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■ So far we looked at planar and straight-line drawings
of trees and series-parallel graphs.

■ Why straight-line? Why planar?

■ Bennett, Ryall, Spaltzeholz and Gooch, 2007
“The Aesthetics of Graph Visualization”

■ crossings reduce readability

■ bends reduce readability
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Planar graphs

■ Characterisation: A graph is planar iff it contains neither a K5 nor a K3,3 minor.
[Kuratowski 1930, Wagner 1936]

■ Recognition: For a graph G with n vertices, there is an O(n) time algorithm to
test if G is planar. [Hopcroft & Tarjan 1974]
■ Also computes an embedding in O(n).
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■ Edges:
1 : {(1, 5), (1, 2), (1, 3)}
2 : {(2, 1), (2, 5), (2, 3)}
3 : {(3, 1), (3, 2), (3, 5), (3, 4), (3, 6)}
4 : {(4, 3), (4, 5)}
5 : {(5, 6), (5, 4), (5, 3), (5, 2), (5, 1)}
6 : {(6, 3), (6, 5)}
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■ Embedding of planar graph:
■ clockwise circular order of the edges incident to each vertex
■ outerface (clockwise order of edges)
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■ Edges:
1 : {(1, 5), (1, 2), (1, 3)}
2 : {(2, 1), (2, 5), (2, 3)}
3 : {(3, 1), (3, 2), (3, 5), (3, 4), (3, 6)}
4 : {(4, 3), (4, 5)}
5 : {(5, 6), (5, 4), (5, 3), (5, 2), (5, 1)}
6 : {(6, 3), (6, 5)}

■ Outerface:
1 : {(1, 3), (3, 6), (6, 5), (5, 1)}
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are straight-line segments. [Wagner 1936, Fáry 1948, Stein 1951]
■ The algorithms implied by this theory produce drawings with area not bounded

by any polynomial on n.
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Planar graphs

■ Straight-line drawing: Every planar graph has an embedding where the edges
are straight-line segments. [Wagner 1936, Fáry 1948, Stein 1951]
■ The algorithms implied by this theory produce drawings with area not bounded

by any polynomial on n.

■ Every 3-connected planar graph has an embedding with convex polygons as its
faces (i.e., implies straight lines). [Tutte 1963: How to draw a graph]
■ Idea: Place vertices in the barycentre of neighbours.
■ Drawback: Requires large grids.

■ Coin graph: Every planar graph is a circle contact graph
(implies straight-line drawing). [Koebe 1936]
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7 - 2

Planar graphs

■ Every planar graph has at most 3n− 6 edges
■ A planar triangulation is a planar graph with 3n− 6 edges

■ Properties of planar triangulations:

■ Every face is a triangle
■ graph is 3-connected
■ Unique embedding (up to choice of outerface)
■ Every plane graph is subgraph of a plane triangulation



7 - 3

Planar graphs

■ Every planar graph has at most 3n− 6 edges
■ A planar triangulation is a planar graph with 3n− 6 edges

with planar embedding

■ Properties of planar triangulations:

■ Every face is a triangle
■ graph is 3-connected
■ Unique embedding (up to choice of outerface)
■ Every plane graph is subgraph of a plane triangulation



7 - 4

Planar graphs

■ Every planar graph has at most 3n− 6 edges
■ A planar triangulation is a planar graph with 3n− 6 edges

with planar embedding

■ Properties of planar triangulations:

■ Every face is a triangle
■ graph is 3-connected
■ Unique embedding (up to choice of outerface)
■ Every plane graph is subgraph of a plane triangulation



7 - 5

Planar graphs

■ Every planar graph has at most 3n− 6 edges
■ A planar triangulation is a planar graph with 3n− 6 edges

■ We focus on triangulations:
■ A plane (inner) triangulation is a plane graph where

every (inner) face is a triangle.

with planar embedding

■ Properties of planar triangulations:

■ Every face is a triangle
■ graph is 3-connected
■ Unique embedding (up to choice of outerface)
■ Every plane graph is subgraph of a plane triangulation
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■ To obtain Gi+1, add vi+1 to Gi so that
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Planar straight-line drawings

Goal:
For an n-vertex planar graph create a planar straight-line
drawing of size O(n2).

