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Planar straight-line drawings

‘Theorem. [De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line
drawing of size (2n —4) x (n — 2).

Theorem. |Schnyder "90| Every n-vertex planar graph has a
planar straight-line drawing of size (n —2) x (n — 2).




Planar straight-line drawings

‘Theorem. [De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line
drawing of size (2n —4) x (n — 2).

Idea: Use the canonical order.

B Start with single edge (v1, v2). Let this be Go.

B To obtain G;,q, add v;,1 to G; so that
neighbours of v; 1 are on the outer face of G;.

B Neighbours of v; 1 in G; have to form path of
length at least two. 01 02

Theorem. |Schnyder "90| Every n-vertex planar graph has a
planar straight-line drawing of size (n —2) x (n — 2).
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Canonical order — definition

‘Definition. )
Let G = (V, E) be a triangulated plane graph on n > 3 vertices.
An order 7 = (v1,02,...,0,) is called a canonical order, if the

following conditions hold for each k, 3 < k < n:

B (C1) Vertices {v1,...0;} induce a biconnected internally
triangulated graph; call it G.
B (C2) Edge (v1,v2) belongs to the outer face of G;.

W (C3) If k < n then vertex v lies in the outer face of G,
and all neighbors of v;,; in (G, appear on the boundary of G,

consecutively.

.




Canonical order — definition

‘Definition. )
Let G = (V, E) be a triangulated plane graph on n > 3 vertices.
An order 7w = (v1,02,...,7,) is called a canonical order, if the

following conditions hold for each k, 3 < k < n:

B (C1) Vertices {v1,...0;} induce a biconnected internally
triangulated graph; call it G.
B (C2) Edge (v1,v2) belongs to the outer face of G;.

W (C3) If k < n then vertex v lies in the outer face of G,
and all neighbors of v;,; in (G, appear on the boundary of G,

consecutively.

\.

Lemma.
Every triangulated plane graph has a canonical order.
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Constraints

Constraints:
Gj_1 is drawn such that




Constraints

Constraints:
Gj_1 is drawn such that
B 01 is leftmost vertex, U5 is rightmost vertex,




Constraints

Constraints:

Gj_1 is drawn such that

B 01 is leftmost vertex, U5 is rightmost vertex,

B neighbors of v, on ;7 should be drawn
X-monotone,

B 0, is placed above its neighbors on Gj_ 1.
Ok




Constraints

Constraints:

Gj_1 is drawn such that

B 01 is leftmost vertex, U5 is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B 0, is placed above its neighbors on Gj_ 1.




Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B 0, is placed above its neighbors on Gj_ 1.

G2: 01 - (0,0), 09 . (1,0)




Constraints

6 Constraints:

(Y
Gj_1 is drawn such that
B 0 is leftmost vertex, vy is rightmost vertex,
B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,
01 U3 () B 0, is placed above its neighbors on Gj_ 1.

G2: 01 - (0,0), 09 . (1,0)

B Need to make room for v3




Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B 0, is placed above its neighbors on Gj_ 1.

G2: 01 - (0,0), 09 . (1,0)

B Need to make room for v3
03 B Shift vy to the right

vV Y




Constraints

6 Constraints:

(Y
Gj_1 is drawn such that
B 0 is leftmost vertex, vy is rightmost vertex,
B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,
01 U3 () B 0, is placed above its neighbors on Gj_ 1.
G2: 01 - (0,0), 09 . M

G3: 01 - (0,0), 09 . (2,0), 03 . (1, 1)




Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B 0, is placed above its neighbors on Gj_ 1.

Go: v1:(0,0), 05 : M

U4 G3: 01 - (0,0), 09 . (2,0), 03 . (1, 1)




Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B 0, is placed above its neighbors on Gj_ 1.

Go: v1:(0,0), 05 : M

U4 G3: 01 - (0,0), 09 . (2,0), 03 . (1, 1)
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Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B 0, is placed above its neighbors on Gj_ 1.

G2 01 - (0 O) M

G3: 01 OO U2 . MYBM

G4 01 - (O O) (3 O) ) U4 - (1,2)
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Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B 0, is placed above its neighbors on Gj_ 1.

