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B Why straight-line? Why planar?

B Bennett, Ryall, Spaltzeholz and Gooch, 2007
“The Aesthetics of Graph Visualization”

3.2. Edge Placement Heuristics

By far the most agreed-upon edge placement heuristic
is to minimize the number of edge crossings in a graph
|[BMRW98, Har98, DH96, Pur(02, TR05, TBB88]. The impor-
tance of avoiding edge crossings has also been extensively
validated in terms of user preference and performance (see
Section 4). Similarly, based on perceptual principles, it is
beneficial to minimize the number of edge bends within a
graph [Pur02, TRO5, TBB88]. Edge bends make edges more
difficult to follow because an edge with a sharp bend is more
likely to be perceived as two separate objects. This leads to
the heuristic of keeping edge bends uniform with respect to
the bend’s position on the edge and its angle [TRO5]. If an
edge must be bent to satisfy other aesthetic criteria, the an-
gle of the bend should be as little as possible, and the bend
placement should evenly divide the edge.
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Planar graphs

B Characterisation: A graph is planar iff it contains neither a K5 nor a K3 3 minor.
[Kuratowski 1930, Wagner 1936]

B Recognition: For a graph G with n vertices, there is an O (7) time algorithm to

test if G is planar. [Hopcroft & Tarjan 1974]
m Also computes an embedding in O(n).
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B Embedding of planar graph:
m clockwise circular order of the edges incident to each vertex
m outerface (clockwise order of edges)

1 5 B Edges:
(' 5 1:{(1,5),(1,2), (1.3)}
a 2:{(2.1),(2,5),(2.3)}

3 3:1(3,1),(3,2),(3,5),(3,4),(3,0)
4:{(43),(4,5))
5:{(5.6). (5.4), (5.3), (5.2), (5, 1)}
6:{(6.3). (6,5)}

B Quterface:

1:1(1,3),(3,6).(6,5), (5. 1)}



Planar graphs

B Straight-line drawing: Every planar graph has an embedding where the edges
are straight-line segments. [\Wagner 1936, Fary 1948, Stein 1951]
m T[he algorithms implied by this theory produce drawings with area not bounded
by any polynomial on 7.



Planar graphs

B Straight-line drawing: Every planar graph has an embedding where the edges
are straight-line segments. [\Wagner 1936, Fary 1948, Stein 1951]
m The algorithms implied by this theory produce drawings with area not bounded
by any polynomial on 7.

B Coin graph: Every planar graph is a circle contact graph
(implies straight-line drawing). [Koebe 1936]




Planar graphs

B Straight-line drawing: Every planar graph has an embedding where the edges
are straight-line segments. [\Wagner 1936, Fary 1948, Stein 1951]
m The algorithms implied by this theory produce drawings with area not bounded
by any polynomial on 7.

B Coin graph: Every planar graph is a circle contact graph
(implies straight-line drawing). [Koebe 1936]

B Every 3-connected planar graph has an embedding with convex polygons as its
faces (i.e., implies straight lines). [Tutte 1963: How to draw a graph]
m |dea: Place vertices in the barycentre of neighbours.
m Drawback: Requires large grids.
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Planar graphs

B Every planar graph has at most 317 — 6 edges
B A planar triangulation is a planar graph with 317 — 6 edges

B Properties of planar triangulations:
m Every face is a triangle > @
B graph is 3-connected @
® Unique embedding (up to choice of outerface) -
m Every plane graph is subgraph of a pI{ne triangulation @

with planar embedding

B We focus on triangulations: 5
m A plane (inner) triangulation is a plane graph where (' ;
every (inner) face is a triangle. "
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Planar straight-line drawings

( )
Goal:

For an n-vertex planar graph create a planar straight-line
drawing of size O (n7).
\.

Idea.
Create drawing incrementally by adding vertices

Idea (refined).

B Start with singe edge (v, v>). Let this be Go.

