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Series-parallel graphs

A graph G is series-parallel, if
■ it contains a single edge (s, t), or
■ it consists of two series-parallel graphs G1, G2

with sources s1, s2 and sinks t1, t2 that are
combined using one of the following rules:
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Series-parallel graphs

A graph G is series-parallel, if
■ it contains a single edge (s, t), or
■ it consists of two series-parallel graphs G1, G2

with sources s1, s2 and sinks t1, t2 that are
combined using one of the following rules:
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Series-parallel graphs

A graph G is series-parallel, if
■ it contains a single edge (s, t), or
■ it consists of two series-parallel graphs G1, G2

with sources s1, s2 and sinks t1, t2 that are
combined using one of the following rules:

Series composition Parallel composition

s

t

G1

G2

G1 G2

G1

s1

t1

G2

s2

t2

s1 s1 = s2

t2 t1 = t2

t1 = s2

Observations:
■ |E| ≤ 2|V| − 3
■ Series-parallel graphs

are planar
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Series-parallel graphs – decomposition tree

A decomposition tree of G is a binary tree T with nodes of
three types: S, P and Q-type
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Series-parallel graphs – decomposition tree

A decomposition tree of G is a binary tree T with nodes of
three types: S, P and Q-type

■ A Q-node represents a single edge

■ An S-node represents a series composition;
its children T1 and T2 represent G1 and G2
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Series-parallel graphs – decomposition tree

A decomposition tree of G is a binary tree T with nodes of
three types: S, P and Q-type

■ A Q-node represents a single edge

■ A P-node represents a parallel composition;
its children T1 and T2 represent G1 and G2

■ An S-node represents a series composition;
its children T1 and T2 represent G1 and G2

Q S

T1

G1
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G1 G2

T2 T1 T2
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Series-parallel graphs – decomposition tree

We further require:

■ if a node µ and its parent ν have the same type, then µ is the right child of ν.
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Series-parallel graphs – decomposition tree

We further require:

■ if a node µ and its parent ν have the same type, then µ is the right child of ν.

S

SQ

P

Q P

S

SP

P

PS



4 - 3

Series-parallel graphs – decomposition tree

We further require:

■ if a node µ and its parent ν have the same type, then µ is the right child of ν.
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Series-parallel graphs – decomposition tree

We further require:

■ if a node µ and its parent ν have the same type, then µ is the right child of ν.

■ Unique decomposition tree

S

SQ

P

Q P

S P

Q

S

P

P

S Q

S

S

SP

P

PS S

■ The order of the children (Q or S) define the graph embedding

P

P
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Series-parallel graphs – decomposition example
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Series-parallel graphs – decomposition example

P
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Series-parallel graphs – decomposition example

S
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Series-parallel graphs – decomposition example
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Series-parallel graphs – decomposition example
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Series-parallel graphs – decomposition example
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Series-parallel graphs – decomposition example
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Series-parallel graphs – decomposition example
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Series-parallel graphs – decomposition example
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Series-parallel graphs – decomposition example
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Series-parallel graphs – decomposition example
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Series-parallel graphs – applications

Flowcharts PERT-Diagrams
(Program Evaluation and Review Technique)
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Series-parallel graphs – applications

Flowcharts PERT-Diagrams
(Program Evaluation and Review Technique)

Computational complexity:
Linear time algorithms for NP-hard problems
(e.g. Maximum Matching, MIS, Hamiltonian Completion)
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Series-parallel graphs – drawing style

Drawing conventions

Drawing aesthetics
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Series-parallel graphs – drawing style

Drawing conventions

Drawing aesthetics

■ Planarity
■ Straight-line edges
■ Upward
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Series-parallel graphs – drawing style

Drawing conventions

Drawing aesthetics

■ Planarity
■ Straight-line edges
■ Upward

■ Area
■ Symmetry
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Series-parallel graphs – An exponential area bound

■ A class of graphs that requires exponential area for its upward drawing
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Series-parallel graphs – An exponential area bound

■ A class of graphs that requires exponential area for its upward drawing

GnG0:

