Visualisation of graphs Planar straight-line drawings Canonical order

Antonios Symvonis · Chrysanthi Raftopoulou

Fall semester 2022

The original slides of this presentation were created by researchers at Karlsruhe Institute of Technology (KIT), TU Wien, U Wuerzburg, U Konstanz, ... The original presentation was modified/updated by A. Symvonis and C. Raftopoulou

So far we looked at planar and straight-line drawings of trees and series-parallel graphs.

So far we looked at planar and straight-line drawings of trees and series-parallel graphs.

Why straight-line? Why planar?

So far we looked at planar and straight-line drawings of trees and series-parallel graphs.

Why straight-line? Why planar?

Bennett, Ryall, Spaltzeholz and Gooch, 2007 "The Aesthetics of Graph Visualization"

3.2. Edge Placement Heuristics

By far the most agreed-upon edge placement heuristic is to *minimize the number of edge crossings* in a graph [BMRW98, Har98, DH96, Pur02, TR05, TBB88]. The importance of avoiding edge crossings has also been extensively validated in terms of user preference and performance (see Section 4). Similarly, based on perceptual principles, it is beneficial to *minimize the number of edge bends* within a graph [Pur02, TR05, TBB88]. Edge bends make edges more difficult to follow because an edge with a sharp bend is more likely to be perceived as two separate objects. This leads to the heuristic of *keeping edge bends uniform* with respect to the bend's position on the edge and its angle [TR05]. If an edge must be bent to satisfy other aesthetic criteria, the angle of the bend should be as little as possible, and the bend placement should evenly divide the edge.

So far we looked at planar and straight-line drawings of trees and series-parallel graphs.

Why straight-line? Why planar?

Bennett, Ryall, Spaltzeholz and Gooch, 2007 "The Aesthetics of Graph Visualization"

3.2. Edge Placement Heuristics

By far the most agreed-upon edge placement heuristic is to *minimize the number of edge crossings* in a graph [BMRW98, Har98, DH96, Pur02, TR05, TBB88]. The importance of avoiding edge crossings has also been extensively validated in terms of user preference and performance (see Section 4). Similarly, based on perceptual principles, it is beneficial to *minimize the number of edge bends* within a graph [Pur02, TR05, TBB88]. Edge bends make edges more difficult to follow because an edge with a sharp bend is more likely to be perceived as two separate objects. This leads to the heuristic of *keeping edge bends uniform* with respect to the bend's position on the edge and its angle [TR05]. If an edge must be bent to satisfy other aesthetic criteria, the angle of the bend should be as little as possible, and the bend placement should evenly divide the edge.

- crossings reduce readability
- bends reduce readability

Characterisation: A graph is planar iff it contains neither a K₅ nor a K_{3,3} minor. [Kuratowski 1930, Wagner 1936]

Recognition: For a graph G with n vertices, there is an O(n) time algorithm to test if G is planar. [Hopcroft & Tarjan 1974]
 Also computes an *embedding* in O(n).

- clockwise circular order of the edges incident to each vertex
- outerface (clockwise order of edges)

- clockwise circular order of the edges incident to each vertex
- outerface (clockwise order of edges)

- clockwise circular order of the edges incident to each vertex
- outerface (clockwise order of edges)

- clockwise circular order of the edges incident to each vertex
- outerface (clockwise order of edges)

Embedding of planar graph:

- clockwise circular order of the edges incident to each vertex
- outerface (clockwise order of edges)

Outerface: 1: {(1,3), (3,6), (6,5), (5,1)}

- Straight-line drawing: Every planar graph has an embedding where the edges are straight-line segments. [Wagner 1936, Fáry 1948, Stein 1951]
 - The algorithms implied by this theory produce drawings with area not bounded by any polynomial on n.

Straight-line drawing: Every planar graph has an embedding where the edges are straight-line segments. [Wagner 1936, Fáry 1948, Stein 1951]
 The algorithms implied by this theory produce drawings with area *not bounded* by any polynomial on *n*.

