Visualisation of graphs

Planar straight-line drawings
Canonical order

Antonios Symvonis - Chrysanthi Raftopoulou
Fall semester 2022

PN

+1

+2

The original slides of this presentation were created by researchers at Karlsruhe Institute of Technology (KIT), TU Wien, U Wuerzburg, U Konstanz, ...

The original presentation was modified /updated by A. Symvonis and C. Raftopoulou

Motivation

B So far we looked at planar and straight-line drawings
of trees and series-parallel graphs.

Motivation

B So far we looked at planar and straight-line drawings
of trees and series-parallel graphs.

B Why straight-line? Why planar?

Motivation

B So far we looked at planar and straight-line drawings
of trees and series-parallel graphs.

B Why straight-line? Why planar?

B Bennett, Ryall, Spaltzeholz and Gooch, 2007
“The Aesthetics of Graph Visualization”

3.2. Edge Placement Heuristics

By far the most agreed-upon edge placement heuristic
is to minimize the number of edge crossings in a graph
|[BMRW98, Har98, DH96, Pur(02, TR05, TBB88]. The impor-
tance of avoiding edge crossings has also been extensively
validated in terms of user preference and performance (see
Section 4). Similarly, based on perceptual principles, it is
beneficial to minimize the number of edge bends within a
graph [Pur02, TRO5, TBB88]. Edge bends make edges more
difficult to follow because an edge with a sharp bend is more
likely to be perceived as two separate objects. This leads to
the heuristic of keeping edge bends uniform with respect to
the bend’s position on the edge and its angle [TRO5]. If an
edge must be bent to satisfy other aesthetic criteria, the an-
gle of the bend should be as little as possible, and the bend
placement should evenly divide the edge.

Motivation

B So far we looked at planar and straight-line drawings
of trees and series-parallel graphs.

B Why straight-line? Why planar?

B Bennett, Ryall, Spaltzeholz and Gooch, 2007
“The Aesthetics of Graph Visualization”

3.2. Edge Placement Heuristics

By far the most agreed-upon edge placement heuristic

is to minimize the number of edge crossings in a graph

|[BMRW98, Har98, DH96, Pur(02, TR05, TBB88]. The impor- . e
tance of avoiding edge crossings has also been extensively L] Crossi ngS red uce I’eada b| | |ty
validated in terms of user preference and performance (see

Section 4). Similarly, based on perceptual principles, it is

beneficial to minimize the number of edge bends within a e
graph [Pur02, TRO5, TBB88]. Edge bends make edges more . be n d S red uce rea d d bl I Ity
difficult to follow because an edge with a sharp bend is more

likely to be perceived as two separate objects. This leads to

the heuristic of keeping edge bends uniform with respect to

the bend’s position on the edge and its angle [TRO5]. If an

edge must be bent to satisfy other aesthetic criteria, the an-

gle of the bend should be as little as possible, and the bend

placement should evenly divide the edge.

Planar graphs

B Characterisation: A graph is planar iff it contains neither a K5 nor a K3 3 minor.

[Kuratowski 1930, Wagner 1936]

Planar graphs

B Characterisation: A graph is planar iff it contains neither a K5 nor a K3 3 minor.

[Kuratowski 1930, Wagner 1936]

Planar graphs

B Characterisation: A graph is planar iff it contains neither a K5 nor a K3 3 minor.

[Kuratowski 1930, Wagner 1936]

Planar graphs

B Characterisation: A graph is planar iff it contains neither a K5 nor a K3 3 minor.

[Kuratowski 1930, Wagner 1936]

Planar graphs

B Characterisation: A graph is planar iff it contains neither a K5 nor a K3 3 minor.