B To obtain G;,q, add v;,1 to G; so that
neighbours of v; 1 are on the outer face of G;.

B Neighbours of v; 1 in G; have to form path of

Ui+1

length at least two. U1
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Definition.
Let G = (V, E) be a triangulated plane graph on n > 3 vertices.
An order 7T = (v1,02,...,7,) is called a canonical order, if the

following conditions hold for each k, 3 < k < n:

B (C1) Vertices {v1,...0r} induce a biconnected internally
triangulated graph; call it ;.
B (C2) Edge (v1,v2) belongs to the outer face of G;.

W (C3) If k < n then vertex vy lies in the outer face of G,
and all neighbors of v, ,; in (G, appear on the boundary of G,

consecutively.
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Definition.
Let G = (V, E) be a triangulated plane graph on n > 3 vertices.
An order 7T = (v1,02,...,7,) is called a canonical order, if the

following conditions hold for each k, 3 < k < n:

B (C1) Vertices {v1,...0r} induce a biconnected internally
triangulated graph; call it ;.
B (C2) Edge (v1,v2) belongs to the outer face of G;.

W (C3) If k < n then vertex vy lies in the outer face of G,
and all neighbors of v, ,; in (G, appear on the boundary of G,

consecutively.

\.

Compute:
B either {v3,04,...7,} (adding vertices)

W or {v,,0,-1,...03} (removing vertices)
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Lemma.
Every triangulated plane graph has a canonical order.

Proof.
B Let G, = G, and let v1, vy, v, be the vertices of the
outer face of G,. Conditions C1-C3 hold.

B Induction hypothesis: Vertices v,,_1,..., Uxa1 have been
chosen such that conditions C1-C3 hold for
k+1<i<n.

B Induction step: Consider Gj.. We search for vy.

\OQ/
A Jk Have to show:

Q
\(\00\6&0% 1. v not adjacent to chord is
0% & sufficient
,be;@ 2. Such v, exists
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7

Claim 1. If v, is not adjacent to a
chord then removal of v, leaves the
graph biconnected.

12 -

‘Claim 2.

\adjacent to a chord as choice for v;.

There exists a vertex in (5, that is not

vertices with degree 2
exist in outerplanar graphs

This completes proof of Lemma.
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F(v) = faces that contain v
F(e) = faces that contain e

outV(f) = # vertices of f on fy,;

outE(f) = # edges of f on fous
sepF(v) = # separation faces that

contain v

G, * except ior these vertices!

f € F(v) is separating iff

U1 U? ] outV(f):3 or

B chords are associated with separating faces ® outV(f)=2 and outE(f)=0
B v, belongs to no separating faces *
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Algorithm CanonicalOrder- Initialization fout = current outerface

F(v) = faces that contain v
F(e) = faces that contain e

outV(f) = # vertices of f on fy,;

outE(f) = # edges of f on fous
sepF(v) = # separation faces that

forall v € V do
| sepF(v) < 0;

forall f € F do

| outV(f), outE(f) < 0;

forall v € f,,;; do

L forall f € F(v): f # four do contain v
| outV(f)++;

forall v € f,,+ do

forall ¢ € f,yt do forall f € F(v): f # four do
forall f € F(e): f # fout do if outV(f)=3 or outV(f)=2
| outE(f)++; and outE(f)=0 then
| sepF(v)++;
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B v, and f; are removed

B outE(f2) increases by one
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Remove degree 2 vertex vy fout = current outerface

F(v) = faces that contain v
F(e) = faces that contain e

outV(f) = # vertices of f on fy,;

outE(f) = # edges of f on fous
sepF(v) = # separation faces that

if fo has outV(f2)=2, contain v
fo is not a separating face

m sepF(w;_1) decreases by one
m sepF(w;,1) decreases by one

B v, and f; are removed
outE( fo) increases by one
sepF(w;_1) decreases by one
sepF(w;, 1) decreases by one