Coin graph: Every planar graph is a circle contact graph (implies straight line drawing) [Keeke 1026]

(implies straight-line drawing). [Koebe 1936]

 Straight-line drawing: Every planar graph has an embedding where the edges are straight-line segments. [Wagner 1936, Fáry 1948, Stein 1951]
 The eleverity realized by this theory are descedues drawing with every set beyond

The algorithms implied by this theory produce drawings with area not bounded by any polynomial on n.

Coin graph: Every planar graph is a circle contact graph (implies straight-line drawing). [Koebe 1936]

Every 3-connected planar graph has an embedding with convex polygons as its faces (i.e., implies straight lines). [Tutte 1963: How to draw a graph]
 Idea: Place vertices in the barycentre of neighbours.

Drawback: Requires large grids.

Coin graph: Exponential area

Every planar graph has at most 3n - 6 edges

A planar triangulation is a planar graph with 3n - 6 edges

- Every planar graph has at most 3n 6 edges
- A planar triangulation is a planar graph with 3n 6 edges

Properties of planar triangulations:

- Every face is a triangle
- graph is 3-connected
- Unique embedding (up to choice of outerface)
- Every plane graph is subgraph of a plane triangulation

- Every planar graph has at most 3n 6 edges
- A planar triangulation is a planar graph with 3n 6 edges

Properties of planar triangulations:

- Every face is a triangle
- graph is 3-connected
- Unique embedding (up to choice of outerface)
- Every plane graph is subgraph of a plane triangulation

with planar embedding
Planar graphs

- Every planar graph has at most 3n 6 edges
- A *planar triangulation* is a planar graph with 3n 6 edges

Properties of planar triangulations:

- Every face is a triangle
- graph is 3-connected
- Unique embedding (up to choice of outerface)
- Every plane graph is subgraph of a plane triangulation

with planar embedding

Planar graphs

- Every planar graph has at most 3n 6 edges
- A planar triangulation is a planar graph with 3n 6 edges

Properties of planar triangulations:

- Every face is a triangle
- graph is 3-connected
- Unique embedding (up to choice of outerface)
- Every plane graph is subgraph of a plane triangulation

with planar embedding

- We focus on triangulations:
 - A plane (inner) triangulation is a plane graph where every (inner) face is a triangle.

Goal: For an *n*-vertex planar graph create a planar straight-line drawing of size $O(n^2)$.

Goal: For an *n*-vertex planar graph create a planar straight-line drawing of size $O(n^2)$.

Idea.

Create drawing incrementally by adding vertices

Goal:

For an *n*-vertex planar graph create a planar straight-line drawing of size $O(n^2)$.

Idea.

Create drawing incrementally by adding vertices

Idea (refined).

Start with singe edge (v_1, v_2) . Let this be G_2 .

Goal:

For an *n*-vertex planar graph create a planar straight-line drawing of size $O(n^2)$.

Idea.

Create drawing incrementally by adding vertices

Idea (refined).

Start with singe edge (v_1, v_2) . Let this be G_2 .

Goal:

For an *n*-vertex planar graph create a planar straight-line drawing of size $O(n^2)$.

Idea.

Create drawing incrementally by adding vertices

Idea (refined).

- Start with singe edge (v_1, v_2) . Let this be G_2 .
- To obtain G_{i+1} , add v_{i+1} to G_i so that neighbours of v_{i+1} are on the outer face of G_i .
- Neighbours of v_{i+1} in G_i have to form path of length at least two.

Definition.

Let G = (V, E) be a triangulated plane graph on $n \ge 3$ vertices. An order $\pi = (v_1, v_2, ..., v_n)$ is called a **canonical order**, if the following conditions hold for each $k, 3 \le k \le n$:

Definition.

Let G = (V, E) be a triangulated plane graph on $n \ge 3$ vertices. An order $\pi = (v_1, v_2, ..., v_n)$ is called a **canonical order**, if the following conditions hold for each k, $3 \le k \le n$:

(C1) Vertices $\{v_1, \ldots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .

Definition.