G2 01 - (0 O) M

G3: 01 OO U2 . MYBM

G4 01 - (O O) (3 O) ) U4 - (1,2)




Constraints

Constraints:
Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn Xx-monotone,
B 0, is placed above its neighbors on Gj_ 1.

G2 01 - (0 O) M

G3: 01 OO U2 . MYBM

G4 01 - (O O) (3 O) ) U4 - (1,2)




Constraints

U6 Constraints:

Gj_1 is drawn such that

B 01 is leftmost vertex, U5 is rightmost vertex,
B boundary of G;_; (minus edge (v1,v2)) is

drawn Xx-monotone,
01 03 (o) B 0, is placed above its neighbors on Gj_ 1.

Go: v1:(0,0), 05 : M

Gsz: v1:(0,0), 05 : M U3 M

Gy:v1:(0,0), v2:(3,0), v3:(2,1), vg:(1,2)

Gs: v1:(0,0), vp : (}Q v3:(2,1), v4:(1,2), v5:(3,2)




Constraints

Constraints:

Gk—l IS C
B Uis

G2: 01

rawn such that
eftmost vertex, vo is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn Xx-monotone,
B 0, is placed above its neighbors on Gj_ 1.

:(0,0), vy : M



Constraints

Constraints:

Gj_1 is drawn such that
U6 B 0 is leftmost vertex, vy is rightmost vertex,
B boundary of G;_; (minus edge (v1,v2)) is
drawn Xx-monotone,

// \\ B 0, is placed above its neighbors on Gj_ 1.
G2: 01 - (0,0), 09 . M

G3: 01 - (0,0), 09 . M, 03 . M
G4: 01 - (0,0), 09 . (3,0), 03 (2, 1), 04 (1,2)
Gs: 01:(0,0), 02 (B, v3:(2,1), 04+ (1,2), v5: (3,2)

G: U6 - (2,5)
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Height

Placement of vg depends on

B the slope of (v1,v4), (v2,0s5)

B and the length of (v1, V)
(which is at most n — 2)




Height

Placement of vg depends on

B the slope of (v1,v4), (v2,0s5)

B and the length of (v1, V)
(which is at most n — 2)

Can the height exceed O(1)?
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Height

B 03 at height 1




Height

B 03 at height 1
B 04, U5 at height 2




Height

B 03 at height 1
B 04, U5 at height 2
B 0g, 07 at height 3




Height

B 03 at height 1

B 04, U5 at height 2

B 0g, 07 at height 3

B 0y;, Up;11 at height 1




Height

v3 at height 1

U4, U5 at height 2
Vg, 07 at height 3
Ui, U;11 at height 1

: .




Height

Slope for (v1,v,_2) = 52

Slope for (vp,v,_1) = —%
Length of (v1,v2) =n—2

v3 at height 1

U4, U5 at height 2
Vg, 07 at height 3
Ui, U;11 at height 1

: .




Height

(n—2)

Uy above ~—

Slope for (v1,v,_2) = 52

Slope for (vp,v,_1) = —%
Length of (v1,v2) =n—2

v3 at height 1

U4, U5 at height 2
Vg, 07 at height 3
Ui, U;11 at height 1

: .




Height

Stretching?
lvn B decrease the height
B increase the width
B vertices on the grid?




Height

Stretching?

B decrease the height
B increase the width

B vertices on the grid?

Shifting
B control slopes
B additional shifting at each step



Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,
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Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,




Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,




Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,

vV Y
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Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,
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Gj_1 is drawn such that
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Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,
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Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,
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Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,




Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,

- 10



Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,
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Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,




Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,
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Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,

bt

VoYY
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Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

U6 B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,
04 (9
// \\
] "B [T




Constraints

Remarks: Constraints:

B 2 shifts per step Gj_1 is drawn such that

B width < 2n B 0 is leftmost vertex, vy is rightmost vertex,
B height <n B boundary of G, ; (minus edge (v1,v2)) is

drawn Xx-monotone,

U6 B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,
04 (9
// \\
] "B [T




Shift method

Algorithm invariants/constraints:

Gj_1 i1s drawn such that

B v ison (0,0), vy is on (2k —4,0),

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B each edge of the boundary of G;_1 (minus
edge (v1,v2)) is drawn with slopes +1.




