Visualisation of graphs

Planar straight-line drawings
Shift Method

Antonios Symvonis - Chrysanthi Raftopoulou
Fall semester 2022

PN

+1

+2

The original slides of this presentation were created by researchers at Karlsruhe Institute of Technology (KIT), TU Wien, U Wuerzburg, U Konstanz, ...

The original presentation was modified /updated by A. Symvonis and C. Raftopoulou

Planar straight-line drawings

‘Theorem. [De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line
drawing of size (2n —4) x (n — 2).

Theorem. |Schnyder "90| Every n-vertex planar graph has a
planar straight-line drawing of size (n —2) x (n — 2).

Planar straight-line drawings

‘Theorem. [De Fraysseix, Pach, Pollack '90]

Every n-vertex planar graph has a planar straight-line
drawing of size (2n —4) x (n — 2).

Idea: Use the canonical order.

B Start with single edge (v1, v2). Let this be Go.

B To obtain G;,q, add v;,1 to G; so that
neighbours of v; 1 are on the outer face of G;.

B Neighbours of v; 1 in G; have to form path of
length at least two. 01 02

Theorem. |Schnyder "90| Every n-vertex planar graph has a
planar straight-line drawing of size (n —2) x (n — 2).

Canonical order — definition

Canonical order — definition

Canonical order — definition

Canonical order — definition

‘Definition.)
Let G = (V, E) be a triangulated plane graph on n > 3 vertices.
An order 7 = (v1,02,...,0,) is called a canonical order, if the

following conditions hold for each k, 3 < k < n:

B (C1) Vertices {v1,...0;} induce a biconnected internally
triangulated graph; call it G.
B (C2) Edge (v1,v2) belongs to the outer face of G;.

W (C3) If k < n then vertex v lies in the outer face of G,
and all neighbors of v;,; in (G, appear on the boundary of G,

consecutively.

.

Canonical order — definition

‘Definition.)
Let G = (V, E) be a triangulated plane graph on n > 3 vertices.
An order 7w = (v1,02,...,7,) is called a canonical order, if the

following conditions hold for each k, 3 < k < n:

B (C1) Vertices {v1,...0;} induce a biconnected internally
triangulated graph; call it G.
B (C2) Edge (v1,v2) belongs to the outer face of G;.

W (C3) If k < n then vertex v lies in the outer face of G,
and all neighbors of v;,; in (G, appear on the boundary of G,

consecutively.

\.

Lemma.
Every triangulated plane graph has a canonical order.

Constraints

Constraints

Constraints

Constraints

Constraints

Constraints

06

INts
stra
Con

|
Ity 1ssue!
ibility |
] visibility
U U5
03
0 02
1

Constraints

Constraints:
Gj_1 is drawn such that

Constraints

Constraints:
Gj_1 is drawn such that
B 01 is leftmost vertex, U5 is rightmost vertex,

Constraints

Constraints:

Gj_1 is drawn such that

B 01 is leftmost vertex, U5 is rightmost vertex,

B neighbors of v, on ;7 should be drawn
X-monotone,

B 0, is placed above its neighbors on Gj_ 1.
Ok

Constraints

Constraints:

Gj_1 is drawn such that

B 01 is leftmost vertex, U5 is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B 0, is placed above its neighbors on Gj_ 1.

Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B 0, is placed above its neighbors on Gj_ 1.

G2: 01 - (0,0), 09 . (1,0)

Constraints

6 Constraints:

(Y
Gj_1 is drawn such that
B 0 is leftmost vertex, vy is rightmost vertex,
B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,
01 U3 () B 0, is placed above its neighbors on Gj_ 1.

G2: 01 - (0,0), 09 . (1,0)

B Need to make room for v3

Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B 0, is placed above its neighbors on Gj_ 1.

G2: 01 - (0,0), 09 . (1,0)

B Need to make room for v3
03 B Shift vy to the right

vV Y

Constraints

6 Constraints:

(Y
Gj_1 is drawn such that
B 0 is leftmost vertex, vy is rightmost vertex,
B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,
01 U3 () B 0, is placed above its neighbors on Gj_ 1.
G2: 01 - (0,0), 09 . M

G3: 01 - (0,0), 09 . (2,0), 03 . (1, 1)

Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B 0, is placed above its neighbors on Gj_ 1.