Let G = (V, E) be a triangulated plane graph on $n \ge 3$ vertices. An order $\pi = (v_1, v_2, ..., v_n)$ is called a **canonical order**, if the following conditions hold for each k, $3 \le k \le n$:

- **(C1)** Vertices $\{v_1, \ldots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- **(C2)** Edge (v_1, v_2) belongs to the outer face of G_k .

Definition.

Let G = (V, E) be a triangulated plane graph on $n \ge 3$ vertices. An order $\pi = (v_1, v_2, \dots, v_n)$ is called a **canonical order**, if the following conditions hold for each k, $3 \le k \le n$:

- **(C1)** Vertices $\{v_1, \ldots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- **(C2)** Edge (v_1, v_2) belongs to the outer face of G_k .
- **(C3)** If k < n then vertex v_{k+1} lies in the outer face of G_k , and all neighbors of v_{k+1} in G_k appear on the boundary of G_k consecutively.

Definition.

Let G = (V, E) be a triangulated plane graph on $n \ge 3$ vertices. An order $\pi = (v_1, v_2, \dots, v_n)$ is called a **canonical order**, if the following conditions hold for each k, $3 \le k \le n$:

- **(C1)** Vertices $\{v_1, \ldots v_k\}$ induce a biconnected internally triangulated graph; call it G_k .
- **(C2)** Edge (v_1, v_2) belongs to the outer face of G_k .
- **(C3)** If k < n then vertex v_{k+1} lies in the outer face of G_k , and all neighbors of v_{k+1} in G_k appear on the boundary of G_k consecutively.

Compute:

- either $\{v_3, v_4, \dots v_n\}$ (adding vertices)
- or $\{v_n, v_{n-1}, \ldots, v_3\}$ (removing vertices)

10 - 30

Lemma.

Every triangulated plane graph has a canonical order.

Lemma.

Every triangulated plane graph has a canonical order.

Proof.

Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n . Conditions C1-C3 hold.

Lemma.

Every triangulated plane graph has a canonical order.

Proof.

- Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n . Conditions C1-C3 hold.
- Induction hypothesis: Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for $k+1 \le i \le n$.

Lemma.

Every triangulated plane graph has a canonical order.

Proof.

- Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n . Conditions C1-C3 hold.
- Induction hypothesis: Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for $k+1 \le i \le n$.
- Induction step: Consider G_k . We search for v_k .

Lemma.

Every triangulated plane graph has a canonical order.

Proof.

- Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n . Conditions C1-C3 hold.
- Induction hypothesis: Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for $k+1 \le i \le n$.
- Induction step: Consider G_k . We search for v_k .

 v_k

Lemma.

Every triangulated plane graph has a canonical order.

Proof.

- Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n . Conditions C1-C3 hold.
- Induction hypothesis: Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for k + 1 < i < n.

Induction step: Consider G_k . We search for v_k . UK should not be adjacent to a chord

 v_k

Lemma.

Every triangulated plane graph has a canonical order.

Proof.

- Let $G_n = G$, and let v_1, v_2, v_n be the vertices of the outer face of G_n . Conditions C1-C3 hold.
- Induction hypothesis: Vertices v_{n-1}, \ldots, v_{k+1} have been chosen such that conditions C1-C3 hold for k+1 < i < n.

Induction step: Consider G_k . We search for v_k . Uk should not be adjacent to a chord

Have to show:

- 1. v_k not adjacent to chord is sufficient
- 2. Such v_k exists

Claim 1. If v_k is not adjacent to a chord then removal of v_k leaves the graph biconnected.

Claim 2.

There exists a vertex in G_k that is not adjacent to a chord as choice for v_k .

Claim 1. If v_k is not adjacent to a chord then removal of v_k leaves the graph biconnected.

Claim 2.

There exists a vertex in G_k that is not adjacent to a chord as choice for v_k .

Claim 1. If v_k is not adjacent to a chord then removal of v_k leaves the graph biconnected.

Claim 2.

There exists a vertex in G_k that is not adjacent to a chord as choice for v_k .