Shift method

Algorithm invariants/constraints:

(1 is drawn such that

B v ison (0,0), vy is on (2k —4,0),

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B each edge of the boundary of G;_1 (minus

edge (v1,v2)) is drawn with slopes +1.
Ok




Shift method

Algorithm invariants/constraints:

(1 is drawn such that

B v ison (0,0), vy is on (2k —4,0),

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B each edge of the boundary of G;_1 (minus

edge (v1,v2)) is drawn with slopes +1.
Ok
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Shift method

Algorithm invariants/constraints:

Gj_1 i1s drawn such that

B v ison (0,0), vy is on (2k —4,0),

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B each edge of the boundary of G;_1 (minus
edge (v1,v2)) is drawn with slopes +1.

’—.QN
- ’/Il\\x

Overlaps!




Shift method

Algorithm invariants/constraints:

Gj_1 i1s drawn such that

B v ison (0,0), vy is on (2k —4,0),

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B each edge of the boundary of G;_1 (minus
edge (v1,v2)) is drawn with slopes +1.

-9
- ,,“\\N

Overlaps!

What is the solution?




Shift method

Algorithm invariants/constraints:

(1 is drawn such that

B vy ison (0,0), vpison (2k—4,0),

B boundary of G;_; (minus edge (v1,v2)) is
drawn Xx-monotone,

B each edge of the boundary of G;_1 (minus

edge (v1,v2)) is drawn with slopes +1.
Ok

What is the solution?
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Algorithm invariants/constraints:

(1 is drawn such that

B vy ison (0,0), vpison (2k—4,0),

B boundary of G;_; (minus edge (v1,v2)) is
drawn Xx-monotone,

B each edge of the boundary of G;_1 (minus

edge (v1,v2)) is drawn with slopes +1.
Ok

What is the solution?
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Algorithm invariants/constraints:

(1 is drawn such that

B vy ison (0,0), vpison (2k—4,0),

B boundary of G;_; (minus edge (v1,v2)) is
drawn Xx-monotone,

B each edge of the boundary of G;_1 (minus

edge (v1,v2)) is drawn with slopes +1.
Ok

What is the solution?




Shift method

Algorithm invariants/constraints:

Gj_1 i1s drawn such that

B v ison (0,0), vy is on (2k —4,0),

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B each edge of the boundary of G;_1 (minus
edge (v1,v2)) is drawn with slopes +1.




Shift method
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B Why is vy on grid?

Algorithm invariants/constraints:

Gj_1 i1s drawn such that

B v ison (0,0), vy is on (2k —4,0),

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B each edge of the boundary of G;_1 (minus
edge (v1,v2)) is drawn with slopes +1.
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Shift method
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B Why is vy on grid?

Algorithm invariants/constraints:
Gj_1 i1s drawn such that

B vy ison (0,0), vpison (2k—4,0),

B boundary of G;_; (minus edge (v1,v2)) is

drawn x-monotone,

B each edge of the boundary of G;_1 (minus

edge (v1,v2)) is drawn with slopes

Ok

1.
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Shift method

B u; and u; 1 consecutive on the outerface of G, 1

10 -



Shift method

'Lemma.
Every two vertices on the outerface of (5, have even Manhattan distance.

7

B u; and u;, 1 consecutive on the outerface of G, 4
i Uit1
dy; dy;
) Uit Uj _

dxi dxi



Shift method

'Lemma.
Every two vertices on the outerface of (5, have even Manhattan distance.

& 7

B u; and u;, 1 consecutive on the outerface of G, 4
M ”i_+1
d(ui, uit1) = [dx;| + |dy;| even
d]/i d]/z \dxi\ T ’d]/z‘ even
} Uit Uj _

dxi dxi



Shift method

'Lemma.
Every two vertices on the outerface of (5, have even Manhattan distance.

