
1

Visualisation of graphs

Canonical order
Planar straight-line drawings

+2+1

Antonios Symvonis · Chrysanthi Raftopoulou
Fall semester 2022

The original slides of this presentation were created by researchers at Karlsruhe Institute of Technology (KIT), TU Wien, U Wuerzburg, U Konstanz, ...
The original presentation was modified/updated by A. Symvonis and C. Raftopoulou

2 - 1

Motivation

■ So far we looked at planar and straight-line drawings
of trees and series-parallel graphs.

2 - 2

Motivation

■ So far we looked at planar and straight-line drawings
of trees and series-parallel graphs.

■ Why straight-line? Why planar?

2 - 3

Motivation

■ So far we looked at planar and straight-line drawings
of trees and series-parallel graphs.

■ Why straight-line? Why planar?

■ Bennett, Ryall, Spaltzeholz and Gooch, 2007
“The Aesthetics of Graph Visualization”

2 - 4

Motivation

■ So far we looked at planar and straight-line drawings
of trees and series-parallel graphs.

■ Why straight-line? Why planar?

■ Bennett, Ryall, Spaltzeholz and Gooch, 2007
“The Aesthetics of Graph Visualization”

■ crossings reduce readability

■ bends reduce readability

3 - 1

Planar graphs

■ Characterisation: A graph is planar iff it contains neither a K5 nor a K3,3 minor.
[Kuratowski 1930, Wagner 1936]

3 - 2

Planar graphs

■ Characterisation: A graph is planar iff it contains neither a K5 nor a K3,3 minor.
[Kuratowski 1930, Wagner 1936]

3 - 3

Planar graphs

■ Characterisation: A graph is planar iff it contains neither a K5 nor a K3,3 minor.
[Kuratowski 1930, Wagner 1936]

3 - 4

Planar graphs

■ Characterisation: A graph is planar iff it contains neither a K5 nor a K3,3 minor.
[Kuratowski 1930, Wagner 1936]

3 - 5

Planar graphs

■ Characterisation: A graph is planar iff it contains neither a K5 nor a K3,3 minor.
[Kuratowski 1930, Wagner 1936]

3 - 6

Planar graphs

■ Characterisation: A graph is planar iff it contains neither a K5 nor a K3,3 minor.
[Kuratowski 1930, Wagner 1936]

3 - 7

Planar graphs

■ Characterisation: A graph is planar iff it contains neither a K5 nor a K3,3 minor.
[Kuratowski 1930, Wagner 1936]

3 - 8

Planar graphs

■ Characterisation: A graph is planar iff it contains neither a K5 nor a K3,3 minor.
[Kuratowski 1930, Wagner 1936]

3 - 9

Planar graphs

■ Characterisation: A graph is planar iff it contains neither a K5 nor a K3,3 minor.
[Kuratowski 1930, Wagner 1936]

■ Recognition: For a graph G with n vertices, there is an O(n) time algorithm to
test if G is planar. [Hopcroft & Tarjan 1974]
■ Also computes an embedding in O(n).

4 - 1

Planar graphs

■ Embedding of planar graph:
■ clockwise circular order of the edges incident to each vertex
■ outerface (clockwise order of edges)

4 - 2

Planar graphs

■ Embedding of planar graph:
■ clockwise circular order of the edges incident to each vertex
■ outerface (clockwise order of edges)

1

2

3
4

5
6

4 - 3

Planar graphs

■ Embedding of planar graph:
■ clockwise circular order of the edges incident to each vertex
■ outerface (clockwise order of edges)

1

2

3
4

5
6

■ Edges:
1 : {(1, 5), (1, 2), (1, 3)}
2 : {(2, 1), (2, 5), (2, 3)}
3 : {(3, 1), (3, 2), (3, 5), (3, 4), (3, 6)}
4 : {(4, 3), (4, 5)}
5 : {(5, 6), (5, 4), (5, 3), (5, 2), (5, 1)}
6 : {(6, 3), (6, 5)}

1

2

3

5

4 - 4

Planar graphs

■ Embedding of planar graph:
■ clockwise circular order of the edges incident to each vertex
■ outerface (clockwise order of edges)

1

2

3
4

5
6

■ Edges:
1 : {(1, 5), (1, 2), (1, 3)}
2 : {(2, 1), (2, 5), (2, 3)}
3 : {(3, 1), (3, 2), (3, 5), (3, 4), (3, 6)}
4 : {(4, 3), (4, 5)}
5 : {(5, 6), (5, 4), (5, 3), (5, 2), (5, 1)}
6 : {(6, 3), (6, 5)}

4 - 5

Planar graphs

■ Embedding of planar graph:
■ clockwise circular order of the edges incident to each vertex
■ outerface (clockwise order of edges)

1

2

3
4

5
6

■ Edges:
1 : {(1, 5), (1, 2), (1, 3)}
2 : {(2, 1), (2, 5), (2, 3)}
3 : {(3, 1), (3, 2), (3, 5), (3, 4), (3, 6)}
4 : {(4, 3), (4, 5)}
5 : {(5, 6), (5, 4), (5, 3), (5, 2), (5, 1)}
6 : {(6, 3), (6, 5)}

■ Outerface:
1 : {(1, 3), (3, 6), (6, 5), (5, 1)}

5 - 1

Planar graphs

■ Straight-line drawing: Every planar graph has an embedding where the edges
are straight-line segments. [Wagner 1936, Fáry 1948, Stein 1951]
■ The algorithms implied by this theory produce drawings with area not bounded

by any polynomial on n.