Wit1

fo




Canonical order — implementation

Remove vy with sepF(v;)= 0

B face f; contains edge (w;_1, w;)
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B face f; contains edges of w; that
are in the interior of Gy_1
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F(v) = faces that contain v
F(e) = faces that contain e
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outE(f) = # edges of f on fous
sepF(v) = # separation faces that

contain v
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Remove vy with sepF(v;)= 0

B 0, and faces that contain vy are removed
outV(f;) increases by two, p+1<i<g
outV(fp), outV(f, 1) increases by one
outV(f/) incrases by one, p <i <g
outE(f;) increases by one, p <1 <g+1

B face f; contains edge (w;_1, w;)
of the outerface of Gj_1

B face f; contains edges of w; that
are in the interior of Gy_1
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F(v) = faces that contain v
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Remove vy with sepF(v;)= 0

U and faces that contain vy are removed
outV(f;) increases by two, p+1<i<g
outV(fp), outV(f, 1) increases by one
outV(f/) incrases by one, p <i <g
outE(f;) increases by one, p <1 <g+1

fout = current outerface
F(v) = faces that contain v
F(e) = faces that contain e

outV(f) = # vertices of f on fy,;

outE(f) = # edges of f on fous
sepF(v) = # separation faces that

contain v

if fior f/ becomes separating

B increase sepF(u) by one for all its
vertices u

B face f; contains edge (w;_1, w;)
of the outerface of Gj_1

B face f; contains edges of w; that
are in the interior of Gy_1
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Canonical order — implementation
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forall w € wy—1Pwg41 do

forall f € F(w) do
L | update outV(f);

forall e € wy—1Pwg41 do

forall f € F(e) do
L | update outE(f);
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forall w € wy—1Pwg41 do

forall f € F(w) do

| update outV(f);  forall w € PUN(P) do
L forall f € F(w) do

forall e € wy—1Pwg41 do

L forall f € F(e) do

| update sepF(w);
| update outE(f);
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Canonical order — implementation

Algorithm CanonicalOrder
initialize:

for k =n to 3 do

choose v # v1, U2 such that
— sepf(v)=0 or

replace v with path P = w,
forall p —1 <1 <gdo

forall w € wy—1Pwg41 do

forall f € F(w) do
L | update outV(f);

forall e € wy—1Pwg41 do

forall f € F(e) do
L | update outE(f);

—or F(v) = {f}, outV(f)=3 and outE(f)=2
.. .wq In fout;

| remove face {vy, w;, wiy1} from F(w;)and F(w;;1);

fout = current outerface
F(v) = faces that contain v
F(e) = faces that contain e

outV(f) = # vertices of f on fy,;

outE(f) = # edges of f on fous
sepF(v) = # separation faces that

contain v
'Lemma.

Algorithm CanonicalOrder
forall w € PUN(P) do computes a canonical order
L forall f € F(w) do of a plane graph in O(7)

| update sepF(w); time.



Canonical order — example
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Al B|C|D|E|F H
outV(f)|2 |1]2[3|3]2 1
outE(f) |1 /0|0 |2 |20 0
03| 04| O5| Og| O7| Ug
sepF(v) 2 14|11
02
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A|B|C|D|E|F H
outV(f) |2 | 2 .
outE(f) |1 | 1 0

03| 04| O5| Og| O7| Ug
sepF(v)| 2 0
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02

A|B|C|D|E|F H
outV(f) |2 | 2 .
outE(f) |1 | 1 0

03| 04| O5| Og| O7| Ug
sepF(v)| 2 0
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18- 10

02

AlB|C|D|E]|F H
outV(f) 3
outE(f) 2

03| 04| O5| Og| O7| Ug
sepF(v)| 2 | 1




Canonical order — example

™

18- 11

A B|C|D|E|F|G|H
outV(f) 313
outE(f) 2 |2

02

sepF(v)| 2 | 1

Order:
{v1,v2,v3,04,vs, Vg, V7, Vg, Vg }
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