Idea (refined).
■ Start with singe edge (v1, v2). Let this be G2.
■ To obtain Gi+1, add vi+1 to Gi so that

neighbours of vi+1 are on the outer face of Gi.
■ Neighbours of vi+1 in Gi have to form path of

length at least two. v1 v2

Idea.
Create drawing incrementally by adding vertices

vi+1
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Canonical order – definition

Definition.
Let G = (V, E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:

■ (C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

■ (C2) Edge (v1, v2) belongs to the outer face of Gk.

■ (C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the boundary of Gk
consecutively.
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Canonical order – definition

Definition.
Let G = (V, E) be a triangulated plane graph on n ≥ 3 vertices.
An order π = (v1, v2, . . . , vn) is called a canonical order, if the
following conditions hold for each k, 3 ≤ k ≤ n:

■ (C1) Vertices {v1, . . . vk} induce a biconnected internally
triangulated graph; call it Gk.

■ (C2) Edge (v1, v2) belongs to the outer face of Gk.

■ (C3) If k < n then vertex vk+1 lies in the outer face of Gk,
and all neighbors of vk+1 in Gk appear on the boundary of Gk
consecutively.

Compute:

■ either {v3, v4, . . . vn} (adding vertices)

■ or {vn, vn−1, . . . v3} (removing vertices)
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chord

G13

v1 v2

v16

v15
v14

edge joining two
nonadjacent
vertices in a cycle
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G11
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v14

v12 cutvertex

G11 is not
biconnected
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Canonical order – existence

Lemma.
Every triangulated plane graph has a canonical order.
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Canonical order – existence

■ Let Gn = G, and let v1, v2, vn be the vertices of the
outer face of Gn. Conditions C1-C3 hold.

■ Induction hypothesis: Vertices vn−1, . . . , vk+1 have been
chosen such that conditions C1-C3 hold for
k + 1 ≤ i ≤ n.

vk

v k
sh
ou
ld
no
t b

e

ad
jac
en
t t
o a

ch
ord Have to show:

1. vk not adjacent to chord is
sufficient

2. Such vk exists

Proof.

■ Induction step: Consider Gk. We search for vk.

Lemma.
Every triangulated plane graph has a canonical order.
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Claim 1. If vk is not adjacent to a
chord then removal of vk leaves the
graph biconnected.
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Claim 1. If vk is not adjacent to a
chord then removal of vk leaves the
graph biconnected.

Gk

v1 v2

Claim 2.
There exists a vertex in Gk that is not
adjacent to a chord as choice for vk.
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vkGk

not triangulated

v1 v2

Gk−1

vk

Claim 1. If vk is not adjacent to a
chord then removal of vk leaves the
graph biconnected.

Gk

v1 v2

Claim 2.
There exists a vertex in Gk that is not
adjacent to a chord as choice for vk.

vertices with degree 2
exist in outerplanar graphs
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Canonical order – existence

vkGk

not triangulated

v1 v2

Gk−1

vk

This completes proof of Lemma. □

Claim 1. If vk is not adjacent to a
chord then removal of vk leaves the
graph biconnected.

Gk

v1 v2

Claim 2.
There exists a vertex in Gk that is not
adjacent to a chord as choice for vk.

vertices with degree 2
exist in outerplanar graphs
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■ chords of Gk belong to faces:
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v1 v2
■ chords are associated with separating faces
■ vk belongs to no separating faces *

* except for these vertices!