5 - 2

Planar graphs

■ Straight-line drawing: Every planar graph has an embedding where the edges
are straight-line segments. [Wagner 1936, Fáry 1948, Stein 1951]
■ The algorithms implied by this theory produce drawings with area not bounded

by any polynomial on n.

■ Coin graph: Every planar graph is a circle contact graph
(implies straight-line drawing). [Koebe 1936]

5 - 3

Planar graphs

■ Straight-line drawing: Every planar graph has an embedding where the edges
are straight-line segments. [Wagner 1936, Fáry 1948, Stein 1951]
■ The algorithms implied by this theory produce drawings with area not bounded

by any polynomial on n.

■ Every 3-connected planar graph has an embedding with convex polygons as its
faces (i.e., implies straight lines). [Tutte 1963: How to draw a graph]
■ Idea: Place vertices in the barycentre of neighbours.
■ Drawback: Requires large grids.

■ Coin graph: Every planar graph is a circle contact graph
(implies straight-line drawing). [Koebe 1936]

6 - 1

Planar graphs

■ Coin graph:
Exponential area

6 - 2

Planar graphs

■ Coin graph:
Exponential area

6 - 3

Planar graphs

■ Coin graph:
Exponential area

6 - 4

Planar graphs

■ Coin graph:
Exponential area

6 - 5

Planar graphs

■ Coin graph:
Exponential area

6 - 6

Planar graphs

■ Barycentric representation:
Exponential area

■ Coin graph:
Exponential area

6 - 7

Planar graphs

■ Barycentric representation:
Exponential area

■ Coin graph:
Exponential area

6 - 8

Planar graphs

■ Barycentric representation:
Exponential area

■ Coin graph:
Exponential area

6 - 9

Planar graphs

■ Barycentric representation:
Exponential area

■ Coin graph:
Exponential area

6 - 10

Planar graphs

■ Barycentric representation:
Exponential area

■ Coin graph:
Exponential area

6 - 11

Planar graphs

■ Barycentric representation:
Exponential area

■ Coin graph:
Exponential area

7 - 1

Planar graphs

■ Every planar graph has at most 3n− 6 edges
■ A planar triangulation is a planar graph with 3n− 6 edges

7 - 2

Planar graphs

■ Every planar graph has at most 3n− 6 edges
■ A planar triangulation is a planar graph with 3n− 6 edges

■ Properties of planar triangulations:

■ Every face is a triangle
■ graph is 3-connected
■ Unique embedding (up to choice of outerface)
■ Every plane graph is subgraph of a plane triangulation

7 - 3

Planar graphs

■ Every planar graph has at most 3n− 6 edges
■ A planar triangulation is a planar graph with 3n− 6 edges

with planar embedding

■ Properties of planar triangulations:

■ Every face is a triangle
■ graph is 3-connected
■ Unique embedding (up to choice of outerface)
■ Every plane graph is subgraph of a plane triangulation

7 - 4

Planar graphs

■ Every planar graph has at most 3n− 6 edges
■ A planar triangulation is a planar graph with 3n− 6 edges

with planar embedding

■ Properties of planar triangulations:

■ Every face is a triangle
■ graph is 3-connected
■ Unique embedding (up to choice of outerface)
■ Every plane graph is subgraph of a plane triangulation

7 - 5

Planar graphs

■ Every planar graph has at most 3n− 6 edges
■ A planar triangulation is a planar graph with 3n− 6 edges

■ We focus on triangulations:
■ A plane (inner) triangulation is a plane graph where

every (inner) face is a triangle.

with planar embedding

■ Properties of planar triangulations:

■ Every face is a triangle
■ graph is 3-connected
■ Unique embedding (up to choice of outerface)
■ Every plane graph is subgraph of a plane triangulation

1

2

3
4

5
6

8 - 1

Planar straight-line drawings

Goal:
For an n-vertex planar graph create a planar straight-line
drawing of size O(n2).

8 - 2

Planar straight-line drawings

Goal:
For an n-vertex planar graph create a planar straight-line
drawing of size O(n2).

Idea.
Create drawing incrementally by adding vertices

8 - 3

Planar straight-line drawings

Goal:
For an n-vertex planar graph create a planar straight-line
drawing of size O(n2).