Go: v1:(0,0), 05 : M

U4 G3: 01 - (0,0), 09 . (2,0), 03 . (1, 1)

Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B 0, is placed above its neighbors on Gj_ 1.

Go: v1:(0,0), 05 : M

U4 G3: 01 - (0,0), 09 . (2,0), 03 . (1, 1)

2

Constraints

06

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B 0, is placed above its neighbors on Gj_ 1.

G2 01 - (0 O) M

G3: 01 OO U2 . MYBM

G4 01 - (O O) (3 O)) U4 - (1,2)

Constraints

06

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B 0, is placed above its neighbors on Gj_ 1.

G2 01 - (0 O) M

G3: 01 OO U2 . MYBM

G4 01 - (O O) (3 O)) U4 - (1,2)

Constraints

Constraints:
Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn Xx-monotone,
B 0, is placed above its neighbors on Gj_ 1.

G2 01 - (0 O) M

G3: 01 OO U2 . MYBM

G4 01 - (O O) (3 O)) U4 - (1,2)

Constraints

U6 Constraints:

Gj_1 is drawn such that

B 01 is leftmost vertex, U5 is rightmost vertex,
B boundary of G;_; (minus edge (v1,v2)) is

drawn Xx-monotone,
01 03 (o) B 0, is placed above its neighbors on Gj_ 1.

Go: v1:(0,0), 05 : M

Gsz: v1:(0,0), 05 : M U3 M

Gy:v1:(0,0), v2:(3,0), v3:(2,1), vg:(1,2)

Gs: v1:(0,0), vp : (}Q v3:(2,1), v4:(1,2), v5:(3,2)

Constraints

Constraints:

Gk—l IS C
B Uis

G2: 01

rawn such that
eftmost vertex, vo is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn Xx-monotone,
B 0, is placed above its neighbors on Gj_ 1.

:(0,0), vy : M

Constraints

Constraints:

Gj_1 is drawn such that
U6 B 0 is leftmost vertex, vy is rightmost vertex,
B boundary of G;_; (minus edge (v1,v2)) is
drawn Xx-monotone,

// \\ B 0, is placed above its neighbors on Gj_ 1.
G2: 01 - (0,0), 09 . M

G3: 01 - (0,0), 09 . M, 03 . M
G4: 01 - (0,0), 09 . (3,0), 03 (2, 1), 04 (1,2)
Gs: 01:(0,0), 02 (B, v3:(2,1), 04+ (1,2), v5: (3,2)

G: U6 - (2,5)

Height

/1

Height

Placement of vg depends on

B the slope of (v1,v4), (v2,0s5)

B and the length of (v1, V)
(which is at most n — 2)

Height

Placement of vg depends on

B the slope of (v1,v4), (v2,0s5)

B and the length of (v1, V)
(which is at most n — 2)

Can the height exceed O(1)?

Height

Height

B 03 at height 1

Height

B 03 at height 1
B 04, U5 at height 2

Height

B 03 at height 1
B 04, U5 at height 2
B 0g, 07 at height 3

Height

B 03 at height 1

B 04, U5 at height 2

B 0g, 07 at height 3

B 0y;, Up;11 at height 1

Height

v3 at height 1

U4, U5 at height 2
Vg, 07 at height 3
Ui, U;11 at height 1

: .

Height

Slope for (v1,v,_2) = 52

Slope for (vp,v,_1) = —%
Length of (v1,v2) =n—2

v3 at height 1

U4, U5 at height 2
Vg, 07 at height 3
Ui, U;11 at height 1

: .

Height

(n—2)

Uy above ~—

Slope for (v1,v,_2) = 52

Slope for (vp,v,_1) = —%
Length of (v1,v2) =n—2

v3 at height 1

U4, U5 at height 2
Vg, 07 at height 3
Ui, U;11 at height 1

: .

Height

Stretching?
lvn B decrease the height
B increase the width
B vertices on the grid?

Height

Stretching?

B decrease the height
B increase the width

B vertices on the grid?

