

The original slides of this presentation were created by researchers at Karlsruhe Institute of Technology (KIT), TU Wien, U Wuerzburg, U Konstanz, ... The original presentation was modified/updated by A. Symvonis and C. Raftopoulou

Theorem. [De Fraysseix, Pach, Pollack '90] Every *n*-vertex planar graph has a planar straight-line drawing of size $(2n - 4) \times (n - 2)$.

Theorem. [Schnyder '90] Every *n*-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

Theorem. [De Fraysseix, Pach, Pollack '90] Every *n*-vertex planar graph has a planar straight-line drawing of size $(2n - 4) \times (n - 2)$.

Theorem. [Schnyder '90] Every *n*-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

Idea.

Fix outer triangle.

Theorem. [De Fraysseix, Pach, Pollack '90] Every *n*-vertex planar graph has a planar straight-line drawing of size $(2n - 4) \times (n - 2)$.

Theorem. [Schnyder '90] Every *n*-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

- Fix outer triangle.
- Compute coordinates of inner vertices
 - based on outer triangle

Theorem. [De Fraysseix, Pach, Pollack '90] Every *n*-vertex planar graph has a planar straight-line drawing of size $(2n - 4) \times (n - 2)$.

Theorem. [Schnyder '90] Every *n*-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

- Fix outer triangle.
- Compute coordinates of inner vertices
 - based on outer triangle
 - and how much space there has to be for other vertices

Theorem. [De Fraysseix, Pach, Pollack '90] Every *n*-vertex planar graph has a planar straight-line drawing of size $(2n - 4) \times (n - 2)$.

Theorem. [Schnyder '90] Every *n*-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

- Fix outer triangle.
- Compute coordinates of inner vertices
 - based on outer triangle
 - and how much space there has to be for other vertices
- using barycentric coordinates.

Theorem. [De Fraysseix, Pach, Pollack '90] Every *n*-vertex planar graph has a planar straight-line drawing of size $(2n - 4) \times (n - 2)$.

Theorem. [Schnyder '90] Every *n*-vertex planar graph has a planar straight-line drawing of size $(n-2) \times (n-2)$.

 $(2n-5) \times (2n-5)$

 \mathcal{U}_n

 \mathcal{U}_1

- Fix outer triangle.
- Compute coordinates of inner vertices
 - based on outer triangle
 - and how much space there has to be for other vertices
- using barycentric coordinates.

Definition. Let $A, B, C, P \in \mathbb{R}^2$. The **barycentric coordinates** of P with respect to $\triangle ABC$ are a triple $(\alpha, \beta, \gamma) \in \mathbb{R}^3_{\geq 0}$ such that $\alpha + \beta + \gamma = 1$ $P = \alpha A + \beta B + \gamma C$.

Definition. Let $A, B, C, P \in \mathbb{R}^2$. The **barycentric coordinates** of P with respect to $\triangle ABC$ are a triple $(\alpha, \beta, \gamma) \in \mathbb{R}^3_{\geq 0}$ such that $\alpha + \beta + \gamma = 1$ $P = \alpha A + \beta B + \gamma C$.

Definition. Let $A, B, C, P \in \mathbb{R}^2$. The **barycentric coordinates** of *P* with respect to $\triangle ABC$ are a triple $(\alpha, \beta, \gamma) \in \mathbb{R}^3_{>0}$ such that $\alpha + \beta + \gamma = 1$ $\square P = \alpha A + \beta B + \gamma C.$ (0, 0, 1)(0, 1, 0) P^{\bullet} (1, 0, 0)В

Definition. Let $A, B, C, P \in \mathbb{R}^2$. The **barycentric coordinates** of *P* with respect to $\triangle ABC$ are a triple $(\alpha, \beta, \gamma) \in \mathbb{R}^3_{>0}$ such that $\alpha + \beta + \gamma = 1$ $\square P = \alpha A + \beta B + \gamma C.$ (0, 0, 1) α const (0, 1, 0)P (1, 0, 0)

Definition. Let $A, B, C, P \in \mathbb{R}^2$. The **barycentric coordinates** of *P* with respect to $\triangle ABC$ are a triple $(\alpha, \beta, \gamma) \in \mathbb{R}^3_{>0}$ such that $\alpha + \beta + \gamma = 1$ $\square P = \alpha A + \beta B + \gamma C.$ (0, 0, 1)const. α const (0, 1, 0)(1, 0, 0)R

Definition. Let $A, B, C, P \in \mathbb{R}^2$. The **barycentric coordinates** of *P* with respect to $\triangle ABC$ are a triple $(\alpha, \beta, \gamma) \in \mathbb{R}^3_{>0}$ such that $\alpha + \beta + \gamma = 1$ $\square P = \alpha A + \beta B + \gamma C.$ (0, 0, 1)const. α const const. (0, 1, 0)(1, 0, 0)R

Definition.

A barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G; i.e. it is *injective* map $\phi \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$ with the following properties: **v_1 + v_2 + v_3 = 1** for all $v \in V$ **v_1 + v_2 + v_3 = 1** for all $v \in V$ **v_1 + v_2 + v_3 = 1** for all $v \in V$ **v_1 + v_2 + v_3 = 1** for all $v \in V$ **v_1 + v_2 + v_3 = 1** for all $v \in V$ **v_1 + v_2 + v_3 = 1** for all $v \in V$ **v_1 + v_2 + v_3 = 1** for all $v \in V \setminus \{x, y\}$ there exists

Definition.

A barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G; i.e. it is *injective* map $\phi \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$ with the following properties: $v_1 + v_2 + v_3 = 1$ for all $v \in V$ for each $\{x, y\} \in E$ and each $z \in V \setminus \{x, y\}$ there exists

Definition.

A barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G; i.e. it is *injective* map $\phi \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$ with the following properties: **v_1 + v_2 + v_3 = 1** for all $v \in V$ **for each** $\{x, y\} \in E$ and each $z \in V \setminus \{x, y\}$ there exists

Definition.

A barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G; i.e. it is *injective* map $\phi \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$ with the following properties: $v_1 + v_2 + v_3 = 1$ for all $v \in V$

Definition.

A barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G; i.e. it is *injective* map $\phi \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$ with the following properties: $v_1 + v_2 + v_3 = 1$ for all $v \in V$

Definition.

A barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G; i.e. it is *injective* map $\phi \colon V \to \mathbb{R}^3_{\geq 0}$, $v \mapsto (v_1, v_2, v_3)$ with the following properties: $v_1 + v_2 + v_3 = 1$ for all $v \in V$

Definition.

A barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G; i.e. it is *injective* map $\phi \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$ with the following properties: $v_1 + v_2 + v_3 = 1$ for all $v \in V$

Definition.

A barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G; i.e. it is *injective* map $\phi: V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$ with the following properties: $v_1 + v_2 + v_3 = 1$ for all $v \in V$

Definition.

A barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G; i.e. it is *injective* map $\phi \colon V \to \mathbb{R}^3_{\geq 0}$, $v \mapsto (v_1, v_2, v_3)$ with the following properties: $v_1 + v_2 + v_3 = 1$ for all $v \in V$

Definition.

A barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G; i.e. it is *injective* map $\phi: V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$ with the following properties: $v_1 + v_2 + v_3 = 1$ for all $v \in V$

Definition.

A barycentric representation of a graph G = (V, E) is an assignment of barycentric coordinates to the vertices of G; i.e. it is *injective* map $\phi \colon V \to \mathbb{R}^3_{\geq 0}, v \mapsto (v_1, v_2, v_3)$ with the following properties: **v**_1 + v_2 + v_3 = 1 for all $v \in V$ for each $\{x, y\} \in E$ and each $z \in V \setminus \{x, y\}$ there exists

Lemma.

Let $\phi: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a graph G = (V, E) and let $A, B, C \in \mathbb{R}^2$ in general position. Then the mapping

$$f: v \in V \mapsto v_1 A + v_2 B + v_3 C$$

gives a planar drawing of G inside $\triangle ABC$.

Lemma.

Let $\phi: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a graph G = (V, E) and let $A, B, C \in \mathbb{R}^2$ in general position. Then the mapping

$$f: v \in V \mapsto v_1 A + v_2 B + v_3 C$$

gives a planar drawing of G inside $\triangle ABC$.

Proof. No vertices occur "inside" an edge

Lemma.

Let $\phi: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a graph G = (V, E) and let $A, B, C \in \mathbb{R}^2$ in general position. Then the mapping

$$f: v \in V \mapsto v_1 A + v_2 B + v_3 C$$

gives a planar drawing of G inside $\triangle ABC$.