Idea (refined).
■ Start with singe edge (v1, v2). Let this be G2.
■ To obtain Gi+1, add vi+1 to Gi so that

neighbours of vi+1 are on the outer face of Gi.
■ Neighbours of vi+1 in Gi have to form path of

length at least two. v1 v2

Idea.
Create drawing incrementally by adding vertices

8 - 4

Planar straight-line drawings

Goal:
For an n-vertex planar graph create a planar straight-line
drawing of size O(n2).

Idea (refined).
■ Start with singe edge (v1, v2). Let this be G2.
■ To obtain Gi+1, add vi+1 to Gi so that

neighbours of vi+1 are on the outer face of Gi.
■ Neighbours of vi+1 in Gi have to form path of

length at least two. v1 v2

Idea.
Create drawing incrementally by adding vertices

8 - 5

Planar straight-line drawings

Goal:
For an n-vertex planar graph create a planar straight-line
drawing of size O(n2).

Idea (refined).
■ Start with singe edge (v1, v2). Let this be G2.
■ To obtain Gi+1, add vi+1 to Gi so that

neighbours of vi+1 are on the outer face of Gi.
■ Neighbours of vi+1 in Gi have to form path of

length at least two. v1 v2

Idea.
Create drawing incrementally by adding vertices

vi+1

9 - 1

Canonical order – definition

Definition.
Let G = (V, E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:

■ (C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

■ (C2) Edge (v1, v2) belongs to the outer face of Gk.

■ (C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the boundary of Gk
consecutively.

9 - 2

Canonical order – definition

Definition.
Let G = (V, E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:

■ (C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

■ (C2) Edge (v1, v2) belongs to the outer face of Gk.

■ (C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the boundary of Gk
consecutively.

9 - 3

Canonical order – definition

Definition.
Let G = (V, E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:

■ (C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

■ (C2) Edge (v1, v2) belongs to the outer face of Gk.

■ (C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the boundary of Gk
consecutively.

9 - 4

Canonical order – definition

Definition.
Let G = (V, E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:

■ (C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

■ (C2) Edge (v1, v2) belongs to the outer face of Gk.

■ (C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the boundary of Gk
consecutively.

9 - 5

Canonical order – definition

Definition.
Let G = (V, E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:

■ (C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

■ (C2) Edge (v1, v2) belongs to the outer face of Gk.

■ (C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the boundary of Gk
consecutively.

Compute:

■ either {v3, v4, . . . vn} (adding vertices)

■ or {vn, vn−1, . . . v3} (removing vertices)