• chords of G_k belong to faces:

 v_1

 G_k

• chords of G_k belong to faces:

 v_2

 G_k

 v_1

f has two vertices on the outerface and one internal

• chords of G_k belong to faces:

- f has two vertices on the outerface and one internal
- f has three vertices on the outerface and at least two chords

• chords of G_k belong to faces:

 G_k

- f has two vertices on the outerface and one internal
- f has three vertices on the outerface and at least two chords
- f has three consequtive vertices on the outerface

• chords of G_k belong to faces:

 G_k

 v_1

chords are associated with separating faces
 v_k belongs to no separating faces *

 v_2

- f has two vertices on the outerface and one internal
- f has three vertices on the outerface and at least two chords
- f has three consequtive vertices on the outerface

 \blacksquare chords of G_k belong to faces: * except for these vertices! G_k v_1 v_2 chords are associated with separating faces \mathbf{v}_k belongs to no separating faces *

- f has two vertices on the outerface and one internal
- f has three vertices on the outerface and at least two chords
- f has three consequtive vertices on the outerface

fout = current outerface
 F(v) = faces that contain v
 F(e) = faces that contain e

13 - 7

- $f_{out} = \text{current outerface}$
- F(v) =faces that contain v
- F(e) = faces that contain e
- outV(f) = # vertices of f on f_{out}
- $outE(f) = # edges of f on f_{out}$
- sepF(v) = # separation faces that contain v

chords are associated with separating faces
 v_k belongs to no separating faces *

- $f_{out} = \text{current outerface}$
- F(v) =faces that contain v
- F(e) = faces that contain e
- outV(f) = # vertices of f on f_{out}
- $outE(f) = # edges of f on f_{out}$
- sepF(v) = # separation faces that contain v
 - $f \in F(v)$ is separating iff outV(f)=3 or outV(f)=2 and outE(f)=0

- $f_{out} = \text{current outerface}$
- F(v) =faces that contain v
- F(e) =faces that contain e
- outV(f) = # vertices of f on f_{out}
- $outE(f) = # edges of f on f_{out}$
- SepF(v) = # separation faces that contain v

Algorithm CanonicalOrder- Initialization

forall $v \in V$ do $\lfloor \operatorname{sepF}(v) \leftarrow 0;$ forall $f \in F$ do $\mid \operatorname{outV}(f), \operatorname{outE}(f) \leftarrow 0;$

- $f_{out} = \text{current outerface}$
- F(v) =faces that contain v
- F(e) = faces that contain e
- $\operatorname{outV}(f) = \#$ vertices of f on f_{out}
- $outE(f) = # edges of f on f_{out}$
- sepF(v) = # separation faces that contain v

Algorithm CanonicalOrder- Initialization

forall $v \in V$ do | sepF(v) \leftarrow 0; forall $f \in F$ do | outV(f), outE(f) \leftarrow 0; forall $v \in f_{out}$ do forall $f \in F(v)$: $f \neq f_{out}$ do | outV(f)++;forall $e \in f_{out}$ do forall $f \in F(e)$: $f \neq f_{out}$ do

| outE(f)++;

- $f_{out} = \text{current outerface}$
- F(v) =faces that contain v
- F(e) = faces that contain e
- $\operatorname{outV}(f) = \#$ vertices of f on f_{out}
- $outE(f) = # edges of f on f_{out}$
- SepF(v) = # separation faces that contain v

Algorithm CanonicalOrder- Initialization

forall $v \in V$ do | sepF(v) \leftarrow 0; forall $f \in F$ do | outV(f), outE(f) \leftarrow 0; forall $v \in f_{out}$ do forall $f \in F(v)$: $f \neq f_{out}$ do | outV(f)++; forall $e \in f_{out}$ do forall $f \in F(e)$: $f \neq f_{out}$ do | outE(f)++;

- $f_{out} = \text{current outerface}$
- F(v) =faces that contain v
- F(e) = faces that contain e
- $\operatorname{outV}(f) = \#$ vertices of f on f_{out}
- $outE(f) = # edges of f on f_{out}$
- sepF(v) = # separation faces that contain v

```
forall v \in f_{out} do
forall f \in F(v): f \neq f_{out} do
if outV(f)=3 or outV(f)=2
and outE(f)=0 then
\lfloor \text{sepF}(v)++;
```