Shifting
B control slopes
B additional shifting at each step

Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,

Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,

Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,

Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,

vV Y

Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,

Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,

Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,

2

Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,

T 11

Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,

Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,

- 10

Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,

- 11

Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,

Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,

- 13

Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,

bt

VoYY

- 14

Constraints

Constraints:

Gj_1 is drawn such that

B 0 is leftmost vertex, vy is rightmost vertex,

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

U6 B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,
04 (9
// \\
] "B [T

Constraints

Remarks: Constraints:

B 2 shifts per step Gj_1 is drawn such that

B width < 2n B 0 is leftmost vertex, vy is rightmost vertex,
B height <n B boundary of G, ; (minus edge (v1,v2)) is

drawn Xx-monotone,

U6 B boundary of G;_; (minus edge (v1,v2)) is
drawn with slope =1,
04 (9
// \\
] "B [T

Shift method

Algorithm invariants/constraints:

Gj_1 i1s drawn such that

B v ison (0,0), vy is on (2k —4,0),

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B each edge of the boundary of G;_1 (minus
edge (v1,v2)) is drawn with slopes +1.

Shift method

Algorithm invariants/constraints:

(1 is drawn such that

B v ison (0,0), vy is on (2k —4,0),

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B each edge of the boundary of G;_1 (minus

edge (v1,v2)) is drawn with slopes +1.
Ok

Shift method

Algorithm invariants/constraints:

(1 is drawn such that

B v ison (0,0), vy is on (2k —4,0),

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B each edge of the boundary of G;_1 (minus

edge (v1,v2)) is drawn with slopes +1.
Ok

- ~
lf’ /”II \\\ ~ -
’ ~ ~
’ 7’ 11V R ~
‘ A DN
4 v 1 \ ~ ~
’ ¢ ¢+ 1 v M N
VR AN (N TR \
U 1 \ v \\
\ | DI Y
\ 1
\
1 1

Shift method

Algorithm invariants/constraints:

Gj_1 i1s drawn such that

B v ison (0,0), vy is on (2k —4,0),

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B each edge of the boundary of G;_1 (minus
edge (v1,v2)) is drawn with slopes +1.

’—.QN
- ’/Il\\x

Overlaps!

Shift method

Algorithm invariants/constraints:

Gj_1 i1s drawn such that

B v ison (0,0), vy is on (2k —4,0),

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B each edge of the boundary of G;_1 (minus
edge (v1,v2)) is drawn with slopes +1.

-9
- ,,“\\N

Overlaps!

What is the solution?

Shift method

Algorithm invariants/constraints:

(1 is drawn such that

B vy ison (0,0), vpison (2k—4,0),

B boundary of G;_; (minus edge (v1,v2)) is
drawn Xx-monotone,

B each edge of the boundary of G;_1 (minus

edge (v1,v2)) is drawn with slopes +1.
Ok

What is the solution?

Shift method

Algorithm invariants/constraints:

(1 is drawn such that

B vy ison (0,0), vpison (2k—4,0),

B boundary of G;_; (minus edge (v1,v2)) is
drawn Xx-monotone,

B each edge of the boundary of G;_1 (minus

edge (v1,v2)) is drawn with slopes +1.
Ok

What is the solution?

Shift method

Algorithm invariants/constraints:

(1 is drawn such that

B vy ison (0,0), vpison (2k—4,0),

B boundary of G;_; (minus edge (v1,v2)) is
drawn Xx-monotone,

B each edge of the boundary of G;_1 (minus

edge (v1,v2)) is drawn with slopes +1.
Ok

What is the solution?

Shift method

Algorithm invariants/constraints:

Gj_1 i1s drawn such that

B v ison (0,0), vy is on (2k —4,0),

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B each edge of the boundary of G;_1 (minus
edge (v1,v2)) is drawn with slopes +1.

Shift method

\\ _’. N
\ AN
N T\
N\ N\
N N

B Why is vy on grid?

Algorithm invariants/constraints:

Gj_1 i1s drawn such that

B v ison (0,0), vy is on (2k —4,0),

B boundary of G;_; (minus edge (v1,v2)) is
drawn x-monotone,

B each edge of the boundary of G;_1 (minus
edge (v1,v2)) is drawn with slopes +1.

- 10

Shift method

\\ _’. N
\ AN
N T\
N\ N\
N N

B Why is vy on grid?