10 - 1

Canonical order – example

10 - 2

Canonical order – example

G16

v1 v2

10 - 3

Canonical order – example

G16

v1 v2

v16

10 - 4

Canonical order – example

G15

v1 v2

v16

10 - 5

Canonical order – example

v15
G15

v1 v2

v16

10 - 6

Canonical order – example

G14

v1 v2

v16

v15

10 - 7

Canonical order – example

v14

G14

v1 v2

v16

v15

10 - 8

Canonical order – example

G13

v1 v2

v16

v15
v14

10 - 9

Canonical order – example

G13

v1 v2

v16

v15
v13

v14

10 - 10

Canonical order – example

G12

v1 v2

v16

v15
v13

v14

10 - 11

Canonical order – example

chord

G13

v1 v2

v16

v15
v14

edge joining two
nonadjacent
vertices in a cycle

10 - 12

Canonical order – example

G13

v1 v2

v16

v15
v13

v14

10 - 13

Canonical order – example

G12

v16

v15
v13

v14

10 - 14

Canonical order – example

G12

v1 v2

v16

v15
v13

v14

v12

10 - 15

Canonical order – example

v1 v2

G11

v16

v15
v13

v14

v12

10 - 16

Canonical order – example

v1 v2

G11

v16

v15
v13

v14

v12 cutvertex

G11 is not
biconnected

10 - 17

Canonical order – example

G12

v1 v2

v16

v15
v13

v14
v12

10 - 18

Canonical order – example

G11

v1 v2

v16

v15
v13

v14
v12

10 - 19

Canonical order – example

v1 v2

G11

v1 v2

v16

v15
v13

v14
v12

v11

10 - 20

Canonical order – example

G10

v1 v2

v16

v15
v13

v14
v12

v11

10 - 21

Canonical order – example

G10

v1 v2

v16

v15
v13

v14
v12

v11
v10

10 - 22

Canonical order – example

G9

v1 v2

v16

v15
v13

v14
v12

v11
v10

10 - 23

Canonical order – example

G9

v1 v2

v16

v15
v13

v14
v12

v11
v10

v9

10 - 24

Canonical order – example

G8

v1 v2

v16

v15
v13

v14
v12

v11
v10

v9
v8

10 - 25

Canonical order – example

G7

v1 v2

v16

v15
v13

v14
v12

v11
v10

v9
v8 v7

10 - 26

Canonical order – example

G6

v1 v2

v16

v15
v13

v14
v12

v11
v10

v9
v8 v7

v6

10 - 27

Canonical order – example

G5

v1 v2

v16

v15
v13

v14
v12

v11
v10

v9
v8 v7

v6
v5

10 - 28

Canonical order – example

G4

v1 v2

v16

v15
v13

v14
v12

v11
v10

v9
v8 v7

v6
v5

v4

10 - 29

Canonical order – example

G3

v1 v2

v16

v15
v13

v14
v12

v11
v10

v9
v8 v7

v6
v5

v4
v3

10 - 30

Canonical order – example

v3
v7

v8

v9

v12
v13

v10
v11

v5
v4

v6

v1 v2

v16

v15
v14

11 - 1

Canonical order – existence

Lemma.
Every triangulated plane graph has a canonical order.

11 - 2

Canonical order – existence

■ Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions C1-C3 hold.

Proof.

Lemma.
Every triangulated plane graph has a canonical order.

11 - 3

Canonical order – existence

■ Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions C1-C3 hold.

■ Induction hypothesis: Vertices vn−1, . . . , vk+1 have been
chosen such that conditions C1-C3 hold for
k + 1 ≤ i ≤ n.

Proof.

Lemma.
Every triangulated plane graph has a canonical order.

11 - 4

Canonical order – existence

■ Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions C1-C3 hold.

■ Induction hypothesis: Vertices vn−1, . . . , vk+1 have been
chosen such that conditions C1-C3 hold for
k + 1 ≤ i ≤ n.

vk

Proof.

■ Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

11 - 5

Canonical order – existence

■ Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions C1-C3 hold.

■ Induction hypothesis: Vertices vn−1, . . . , vk+1 have been
chosen such that conditions C1-C3 hold for
k + 1 ≤ i ≤ n.

vk

Proof.

■ Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

11 - 6

Canonical order – existence

■ Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions C1-C3 hold.

■ Induction hypothesis: Vertices vn−1, . . . , vk+1 have been
chosen such that conditions C1-C3 hold for
k + 1 ≤ i ≤ n.

vk

v k
sh
ou
ld
no
t b

e

ad
jac
en
t t
o a

ch
ord

Proof.

■ Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

11 - 7

Canonical order – existence

■ Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions C1-C3 hold.

■ Induction hypothesis: Vertices vn−1, . . . , vk+1 have been
chosen such that conditions C1-C3 hold for
k + 1 ≤ i ≤ n.

vk

v k
sh
ou
ld
no
t b

e

ad
jac
en
t t
o a

ch
ord Have to show:

1. vk not adjacent to chord is
sufficient

2. Such vk exists

Proof.

■ Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.

12 - 1

Canonical order – existence

Claim 1. If vk is not adjacent to a
chord then removal of vk leaves the
graph biconnected.

12 - 2

Canonical order – existence

vkGk

v1 v2

Gk−1

Claim 1. If vk is not adjacent to a
chord then removal of vk leaves the
graph biconnected.

12 - 3

Canonical order – existence

v1 v2

Gk−1

Claim 1. If vk is not adjacent to a
chord then removal of vk leaves the
graph biconnected.

12 - 4

Canonical order – existence

vkGk

v1 v2

Gk−1

Claim 1. If vk is not adjacent to a
chord then removal of vk leaves the
graph biconnected.

12 - 5

Canonical order – existence

vkGk

v1 v2

Gk−1

Claim 1. If vk is not adjacent to a
chord then removal of vk leaves the
graph biconnected.

12 - 6

Canonical order – existence

vkGk

not triangulated

v1 v2

Gk−1

Claim 1. If vk is not adjacent to a
chord then removal of vk leaves the
graph biconnected.

12 - 7

Canonical order – existence

vkGk

not triangulated

v1 v2

Gk−1

Claim 1. If vk is not adjacent to a
chord then removal of vk leaves the
graph biconnected.

Gk

v1 v2

Claim 2.
There exists a vertex in Gk that is not
adjacent to a chord as choice for vk.

12 - 8

Canonical order – existence

vkGk

not triangulated

v1 v2

Gk−1

vk

Claim 1. If vk is not adjacent to a
chord then removal of vk leaves the
graph biconnected.

Gk

v1 v2

Claim 2.
There exists a vertex in Gk that is not
adjacent to a chord as choice for vk.

vertices with degree 2
exist in outerplanar graphs

12 - 9

Canonical order – existence

vkGk

not triangulated

v1 v2

Gk−1

vk

This completes proof of Lemma. □

Claim 1. If vk is not adjacent to a
chord then removal of vk leaves the
graph biconnected.