[Kuratowski 1930, Wagner 1936]

Planar graphs

B Characterisation: A graph is planar iff it contains neither a K5 nor a K3 3 minor.
[Kuratowski 1930, Wagner 1936]

T XK
&)

Planar graphs

B Characterisation: A graph is planar iff it contains neither a K5 nor a K3 3 minor.
[Kuratowski 1930, Wagner 1936]

T XK
& A

Planar graphs

B Characterisation: A graph is planar iff it contains neither a K5 nor a K3 3 minor.
[Kuratowski 1930, Wagner 1936]

T X<
& MY

Planar graphs

B Characterisation: A graph is planar iff it contains neither a K5 nor a K3 3 minor.
[Kuratowski 1930, Wagner 1936]

B Recognition: For a graph G with n vertices, there is an O (7) time algorithm to

test if G is planar. [Hopcroft & Tarjan 1974]
m Also computes an embedding in O(n).

Planar graphs

B Embedding of planar graph:
m clockwise circular order of the edges incident to each vertex
m outerface (clockwise order of edges)

Planar graphs

B Embedding of planar graph:
m clockwise circular order of the edges incident to each vertex
m outerface (clockwise order of edges)

Planar graphs

B Embedding of planar graph:
m clockwise circular order of the edges incident to each vertex
m outerface (clockwise order of edges)

1

5 B Edges:
(QJ' 1:{(1,5),(1,2),(1,3)}

Planar graphs

B Embedding of planar graph:
m clockwise circular order of the edges incident to each vertex
m outerface (clockwise order of edges)

1 5 B Edges:
(' 5 1:{(1,5),(1,2), (1.3)}
a 2:{(2.1),(2,5),(2.3)}
3 3:1(3,1),(3,2),(3,5),(3,4),(3,0)
4:{(43),(4,5))
5:{(5.6). (5.4), (5.3), (5.2), (5, 1)}
6:{(6.3). (6,5)}

Planar graphs

B Embedding of planar graph:
m clockwise circular order of the edges incident to each vertex
m outerface (clockwise order of edges)

1 5 B Edges:
(' 5 1:{(1,5),(1,2), (1.3)}
a 2:{(2.1),(2,5),(2.3)}

3 3:1(3,1),(3,2),(3,5),(3,4),(3,0)
4:{(43),(4,5))
5:{(5.6). (5.4), (5.3), (5.2), (5, 1)}
6:{(6.3). (6,5)}

B Quterface:

1:1(1,3),(3,6).(6,5), (5. 1)}

Planar graphs

B Straight-line drawing: Every planar graph has an embedding where the edges
are straight-line segments. [\Wagner 1936, Fary 1948, Stein 1951]
m T[he algorithms implied by this theory produce drawings with area not bounded
by any polynomial on 7.

Planar graphs

B Straight-line drawing: Every planar graph has an embedding where the edges
are straight-line segments. [\Wagner 1936, Fary 1948, Stein 1951]
m The algorithms implied by this theory produce drawings with area not bounded
by any polynomial on 7.

B Coin graph: Every planar graph is a circle contact graph
(implies straight-line drawing). [Koebe 1936]

Planar graphs

B Straight-line drawing: Every planar graph has an embedding where the edges
are straight-line segments. [\Wagner 1936, Fary 1948, Stein 1951]
m The algorithms implied by this theory produce drawings with area not bounded
by any polynomial on 7.

B Coin graph: Every planar graph is a circle contact graph
(implies straight-line drawing). [Koebe 1936]

B Every 3-connected planar graph has an embedding with convex polygons as its
faces (i.e., implies straight lines). [Tutte 1963: How to draw a graph]
m |dea: Place vertices in the barycentre of neighbours.
m Drawback: Requires large grids.

Planar graphs

B Coin graph:
Exponential area

Planar graphs

B Coin graph:
Exponential area

Planar graphs

B Coin graph:
Exponential area

Planar graphs

B Coin graph:
Exponential area

Planar graphs

B Coin graph:
Exponential area

Planar graphs

B Coin graph:
Exponential area

B Barycentric representation:
Exponential area

Planar graphs

B Coin graph:
Exponential area

B Barycentric representation:
Exponential area

Planar graphs

B Coin graph:
Exponential area @

B Barycentric representation:
A /\ Exponential area

Planar graphs

B Coin graph:
Exponential area

B Barycentric representation:
Exponential area

Planar graphs

B Coin graph:
Exponential area

B Barycentric representation:
Exponential area

- 10

Planar graphs

B Coin graph:
Exponential area

B Barycentric representation:
Exponential area

-11

Planar graphs

B Every planar graph has at most 317 — 6 edges
B A planar triangulation is a planar graph with 317 — 6 edges