■ chords of Gk belong to faces:

■ f has two vertices on the outerface and
one internal

■ f has three vertices on the outerface
and at least two chords

■ f has three consequtive vertices on the
outerface
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Gk

v1 v2
■ chords are associated with separating faces
■ vk belongs to no separating faces *

■ fout = current outerface
■ F(v) = faces that contain v
■ F(e) = faces that contain e
■ outV( f ) = # vertices of f on fout
■ outE( f ) = # edges of f on fout
■ sepF(v) = # separation faces that

contain v

* except for these vertices!
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Gk

v1 v2
■ chords are associated with separating faces
■ vk belongs to no separating faces *

f ∈ F(v) is separating iff
■ outV( f )=3 or
■ outV( f )=2 and outE( f )=0

■ fout = current outerface
■ F(v) = faces that contain v
■ F(e) = faces that contain e
■ outV( f ) = # vertices of f on fout
■ outE( f ) = # edges of f on fout
■ sepF(v) = # separation faces that

contain v

* except for these vertices!
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Canonical order – implementation

Algorithm CanonicalOrder- Initialization

forall v ∈ V do
sepF(v) ← 0;

forall f ∈ F do
outV( f ), outE( f ) ← 0;

forall v ∈ fout do
forall f ∈ F(v): f ̸= fout do

outV( f )++;

forall e ∈ fout do
forall f ∈ F(e): f ̸= fout do

outE( f )++;

■ fout = current outerface
■ F(v) = faces that contain v
■ F(e) = faces that contain e
■ outV( f ) = # vertices of f on fout
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Remove degree 2 vertex vk ■ fout = current outerface
■ F(v) = faces that contain v
■ F(e) = faces that contain e
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Canonical order – implementation

Remove vk with sepF(vk)= 0 ■ fout = current outerface
■ F(v) = faces that contain v
■ F(e) = faces that contain e
■ outV( f ) = # vertices of f on fout
■ outE( f ) = # edges of f on fout
■ sepF(v) = # separation faces that

contain v
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wp−1
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f ′i

■ face fi contains edge (wi−1,wi)
of the outerface of Gk−1

■ face f ′i contains edges of wi that
are in the interior of Gk−1
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Canonical order – implementation

Algorithm CanonicalOrder
initialize;
for k = n to 3 do

choose vk ̸= v1, v2 such that
– sepf(v)=0 or
– or F(v) = { f }, outV( f )=3 and outE( f )=2
replace vk with path P = wp . . . wq in fout;
forall p− 1 ≤ i ≤ q do

remove face {vk,wi,wi+1} from F(wi)and F(wi+1);

forall w ∈ wp−1Pwq+1 do
forall f ∈ F(w) do

update outV( f );

forall e ∈ wp−1Pwq+1 do
forall f ∈ F(e) do

update outE( f );

■ fout = current outerface
■ F(v) = faces that contain v
■ F(e) = faces that contain e
■ outV( f ) = # vertices of f on fout
■ outE( f ) = # edges of f on fout
■ sepF(v) = # separation faces that

contain v
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initialize;
for k = n to 3 do

choose vk ̸= v1, v2 such that
– sepf(v)=0 or
– or F(v) = { f }, outV( f )=3 and outE( f )=2
replace vk with path P = wp . . . wq in fout;
forall p− 1 ≤ i ≤ q do
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forall w ∈ wp−1Pwq+1 do
forall f ∈ F(w) do

update outV( f );

forall e ∈ wp−1Pwq+1 do
forall f ∈ F(e) do

update outE( f );

Lemma.
Algorithm CanonicalOrder
computes a canonical order
of a plane graph in O(n)
time.

■ fout = current outerface
■ F(v) = faces that contain v
■ F(e) = faces that contain e
■ outV( f ) = # vertices of f on fout
■ outE( f ) = # edges of f on fout
■ sepF(v) = # separation faces that

contain v

forall w ∈ P ∪ N(P) do
forall f ∈ F(w) do

update sepF(w);
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Canonical order – example
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Order:
{v1, v2, v3, v4, v5, v6, v7, v8, v9}
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