Algorithm invariants/constraints:
Gj_1 i1s drawn such that

B vy ison (0,0), vpison (2k—4,0),

B boundary of G;_; (minus edge (v1,v2)) is

drawn x-monotone,

B each edge of the boundary of G;_1 (minus

edge (v1,v2)) is drawn with slopes

Ok

1.

- 11

Shift method

Shift method

B u; and u; 1 consecutive on the outerface of G, 1

10 -

Shift method

'Lemma.
Every two vertices on the outerface of (5, have even Manhattan distance.

7

B u; and u;, 1 consecutive on the outerface of G, 4
i Uit1
dy; dy;
) Uit Uj _

dxi dxi

Shift method

'Lemma.
Every two vertices on the outerface of (5, have even Manhattan distance.

& 7

B u; and u;, 1 consecutive on the outerface of G, 4
M ”i_+1
d(ui, uit1) = [dx;| + |dy;| even
d]/i d]/z \dxi\ T ’d]/z‘ even
} Uit Uj _

dxi dxi

Shift method

'Lemma.
Every two vertices on the outerface of (5, have even Manhattan distance.

& 7

B u; and u;, 1 consecutive on the outerface of G, 4
i Uit1
d(ui, uit1) = [dx;| + |dy;| even
d]/i dyz \dxi\ T ’d]/z‘ even
Ui+l Ui
dxi dxi

B u;, u;.y on the outerface of G, 1

Shift method

Lemma.)
Every two vertices on the outerface of (5, have even Manhattan distance.
B u; and u;, 1 consecutive on the outerface of G, 4
i Uit1
d(ui, uit1) = [dx;| + |dy;| even
d]/i dyz \dxi\ T ’dyl‘ even
Ui+l Ui
dxi dxi

B u;, u;.y on the outerface of G, 1

/—1
d(ui,Ug) = 2 \dx]] —I—)\]‘dy]‘,/\] = 11 even
1

]:

Shift method

Lemma.

Every two vertices on the outerface of (5, have even Manhattan distance.

7

d(ui, uit1) = [dx;| + |dy;| even

dx;| 5

B u; and u;, 1 consecutive on the outerface of G, 4
i Uit1
dy; dy;
- Uit Uj i
dxi dxi

B u;, u;.y on the outerface of G, 1
(—1

d(u;, uy) = Z \dx]] —I—)\]‘dy]l,/\] — =
j=i

-1 even

- |dy;| even

Ax+Ay
2) <:L_L
L " ’s’

S @

Ay

Ax

Shift method — example

PRIV

E\\
SR
12

Shift method — example

PRIV

E\“
SR
12

AN

Shift method — example

PRIV

E\“
SR

A&»H
1

Shift method — example

PRIV

E\\
SR

'S .

Y 7’

\N 7

v

7 N

4 A
N
A
A

Shift method — example

PRIV

E\\
SR

A

Shift method — example

PRIV

E\“
AN
12

A

Shift method — example

PRIV

E\\
AN
12

. .

N /7

\ 7

<

N

4 N
N
Y
N
A
N
A

Shift method — example

PRIV

E\\
AN
12

A

Shift method — example

PRIV

E\\
SR
12

AN

REK)
11

Shift method — example

PRIV

E\\
SR
12

S !

N .

N

<

LSRN

4 N
N
N
N
N
N
N
s
\
Q

Shift method — example

PRIV

E\\
SR
12

A

Shift method — example

PRIV

E\\
SRR

2

Shift method — example

PRIV

E\“
SRR

Shift method — example

PRIV

E\\
SRR

2N

Shift method — example

PRIV

E\\
R
12

%&

02
=11

Shift method — example

PRIV

E\\
R
12

Shift method — example

PRIV

E\“
R
12

VAN

Shift method — example

PRIV

E\\
SR
12

&

NN

Shift method — example

PRIV

E\\
SRR
12

Shift method — example

PRIV

E\“
SR
12

=N

Shift method — example

PRIV

E\
AN
12

Lo

42
11

Shift method — example

PRIV

!\
AN
12

S .