Gn+1:

s0

t0

sn+1

sn

tn

tn+1
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Series-parallel graphs – An exponential area bound

■ A class of graphs that requires exponential area for its upward drawing
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Series-parallel graphs – An exponential area bound

■ A class of graphs that requires exponential area for its upward drawing
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Series-parallel graphs – An exponential area bound

■ A class of graphs that requires exponential area for its upward drawing

GnG0:

Gn+1:

s0

t0

sn+1

sn

tn

tn+1

s0

s1

t0

t1

s0

s1

t0

t1

s2

t2

G1:
G2:

Theorem [Bertolazzi et al. 1994] Any upward drawing of the
2n-vertex embedded graph Gn that preserves the embedding
requires area Ω(4n), under any resolution rule.



9 - 1

Series-parallel graphs – fixed embedding
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Series-parallel graphs – fixed embedding

G0
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Gn+1

Gn
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tn

tn+1

Proof:
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Series-parallel graphs – fixed embedding

G0
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tn+1 ∆n
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sn−1

Proof:

sn
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Series-parallel graphs – fixed embedding
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Proof:
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Series-parallel graphs – fixed embedding
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Series-parallel graphs – fixed embedding
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Series-parallel graphs – fixed embedding
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Series-parallel graphs – fixed embedding
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Series-parallel graphs – fixed embedding
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Series-parallel graphs – fixed embedding

G0
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Proof:
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τ
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tn+1 : – above τ

– to the right of ρ

sn+1 : – below σ
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Drawing ∆n+1 contains triangle T
(yellow) defined by ρ, σ and λ

sn
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Series-parallel graphs – fixed embedding

G0
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Gn
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tn
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Proof:

σ

τ

ρ
tn+1 : – above τ

– to the right of ρ

sn+1 : – below σ

λ

– to the left of λ

– to the left of λ

sn+1
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Drawing ∆n+1 contains triangle T
(yellow) defined by ρ, σ and λ

Π: Parallelogram defined by τ, ρ, σ and
line parallel to ρ through tn

Π
x sn
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Series-parallel graphs – fixed embedding

G0

s0

t0

Gn+1

Gn

sn+1

sn

tn

tn+1 ∆n

tn

sn−1

■ 2 · Area(∆n) < Area(Π)

Proof:

σ

τ

ρ
tn+1 : – above τ

– to the right of ρ

sn+1 : – below σ

λ

– to the left of λ

– to the left of λ

sn+1

tn+1

Drawing ∆n+1 contains triangle T
(yellow) defined by ρ, σ and λ

Π: Parallelogram defined by τ, ρ, σ and
line parallel to ρ through tn

Π

[ sn , tn is the diagonal of Π ]

x sn
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Series-parallel graphs – fixed embedding

G0
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■ 2 · Area(∆n) < Area(Π)

Proof:
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ρ
tn+1 : – above τ

– to the right of ρ

sn+1 : – below σ

λ

– to the left of λ

– to the left of λ
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tn+1

Drawing ∆n+1 contains triangle T
(yellow) defined by ρ, σ and λ

Π: Parallelogram defined by τ, ρ, σ and
line parallel to ρ through tn

Π

[ sn , tn is the diagonal of Π ]

T is the union of Π and similar triangles T′ and T′′

x sn
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Series-parallel graphs – fixed embedding
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Proof:
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ρ
tn+1 : – above τ

– to the right of ρ

sn+1 : – below σ

λ

– to the left of λ

– to the left of λ
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Drawing ∆n+1 contains triangle T
(yellow) defined by ρ, σ and λ

Π: Parallelogram defined by τ, ρ, σ and
line parallel to ρ through tn

Π

[ sn , tn is the diagonal of Π ]

T is the union of Π and similar triangles T′ and T′′

x

y

z

yz: line parallel to λ through the
intersection y of τ and ρ

yz partitions Π into:

a triangle congruent to T′′ and
a quadrilateral congruent to a portion of T′

sn



9 - 17

Series-parallel graphs – fixed embedding
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Drawing ∆n+1 contains triangle T
(yellow) defined by ρ, σ and λ