Planar graphs

B Every planar graph has at most 317 — 6 edges
B A planar triangulation is a planar graph with 317 — 6 edges

B Properties of planar triangulations:

m Every face is a triangle

®m graph is 3-connected

m Unique embedding (up to choice of outerface)

m Every plane graph is subgraph of a plane triangulation

Planar graphs

B Every planar graph has at most 317 — 6 edges
B A planar triangulation is a planar graph with 317 — 6 edges

B Properties of planar triangulations:

m Every face is a triangle

®m graph is 3-connected

m Unique embedding (up to choice of outerface)

m Every plane graph is subgraph of a pI{ne triangulation

with planar embedding

Planar graphs

B Every planar graph has at most 317 — 6 edges
B A planar triangulation is a planar graph with 317 — 6 edges

B Properties of planar triangulations:
m Every face is a triangle > @
B graph is 3-connected @
® Unique embedding (up to choice of outerface) -
m Every plane graph is subgraph of a plilne triangulation @

with planar embedding

Planar graphs

B Every planar graph has at most 317 — 6 edges
B A planar triangulation is a planar graph with 317 — 6 edges

B Properties of planar triangulations:
m Every face is a triangle > @
B graph is 3-connected @
® Unique embedding (up to choice of outerface) -
m Every plane graph is subgraph of a pI{ne triangulation @

with planar embedding

B We focus on triangulations: 5
m A plane (inner) triangulation is a plane graph where (' ;
every (inner) face is a triangle. "

Planar straight-line drawings

Planar straight-line drawings

p
Goal:
For an n-vertex planar graph create a planar straight-line

drawing of size ()(1n7).

Idea.
Create drawing incrementally by adding vertices

Planar straight-line drawings

p
Goal:

For an n-vertex planar graph create a planar straight-line
drawing of size ()(1n7).

Idea.
Create drawing incrementally by adding vertices

Idea (refined).
B Start with singe edge (v, v>). Let this be Go.

Planar straight-line drawings

)
Goal:

For an n-vertex planar graph create a planar straight-line
drawing of size ()(1n7).

Idea.
Create drawing incrementally by adding vertices

Idea (refined).
B Start with singe edge (v, v>). Let this be Go.

Planar straight-line drawings

()
Goal:

For an n-vertex planar graph create a planar straight-line
drawing of size O (n7).
\.

Idea.
Create drawing incrementally by adding vertices

Idea (refined).

B Start with singe edge (v, v>). Let this be Go.

B To obtain G;,q, add v;,1 to G; so that
neighbours of v; 1 are on the outer face of G;.

B Neighbours of v; 1 in G; have to form path of

Ui+1

length at least two. U1

Canonical order — definition

Canonical order — definition

Canonical order — definition

Canonical order — definition

Definition.
Let G = (V, E) be a triangulated plane graph on n > 3 vertices.
An order 7T = (v1,02,...,7,) is called a canonical order, if the

following conditions hold for each k, 3 < k < n:

B (C1) Vertices {v1,...0r} induce a biconnected internally
triangulated graph; call it ;.
B (C2) Edge (v1,v2) belongs to the outer face of G;.

W (C3) If k < n then vertex vy lies in the outer face of G,
and all neighbors of v, ,; in (G, appear on the boundary of G,

consecutively.

\.

Canonical order — definition

Definition.
Let G = (V, E) be a triangulated plane graph on n > 3 vertices.
An order 7T = (v1,02,...,7,) is called a canonical order, if the

following conditions hold for each k, 3 < k < n:

B (C1) Vertices {v1,...0r} induce a biconnected internally
triangulated graph; call it ;.
B (C2) Edge (v1,v2) belongs to the outer face of G;.

W (C3) If k < n then vertex vy lies in the outer face of G,
and all neighbors of v, ,; in (G, appear on the boundary of G,

consecutively.

\.