Gk

v1 v2

Claim 2.
There exists a vertex in Gk that is not
adjacent to a chord as choice for vk.

vertices with degree 2
exist in outerplanar graphs

13 - 1

Canonical order – implementation

Gk

v1 v2

■ chords of Gk belong to faces:

13 - 2

Canonical order – implementation

Gk

v1 v2

■ chords of Gk belong to faces:

■ f has two vertices on the outerface and
one internal

13 - 3

Canonical order – implementation

Gk

v1 v2

■ chords of Gk belong to faces:

■ f has two vertices on the outerface and
one internal

■ f has three vertices on the outerface
and at least two chords

13 - 4

Canonical order – implementation

Gk

v1 v2

■ chords of Gk belong to faces:

■ f has two vertices on the outerface and
one internal

■ f has three vertices on the outerface
and at least two chords

■ f has three consequtive vertices on the
outerface

13 - 5

Canonical order – implementation

Gk

v1 v2
■ chords are associated with separating faces
■ vk belongs to no separating faces *

■ chords of Gk belong to faces:

■ f has two vertices on the outerface and
one internal

■ f has three vertices on the outerface
and at least two chords

■ f has three consequtive vertices on the
outerface

13 - 6

Canonical order – implementation

Gk

v1 v2
■ chords are associated with separating faces
■ vk belongs to no separating faces *

* except for these vertices!

■ chords of Gk belong to faces:

■ f has two vertices on the outerface and
one internal

■ f has three vertices on the outerface
and at least two chords

■ f has three consequtive vertices on the
outerface

13 - 7

Canonical order – implementation

Gk

v1 v2
■ chords are associated with separating faces
■ vk belongs to no separating faces *

■ fout = current outerface
■ F(v) = faces that contain v
■ F(e) = faces that contain e
■ outV(f) = # vertices of f on fout
■ outE(f) = # edges of f on fout
■ sepF(v) = # separation faces that

contain v

* except for these vertices!

13 - 8

Canonical order – implementation

Gk

v1 v2
■ chords are associated with separating faces
■ vk belongs to no separating faces *

■ fout = current outerface
■ F(v) = faces that contain v
■ F(e) = faces that contain e
■ outV(f) = # vertices of f on fout
■ outE(f) = # edges of f on fout
■ sepF(v) = # separation faces that

contain v

* except for these vertices!

13 - 9

Canonical order – implementation

Gk

v1 v2
■ chords are associated with separating faces
■ vk belongs to no separating faces *

f ∈ F(v) is separating iff
■ outV(f)=3 or
■ outV(f)=2 and outE(f)=0

■ fout = current outerface
■ F(v) = faces that contain v
■ F(e) = faces that contain e
■ outV(f) = # vertices of f on fout
■ outE(f) = # edges of f on fout
■ sepF(v) = # separation faces that

contain v

* except for these vertices!

14 - 1

Canonical order – implementation

■ fout = current outerface
■ F(v) = faces that contain v
■ F(e) = faces that contain e
■ outV(f) = # vertices of f on fout
■ outE(f) = # edges of f on fout
■ sepF(v) = # separation faces that

contain v

14 - 2

Canonical order – implementation

Algorithm CanonicalOrder- Initialization

forall v ∈ V do
sepF(v) ← 0;

forall f ∈ F do
outV(f), outE(f) ← 0;

forall v ∈ fout do
forall f ∈ F(v): f ̸= fout do

outV(f)++;

forall e ∈ fout do
forall f ∈ F(e): f ̸= fout do

outE(f)++;

■ fout = current outerface
■ F(v) = faces that contain v
■ F(e) = faces that contain e
■ outV(f) = # vertices of f on fout
■ outE(f) = # edges of f on fout
■ sepF(v) = # separation faces that

contain v

14 - 3

Canonical order – implementation

Algorithm CanonicalOrder- Initialization

forall v ∈ V do
sepF(v) ← 0;

forall f ∈ F do
outV(f), outE(f) ← 0;

forall v ∈ fout do
forall f ∈ F(v): f ̸= fout do

outV(f)++;

forall e ∈ fout do
forall f ∈ F(e): f ̸= fout do

outE(f)++;

■ fout = current outerface
■ F(v) = faces that contain v
■ F(e) = faces that contain e
■ outV(f) = # vertices of f on fout
■ outE(f) = # edges of f on fout
■ sepF(v) = # separation faces that

contain v

14 - 4

Canonical order – implementation

Algorithm CanonicalOrder- Initialization

forall v ∈ V do
sepF(v) ← 0;

forall f ∈ F do
outV(f), outE(f) ← 0;

forall v ∈ fout do
forall f ∈ F(v): f ̸= fout do

outV(f)++;

forall e ∈ fout do
forall f ∈ F(e): f ̸= fout do

outE(f)++;

forall v ∈ fout do
forall f ∈ F(v): f ̸= fout do

if outV(f)=3 or outV(f)=2
and outE(f)=0 then

sepF(v)++;