N ’

.~ 7

£

SIS

’ AN
’ .
’ AN
’ AN
N
AN
AN
N
AN
N

Shift method — example

PRIV

%‘x\\
N

Shift method — example

PRIV

R
N
A’ﬁ%

Shift method — example

PRIV

E\\
SR
12

Shift method — example

PRIV

E».\.\
N

Shift method — example

PRIV

A
&a

Shift method — example

PRIV

}\\
A
N

Shift method — example

PRIV

%\\
N

Shift method — example

PRIV

&

Shift method — example

abha arhiva
A

Shift method — example

PRIV

Eg\
QN

Shift method — example

PRIV

-‘«.}\\
N .
A N

\

11

Shift method — example

e sl
"‘-N
N

Shift method — example

PRIV

Q\A\
AN

Shift method — example

PRI MN@
-%\
N

A2

-1 Ly 42

Shift method — example

VAV N
7

Shift method — example

PRIV

.}‘\
BYAN

Shift method — example

PRIV

160

v

SR

Shift method — example

PRIV

AN

10

Shift method — example

PRIV

SR

Shift method — example

PRIV

y\\
SR
%&

Shift method — example

PRIV

&

Shift method — example

PRIV

A

L+1 Lyl -2

Shift method — example

‘4)\ Which internal nodes are shifted?
AN

L+1)

Shift method — example

PRIV

Which internal nodes are shifted?

B An internal node shifts with
Its covering outer vertex

B Define covering

Shift method — dominating

13 -

Shift method — dominating

13 -

Shift method — dominating

Observations.

B Each internal vertex is covered exactly once.
B Covering relation defines a tree in G

M andaforestin G;, 1 <i1<n-—1.

13 -

Shift method — dominating

Observations.

B Each internal vertex is covered exactly once.
B Covering relation defines a tree in G

M andaforestin G;, 1 <i1<n-—1.

13 -

Shift method — dominating

Observations.

B Each internal vertex is covered exactly once.
B Covering relation defines a tree in G

M andaforestin G;, 1 <i1<n-—1.

13 -

Shift method — dominating

Observations.

B Each internal vertex is covered exactly once.
B Covering relation defines a tree in G

M andaforestin G;, 1 <i1<n-—1.

13 -

Shift method — dominating

'Definition.
L(w;) is the set of vertices covered by w;
L(w;) is the subtree of the covering tree rooted at w;

Observations.

B Each internal vertex is covered exactly once.
B Covering relation defines a tree in G

M andaforestin G;, 1 <i1<n-—1.

13 -

Shift method — example

PRIV

E\
AN
12

Lo

42
11

Shift method — example

PRIV

!\
AN
12

S .

N ’

.~ 7

£

SIS

’ AN
’ .
’ AN
’ AN
N
AN
AN
N
AN
N

Shift method — example

PRIV

%\x\\
N

Shift method — example

PRIV

R
N
A{%

Shift method — example

PRIV

E\\
SR
12

Shift method — example

PRIV

E».\.\
N

Shift method — example

PRIV

A
&a

Shift method — example

PRIV

}\\
A
N

Shift method — example

PRIV

%\\
N

Shift method — example

PRIV

&

Shift method — example

abha arhiva
A

Shift method — example

PRIV

Eg\
y \ L(13)

Shift method — example

PRIV

-‘«.}\\
N .
A N

\

11

Shift method — example

e sl
"‘-N
N

Shift method — example

PRIV

Q\A\
by \ L(14)

Shift method — example

PRI MM
-%\
N

A3

-1 Ly 42

Shift method — example

VAV N
7

Shift method — example

PRIV

.}‘\
y \ L(15)

Shift method — example

PRIV

160

v

SR

Shift method — example

PRIV

AN

10

Shift method — example

PRIV

‘4\\ L(16)
SR

Shift method — example

PRIV

y\\
SR
%&

Shift method — planarity

Observations.

B Each internal vertex is covered exactly once.
B Covering relation defines a tree in G

M andaforestin G;, 1 <i1<n-—1.

15 -

Shift method — planarity

‘Lemma. Let 0 < 01 <09 < --- <9 €N, such
that 0, — 0y > 2 and even.

If we shift L(w;) by é; to the right, we get a planar
\straight—line drawing.)

~\

Observations.
B Each internal vertex is covered exactly once.

