v

Notation.

B /= /(e) = ideal spring
lenght for edge e

B p, = position of vertex v

B ||p, — pu|| = Euclidean
distance between u and v

o pupvz — unit vector
pointing from u to v

Fy = Z frep(Pu,Pv) - Z fspring(pu'Pv)

u:{u,0}¢E u:{u,v}€E



Spring Embedder by Eades — Model

B repulsive force between two non-adjacent Notation.
vertices u and v / repulsion constant (e.g. 1.0) g f — ¢(e) = ideal spring
Crep . lenght for edge e
= 2 " PuPo .
[po — pull B p, = position of vertex v
B attractive force between adjacent vertices u B ||p, — pu|| = Euclidean
and v distance between u and v
— ]
Py — pol| ; B p,py = unit vector
Jspring (Pu, Pv) = Cspring - 108 / " PoPu pointing from u to v

B resulting displacement vector for node v

F, = Z frep(pu;pv) + Z fspring(purpv)

u:{u,0}¢E u:{u,v}€E



Spring Embedder by Eades — Model

B repulsive force between two non-adjacent
vertices # and v

B attractive force between adjacent vertices u
and v

Crep

B | po — pul

‘2 " PuPo

spring constant (e.g. 2.0)

Notation.
’/, repulsion constant (e.g. 1.0) g ¢ — g(e) = ideal spring

lenght for edge e

B p, = position of vertex v

B ||p, — pu|| = Euclidean

distance between u and v

— _
,/ — ; B p,py = unit vector
fspring(Pw pv) — Cspring log Hpu / va " PoPu

B resulting displacement vector for node v

Fy

Z frep(Pu,Pv) T Z fspring(purpv)

u:{u,0}¢E u:{u,v}€E

pointing from u to v



Spring Embedder by Eades — Force diagram

Force
A
fspring
_ pu—poll —=
fspring(Pu, Pv) — Cspring - log ug = PoPu
l » Distance
L Crep . —
= Tpo—pul]? ~PuPo
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Spring Embedder by Eades — Force diagram

Force
A
fspring
A
@)
o _ pu—poll =
2 fspring(pu, Pv) — Cspring ) |og ug =L PoPu
o
l » Distance
&
2
- __ Crep
sy Tro—pull? " PP
o




Spring Embedder by Eades — Discussion

Advantages.

B very simple algorithm

B good results for small and medium-sized graphs

B empirically good representation of symmetry and structure

Disadvantages.

B system is not stable at the end
B converging to local minima

B timewise fspring In O(’ED and frep In O(‘V‘Q)

Influence.
B original paper by Peter Eades [Eades '84] got ~ 2000 citations
B basis for many further ideas



Variant by Fruchterman & Reingold

Model.
B repulsive force between all vertex pairs u and v
02 BN
— *PuPo
[po — pull

B attractive force between two adjacent vertices u and v

o 2
fattr(Pva): Hpu KPUH " PoPu

B resulting force between adjacent vertices u and v

fspring(pur Pv) — ‘|‘fattr(Pu1 Pv)
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Fruchtermann & Reingold — Force diagram

2 }

Force fattr(l%u Pv) — 1P gva *PoPu

4 fspring
= A
*2 fspring(Pw Pv) — frep(Pu, Pv) fattr(Pw Pv)
= fattr,

""""" ] > Distance
>
:
S) L 52 . —
Sy = Tpo—pull Fube
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Adaptability

Inertia.
B Define vertex mass ®(v) = 1+ deg(v)/2

] Set fattr(pu1 pv) A fattr(Pw pv) ) 1/(I>(U)
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Adaptability

Inertia.

B Define vertex mass ®(v) = 1+ deg(v)/2
B Set fattr(puv Pv) A fattr(Pw pv) ' 1/(I>(U)
Gravitation.

B Define centroid ppary = 1/|V| - Lypev Po

. Add force fgrav(pv) — Cgrav * qD(U) * p(]pbar;{,
Restricted drawing area.

If F, points beyond area R, clip vector appropriately
at the border of R.

And many more...

B magnetic orientation of edges [GD Ch. 10.4]
B other energy models

B planarity preserving

B speedups

0o
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Speeding up “convergence” by adaptive displacement d,(t)

Reminder. . .