■ fout = current outerface
■ F(v) = faces that contain v
■ F(e) = faces that contain e
■ outV(f) = # vertices of f on fout
■ outE(f) = # edges of f on fout
■ sepF(v) = # separation faces that

contain v

15 - 1

Canonical order – implementation

Remove degree 2 vertex vk ■ fout = current outerface
■ F(v) = faces that contain v
■ F(e) = faces that contain e
■ outV(f) = # vertices of f on fout
■ outE(f) = # edges of f on fout
■ sepF(v) = # separation faces that

contain v

Gk

v1 v2

wi−1
wi+1f1

f2

vk

15 - 2

Canonical order – implementation

Remove degree 2 vertex vk ■ fout = current outerface
■ F(v) = faces that contain v
■ F(e) = faces that contain e
■ outV(f) = # vertices of f on fout
■ outE(f) = # edges of f on fout
■ sepF(v) = # separation faces that

contain v

Gk

v1 v2

■ vk and f1 are removed
■ outE(f2) increases by one
■ sepF(wi−1) decreases by one
■ sepF(wi+1) decreases by one

wi−1
wi+1f1

f2

vk

15 - 3

Canonical order – implementation

Remove degree 2 vertex vk ■ fout = current outerface
■ F(v) = faces that contain v
■ F(e) = faces that contain e
■ outV(f) = # vertices of f on fout
■ outE(f) = # edges of f on fout
■ sepF(v) = # separation faces that

contain v

Gk

v1 v2

■ vk and f1 are removed
■ outE(f2) increases by one
■ sepF(wi−1) decreases by one
■ sepF(wi+1) decreases by one

wi−1
wi+1f1

f2

■ if f2 has outV(f2)=2,
f2 is not a separating face
■ sepF(wi−1) decreases by one
■ sepF(wi+1) decreases by one

vk

16 - 1

Canonical order – implementation

Remove vk with sepF(vk)= 0 ■ fout = current outerface
■ F(v) = faces that contain v
■ F(e) = faces that contain e
■ outV(f) = # vertices of f on fout
■ outE(f) = # edges of f on fout
■ sepF(v) = # separation faces that

contain v

Gk

v1 v2

wp−1
wq+1

vk

wi

fi
f ′i

■ face fi contains edge (wi−1,wi)
of the outerface of Gk−1

■ face f ′i contains edges of wi that
are in the interior of Gk−1

16 - 2

Canonical order – implementation

Remove vk with sepF(vk)= 0 ■ fout = current outerface
■ F(v) = faces that contain v
■ F(e) = faces that contain e
■ outV(f) = # vertices of f on fout
■ outE(f) = # edges of f on fout
■ sepF(v) = # separation faces that

contain v

Gk

v1 v2

■ vk and faces that contain vk are removed
■ outV(fi) increases by two, p + 1 ≤ i ≤ q
■ outV(fp), outV(fq+1) increases by one
■ outV(f ′i) incrases by one, p ≤ i ≤ q
■ outE(fi) increases by one, p ≤ i ≤ q + 1

wp−1
wq+1

vk

wi

fi
f ′i

■ face fi contains edge (wi−1,wi)
of the outerface of Gk−1

■ face f ′i contains edges of wi that
are in the interior of Gk−1

16 - 3

Canonical order – implementation

Remove vk with sepF(vk)= 0 ■ fout = current outerface
■ F(v) = faces that contain v
■ F(e) = faces that contain e
■ outV(f) = # vertices of f on fout
■ outE(f) = # edges of f on fout
■ sepF(v) = # separation faces that

contain v

Gk

v1 v2

■ vk and faces that contain vk are removed
■ outV(fi) increases by two, p + 1 ≤ i ≤ q
■ outV(fp), outV(fq+1) increases by one
■ outV(f ′i) incrases by one, p ≤ i ≤ q
■ outE(fi) increases by one, p ≤ i ≤ q + 1

wp−1
wq+1

■ if fior f ′i becomes separating

■ increase sepF(u) by one for all its
vertices u

vk

wi

fi
f ′i

■ face fi contains edge (wi−1,wi)
of the outerface of Gk−1

■ face f ′i contains edges of wi that
are in the interior of Gk−1

17 - 1

Canonical order – implementation

Algorithm CanonicalOrder
initialize;
for k = n to 3 do

choose vk ̸= v1, v2 such that
– sepf(v)=0 or
– or F(v) = { f }, outV(f)=3 and outE(f)=2
replace vk with path P = wp . . . wq in fout;
forall p− 1 ≤ i ≤ q do

remove face {vk,wi,wi+1} from F(wi)and F(wi+1);

forall w ∈ wp−1Pwq+1 do
forall f ∈ F(w) do

update outV(f);

forall e ∈ wp−1Pwq+1 do
forall f ∈ F(e) do

update outE(f);