Proof. ■ No vertices occur "inside" an edge
■ No pair of edges {u, v} and {u', v'} cross:

Lemma.

Let $\phi: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a graph G = (V, E) and let $A, B, C \in \mathbb{R}^2$ in general position. Then the mapping

$$f: v \in V \mapsto v_1 A + v_2 B + v_3 C$$

gives a planar drawing of G inside $\triangle ABC$.

Proof. ■ No vertices occur "inside" an edge
■ No pair of edges {u, v} and {u', v'} cross:

Lemma.

Let $\phi: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a graph G = (V, E) and let $A, B, C \in \mathbb{R}^2$ in general position. Then the mapping

 $f: v \in V \mapsto v_1 A + v_2 B + v_3 C$

gives a planar drawing of G inside $\triangle ABC$.

Proof. No vertices occur "inside" an edge No pair of edges $\{u, v\}$ and $\{u', v'\}$ cross: $u'_i > u_i, v_i$ $v'_j > u_j, v_j$ $u_k > u'_k, v'_k$ $v_l > u'_l, v'_l$

Lemma.

Let $\phi: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a graph G = (V, E) and let $A, B, C \in \mathbb{R}^2$ in general position. Then the mapping

 $f: v \in V \mapsto v_1 A + v_2 B + v_3 C$

gives a planar drawing of G inside $\triangle ABC$.

Proof. No vertices occur "inside" an edge No pair of edges $\{u, v\}$ and $\{u', v'\}$ cross: $u'_i > u_i, v_i$ $v'_j > u_j, v_j$ $u_k > u'_k, v'_k$ $v_l > u'_l, v'_l$ $\Rightarrow \{i, j\} \cap \{k, l\} = \emptyset$ wlog $i = j = 1 \Rightarrow u'_1, v'_1 > u_1, v_1$

Lemma.

Let $\phi: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a graph G = (V, E) and let $A, B, C \in \mathbb{R}^2$ in general position. Then the mapping

 $f: v \in V \mapsto v_1 A + v_2 B + v_3 C$

gives a planar drawing of G inside $\triangle ABC$.

Proof. No vertices occur "inside" an edge No pair of edges $\{u, v\}$ and $\{u', v'\}$ cross: $u'_i > u_i, v_i \quad v'_j > u_j, v_j \quad u_k > u'_k, v'_k \quad v_l > u'_l, v'_l$ $\Rightarrow \{i, j\} \cap \{k, l\} = \emptyset$ wlog $i = j = 1 \Rightarrow u'_1, v'_1 > u_1, v_1 \Rightarrow$ separated by straight line

Lemma.

Let $\phi: v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a graph G = (V, E) and let $A, B, C \in \mathbb{R}^2$ in general position. Then the mapping

$$f: v \in V \mapsto v_1 A + v_2 B + v_3 C$$

gives a planar drawing of G inside $\triangle ABC$.

Proof. No vertices occur "inside" an edge No pair of edges $\{u, v\}$ and $\{u', v'\}$ cross: $u'_i > u_i, v_i \quad v'_j > u_j, v_j \quad u_k > u'_k, v'_k \quad v_l > u'_l, v'_l$ $\Rightarrow \{i, j\} \cap \{k, l\} = \emptyset$ wlog $i = j = 1 \Rightarrow u'_1, v'_1 > u_1, v_1 \Rightarrow$ separated by straight line

How to get vertices on grid?

Observation 1.

Observation 1.

Observation 1.

Observation 1.

Observation 1.

Let $v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a triangulated plane graph G = (V, E). We can **uniquely** label each angle $\angle (xy, xz)$ with $k \in \{1, 2, 3\}$.

Observation 2.

Let $v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a triangulated plane graph G = (V, E).

- \blacksquare all angles with label *i* are consecutive
- all three angles appear

Observation 2.

Let $v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a triangulated plane graph G = (V, E).

- \blacksquare all angles with label *i* are consecutive
- all three angles appear

Observation 2.

Let $v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a triangulated plane graph G = (V, E).

- \blacksquare all angles with label *i* are consecutive
- all three angles appear

Observation 2.

Let $v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a triangulated plane graph G = (V, E).

- \blacksquare all angles with label *i* are consecutive
- all three angles appear

Observation 2.

Let $v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a triangulated plane graph G = (V, E).