B Covering relation defines a tree in G
M andaforestin G;, 1 <i1<n-—1.

15 -

Shift method — planarity

‘Lemma. Let 0 < 01 <09 < --- <9 €N, such
that 0, — 0y > 2 and even.

If we shift L(w;) by é; to the right, we get a planar
kstraig.;;ht—line drawing.)

\

Proof by induction:
If Gj_1 straight-line planar, then also Gy.

Observations.
B Each internal vertex is covered exactly once.

B Covering relation defines a tree in G
M andaforestin G;, 1 <i1<n-—1.

15 -

Shift method — pseudocode

Let v1, ..., v, be a canonical order of G
fori =1 to 3 do

| L(v;) < {vi}
P(v1) < (0,0); P(v2) < (2,0), P(v3) < (1,1)
for k =4 ton do

16 -

Shift method — pseudocode

Let v1, ..., v, be a canonical order of G
fori =1to 3 do

| L(v;) < {vi}
P(v1) < (0,0); P(v2) < (2,0), P(v3) < (1,1)
for k =4 to n do

Let w1 = 01, wo, ..., Wi_1, Wy = U denote the boundary of Gj_1
and let Wy, . .1. , Wg be the neighbours of vy

q— .
for Vv € U].:PHL(w]) do

| x(v) + x(v) +1

for Vv € U?ZqL(w]-) do

| x(v) + x(v) 42

P(vy) < intersection of 4+1/—1 edges from P(w,) and P(wy)

L(og) Uy, L(w)) U {og}

16 -

Shift method — pseudocode

Let v1, ..., v, be a canonical order of G
fori =1to 3 do

| L(v;) < {vi}
P(v1) < (0,0); P(v2) < (2,0), P(v3) < (1,1)
for k =4 to n do

Let w1 = 01, wo, ..., Wi_1, Wy = U denote the boundary of Gj_1
and let Wy, . .1. , Wg be the neighbours of vy
for Vo € UT " . L(w;) do .
j—p+1 L)) B Runtime O(n?)

| x(0) « x(v) +1 B Can we do better?
for Vv € U?ZqL(w]-) do

| x(v) + x(v) 42

P(vy) < intersection of 4+1/—1 edges from P(w,) and P(wy)

L(og) Uy, L(w)) U {og}

16 -

17 -1

Shift method — linear time implementation

Idea:

B Instead of storing explicit x-coordinates,
we store x differences.

B We need a spanning tree rooted at vy

17 -2

Shift method — linear time implementation

Idea:

B Instead of storing explicit x-coordinates,
we store x differences.

B We need a spanning tree rooted at vy

17 -3

Shift method — linear time implementation

Idea:
B Instead of storing explicit x-coordinates,
we store x differences. Wp+l wyq
. Wy W
B We need a spanning tree rooted at vy
Outerface of G;_ w2
ol Gi—1 Wr_1
B at w; store Ax(w;) = x(w;) — x(w;_1) root

17 - 4

Shift method — linear time implementation

Idea:
B Instead of storing explicit x-coordinates,
we store x differences. Wp+l wyq
. Wy W
B We need a spanning tree rooted at vy
Outerface of G;_ w2
ol Gi—1 Wr_1
B at w; store Ax(w;) = x(w;) — x(w;_1) root

17 -5

Shift method — linear time implementation

Idea:

B Instead of storing explicit x-coordinates,
we store x differences.

B We need a spanning tree rooted at vy

Outerface of G;_1
B at w; store Ax(w;) = x(w;) — x(w;_1)

Adding vy

17 -6

Shift method — linear time implementation

Idea:

B Instead of storing explicit x-coordinates,
we store x differences.

B We need a spanning tree rooted at vy

Outerface of G;_1

B at w; store Ax(w;) = x(w;) — x(w;_1) root

wp o\ N

B Shifting is performed by increasing Ax(w,41) and Ax(w,)

Adding vy

17 -7

Shift method — linear time implementation

Idea:

B Instead of storing explicit x-coordinates,
we store x differences.

B We need a spanning tree rooted at vy

Outerface of G;_1

B at w; store Ax(w;) = x(w;) — x(w;_1)

Adding vy
B Shifting is performed by increasing Ax(w,41) and Ax(w,)
B x(vg) depends on x(w,) and x(wy)

17 -8

Shift method — linear time implementation

Idea:

B Instead of storing explicit x-coordinates,
we store x differences.