Remove degree 2 vertex v_k

- $f_{out} = \text{current outerface}$
- F(v) =faces that contain v
- F(e) = faces that contain e
- $\operatorname{outV}(f) = \#$ vertices of f on f_{out}
- $outE(f) = # edges of f on f_{out}$
- sepF(v) = # separation faces that contain v

Remove degree 2 vertex v_k

v_k and f₁ are removed
 outE(f₂) increases by one
 sepF(w_{i-1}) decreases by one
 sepF(w_{i+1}) decreases by one

- $f_{out} = \text{current outerface}$
- F(v) =faces that contain v
- F(e) = faces that contain e
- $\operatorname{outV}(f) = \#$ vertices of f on f_{out}
- $outE(f) = # edges of f on f_{out}$
- sepF(v) = # separation faces that contain v

Remove degree 2 vertex v_k

- v_k and f₁ are removed
 outE(f₂) increases by one
 sepF(w_{i-1}) decreases by one
 sepF(w_{i+1}) decreases by one
- if f₂ has outV(f₂)=2,
 f₂ is not a separating face
 sepF(w_{i-1}) decreases by one
 sepF(w_{i+1}) decreases by one

- $f_{out} = \text{current outerface}$
- F(v) =faces that contain v
- F(e) = faces that contain e
- outV(f) = # vertices of f on f_{out}
- $outE(f) = # edges of f on f_{out}$
- sepF(v) = # separation faces that contain v

Remove v_k with sepF (v_k) = 0

- $f_{out} = \text{current outerface}$
- F(v) =faces that contain v
- F(e) = faces that contain e
- $\operatorname{outV}(f) = \#$ vertices of f on f_{out}
- $outE(f) = # edges of f on f_{out}$
- sepF(v) = # separation faces that contain v

face f_i contains edge (w_{i-1}, w_i) of the outerface of G_{k-1}
face f'_i contains edges of w_i that are in the interior of G_{k-1}

Remove v_k with sepF $(v_k) = 0$

v_k and faces that contain v_k are removed
outV(f_i) increases by two, p + 1 ≤ i ≤ q
outV(f_p), outV(f_{q+1}) increases by one
outV(f'_i) increases by one, p ≤ i ≤ q
outE(f_i) increases by one, p ≤ i ≤ q + 1

- $f_{out} = \text{current outerface}$
- F(v) =faces that contain v
- F(e) = faces that contain e
- $\operatorname{outV}(f) = \#$ vertices of f on f_{out}
- $outE(f) = # edges of f on f_{out}$
- SepF(v) = # separation faces that contain v

face f_i contains edge (w_{i-1}, w_i) of the outerface of G_{k-1}
face f'_i contains edges of w_i that are in the interior of G_{k-1}

Remove v_k with sepF $(v_k) = 0$

v_k and faces that contain v_k are removed
outV(f_i) increases by two, p + 1 ≤ i ≤ q
outV(f_p), outV(f_{q+1}) increases by one
outV(f'_i) increases by one, p ≤ i ≤ q
outE(f_i) increases by one, p ≤ i ≤ q + 1

- if f_i or f'_i becomes separating
 - increase sepF(u) by one for all its vertices u
- face f_i contains edge (w_{i-1}, w_i) of the outerface of G_{k-1}
 face f'_i contains edges of w_i that are in the interior of G_{k-1}

- $f_{out} = \text{current outerface}$
- F(v) =faces that contain v
- F(e) = faces that contain e
- $\operatorname{outV}(f) = \#$ vertices of f on f_{out}
- $outE(f) = # edges of f on f_{out}$
- SepF(v) = # separation faces that contain v