- \blacksquare all angles with label *i* are consecutive
- all three angles appear

Observation 2.

Let $v \mapsto (v_1, v_2, v_3)$ be a barycentric representation of a triangulated plane graph G = (V, E).

- \blacksquare all angles with label *i* are consecutive
- all three angles appear

Schnyder labeling

Definition.

A Schnyder labeling (normal labeling) of a triangulated plane graph G is a labeling of all internal angles with labels 1, 2 and 3 such that:

Schnyder labeling

Definition.

A Schnyder labeling (normal labeling) of a triangulated plane graph G is a labeling of all internal angles with labels 1, 2 and 3 such that:

Faces Each internal face contain vertices with all three labels 1, 2 and 3 appearing in a counterclockwise order.

Schnyder labeling

Definition.

A Schnyder labeling (normal labeling) of a triangulated plane graph G is a labeling of all internal angles with labels 1, 2 and 3 such that:

Faces Each internal face contain vertices with all three labels 1, 2 and 3 appearing in a counterclockwise order.

Vertices The ccw order of labels around each vertex consists of a nonempty interval of 1's followed by a nonempty interval of 2's followed by a nonempty interval of 3's.

Schnyder labeling induces an edge labeling

Definition.

A Schnyder forest or realiser of a triangulated plane graph G = (V, E) is a partition of the inner edges of E into three sets of oriented edges T_1 , T_2 , T_3 such that for each inner vertex $v \in V$ holds:

• v has one outgoing edge in each of T_1 , T_2 , and T_3 .

The ccw order of edges around v is: leaving in T_1 , entering in T_3 , leaving in T_2 , entering in T_1 , leaving in T_3 , entering in T_2 .

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in G, $x \neq b, c$.

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in G, $x \neq b, c$.

Definition.

Edge $\{a, x\}$, where $x \neq b, c$, is a **contractible** edge in *G*, if

a and x have exactly 2 common neighbors

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in G, $x \neq b, c$.

Definition. Edge $\{a, x\}$, where $x \neq b, c$, is a **contractible** edge in *G*, if

a and x have exactly 2 common neighbors

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in G, $x \neq b, c$.

Definition.

Edge
$$\{a, x\}$$
, where $x \neq b, c$, is a **contractible** edge in G, if

and x have exactly 2 common neighbors

Neighbors of *a* induce an outerplanar graph

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in G, $x \neq b, c$.

Definition.

Edge
$$\{a, x\}$$
, where $x \neq b, c$, is a **contractible** edge in G, if

a and x have exactly 2 common neighbors

Neighbors of *a* induce an outerplanar graph

There exists $x \neq b, c$ with degree 2

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in G, $x \neq b, c$.
Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in G, $x \neq b, c$.

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a **contractible edge** $\{a, x\}$ in G, $x \neq b, c$.

Theorem.

Every triangulated plane graph has a Schnyder labeling.

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in G, $x \neq b, c$.

Theorem.

Every triangulated plane graph has a Schnyder labeling.

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in G, $x \neq b, c$.

Theorem.

Every triangulated plane graph has a Schnyder labeling.

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in G, $x \neq b, c$.

Theorem.

Every triangulated plane graph has a Schnyder labeling.

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in G, $x \neq b, c$.

Theorem.

Every triangulated plane graph has a Schnyder labeling.

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in G, $x \neq b, c$.

Theorem.

Every triangulated plane graph has a Schnyder labeling.

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in G, $x \neq b, c$.

Theorem.

Every triangulated plane graph has a Schnyder labeling.

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in G, $x \neq b, c$.

Theorem.

Every triangulated plane graph has a Schnyder labeling.

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in G, $x \neq b, c$.

Theorem.

Every triangulated plane graph has a Schnyder labeling.

Proof also gives an algorithm to produce a Schnyder labeling. It can be implemented in $\mathcal{O}(n)$ time ... as exercise.

Lemma. [Kampen 1976]

Let G be a triangulated plane graph with vertices a, b, c on the outer face. There exists a contractible edge $\{a, x\}$ in G, $x \neq b, c$.

Theorem.

Every triangulated plane graph has a Schnyder labeling.

Proof also gives an algorithm to produce a Schnyder labeling. It can be implemented in $\mathcal{O}(n)$ time ... as exercise.

Theorem and previous construction imply:

Corollary. Every triangulated plane graph has a Schnyder realiser.