■ fout = current outerface
■ F(v) = faces that contain v
■ F(e) = faces that contain e
■ outV(f) = # vertices of f on fout
■ outE(f) = # edges of f on fout
■ sepF(v) = # separation faces that

contain v

17 - 2

Canonical order – implementation

Algorithm CanonicalOrder
initialize;
for k = n to 3 do

choose vk ̸= v1, v2 such that
– sepf(v)=0 or
– or F(v) = { f }, outV(f)=3 and outE(f)=2
replace vk with path P = wp . . . wq in fout;
forall p− 1 ≤ i ≤ q do

remove face {vk,wi,wi+1} from F(wi)and F(wi+1);

forall w ∈ wp−1Pwq+1 do
forall f ∈ F(w) do

update outV(f);

forall e ∈ wp−1Pwq+1 do
forall f ∈ F(e) do

update outE(f);

vk

wp wq

■ fout = current outerface
■ F(v) = faces that contain v
■ F(e) = faces that contain e
■ outV(f) = # vertices of f on fout
■ outE(f) = # edges of f on fout
■ sepF(v) = # separation faces that

contain v

wp−1 wq+1

17 - 3

Canonical order – implementation

Algorithm CanonicalOrder
initialize;
for k = n to 3 do

choose vk ̸= v1, v2 such that
– sepf(v)=0 or
– or F(v) = { f }, outV(f)=3 and outE(f)=2
replace vk with path P = wp . . . wq in fout;
forall p− 1 ≤ i ≤ q do

remove face {vk,wi,wi+1} from F(wi)and F(wi+1);

forall w ∈ wp−1Pwq+1 do
forall f ∈ F(w) do

update outV(f);

forall e ∈ wp−1Pwq+1 do
forall f ∈ F(e) do

update outE(f);

vk

wp wq

■ fout = current outerface
■ F(v) = faces that contain v
■ F(e) = faces that contain e
■ outV(f) = # vertices of f on fout
■ outE(f) = # edges of f on fout
■ sepF(v) = # separation faces that

contain v

wp−1 wq+1

17 - 4

Canonical order – implementation

Algorithm CanonicalOrder
initialize;
for k = n to 3 do

choose vk ̸= v1, v2 such that
– sepf(v)=0 or
– or F(v) = { f }, outV(f)=3 and outE(f)=2
replace vk with path P = wp . . . wq in fout;
forall p− 1 ≤ i ≤ q do

remove face {vk,wi,wi+1} from F(wi)and F(wi+1);

forall w ∈ wp−1Pwq+1 do
forall f ∈ F(w) do

update outV(f);

forall e ∈ wp−1Pwq+1 do
forall f ∈ F(e) do

update outE(f);

vk

wp wq

■ fout = current outerface
■ F(v) = faces that contain v
■ F(e) = faces that contain e
■ outV(f) = # vertices of f on fout
■ outE(f) = # edges of f on fout
■ sepF(v) = # separation faces that

contain v

wp−1 wq+1

17 - 5

Canonical order – implementation

Algorithm CanonicalOrder
initialize;
for k = n to 3 do

choose vk ̸= v1, v2 such that
– sepf(v)=0 or
– or F(v) = { f }, outV(f)=3 and outE(f)=2
replace vk with path P = wp . . . wq in fout;
forall p− 1 ≤ i ≤ q do

remove face {vk,wi,wi+1} from F(wi)and F(wi+1);

forall w ∈ wp−1Pwq+1 do
forall f ∈ F(w) do

update outV(f);

forall e ∈ wp−1Pwq+1 do
forall f ∈ F(e) do

update outE(f);

vk

wp wq

■ fout = current outerface
■ F(v) = faces that contain v
■ F(e) = faces that contain e
■ outV(f) = # vertices of f on fout
■ outE(f) = # edges of f on fout
■ sepF(v) = # separation faces that

contain v

wp−1 wq+1

17 - 6

Canonical order – implementation

Algorithm CanonicalOrder
initialize;
for k = n to 3 do

choose vk ̸= v1, v2 such that
– sepf(v)=0 or
– or F(v) = { f }, outV(f)=3 and outE(f)=2
replace vk with path P = wp . . . wq in fout;
forall p− 1 ≤ i ≤ q do

remove face {vk,wi,wi+1} from F(wi)and F(wi+1);

forall w ∈ wp−1Pwq+1 do
forall f ∈ F(w) do

update outV(f);

forall e ∈ wp−1Pwq+1 do
forall f ∈ F(e) do

update outE(f);

vk

wp wq

■ fout = current outerface
■ F(v) = faces that contain v
■ F(e) = faces that contain e
■ outV(f) = # vertices of f on fout
■ outE(f) = # edges of f on fout
■ sepF(v) = # separation faces that

contain v

forall w ∈ P ∪ N(P) do
forall f ∈ F(w) do

update sepF(w);

wp−1 wq+1

17 - 7

Canonical order – implementation

Algorithm CanonicalOrder
initialize;
for k = n to 3 do

choose vk ̸= v1, v2 such that
– sepf(v)=0 or
– or F(v) = { f }, outV(f)=3 and outE(f)=2
replace vk with path P = wp . . . wq in fout;
forall p− 1 ≤ i ≤ q do

remove face {vk,wi,wi+1} from F(wi)and F(wi+1);

forall w ∈ wp−1Pwq+1 do
forall f ∈ F(w) do

update outV(f);

forall e ∈ wp−1Pwq+1 do
forall f ∈ F(e) do

update outE(f);

Lemma.
Algorithm CanonicalOrder
computes a canonical order
of a plane graph in O(n)
time.