& 7

B u; and u;, 1 consecutive on the outerface of G, 4
i Uit1
d(ui, uit1) = [dx;| + |dy;| even
d]/i dyz \dxi\ T ’d]/z‘ even
Ui+l Ui
dxi dxi

B u;, u;.y on the outerface of G, 1



Shift method

Lemma. )
Every two vertices on the outerface of (5, have even Manhattan distance.
B u; and u;, 1 consecutive on the outerface of G, 4
i Uit1
d(ui, uit1) = [dx;| + |dy;| even
d]/i dyz \dxi\ T ’dyl‘ even
Ui+l Ui
dxi dxi

B u;, u;.y on the outerface of G, 1

/—1
d(ui,Ug) = 2 \dx]] —I—)\]‘dy]‘,/\] = 11 even
1

]:




Shift method

Lemma.

Every two vertices on the outerface of (5, have even Manhattan distance.

7

d(ui, uit1) = [dx;| + |dy;| even

dx;| 5

B u; and u;, 1 consecutive on the outerface of G, 4
i Uit1
dy; dy;
- Uit Uj i
dxi dxi

B u;, u;.y on the outerface of G, 1
(—1

d(u;, uy) = Z \dx]] —I—)\]‘dy]l,/\] — =
j=i

-1 even

- |dy;| even

Ax+Ay
2 ) <:L_L
L " ’s’

S @

Ay

Ax
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Shift method — example
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Shift method — example

‘4)\ Which internal nodes are shifted?
AN

L+1 )




Shift method — example

PRIV

Which internal nodes are shifted?

B An internal node shifts with
Its covering outer vertex

B Define covering
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Shift method — dominating

Observations.

B Each internal vertex is covered exactly once.
B Covering relation defines a tree in G

M andaforestin G;, 1 <i1<n-—1.
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Shift method — dominating

Observations.

B Each internal vertex is covered exactly once.
B Covering relation defines a tree in G

M andaforestin G;, 1 <i1<n-—1.

13 -



Shift method — dominating

'Definition.
L(w;) is the set of vertices covered by w;
L(w;) is the subtree of the covering tree rooted at w;

Observations.

B Each internal vertex is covered exactly once.
B Covering relation defines a tree in G

M andaforestin G;, 1 <i1<n-—1.

13 -
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Shift method — planarity

Observations.

B Each internal vertex is covered exactly once.
B Covering relation defines a tree in G

M andaforestin G;, 1 <i1<n-—1.
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Shift method — planarity

‘Lemma. Let 0 < 01 <09 < --- <9 €N, such
that 0, — 0y > 2 and even.

If we shift L(w;) by é; to the right, we get a planar
\straight—line drawing. )
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Observations.
B Each internal vertex is covered exactly once.

B Covering relation defines a tree in G
M andaforestin G;, 1 <i1<n-—1.
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Shift method — planarity

‘Lemma. Let 0 < 01 <09 < --- <9 €N, such
that 0, — 0y > 2 and even.

If we shift L(w;) by é; to the right, we get a planar
kstraig.;;ht—line drawing. )

\

Proof by induction:
If Gj_1 straight-line planar, then also Gy.

Observations.
B Each internal vertex is covered exactly once.

B Covering relation defines a tree in G
M andaforestin G;, 1 <i1<n-—1.

15 -



Shift method — pseudocode

Let v1, ..., v, be a canonical order of G
fori =1 to 3 do

| L(v;) < {vi}
P(v1) < (0,0); P(v2) < (2,0), P(v3) < (1,1)
for k =4 ton do
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Let v1, ..., v, be a canonical order of G
fori =1to 3 do

| L(v;) < {vi}
P(v1) < (0,0); P(v2) < (2,0), P(v3) < (1,1)
for k =4 to n do

Let w1 = 01, wo, ..., Wi_1, Wy = U denote the boundary of Gj_1
and let Wy, . .1. , Wg be the neighbours of vy

q— .
for Vv € U].:PHL(w]) do

| x(v) + x(v) +1

for Vv € U?ZqL(w]-) do

| x(v) + x(v) 42

P(vy) < intersection of 4+1/—1 edges from P(w,) and P(wy)