Compute:
B either {v3,04,...7,} (adding vertices)

W or {v,,0,-1,...03} (removing vertices)

Canonical order — example

10 -

Canonical order — example

10 -

Canonical order — example

10 -

Canonical order — example

10 -

Canonical order — example

10 -

Canonical order — example

10 -

Canonical order — example

S
4\;\

10 -

Canonical order — example

4{?1\

Canonical order — example

4%

Canonical order — example

10-11

Canonical order — example

U16
014
015
G13
chord
edge joining two
nonadjacent

vertices in a cycle

Canonical order — example

4{?;\

Canonical order — example

Canonical order — exam

n

10 - 16

Canonical order — example

cutvertex
(11 Is not
biconnected

Canonical order — example

Canonical order — example

10 - 23

Canonical order — example

10 - 24

Canonical order — example

7 i N

U1 02

10 - 25

Canonical order — example

10 - 26

Canonical order — example

016
014
012 015
013 \ 01} Ge
010
U9 U6

U8

o7

10 - 27

Canonical order — example

016
014
012 015
013 \ 01} Gs
010
U9 U6

U8

o7

10 - 28

Canonical order — example

10 - 29

Canonical order — example

i
)

Canonical order — existence

Lemma.
Every triangulated plane graph has a canonical order.

|

11 -

Canonical order — existence

Lemma.
Every triangulated plane graph has a canonical order.

Proof.
B Let G, = G, and let v1, vy, v, be the vertices of the
outer face of G,. Conditions C1-C3 hold.

11 -

Canonical order — existence

Lemma.
Every triangulated plane graph has a canonical order.

Proof.
B Let G, = G, and let v1, vy, v, be the vertices of the

outer face of G,. Conditions C1-C3 hold.

B Induction hypothesis: Vertices v,,_1,..., Uxa1 have been
chosen such that conditions C1-C3 hold for
k+1<i<n.

11 -

Canonical order — existence

Lemma.
Every triangulated plane graph has a canonical order.

Proof.
B Let G, = G, and let v1, vy, v, be the vertices of the

outer face of G,. Conditions C1-C3 hold.

B Induction hypothesis: Vertices v,,_1,..., Uxa1 have been
chosen such that conditions C1-C3 hold for
k+1<i<n.

B Induction step: Consider Gj.. We search for vy.

Ok

11 -

Canonical order — existence

Lemma.
Every triangulated plane graph has a canonical order.

Proof.
B Let G, = G, and let v1, vy, v, be the vertices of the

outer face of G,. Conditions C1-C3 hold.

B Induction hypothesis: Vertices v,,_1,..., Uxa1 have been
chosen such that conditions C1-C3 hold for
k+1<i<n.

B Induction step: Consider Gj.. We search for vy.

W)

11 -

Canonical order — existence

Lemma
Every triangulated plane graph has a canonical order.

Proof.
B Let G, = G, and let v1, vy, v, be the vertices of the
outer face of G,. Conditions C1-C3 hold.

B Induction hypothesis: Vertices v,,_1,..., Uxa1 have been
chosen such that conditions C1-C3 hold for
k+1<i<n.

B Induction step: Consider Gj.. We search for vy.

\O °
x\°°
’0\L @(\&
’b
R\

11 -

Canonical order — existence

Lemma.
Every triangulated plane graph has a canonical order.

Proof.
B Let G, = G, and let v1, vy, v, be the vertices of the
outer face of G,. Conditions C1-C3 hold.

B Induction hypothesis: Vertices v,,_1,..., Uxa1 have been
chosen such that conditions C1-C3 hold for
k+1<i<n.

B Induction step: Consider Gj.. We search for vy.

\OQ/
A Jk Have to show:

Q
\(\00\6&0% 1. v not adjacent to chord is
0% & sufficient
,be;@ 2. Such v, exists

11 -

Canonical order — existence

‘Claim 1. If Uy 1s not adjacent to a
chord then removal of v, leaves the
graph biconnected.

12 -

12 -

Canonical order — existence

()

Claim 1. If v, is not adjacent to a
chord then removal of v, leaves the
graph biconnected.

G Uf

Canonical order — existence

‘Claim 1. If Uy 1s not adjacent to a
chord then removal of v, leaves the
graph biconnected.