■ fout = current outerface
■ F(v) = faces that contain v
■ F(e) = faces that contain e
■ outV(f) = # vertices of f on fout
■ outE(f) = # edges of f on fout
■ sepF(v) = # separation faces that

contain v

forall w ∈ P ∪ N(P) do
forall f ∈ F(w) do

update sepF(w);

18 - 1

Canonical order – example

v1 v2

v9

v8
v5

v3

v4

v7v6A B
C

D

E
F

G

A B C D E F G

outV(f)

outE(f)

v3 v4 v5 v6 v7 v8
sepF(v)

H

H

18 - 2

Canonical order – example

v1 v2

v9

v8
v5

v3

v4

v7v6A B
C

D

E
F

G

A B C D E F G

outV(f)

outE(f)

v3 v4 v5 v6 v7 v8
sepF(v)

2 1

H

H

2 3 3 2 2 1

1 0 0 2 2 0 1 0

12 14

18 - 3

Canonical order – example
A B C D E F G

v1 v2

v9

v8
v5

v3

v4

v7v6A B
C

D

E
F

G

outV(f)

outE(f)

v3 v4 v5 v6 v7 v8
sepF(v)

2 1

H

2 3 3 2 2 1

1 0 0 2 2 0 1 0

12 14

H

18 - 4

Canonical order – example
A B C D E F G

v1 v2

v9

v8
v5

v3

v4

v7v6A B
C

D

E
F

G

outV(f)

outE(f)

v3 v4 v5 v6 v7 v8
sepF(v)

H

2 1 2 3 2 2 1

1 0 1 2 0 1 0

10 2

H

18 - 5

Canonical order – example
A B C D E F G

v1 v2

v9

v8
v5

v3

v4

v7v6A B
C

D

E
F

G

outV(f)

outE(f)

v3 v4 v5 v6 v7 v8
sepF(v)

H

2 1 2 3 2 2 1

1 0 1 2 0 1 0

10 2

H

18 - 6

Canonical order – example
A B C D E F G

v1 v2

v9

v8
v5

v3

v4

v7v6A B
C

D

E
F

G

outV(f)

outE(f)

v3 v4 v5 v6 v7 v8
sepF(v)

H

2 1 2 2 2 1

1 0 1 1 1 0

0 0

H

18 - 7

Canonical order – example
A B C D E F G

v1 v2

v9

v8
v5

v3

v4

v7v6A B
C

D

E
F

G

outV(f)

outE(f)

v3 v4 v5 v6 v7 v8
sepF(v)

H

2 1 2 2 2 1

1 0 1 1 1 0

0 0

H

18 - 8

Canonical order – example
A B C D E F G

v1 v2

v9

v8
v5

v3

v4

v7v6A B
C

D

E
F

G

outV(f)

outE(f)

v3 v4 v5 v6 v7 v8
sepF(v)

H

2 2 3 2

1 1 2 0

0

H

2

18 - 9

Canonical order – example
A B C D E F G

v1 v2

v9

v8
v5

v3

v4

v7v6A B
C

D

E
F

G

outV(f)

outE(f)

v3 v4 v5 v6 v7 v8
sepF(v)

H

2 2 3 2

1 1 2 0

0

H

2

18 - 10

Canonical order – example
A B C D E F G

v1 v2

v9

v8
v5

v3

v4

v7v6A B
C

D

E
F

G

outV(f)

outE(f)

v3 v4 v5 v6 v7 v8
sepF(v)

H

3 3

2 2

2 1

H

18 - 11

Canonical order – example
A B C D E F G

v1 v2

v9

v8
v5

v3

v4

v7v6A B
C

D

E
F

G

outV(f)

outE(f)

v3 v4 v5 v6 v7 v8
sepF(v)

H

3 3

2 2

2 1

Order:
{v1, v2, v3, v4, v5, v6, v7, v8, v9}

H

19

Literature

■ [dFPP90] de Fraysseix, Pach, Pollack ”How to draw a planar graph on a grid”,
Combinatorica, 1990

■ [HGD Ch. 6.5] canonical order

■ [Kant96] Kant ”Drawing planar graphs using the canonical ordering”,
Algorithmica, 1996

■ [BBC11] Badent, Brandes, Cornelsen ”More Canonical Ordering”,
JGAA, 2011

	Canonical order
	Definition
	Example
	Existence
	Implementation
	Implementation
	Implementation
	Implementation
	Implementation
	Implementation

	Literature