B We need a spanning tree rooted at vy

Outerface of G;_1

B at w; store Ax(w;) = x(w;) — x(w;_1)

Adding vy

B Shifting is performed by increasing Ax(w,41) and Ax(w,)
B x(vx) depends on x(w,) and x(w,)

B x(vg) as x difference from w),

17-9

Shift method — linear time implementation

Idea:

B Instead of storing explicit x-coordinates,
we store x differences.

B We need a spanning tree rooted at vy

Outerface of G;_1

B at w; store Ax(w;) = x(w;) — x(w;_1)

Adding vy

B Shifting is performed by increasing Ax(w,41) and Ax(w,)
B x(vx) depends on x(w,) and x(w,)

B x(vg) as x difference from w),

B x(wy) as x difference from v

17 - 10

Shift method — linear time implementation

Idea:

B Instead of storing explicit x-coordinates,
we store x differences.

B We need a spanning tree rooted at vy

Outerface of G;_1

B at w; store Ax(w;) = x(w;) — x(w;_1)

Adding vy

Shifting is performed by increasing Ax(w,41) and Ax(wy)
x(vx) depends on x(wy) and x(wy)

x(vg) as x difference from w,

x(wgy) as x difference from vy

Wp41 covered by vy

— x(wp41) as x difference from x(vy)

17 - 11

Shift method — linear time implementation

Idea:

B Instead of storing explicit x-coordinates,
we store x differences.

B We need a spanning tree rooted at vy

Outerface of G;_1

B at w; store Ax(w;) = x(w;) — x(w;_1)

Adding vy

Shifting is performed by increasing Ax(w,
x(vx) depends on x(wy) and x(wy)
x(vg) as x difference from w,

x(wgy) as x difference from vy

Wp41 covered by vy

— x(wp41) as x difference from x(vy)

Shift method — linear time implementation

B Step 1. computex(v;) and y(vy)

Shift method — linear time implementation

B Step 1. computex(v;) and y(vy)

Shift method — linear time implementation

B Step 1. computex(v;) and y(vy)
B Step 1 revised. compute x(vy) — x(w,) and y(vy)

Shift method — linear time implementation

B Step 1. computex(v;) and y(vy)
B Step 1 revised. compute x(vy) — x(w,) and y(vy)

Shift method — linear time implementation

B Step 1. computex(v;) and y(vy)
B Step 1 revised. compute x(vy) — x(w,) and y(vy)

x(w0y) —x(wp)
(1) x(or) = 5(x(wy) +x(wp) +y(wy) —y(wp))
(2) y(or) = 5 (x(0,) = x(wy) + y(wy) +y(wy))
(3) x(ox) — x(wy) = 5 (@(0) = x(wp) +y(w,) —y(wp))

Shift method — linear time implementation

B Step 1. computex(v;) and y(vy)
B Step 1 revised. compute x(vy) — x(w,) and y(vy)

Step 2- Calculations.
B Ax(wpy1)++, Ax(w,)++

x(w0y) —x(wp)
(1) x(or) = 5(x(wy) +x(wp) +y(wy) —y(wp))
(2) y(or) = 5 (x(0,) = x(wy) + y(wy) +y(wy))
(3) x(ox) — x(wy) = 5 (@(0) = x(wp) +y(w,) —y(wp))

Shift method — linear time implementation

B Step 1. computex(v;) and y(vy)
B Step 1 revised. compute x(vy) — x(w,) and y(vy)

Step 2- Calculations.
O Ax(wp+1)++, Ax(w,)++
B x(w,) = x(wy) = Ax(wpi1) + ...+ Ax(wg) Wy

x(w0y) —x(wp)
(1) x(or) = 5(x(wy) +x(wp) +y(wy) —y(wp))
(2) y(or) = 5 (x(0,) = x(wy) + y(wy) +y(wy))
(3) x(ox) — x(wy) = 5 (@(0) = x(wp) +y(w,) —y(wp))

Shift method — linear time implementation

B Step 1. computex(v;) and y(vy)
B Step 1 revised. compute x(vy) — x(w,) and y(vy)

Step 2- Calculations.