Algorithm CanonicalOrder

initialize;

for k = n to 3 do

choose
$$v_k \neq v_1$$
, v_2 such that

 $-\operatorname{sepf}(v)=0$ or

- or
$$F(v) = \{f\}$$
, outV(f)=3 and outE(f)=2

• $f_{out} = \text{current outerface}$

- F(v) =faces that contain v
- F(e) =faces that contain e

•
$$\operatorname{outV}(f) = \#$$
 vertices of f on f_{out}

•
$$outE(f) = # edges of f on f_{out}$$

sepF(
$$v$$
) = # separation faces that contain v

Algorithm CanonicalOrder

initialize;

for k = n to 3 do

choose
$$v_k \neq v_1$$
, v_2 such that

 $-\operatorname{sepf}(v)=0$ or

- or
$$F(v) = \{f\}$$
, outV(f)=3 and outE(f)=2

• $f_{out} = \text{current outerface}$

•
$$F(v) =$$
 faces that contain v

• F(e) = faces that contain e

•
$$outV(f) = #$$
 vertices of f on f_{out}

•
$$outE(f) = # edges of f on f_{out}$$

sepF(
$$v$$
) = # separation faces that contain v

Algorithm CanonicalOrder

initialize;

for k = n to 3 do

choose
$$v_k \neq v_1$$
, v_2 such that

 $-\operatorname{sepf}(v)=0$ or

- or $F(v) = \{f\}$, outV(f)=3 and outE(f)=2 replace v_k with path $P = w_p \dots w_q$ in f_{out} ;

- $f_{out} = \text{current outerface}$
- F(v) =faces that contain v
- F(e) = faces that contain e

•
$$\operatorname{outV}(f) = \#$$
 vertices of f on f_{out}

•
$$outE(f) = # edges of f on f_{out}$$

sepF(
$$v$$
) = # separation faces that contain v

Algorithm CanonicalOrder

initialize;

 \blacksquare F(v) = faces that contain vfor k = n to 3 do \blacksquare F(e) = faces that contain echoose $v_k \neq v_1$, v_2 such that • outV(f) = # vertices of f on f_{out} $-\operatorname{sepf}(v)=0$ or • outE(f) = # edges of f on f_{out} - or $F(v) = \{f\}$, outV(f)=3 and outE(f)=2 • sepF(v) = # separation faces that replace v_k with path $P = w_p \dots w_q$ in f_{out} ; contain vforall $p-1 \leq i \leq q$ do remove face $\{v_k, w_i, w_{i+1}\}$ from $F(w_i)$ and $F(w_{i+1})$;

Algorithm CanonicalOrder

initia

Initialize;
for
$$k = n$$
 to 3 do
 $choose v_k \neq v_1, v_2$ such that
 $-sepf(v)=0$ or
 $- or F(v) = \{f\}, outV(f)=3 and outE(f)=2$
replace v_k with path $P = w_p \dots w_q$ in f_{out} ;
forall $p-1 \leq i \leq q$ do
 \lfloor remove face $\{v_k, w_i, w_{i+1}\}$ from $F(w_i)$ and $F(w_{i+1})$;
forall $w \in w_{p-1}Pw_{q+1}$ do
 \lfloor update outV(f);
forall $e \in w_{p-1}Pw_{q+1}$ do
 \lfloor update outU(f);
forall $f \in F(e)$ do
 \parallel update outE(f);

Algorithm CanonicalOrder

initiali

Initialize;
for
$$k = n$$
 to 3 do
choose $v_k \neq v_1, v_2$ such that
 $- \operatorname{sepf}(v) = 0$ or
 $- \operatorname{or} F(v) = \{f\}, \operatorname{outV}(f) = 3$ and $\operatorname{outE}(f) = 2$
replace v_k with path $P = w_p \dots w_q$ in f_{out} ;
forall $p - 1 \le i \le q$ do
 \lfloor remove face $\{v_k, w_i, w_{i+1}\}$ from $F(w_i)$ and $F(w_{i+1})$;
forall $w \in w_{p-1}Pw_{q+1}$ do
 \lfloor update $\operatorname{outV}(f)$;
forall $e \in w_{p-1}Pw_{q+1}$ do
 \lfloor forall $f \in F(w)$ do
 \lfloor update $\operatorname{outV}(f)$;
forall $f \in F(e)$ do
 \Vert update $\operatorname{outE}(f)$;

