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Series-parallel graphs

A graph G is series-parallel, if f
B it contains a single edge (s, t), or
B it consists of two series-parallel graphs 1, G» Observations:
with sources s, s» and sinks t1, to that are s W |E| <2|V|-3
combined using one of the following rules: W Series-parallel graphs
are planar
Series composition Parallel composition
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A decomposition tree of G is a binary tree T with nodes of
three types: S, P and Q-type

B A Q-node represents a single edge

B An S-node represents a series composition;
its children T7 and T5 represent (51 and G

B A P-node represents a parallel composition;
its children T7 and T5 represent (-1 and G»
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Series-parallel graphs — decomposition tree

We further require:
B if a node y and its parent v have the same type, then u is the right child of v.
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B Unique decomposition tree
B The order of the children (Q or S) define the graph embedding
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Series-parallel graphs — drawing style

Drawing conventions
B Planarity

B Straight-line edges
B Upward

Drawing aesthetics
B Area
B Symmetry
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B A class of graphs that requires exponential area for its upward drawing

Theorem |Bertolazzi et al. 1994] Any upward drawing of the
2n-vertex embedded graph G that preserves the embedding
requires area ()(4"), under any resolution rule.
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o tn+1: — above T
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tn+1: — above T
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Proof:
B 2 Area(N,) < Area(I1)

[ s, tn is the diagonal of 11 ]

tp41: — above T

— to the right of p

— to the left of A ,0
Sp+1: — below o

— to the left of A

Drawing Ay, 4 1 contains triangle T
(yellow) defined by p, ¢ and A

T is the union of IT and similar triangles T/ and T"
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Proof: T e ight of
B 2 Area(N,) < Area(I1)

— to the left of A ‘O
[ s, tn is the diagonal of 11 ]

Sp41: — below o
— to the left of A

Drawing Ay, 4 1 contains triangle T
(yellow) defined by p, ¢ and A

T is the union of Il and similar triangles T/ and T" .
T th .

yz: line parallel to A through the
intersection y of T and p

yz partitions I into:

a triangle congruent to T and
a quadrilateral congruent to a portion of T/
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Proof: T e ight of
B 2 Area(N,) < Area(I1)
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. : — bel
[ sn, tn is the diagonal of IT ] n+1 B Eoe ;\:\; (ITeft of A
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Series-parallel graphs — straight-line drawings

Divide & conquer algorithm using the decomposition tree
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with no vertex placed at its right corner

G
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Series-parallel graphs — straight-line drawings

Divide & conquer algorithm using the decomposition tree

B Draw G inside a right-angled isosceles bounding triangle A(G) G
with no vertex placed at its right corner

Base case: Q-nodes Divide: Draw (&1 and G» first
Conquer:

B S-nodes / series composition
B P-nodes / parallel composition

Do you see any problem?
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Series-parallel graphs — straight-line drawings

B What makes parallel composition possible without creating crossings?

1, L
‘. S,
’ ’
NI o0’
’ ’
v , v
.

right-

Assume the following holds:
the only vertex in angle(v) is s

B This condition is preserved during the induction step.

Lemma.
The drawing produced by the algorithm is planar.




Series-parallel graphs — result

‘Theorem.
Let G be a series-parallel graph. Then G (with
variable embedding) admits a drawing IT" that
B is upward planar and
B a straight-line drawing
B with area in O(n?)
[m X 2m, where m is the number of edges of G]
B Isomorphic components of G have congruent
drawings up to translation.
' can be computed in O(n) time.
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| iterature

B [GD Ch. 3.2] for divide an conquer mehtods for series-parallel graphs.

B [BC+94| Bertolazzi, Cohen, Di Battista, Tamassia and Tollis, "How to draw a
series-parallel digraph”, Int. J. of Computational Geometry and Applications, Vol. 4,

pp. 385-402, 1994.
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