L(og) Uy, L(w)) U {og}
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Shift method — pseudocode

Let v1, ..., v, be a canonical order of G
fori =1to 3 do

| L(v;) < {vi}
P(v1) < (0,0); P(v2) < (2,0), P(v3) < (1,1)
for k =4 to n do

Let w1 = 01, wo, ..., Wi_1, Wy = U denote the boundary of Gj_1
and let Wy, . .1. , Wg be the neighbours of vy
for Vo € UT " . L(w;) do .
j—p+1 L)) B Runtime O(n?)

| x(0) « x(v) +1 B Can we do better?
for Vv € U?ZqL(w]-) do

| x(v) + x(v) 42

P(vy) < intersection of 4+1/—1 edges from P(w,) and P(wy)

L(og) Uy, L(w)) U {og}

16 -
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Shift method — linear time implementation

Idea:

B Instead of storing explicit x-coordinates,
we store x differences.

B We need a spanning tree rooted at vy

Outerface of G;_1

B at w; store Ax(w;) = x(w;) — x(w;_1)

Adding vy
B Shifting is performed by increasing Ax(w,41) and Ax(w,)
B x(vg) depends on x(w,) and x(wy)
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we store x differences.

B We need a spanning tree rooted at vy

Outerface of G;_1

B at w; store Ax(w;) = x(w;) — x(w;_1)

Adding vy

B Shifting is performed by increasing Ax(w,41) and Ax(w,)
B x(vx) depends on x(w,) and x(w,)

B x(vg) as x difference from w),
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Shift method — linear time implementation

Idea:

B Instead of storing explicit x-coordinates,
we store x differences.

B We need a spanning tree rooted at vy

Outerface of G;_1

B at w; store Ax(w;) = x(w;) — x(w;_1)

Adding vy

Shifting is performed by increasing Ax(w,41) and Ax(wy)
x(vx) depends on x(wy) and x(wy)

x(vg) as x difference from w,

x(wgy) as x difference from vy

Wp41 covered by vy

— x(wp41) as x difference from x(vy)
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Shift method — linear time implementation

Idea:

B Instead of storing explicit x-coordinates,
we store x differences.

B We need a spanning tree rooted at vy

Outerface of G;_1

B at w; store Ax(w;) = x(w;) — x(w;_1)

Adding vy

Shifting is performed by increasing Ax(w,
x(vx) depends on x(wy) and x(wy)
x(vg) as x difference from w,

x(wgy) as x difference from vy

Wp41 covered by vy

— x(wp41) as x difference from x(vy)
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Shift method — linear time implementation

B Step 1. computex(v;) and y(vy)
B Step 1 revised. compute x(vy) — x(w,) and y(vy)

x(w0y) —x(wp)
(1) x(or) = 5(x(wy) +x(wp) +y(wy) —y(wp))
(2) y(or) = 5 (x(0,) = x(wy) + y(wy) +y(wy))
(3) x(ox) — x(wy) = 5 (@(0) = x(wp) +y(w,) —y(wp))



Shift method — linear time implementation

B Step 1. computex(v;) and y(vy)
B Step 1 revised. compute x(vy) — x(w,) and y(vy)

Step 2- Calculations.
B Ax(wpy1)++, Ax(w,)++

x(w0y) —x(wp)
(1) x(or) = 5(x(wy) +x(wp) +y(wy) —y(wp))
(2) y(or) = 5 (x(0,) = x(wy) + y(wy) +y(wy))
(3) x(ox) — x(wy) = 5 (@(0) = x(wp) +y(w,) —y(wp))



Shift method — linear time implementation

B Step 1. computex(v;) and y(vy)
B Step 1 revised. compute x(vy) — x(w,) and y(vy)

Step 2- Calculations.
O Ax(wp+1)++, Ax(w, )++
B x(w,) = x(wy) = Ax(wpi1) + ...+ Ax(wg) Wy

x(w0y) —x(wp)
(1) x(or) = 5(x(wy) +x(wp) +y(wy) —y(wp))
(2) y(or) = 5 (x(0,) = x(wy) + y(wy) +y(wy))
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B Step 1. computex(v;) and y(vy)
B Step 1 revised. compute x(vy) — x(w,) and y(vy)

Step 2- Calculations.