For each v there exists a directed red, blue, green path from v to a, b, c, respectively.

For each v there exists a directed red, blue, green path from v to a, b, c, respectively.

For each v there exists a directed red, blue, green path from v to a, b, c, respectively.

No monochromatix cycle exists

- For each v there exists a directed red, blue, green path from v to a, b, c, respectively.
- No monochromatix cycle exists
- Each monochromatic subgraph is a tree!

- For each v there exists a directed red, blue, green path from v to a, b, c, respectively.
- No monochromatix cycle exists
- Each monochromatic subgraph is a tree!

- For each v there exists a directed red, blue, green path from v to a, b, c, respectively.
- No monochromatix cycle exists
- Each monochromatic subgraph is a tree!

- For each v there exists a directed red, blue, green path from v to a, b, c, respectively.
- No monochromatix cycle exists
- Each monochromatic subgraph is a tree!

- For each v there exists a directed red, blue, green path from v to a, b, c, respectively.
- No monochromatix cycle exists
- Each monochromatic subgraph is a tree!
- The sinks of red/blue/green trees are the vertices a, b, c.

- For each v there exists a directed red, blue, green path from v to a, b, c, respectively.
- No monochromatix cycle exists
- Each monochromatic subgraph is a tree!
- The sinks of red/blue/green trees are the vertices a, b, c.

This is ensured by construction via contraction operation.

```
Adding v_{k+1} to graph G_k

v_{k+1}w_p \in T_1

v_{k+1}w_q \in T_2

w_jv_{k+1} \in T_3
```



```
Adding v_{k+1} to graph G_k

v_{k+1}w_p \in T_1

v_{k+1}w_q \in T_2

w_jv_{k+1} \in T_3
```



```
Adding v_{k+1} to graph G_k

v_{k+1}w_p \in T_1

v_{k+1}w_q \in T_2

w_jv_{k+1} \in T_3
```



```
Adding v_{k+1} to graph G_k

v_{k+1}w_p \in T_1

v_{k+1}w_q \in T_2

w_jv_{k+1} \in T_3
```


Schnyder drawing

How to get from Schnyder realiser to barycentric representation

 $f: v \in V \mapsto v_1 A + v_2 B + v_3 C$

Face regions

• $P_i(v)$ path from v to source of T_i

$P_i(v)$ path from v to source of T_i $R_1(v)$, $R_2(v)$, $R_3(v)$ are sets of faces

P_i(v) path from v to source of T_i R_1(v), R_2(v), R_3(v) are sets of faces

Lemma.

P_i(v) path from v to source of T_i
R₁(v), R₂(v), R₃(v) are sets of faces

Lemma.

P_i(v) path from v to source of T_i R_1(v), R_2(v), R_3(v) are sets of faces

Lemma.

P_i(v) path from v to source of T_i R_1(v), R_2(v), R_3(v) are sets of faces

Lemma.

P_i(v) path from v to source of T_i R_1(v), R_2(v), R_3(v) are sets of faces

Lemma.

P_i(v) path from v to source of T_i R_1(v), R_2(v), R_3(v) are sets of faces

Lemma.

 $P_i(v)$ path from v to source of T_i $R_1(v)$, $R_2(v)$, $R_3(v)$ are sets of faces

Lemma.

- Paths $P_1(v)$, $P_2(v)$, $P_3(v)$ cross only at vertex v.
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.

P_i(v) path from v to source of T_i
R₁(v), R₂(v), R₃(v) are sets of faces

Lemma.

- Paths $P_1(v)$, $P_2(v)$, $P_3(v)$ cross only at vertex v.
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.

 $P_i(v)$ path from v to source of T_i $R_1(v)$, $R_2(v)$, $R_3(v)$ are sets of faces

Lemma.

- Paths $P_1(v)$, $P_2(v)$, $P_3(v)$ cross only at vertex v.
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.

 $P_i(v)$ path from v to source of T_i $R_1(v)$, $R_2(v)$, $R_3(v)$ are sets of faces

Lemma.

- Paths $P_1(v)$, $P_2(v)$, $P_3(v)$ cross only at vertex v.
- For inner vertices $u \neq v$ it holds that $u \in R_i(v) \Rightarrow R_i(u) \subsetneq R_i(v)$.