Π: Parallelogram defined by τ, ρ, σ and
line parallel to ρ through tn

Π

[ sn , tn is the diagonal of Π ]

T is the union of Π and similar triangles T′ and T′′

x

y

z

yz: line parallel to λ through the
intersection y of τ and ρ

yz partitions Π into:

a triangle congruent to T′′ and
a quadrilateral congruent to a portion of T′

Area(T) ≤ Area(∆n+1)

Area(T) ≥ 2Ȧrea(Π)

sn
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Series-parallel graphs – fixed embedding
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Proof:
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Drawing ∆n+1 contains triangle T
(yellow) defined by ρ, σ and λ

Π: Parallelogram defined by τ, ρ, σ and
line parallel to ρ through tn

Π

[ sn , tn is the diagonal of Π ]

T is the union of Π and similar triangles T′ and T′′

x

y

z

yz: line parallel to λ through the
intersection y of τ and ρ

yz partitions Π into:

a triangle congruent to T′′ and
a quadrilateral congruent to a portion of T′

Area(T) ≤ Area(∆n+1)

Area(T) ≥ 2Ȧrea(Π)
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Series-parallel graphs – straight-line drawings

■ Draw G inside a right-angled isosceles bounding triangle ∆(G)
with no vertex placed at its right corner

G

Divide & conquer algorithm using the decomposition tree



10 - 2

Series-parallel graphs – straight-line drawings

Base case: Q-nodes

s

t

■ Draw G inside a right-angled isosceles bounding triangle ∆(G)
with no vertex placed at its right corner

G

Divide & conquer algorithm using the decomposition tree
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Series-parallel graphs – straight-line drawings

Base case: Q-nodes

s

t

■ Draw G inside a right-angled isosceles bounding triangle ∆(G)
with no vertex placed at its right corner

G

Divide & conquer algorithm using the decomposition tree

Divide: Draw G1 and G2 first
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Series-parallel graphs – straight-line drawings

Base case: Q-nodes

s

t

Conquer:
■ S-nodes / series composition
■ P-nodes / parallel composition

∆(G2)

∆(G1)

■ Draw G inside a right-angled isosceles bounding triangle ∆(G)
with no vertex placed at its right corner

G

Divide & conquer algorithm using the decomposition tree

s

t

Divide: Draw G1 and G2 first
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Series-parallel graphs – straight-line drawings

Base case: Q-nodes

s

t

Conquer:
■ S-nodes / series composition
■ P-nodes / parallel composition

∆(G2)

∆(G1)

t

s

∆(G1)

∆(G2)

■ Draw G inside a right-angled isosceles bounding triangle ∆(G)
with no vertex placed at its right corner

G

Divide & conquer algorithm using the decomposition tree

s

t

Divide: Draw G1 and G2 first
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Series-parallel graphs – straight-line drawings

Base case: Q-nodes

s

t

Conquer:
■ S-nodes / series composition
■ P-nodes / parallel composition

∆(G2)

∆(G1)

t

s

∆(G1)

∆(G2)

■ Draw G inside a right-angled isosceles bounding triangle ∆(G)
with no vertex placed at its right corner

G

Divide & conquer algorithm using the decomposition tree

s

t

Divide: Draw G1 and G2 first
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Series-parallel graphs – straight-line drawings

Base case: Q-nodes

s

t

Conquer:
■ S-nodes / series composition
■ P-nodes / parallel composition

∆(G2)

∆(G1)

t

s

∆(G1)

∆(G2)

■ Draw G inside a right-angled isosceles bounding triangle ∆(G)
with no vertex placed at its right corner

G

Divide & conquer algorithm using the decomposition tree

Do you see any problem?

s

t

Divide: Draw G1 and G2 first
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Series-parallel graphs – straight-line drawings

Base case: Q-nodes

s

t

Conquer:
■ S-nodes / series composition
■ P-nodes / parallel composition

∆(G2)

∆(G1)

t

s

∆(G1)