B Ax(wyqq)++, Ax(w,)++
B x(w,) = x(wp) = Ax(wps1) + ...+ Ax(wy) Wy
B Ax(vi) by (3)

x(w0y) —x(wp)
(1) x(or) = 5(x(wy) +x(wp) +y(wy) —y(wp))
(2) y(or) = 5 (x(0,) = x(wy) + y(wy) +y(wy))
(3) x(ox) — x(wy) = 5 (@(0) = x(wp) +y(w,) —y(wp))

Shift method — linear time implementation

B Step 1. computex(v;) and y(vy)
B Step 1 revised. compute x(vy) — x(w,) and y(vy)

Step 2- Calculations.
B Ax(wyqq)++, Ax(w,)++
B x(w,) = x(wp) = Ax(wps1) + ...+ Ax(wy) Wy
B Ax(vi) by (3)
m Ax(w,) = ¥(Wy) = 2(wp) — Ax(vy)

z

x(w0y) —x(wp)
(1) x(or) = 5(x(wy) +x(wp) +y(wy) —y(wp))
(2) y(or) = 5 (x(0,) = x(wy) + y(wy) +y(wy))
(3) x(ox) — x(wy) = 5 (@(0) = x(wp) +y(w,) —y(wp))

Shift method — linear time implementation

B Step 1. computex(v;) and y(vy)
B Step 1 revised. compute x(vy) — x(w,) and y(vy)

Step 2- Calculations.

B Ax(wyqq)++, Ax(w,)++
B x(w,) = x(wp) = Ax(wps1) + ...+ Ax(wy) Wy
B Ax(vi) by (3)

B Ax(wg) = x(Wy) = x(wp) — Ax(vy)
B Ax(wpy1) = Ax(wpy1) — Ax(vg)
x(wy) — x(wp)
(1) x(vp) = 5 (x(wy) +x(wp) +y(wy) —y(wp))
(2) y(or) = 5 (x(0) = x(wy) +y(w,) + y(wy))
(3) x(vp) — x(wp) = 5 (x(W0y) = x(wy) + y(w;) — y(wp))

Shift method — linear time implementation

B Step 1. computex(v;) and y(vy)
B Step 1 revised. compute x(vy) — x(w,) and y(vy)

Step 2- Calculations.

B Ax(wyqq)++, Ax(w,)++
B x(w,) = x(wp) = Ax(wps1) + ...+ Ax(wy) Wy
B Ax(vi) by (3)

B Ax(wy) = x(Wy) = x(Wp) — Ax(v)
B Ax(wyq1) = Ax(wpi1) — Ax(vg)
m y(o) by (2) x(wg) — x(wy)
(1) x(or) = 5(x(wy) +x(wp) +y(wy) —y(wp))
(2) y(or) = 5 @) =x(wp) +y(w,) +y(wy))
— (+

Shift method — linear time implementation

B Step 1. computex(v;) and y(vy)
B Step 1 revised. compute x(vy) — x(w,) and y(vy)

Step 2- Calculations.

B Ax(wyqq)++, Ax(w,)++
B x(w,) —x(wy) = Ax(wPH) + ...+ Ax(w,) wo
B Ax(vg) by (3)

m Ax(w,) = x(wy) = x(wp) — Ax(vi)
B Ax(wyq1) = Ax(wpi1) — Ax(vg)
m y(o) by (2) x(wg) — x(wy)
After v,, use preord.er traversal (1) x(v)) = %(x()+ x(w,) +y(w0,) — y(w,))
to COmpUte x-coordinates 1
(2) y(v) = 5 (x(0) = x(wp) +y(wy) +y(wp))
(3) x(vp) — x(wp) = 3 (x(0) = x(wp) +y(wy) —y(wy))

| iterature

B [dFPP90] de Fraysseix, Pach, Pollack "How to draw a planar graph on a
grid”, Combinatorica, 1990

19

	Canonical order
	Definition

	Constraints
	Constraints
	Height
	Height
	Constraints
	Shift method
	Shift method
	Example
	Example
	Planarity
	Example
	Planarity
	Pseudocode
	Linear time implementation
	Linear time implementation

	Literature