B Ax(wyqq)++, Ax(w,)++
B x(w,) = x(wp) = Ax(wps1) + ...+ Ax(wy) Wy
B Ax(vi) by (3)

x(w0y) —x(wp)
(1) x(or) = 5(x(wy) +x(wp) +y(wy) —y(wp))
(2) y(or) = 5 (x(0,) = x(wy) + y(wy) +y(wy))
(3) x(ox) — x(wy) = 5 (@(0) = x(wp) +y(w,) —y(wp))



Shift method — linear time implementation

B Step 1. computex(v;) and y(vy)
B Step 1 revised. compute x(vy) — x(w,) and y(vy)

Step 2- Calculations.
B Ax(wyqq)++, Ax(w,)++
B x(w,) = x(wp) = Ax(wps1) + ...+ Ax(wy) Wy
B Ax(vi) by (3)
m Ax(w,) = ¥(Wy) = 2(wp) — Ax(vy)

z

x(w0y) —x(wp)
(1) x(or) = 5(x(wy) +x(wp) +y(wy) —y(wp))
(2) y(or) = 5 (x(0,) = x(wy) + y(wy) +y(wy))
(3) x(ox) — x(wy) = 5 (@(0) = x(wp) +y(w,) —y(wp))



Shift method — linear time implementation

B Step 1. computex(v;) and y(vy)
B Step 1 revised. compute x(vy) — x(w,) and y(vy)

Step 2- Calculations.

B Ax(wyqq)++, Ax(w,)++
B x(w,) = x(wp) = Ax(wps1) + ...+ Ax(wy) Wy
B Ax(vi) by (3)

B Ax(wg) = x(Wy) = x(wp) — Ax(vy)
B Ax(wpy1) = Ax(wpy1) — Ax(vg)
x(wy) — x(wp)
(1) x(vp) = 5 (x(wy) +x(wp) +y(wy) —y(wp))
(2) y(or) = 5 (x(0) = x(wy) +y(w,) + y(wy))
(3) x(vp) — x(wp) = 5 (x(W0y) = x(wy) + y(w;) — y(wp))



Shift method — linear time implementation

B Step 1. computex(v;) and y(vy)
B Step 1 revised. compute x(vy) — x(w,) and y(vy)

Step 2- Calculations.

B Ax(wyqq)++, Ax(w,)++
B x(w,) = x(wp) = Ax(wps1) + ...+ Ax(wy) Wy
B Ax(vi) by (3)

B Ax(wy) = x(Wy) = x(Wp) — Ax(v)
B Ax(wyq1) = Ax(wpi1) — Ax(vg)
m y(o) by (2) x(wg) — x(wy)
(1) x(or) = 5(x(wy) +x(wp) +y(wy) —y(wp))
(2) y(or) = 5 @) =x(wp) +y(w,) +y(wy))
— ( +



Shift method — linear time implementation

B Step 1. computex(v;) and y(vy)
B Step 1 revised. compute x(vy) — x(w,) and y(vy)

Step 2- Calculations.

B Ax(wyqq)++, Ax(w,)++
B x(w,) —x(wy) = Ax(wPH) + ...+ Ax(w,) wo
B Ax(vg) by (3)

m Ax(w,) = x(wy) = x(wp) — Ax(vi)
B Ax(wyq1) = Ax(wpi1) — Ax(vg)
m y(o) by (2) x(wg) — x(wy)
After v,, use preord.er traversal (1) x(v)) = %(x( )+ x(w,) +y(w0,) — y(w,))
to COmpUte x-coordinates 1
(2) y(v) = 5 (x(0) = x(wp) +y(wy) +y(wp))
(3) x(vp) — x(wp) = 3 (x(0) = x(wp) +y(wy) —y(wy))



| iterature

B [dFPP90] de Fraysseix, Pach, Pollack "How to draw a planar graph on a
grid”, Combinatorica, 1990
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