∆(G2)

■ Draw G inside a right-angled isosceles bounding triangle ∆(G)
with no vertex placed at its right corner

G

Divide & conquer algorithm using the decomposition tree

single edge

s

t

Divide: Draw G1 and G2 first
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Series-parallel graphs – straight-line drawings

Base case: Q-nodes

s

t

Conquer:
■ S-nodes / series composition
■ P-nodes / parallel composition

∆(G2)

∆(G1)

t

s

∆(G1)

∆(G2)

■ Draw G inside a right-angled isosceles bounding triangle ∆(G)
with no vertex placed at its right corner

G

Divide & conquer algorithm using the decomposition tree

change embedding!

s

t

Divide: Draw G1 and G2 first
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Series-parallel graphs – straight-line drawings

Base case: Q-nodes

s

t

Conquer:
■ S-nodes / series composition
■ P-nodes / parallel composition

∆(G2)

∆(G1)

t

s

∆(G1)

∆(G2)

■ Draw G inside a right-angled isosceles bounding triangle ∆(G)
with no vertex placed at its right corner

G

Divide & conquer algorithm using the decomposition tree

change embedding!

s

t

Divide: Draw G1 and G2 first
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Series-parallel graphs – straight-line drawings

Base case: Q-nodes

s

t

Conquer:
■ S-nodes / series composition
■ P-nodes / parallel composition

∆(G2)

∆(G1)

t

s

∆(G1)

∆(G2)

■ Draw G inside a right-angled isosceles bounding triangle ∆(G)
with no vertex placed at its right corner

G

Divide & conquer algorithm using the decomposition tree

change embedding!

s

t

Divide: Draw G1 and G2 first
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Series-parallel graphs – straight-line drawings

Base case: Q-nodes

s

t

Conquer:
■ S-nodes / series composition
■ P-nodes / parallel composition

∆(G2)

∆(G1)

t

s

∆(G1)

∆(G2)

■ Draw G inside a right-angled isosceles bounding triangle ∆(G)
with no vertex placed at its right corner

G

Divide & conquer algorithm using the decomposition tree

change embedding!

s

t

Divide: Draw G1 and G2 first
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Series-parallel graphs – straight-line drawings

■ What makes parallel composition possible without creating crossings?
t

s
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Series-parallel graphs – straight-line drawings

■ What makes parallel composition possible without creating crossings?
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Series-parallel graphs – straight-line drawings

■ What makes parallel composition possible without creating crossings?
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Series-parallel graphs – straight-line drawings

■ What makes parallel composition possible without creating crossings?
t

s
π
4

v

right-
most

v
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Series-parallel graphs – straight-line drawings

■ What makes parallel composition possible without creating crossings?
t

s
π
4

Assume the following holds:
the only vertex in angle(v) is s

v

right-
most

v
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Series-parallel graphs – straight-line drawings

■ What makes parallel composition possible without creating crossings?
t

s
π
4

Assume the following holds:
the only vertex in angle(v) is s

■ This condition is preserved during the induction step.

v

right-
most

v
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Series-parallel graphs – straight-line drawings

■ What makes parallel composition possible without creating crossings?
t

s
π
4

Assume the following holds:
the only vertex in angle(v) is s

■ This condition is preserved during the induction step.

v

right-
most

v

Lemma.
The drawing produced by the algorithm is planar.
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Series-parallel graphs – result

Theorem.
Let G be a series-parallel graph. Then G (with
variable embedding) admits a drawing Γ that
■ is upward planar and
■ a straight-line drawing
■ with area in O(n2)

[m × 2m, where m is the number of edges of G]
■ Isomorphic components of G have congruent

drawings up to translation.
Γ can be computed in O(n) time.
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■ [GD Ch. 3.2] for divide an conquer mehtods for series-parallel graphs.

■ [BC+94] Bertolazzi, Cohen, Di Battista, Tamassia and Tollis, ”How to draw a
series-parallel digraph”, Int. J. of Computational Geometry and Applications, Vol. 4,
pp. 385-402, 1994.
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