12 -

12 -

Canonical order — existence

()

Claim 1. If v, is not adjacent to a
chord then removal of v, leaves the
graph biconnected.

G Uf

12 -

Canonical order — existence

()

Claim 1. If v, is not adjacent to a
chord then removal of v, leaves the
graph biconnected.

G Uf

12 -

Canonical order — existence

()

Claim 1. If v, is not adjacent to a
chord then removal of v, leaves the
graph biconnected.

G Uf

not triangulated

12 -

Canonical order — existence

‘Claim 1. If Uy 1s not adjacent to a 1 (Claim 2.)
chord then removal of v leaves the There exists a vertex in (5. that is not
\graph biconnected.) \adjacent to a chord as choice for vy.)

Gk (0" Gk
not triangulated
Gr-1
01 02 01 02

12 -

Canonical order — existence

‘Claim 1. If Uy 1s not adjacent to a 1 (Claim 2.)
chord then removal of v leaves the There exists a vertex in (5. that is not
\graph biconnected.) \adjacent to a chord as choice for vy.)

vertices with degree 2
exist in outerplanar graphs

Canonical order — existence

7

Claim 1. If v, is not adjacent to a
chord then removal of v, leaves the
graph biconnected.

12 -

‘Claim 2.

\adjacent to a chord as choice for v;.

There exists a vertex in (5, that is not

vertices with degree 2
exist in outerplanar graphs

This completes proof of Lemma.

Canonical order — implementation

B chords of Gj belong to faces:
Gy

13 -

13-2

Canonical order — implementation

B chords of Gj belong to faces:
Gy

B f has two vertices on the outerface and
one internal

13-3

Canonical order — implementation

B chords of Gj belong to faces:
Gy

B f has two vertices on the outerface and
one internal

B f has three vertices on the outerface
and at least two chords

13-4

Canonical order — implementation

B chords of Gj belong to faces:
Gy

B f has two vertices on the outerface and
one internal

B f has three vertices on the outerface
and at least two chords

B f has three consequtive vertices on the
outerface

13-5

Canonical order — implementation

B chords of Gj belong to faces:

G
B f has two vertices on the outerface and
one internal
Y1 | | 722. B f has three vertices on the outerface
B chords are associated with separating faces and at least two chords
B 0 belongs to no separating faces * B f has three consequtive vertices on the

outerface

13-6

Canonical order — implementation

B chords of Gj belong to faces:

G, * except ior these vertices!

B f has two vertices on the outerface and
one internal

01 | | 722.] f has three vertices on the outerface
B chords are associated with separating faces and at least two chords
B 0 belongs to no separating faces * B f has three consequtive vertices on the

outerface

Canonical order — implementation

G, * except ior these vertices!

U1 02
B chords are associated with separating faces
B v, belongs to no separating faces *

B f,,+ = current outerface
B F(v) = faces that contain v
B F(e) = faces that contain e

13 -

Canonical order — implementation

G, * except ior these vertices!

U1 02
B chords are associated with separating faces
B v, belongs to no separating faces *

fout = current outerface
F(v) = faces that contain v
F(e) = faces that contain e

outV(f) = # vertices of f on fy,;

outE(f) = # edges of f on fous
sepF(v) = # separation faces that

contain v

13 -

Canonical order — implementation

fout = current outerface
F(v) = faces that contain v
F(e) = faces that contain e

outV(f) = # vertices of f on fy,;

outE(f) = # edges of f on fous
sepF(v) = # separation faces that

contain v

G, * except ior these vertices!

f € F(v) is separating iff

U1 U?] outV(f):3 or

B chords are associated with separating faces ® outV(f)=2 and outE(f)=0
B v, belongs to no separating faces *