SpringEmbedder(G = (V,E), p = (pv)vev, € > 0, K € IN)
t<1
while ¢t < K and max,cy ||F,(t)|| > € do

foreach v € V do

L Fv(t) N ZUIM%éE frep(Pu, PU) T Zu:quE fspring(pw pv)
foreach v € V do
| Po < pot6(F) - Fo(t)
t<—t+41
re_turn p

13 -



Speeding up “convergence” by adaptive displacement d,(t)

Reminder. . .

SpringEmbedder(G = (V,E), p = (pv)vev, € > 0, K € IN)
t<1
while ¢t < K and max,cy ||F,(t)|| > € do

foreach v € V do

L Fv(t) N ZUIM%éE frep(Pu, Pv) T Zu:quE fspring(pw pv)
foreach v € V do
_ Po %PU‘FM'FUU)
< t+1 Oy (t)
re_turn p

13 -



Speeding up “convergence” by adaptive displacement d,(t)
[Frick, Ludwig, Mehldau '95]

/ Fy(t —1)
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Speeding up “convergence” by adaptive displacement d,(t)
[Frick, Ludwig, Mehldau '95]

Fy(t) Same direction.
Fy(t—1) — increase temperature J; (1)
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Speeding up “convergence” by adaptive displacement d,(t)

[Frick, Ludwig, Mehldau '95]

Same direction.
— increase temperature J; (1)

Oszillation.
— decrease temperature &, (t)

Rotation.

B count rotations

B if applicable

— decrease temperature &;(t)

13 -



Speeding up “convergence” via grids
[Fruchterman & Reingold '91]
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Speeding up “convergence” via grids
[Fruchterman & Reingold '91]

""""""""""""""""""""""""""

B divide plane into grid

B consider repelling forces only
to vertices in neighboring cells

B and only if distance is less
than some max distance

Discussion.

B good idea to improve runtime
, , , , , B worst-case has not improved
° . B might introduce oszillation

____________________________ and thus a quality loss

14 -



Speeding up with quad trees
[Barnes, Hut '86]

Ry

QT
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[Barnes, Hut '86]
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R>
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Speeding up with quad trees
[Barnes, Hut '86]

Ri3 °
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Speeding up with quad trees |
[Barnes, Hut '86]

* . QT

B height 1 < log St _|_%

min

Ri#/ \Rig M time/space in O(hn)

B compressed quad tree can be
. computed in O(nlogn) time

o | B /e O(logn) if vertices
et evenly distributed



Speeding up with quad trees
[Barnes, Hut '86]
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Speeding up with quad trees
[Barnes, Hut '86]

frep(Ri, pu) = |Ri] ’frep(Usz Pu)
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Speeding up with quad trees

[Barnes, Hut '86]
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Speeding up with quad trees
[Barnes, Hut '86]

N .

™~

/

frep(Ri, pu) = |Ri] ’frep(Usz Pu)

for each child R; of a vertex on path from u to Rg



Multidimensional scaling

B Force-directed method reaches its limitations for large graphs
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Multidimensional scaling

B Force-directed method reaches its limitations for large graphs

Idea.
Adapt the classical approach multidimensional scaling (MDS):

B MDS is a technique to visualise similarity among a set of objects

B Input is a distance matric D with di]- ~ dissimilarity between
objects 7 and j

B We search for points x1,...,x, € R? such that

[|xi — x| ~ dj
For our drawing, how do we define the dissimilarity between two vertices?

M Set d,, as the distance of # and v in G in terms of a shortest path
between them.

16 -



Multidimensjonal scaling
N\

B example drawing with classical approach
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Multidimensional scaling
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| iterature

Main sources:

'GD Ch. 10] Force-Directed Methods

DG Ch. 4] Drawing on Physical Analogies

Referenced papers:

Johnson 1982] The NP-completeness column: An ongoing guide

Eades, Wormald 1990] Fixed edge-length graph drawing is NP-hard
Saxe 1980] Two papers on graph embedding problems

Eades 1984] A heuristic for graph drawing

Fruchterman, Reingold 1991] Graph drawing by force-directed placement

Frick, Ludwig, Mehldau 1994| A fast adaptive layout algorithm for undirected
graphs

17



	Title page
	General Layout Problem

	Fixed edge lengths?
	Spring Embedder by Eades
	Algorithm
	Model
	Force diagram
	Discussion

	Variant by Fruchterman \& Reingold
	Force diagram

	Speeding up ``convergence'' by adaptive displacement $\delta_v(t)$
	Speeding up ``convergence'' via grids
	Speeding up with quad trees
	Multidimensional scaling
	Literature