Let barycentric coordinates of $v \in G \setminus \{a, b, c\}$ be (v_1, v_2, v_3) , where $v_1 = |R_1(v)|/(2n-5)$, $v_2 = |R_2(v)|/(2n-5)$ and $v_3 = |R_3(v)|/(2n-5)$.

Let barycentric coordinates of $v \in G \setminus \{a, b, c\}$ be (v_1, v_2, v_3) , where $v_1 = |R_1(v)|/(2n-5)$, $v_2 = |R_2(v)|/(2n-5)$ and $v_3 = |R_3(v)|/(2n-5)$.

Theorem.

The mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

is a barycentric representation of G, which thus gives a planar straight-line drawing of G in a $(2n-5) \times (2n-5)$ grid.

Set

$$A = (2n - 5, 0)$$

 $B = (0, 2n - 5)$
 $C = (0, 0)$

Let barycentric coordinates of $v \in G \setminus \{a, b, c\}$ be (v_1, v_2, v_3) , where $v_1 = |R_1(v)|/(2n-5)$, $v_2 = |R_2(v)|/(2n-5)$ and $v_3 = |R_3(v)|/(2n-5)$.

Theorem. The mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

is a barycentric representation of G, which thus gives a planar straight-line drawing of G in a $(2n-5) \times (2n-5)$ grid.

Proof. Condition 1: $v_1 + v_2 + v_3 = 1$

Set

$$A = (2n - 5, 0)$$

 $B = (0, 2n - 5)$
 $C = (0, 0)$

Let barycentric coordinates of $v \in G \setminus \{a, b, c\}$ be (v_1, v_2, v_3) , where $v_1 = |R_1(v)|/(2n-5)$, $v_2 = |R_2(v)|/(2n-5)$ and $v_3 = |R_3(v)|/(2n-5)$.

Theorem. The mapping

$$f: v \mapsto (v_1, v_2, v_3) = \frac{1}{2n-5}(|R_1(v)|, |R_2(v)|, |R_3(v)|)$$

is a barycentric representation of G, which thus gives a planar straight-line drawing of G in a $(2n-5) \times (2n-5)$ grid.

Proof. Condition 1: $v_1 + v_2 + v_3 = 1$

Condition 2: For each edge $\{u, v\}$ and vertex $w \neq u, v$ at least one of three is true: $w_1 > u_1, v_1, w_2 > u_2, v_2, w_3 > u_3, v_3.$

Definition.

A weak barycentric representation of a graph G = (V, E)is an *injective* map $v \in V \mapsto (v_1, v_2, v_3) \in \mathbb{R}^3$ with the following properties:

•
$$v_1 + v_2 + v_3 = 1$$
 for every $v \in V$
• for every $\{x, y\} \in E$ and every $z \in V \setminus \{x, y\}$ th
 $k \in \{1, 2, 3\}$ with $(x_k, x_{k+1}) <_{\text{lex}} (z_k, z_{k+1})$ and

 $x \in \{1, 2, 5\}$ with $(x_k, x_{k+1}) \le |ex|(2_k, 2_{k+1})|$ $(y_k, y_{k+1}) \le |ex|(z_k, z_{k+1})|$. there is

Definition.

A weak barycentric representation of a graph G = (V, E)is an *injective* map $v \in V \mapsto (v_1, v_2, v_3) \in \mathbb{R}^3$ with the following properties:

$$v_1 + v_2 + v_3 = 1$$
 for every $v \in V$
for every $\{x, y\} \in E$ and every $z \in V \setminus \{x, y\}$ there is
 $k \in \{1, 2, 3\}$ with $(x_k, x_{k+1}) <_{\text{lex}} (z_k, z_{k+1})$ and
 $(y_k, y_{k+1}) <_{\text{lex}} (z_k, z_{k+1}).$

— i.e., either
$$y_k < z_k$$
 or $y_k = z_k$ and $y_{k+1} < z_{k+1}$

Definition. A weak barycentric representation of a graph G = (V, E)is an *injective* map $v \in V \mapsto (v_1, v_2, v_3) \in \mathbb{R}^3$ with the following properties: $\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 = 1$ for every $v \in V$ for every $\{x, y\} \in E$ and every $z \in V \setminus \{x, y\}$ there is $k \in \{1, 2, 3\}$ with $(x_k, x_{k+1}) <_{\text{lex}} (z_k, z_{k+1})$ and $(y_k, y_{k+1}) <_{\text{lex}} (z_k, z_{k+1}).$ i.e., either $y_k < z_k$ or A weak barycentric representation $y_k = z_k$ and $y_{k+1} < z_{k+1}$ still provides a planar drawing.