13 -

Canonical order — implementation

fout = current outerface
F(v) = faces that contain v
F(e) = faces that contain e

outV(f) = # vertices of f on fy,;

outE(f) = # edges of f on fous
sepF(v) = # separation faces that

contain v

14 -

Canonical order — implementation

Algorithm CanonicalOrder- Initialization

forall v € V do
| sepF(v) < 0;

forall f € F do
| outV(f), outE(f) < 0;

fout = current outerface
F(v) = faces that contain v
F(e) = faces that contain e

outV(f) = # vertices of f on fy,;

outE(f) = # edges of f on fous
sepF(v) = # separation faces that

contain v

14 -

Canonical order — implementation

Algorithm CanonicalOrder- Initialization fout = current outerface

F(v) = faces that contain v
F(e) = faces that contain e

outV(f) = # vertices of f on fy,;

outE(f) = # edges of f on fous
sepF(v) = # separation faces that

forall v € V do
| sepF(v) < 0;

forall f € F do
| outV(f), outE(f) < 0;

forall v € f,,;; do

L forall f € F(v): f # four do contain v
| outV(f)++;

forall e € f,,; do

L forall f € F(e): f # four do

| outE(f)++;

Canonical order — implementation

Algorithm CanonicalOrder- Initialization fout = current outerface

F(v) = faces that contain v
F(e) = faces that contain e

outV(f) = # vertices of f on fy,;

outE(f) = # edges of f on fous
sepF(v) = # separation faces that

forall v € V do
| sepF(v) < 0;

forall f € F do

| outV(f), outE(f) < 0;

forall v € f,,;; do

L forall f € F(v): f # four do contain v
| outV(f)++;

forall v € f,,+ do

forall ¢ € f,yt do forall f € F(v): f # four do
forall f € F(e): f # fout do if outV(f)=3 or outV(f)=2
| outE(f)++; and outE(f)=0 then
| sepF(v)++;

Canonical order — implementation

Remove degree 2 vertex vy

fout = current outerface
F(v) = faces that contain v
F(e) = faces that contain e

outV(f) = # vertices of f on fy,;

outE(f) = # edges of f on fous
sepF(v) = # separation faces that

contain v

Wit1

fo

15 -

Canonical order — implementation

Remove degree 2 vertex vy

B v, and f; are removed

B outE(f2) increases by one

B sepF(w;_q1) decreases by one
B sepF(w;1) decreases by one

fout = current outerface
F(v) = faces that contain v
F(e) = faces that contain e

outV(f) = # vertices of f on fy,;

outE(f) = # edges of f on fous
sepF(v) = # separation faces that

contain v

Wit1

fo

15 -

Canonical order — implementation

Remove degree 2 vertex vy fout = current outerface

F(v) = faces that contain v
F(e) = faces that contain e

outV(f) = # vertices of f on fy,;

outE(f) = # edges of f on fous
sepF(v) = # separation faces that

if fo has outV(f2)=2, contain v
fo is not a separating face

m sepF(w;_1) decreases by one
m sepF(w;,1) decreases by one

B v, and f; are removed
outE(fo) increases by one
sepF(w;_1) decreases by one
sepF(w;, 1) decreases by one

Wit1

fo

Canonical order — implementation

Remove vy with sepF(v;)= 0

B face f; contains edge (w;_1, w;)
of the outerface of Gj_1

B face f; contains edges of w; that
are in the interior of Gy_1

fout = current outerface
F(v) = faces that contain v
F(e) = faces that contain e

outV(f) = # vertices of f on fy,;

outE(f) = # edges of f on fous
sepF(v) = # separation faces that

contain v

16 -

Canonical order — implementation

Remove vy with sepF(v;)= 0

B 0, and faces that contain vy are removed
outV(f;) increases by two, p+1<i<g
outV(fp), outV(f, 1) increases by one
outV(f/) incrases by one, p <i <g
outE(f;) increases by one, p <1 <g+1