Algorithm CanonicalOrder

in

initialize;
for
$$k = n$$
 to 3 do
 $for k = n$ to 3 do
 $choose v_k \neq v_1, v_2$ such that
 $- \operatorname{sepf}(v) = 0$ or
 $- \operatorname{or} F(v) = \{f\}, \operatorname{outV}(f) = 3$ and $\operatorname{outE}(f) = 2$
replace v_k with path $P = w_p \dots w_q$ in f_{out} ;
forall $p - 1 \leq i \leq q$ do
 $\lfloor remove face \{v_k, w_i, w_{i+1}\}$ from $F(w_i)$ and $F(w_{i+1})$;
forall $w \in w_{p-1}Pw_{q+1}$ do
 $\lfloor forall f \in F(w)$ do
 $\lfloor update \operatorname{outV}(f)$;
forall $e \in w_{p-1}Pw_{q+1}$ do
 $\lfloor forall f \in F(e)$ do
 $\lfloor update \operatorname{outV}(f)$;
forall $f \in F(e)$ do
 $\lfloor update \operatorname{outV}(f)$;
forall $f \in F(e)$ do
 $\lfloor update \operatorname{outE}(f)$;

_	A	B	<i>C</i>	D	E	F	G	H
outV(f)								
outE(f)								

	v3	\mathcal{O}_{4}	v_5	v_{6}	<i>v</i> 7	v_8	
sepF(v)							

	A	В	C	D	E	F	G	H
outV(f)	2	1	2	3	3	2	2	1
outE(f)	1	0	0	2	2	0	1	0

	v_3	\mathcal{U}_{4}	v_5	v_{6}	v_7	v_8	
sepF(v)			2	4	1	1	

	A	В	C	D	E	F	G	H
outV(f)	2	1	2	3	3	2	2	1
outE(f)	1	0	0	2	2	0	1	0

	v_3	v_4	v_5	v_{6}	v_7	v_8	
sepF(v)			2	4	1	1	

	A	В	С	D	Ε	F	G	H
outV(f)	2	1	2		3	2	2	1
outE(f)	1	0	1		2	0	1	0

	v_3	v_4	v_5	v_{6}	v_7	v_8	
sepF(v)			0	2	1		

	A	В	C	D	E	F	G	H
outV(f)	2	1	2		3	2	2	1
outE(f)	1	0	1		2	0	1	0

	v_3	v_4	v_5	v_{6}	v_7	v_8	
sepF(v)			0	2	1		

	A	В	С	D	E	F	G	H
outV(f)	2	1	2			2	2	1
outE(f)	1	0	1			1	1	0

	v_3	v_4	v_5	v_{6}	v_7	v_8	
sepF(v)			0	0			

	A	В	C	D	E	F	G	H
outV(f)	2	1	2			2	2	1
outE(f)	1	0	1			1	1	0

	v_3	\mathcal{O}_{4}	v_5	v_{6}	v_7	v_8	
sepF(v)			0	0			

	A	В	<i>C</i>	D	$\mid E$	F	G	H
outV(f)	2	2					3	2
outE(f)	1	1					2	0

	A	В	C	D	$\mid E$	F	G	H
outV(f)	2	2					3	2
outE(f)	1	1					2	0

	A	В	<i>C</i>	D	$\mid E$	F	G	$\mid H \mid$
outV(f)							3	3
outE(f)							2	2

	v_3	v_4	v_5	v_{6}	v_7	v_8	
sepF(v)	2	1					

	A	В	С	D	Ε	F	G	Η
outV(f)							3	3
outE(f)							2	2

$$v_3$$
 v_4
 v_5
 v_6
 v_7
 v_8

 sepF(v)
 2
 1
 -
 -
 -
 -

Order:

 $\{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9\}$

Literature

- [HGD Ch. 6.5] canonical order
- [dFPP90] de Fraysseix, Pach, Pollack "How to draw a planar graph on a grid", Combinatorica, 1990
- [Kant96] Kant "Drawing planar graphs using the canonical ordering", Algorithmica, 1996
- [BBC11] Badent, Brandes, Cornelsen "More Canonical Ordering", JGAA, 2011