Definition. A weak barycentric representation of a graph G = (V, E)is an *injective* map $v \in V \mapsto (v_1, v_2, v_3) \in \mathbb{R}^3$ with the following properties: $\mathbf{v}_1 + \mathbf{v}_2 + \mathbf{v}_3 = 1$ for every $v \in V$ for every $\{x, y\} \in E$ and every $z \in V \setminus \{x, y\}$ there is $k \in \{1, 2, 3\}$ with $(x_k, x_{k+1}) <_{\text{lex}} (z_k, z_{k+1})$ and $(y_k, y_{k+1}) <_{\text{lex}} (z_k, z_{k+1}).$ i.e., either $y_k < z_k$ or $y_k = z_k$ and $y_{k+1} < z_{k+1}$ A weak barycentric representation still provides a planar drawing.

Proof is similar to before.. and thus an exercise.

Set $v'_i = |V(R_i(v))| - |P_{i-1}(v)|$

- Set $v'_i = |V(R_i(v))| |P_{i-1}(v)|$
- Additionally, for outer vertices set
 a'₁ = n 2
 a'₂ = 1
 a'₃ = 0
 and analogously for b' and c'

Set
$$v'_i = |V(R_i(v))| - |P_{i-1}(v)|$$

Additionally, for outer vertices set $a'_1 = n - 2$ $a'_2 = 1$ $a'_3 = 0$ and analogously for b' and c'

Lemma.

```
For inner vertices u \neq v it holds that
```

$$u \in R_i(v) \Rightarrow (u'_i, u'_{i+1}) <_{\mathsf{lex}} (v'_i, v'_{i+1})$$

Set
$$v'_i = |V(R_i(v))| - |P_{i-1}(v)|$$

Additionally, for outer vertices set $a'_1 = n - 2$ $a'_2 = 1$ $a'_3 = 0$ and analogously for b' and c'

Lemma.

For inner vertices $u \neq v$ it holds that

$$u \in R_i(v) \Rightarrow (u'_i, u'_{i+1}) <_{\mathsf{lex}} (v'_i, v'_{i+1})$$

Set
$$v'_i = |V(R_i(v))| - |P_{i-1}(v)|$$

Additionally, for outer vertices set $a'_1 = n - 2$ $a'_2 = 1$ $a'_3 = 0$ and analogously for b' and c'

Lemma.

For inner vertices $u \neq v$ it holds that

$$u \in R_i(v) \Rightarrow (u'_i, u'_{i+1}) <_{\mathsf{lex}} (v'_i, v'_{i+1})$$

Set
$$v'_i = |V(R_i(v))| - |P_{i-1}(v)|$$

Additionally, for outer vertices set $a'_1 = n - 2$ $a'_2 = 1$ $a'_3 = 0$ and analogously for b' and c'

Lemma.

For inner vertices $u \neq v$ it holds that

$$u \in R_i(v) \Rightarrow (u'_i, u'_{i+1}) <_{\mathsf{lex}} (v'_i, v'_{i+1})$$

Theorem. The mapping

 $f\colon v\mapsto \frac{1}{n-1}(v'_1,v'_2,v'_3)$

is a weak barycentric representation of G.

Theorem.

The mapping

$$f\colon v\mapsto \frac{1}{n-1}(v'_1,v'_2,v'_3)$$

is a weak barycentric represenation of G.

Remarks.

By setting A = (n - 1, 0), B = (0, n - 1), C = (0, 0), one obtains a planar straight-line drawing of G on an $(n - 2) \times (n - 2)$ grid.

Theorem.

The mapping

 $f\colon v\mapsto \frac{1}{n-1}(v'_1,v'_2,v'_3)$

is a weak barycentric representaion of G.

Remarks.

- By setting A = (n 1, 0), B = (0, n 1), C = (0, 0), one obtains a planar straight-line drawing of G on an $(n - 2) \times (n - 2)$ grid.
- To calculate all the coordinates, a constant number of tree traversals are enough.

preorder postorder

preorder postorder

Literature

[Sch90] Schnyder "Embedding planar graphs on the grid" 1990 – original paper on Schnyder realiser method