B face f; contains edge (w;_1, w;)
of the outerface of Gj_1

B face f; contains edges of w; that
are in the interior of Gy_1

fout = current outerface
F(v) = faces that contain v
F(e) = faces that contain e

outV(f) = # vertices of f on fy,;

outE(f) = # edges of f on fous
sepF(v) = # separation faces that

contain v

16 -

Canonical order — implementation

Remove vy with sepF(v;)= 0

U and faces that contain vy are removed
outV(f;) increases by two, p+1<i<g
outV(fp), outV(f, 1) increases by one
outV(f/) incrases by one, p <i <g
outE(f;) increases by one, p <1 <g+1

fout = current outerface
F(v) = faces that contain v
F(e) = faces that contain e

outV(f) = # vertices of f on fy,;

outE(f) = # edges of f on fous
sepF(v) = # separation faces that

contain v

if fior f/ becomes separating

B increase sepF(u) by one for all its
vertices u

B face f; contains edge (w;_1, w;)
of the outerface of Gj_1

B face f; contains edges of w; that
are in the interior of Gy_1

16 -

Canonical order — implementation

Algorithm CanonicalOrder

initialize:

for k =n to 3 do

choose v # v1, U2 such that

— sepf(v)=0 or

—or F(v) = {f}, outV(f)=3 and outE(f)=2

fout = current outerface
F(v) = faces that contain v
F(e) = faces that contain e

outV(f) = # vertices of f on fy,;

outE(f) = # edges of f on fous
sepF(v) = # separation faces that

contain v

17 -

Canonical order — implementation

Algorithm CanonicalOrder

initialize:

for k =n to 3 do

choose v # v1, U2 such that

— sepf(v)=0 or

—or F(v) = {f}, outV(f)=3 and outE(f)=2

fout = current outerface
F(v) = faces that contain v
F(e) = faces that contain e

outV(f) = # vertices of f on fy,;

outE(f) = # edges of f on fous
sepF(v) = # separation faces that

contain v

17 -

Canonical order — implementation

Algorithm CanonicalOrder

initialize:

for k =n to 3 do

choose v # v1, U2 such that

— sepf(v)=0 or

—or F(v) = {f}, outV(f)=3 and outE(f)=2
replace vy with path P = w, ... wg in foyu;

fout = current outerface
F(v) = faces that contain v
F(e) = faces that contain e

outV(f) = # vertices of f on fy,;

outE(f) = # edges of f on fous
sepF(v) = # separation faces that

contain v

17 -

Canonical order — implementation

Algorithm CanonicalOrder

initialize:

for k =n to 3 do

choose v # v1, U2 such that

— sepf(v)=0 or

—or F(v) = {f}, outV(f)=3 and outE(f)=2

replace vy with path P = w, ... wg in foyu; _

forall p — 1 <i<gdo contain v
| remove face {vy, w;, wiy1} from F(w;)and F(w;;1);

fout = current outerface
F(v) = faces that contain v
F(e) = faces that contain e

outV(f) = # vertices of f on fy,;

outE(f) = # edges of f on fous
sepF(v) = # separation faces that

17 -

Canonical order — implementation

Algorithm CanonicalOrder

initialize:

for k =n to 3 do

choose v # v1, U2 such that

— sepf(v)=0 or

—or F(v) = {f}, outV(f)=3 and outE(f)=2

replace vy with path P = w, ... wg in foyu; _

forall p — 1 <i<gdo contain v
| remove face {vy, w;, wiy1} from F(w;)and F(w;;1);

fout = current outerface
F(v) = faces that contain v
F(e) = faces that contain e

outV(f) = # vertices of f on fy,;

outE(f) = # edges of f on fous
sepF(v) = # separation faces that

forall w € wy—1Pwg41 do

forall f € F(w) do
L | update outV(f);

forall e € wy—1Pwg41 do

forall f € F(e) do
L | update outE(f);

Canonical order — implementation

Algorithm CanonicalOrder

initialize:

for k =n to 3 do

choose v # v1, U2 such that

— sepf(v)=0 or

—or F(v) = {f}, outV(f)=3 and outE(f)=2

replace vy with path P = w, ... wg in foyu; _

forall p — 1 <i<gdo contain v
| remove face {vy, w;, wiy1} from F(w;)and F(w;;1);

fout = current outerface
F(v) = faces that contain v
F(e) = faces that contain e

outV(f) = # vertices of f on fy,;

outE(f) = # edges of f on fous
sepF(v) = # separation faces that

forall w € wy—1Pwg41 do

forall f € F(w) do

| update outV(f); forall w € PUN(P) do
L forall f € F(w) do

forall e € wy—1Pwg41 do

L forall f € F(e) do

| update sepF(w);
| update outE(f);

17 -

Canonical order — implementation

Algorithm CanonicalOrder
initialize:

for k =n to 3 do

choose v # v1, U2 such that
— sepf(v)=0 or

replace v with path P = w,
forall p —1 <1 <gdo

forall w € wy—1Pwg41 do

forall f € F(w) do
L | update outV(f);

forall e € wy—1Pwg41 do

forall f € F(e) do
L | update outE(f);

—or F(v) = {f}, outV(f)=3 and outE(f)=2
.. .wq In fout;

| remove face {vy, w;, wiy1} from F(w;)and F(w;;1);

fout = current outerface
F(v) = faces that contain v
F(e) = faces that contain e

outV(f) = # vertices of f on fy,;

outE(f) = # edges of f on fous
sepF(v) = # separation faces that

contain v
'Lemma.

Algorithm CanonicalOrder
forall w € PUN(P) do computes a canonical order
L forall f € F(w) do of a plane graph in O(7)

| update sepF(w); time.

Canonical order — example

outV(f)

outE(f)

7

1

02

sepF(v)

Canonical order — example

e

18 -

Al B|C|D|E|F H
outV(f)|2 |1]2[3|3]2 1
outE(f) |1 /0|0 |2 |20 0
03| 04| O5| Og| O7| Ug
sepF(v) 2 14|11
02

Canonical order — example

o

18 -

Al B|C|D|E|F H
outV(f)|2 |1]2[3|3]2 1
outE(f) |1 /0|0 |2 |20 0
03| 04| O5| Og| O7| Ug
sepF(v) 2 14|11
02

Canonical order — example

o

18 -

02

Al B|C|D|E|F H
outV(f)[2 | 1|2 3|2 1
outE(f) [1 |0 |1 210 0

03| 04| O5| Og| O7| Ug
sepF(v) 0|2 |1

Canonical order — example

&

18 -

02

Al B|C|D|E|F H
outV(f)[2 | 1|2 3|2 1
outE(f) [1 |0 |1 210 0

03| 04| O5| Og| O7| Ug
sepF(v) 0|2 |1

Canonical order — example

&

18 -

02

Al B|C|D|E|F H
outV(f)[2 | 1|2 , 1
outE(f)[1]0 |1 1 0

03| 04| O5| Og| O7| Ug
sepF(v) 010

Canonical order — example

N

18 -

02

Al B|C|D|E|F H
outV(f)[2 | 1|2 , 1
outE(f)[1]0 |1 1 0

03| 04| O5| Og| O7| Ug
sepF(v) 010

Canonical order — example

N

18 -

02

A|B|C|D|E|F H
outV(f) |2 | 2 .
outE(f) |1 | 1 0

03| 04| O5| Og| O7| Ug
sepF(v)| 2 0

Canonical order — example

™

18 -

02

A|B|C|D|E|F H
outV(f) |2 | 2 .
outE(f) |1 | 1 0

03| 04| O5| Og| O7| Ug
sepF(v)| 2 0

Canonical order — example

™

18- 10

02

AlB|C|D|E]|F H
outV(f) 3
outE(f) 2

03| 04| O5| Og| O7| Ug
sepF(v)| 2 | 1

Canonical order — example

™

18- 11

A B|C|D|E|F|G|H
outV(f) 313
outE(f) 2 |2

02

sepF(v)| 2 | 1

Order:
{v1,v2,v3,04,vs, Vg, V7, Vg, Vg }

| iterature

B [HGD Ch. 6.5] canonical order

B [dFPP90] de Fraysseix, Pach, Pollack "How to draw a planar graph on a grid”,
Combinatorica, 1990

B [Kant96] Kant "Drawing planar graphs using the canonical ordering”,
Algorithmica, 1996

m [BBC11] Badent, Brandes, Cornelsen “"More Canonical Ordering”,
JGAA, 2011

19

	Canonical order
	Definition
	Example
	Existence
	Implementation
	Implementation
	Implementation
	Implementation
	Implementation
	Implementation

	Literature

