Visualisation of graphs Drawing trees and series-parallel graphs Divide and conquer methods

The original slides of this presentation were created by researchers at Karlsruhe Institute of Technology (KIT), TU Wien, U Wuerzburg, U Konstanz, ... The original presentation was modified/updated by A. Symvonis and C. Raftopoulou

Tree - connected graph without cycles
 here: binary and rooted

Tree - connected graph without cycleshere: binary and rooted

Tree traversal

Tree - connected graph without cycles
 here: binary and rooted

Tree traversalDepth-first search

Tree - connected graph without cycles
 here: binary and rooted

Tree traversalDepth-first search

Pre-order – first parent, then subtrees

Tree - connected graph without cycles
 here: binary and rooted

Tree traversal

Depth-first search

- Pre-order first parent, then subtrees
- In-order left child, parent, right child

Tree - connected graph without cycles
 here: binary and rooted

Tree traversal

Depth-first search

- Pre-order first parent, then subtrees
- In-order left child, parent, right child
- Post-order first subtrees, then parent

Tree - connected graph without cycles
 here: binary and rooted

Tree traversal

- Pre-order first parent, then subtrees
- In-order left child, parent, right child
- Post-order first subtrees, then parent
- Breadth-first search

Depth-first search

Assignes vertices to levels corresponding to depth

Tree - connected graph without cycles
 here: binary and rooted

Tree traversal

Depth-first search

2 - 8

(v)

right

subtree

 $T_r(v)$

7

left

subtree

 $T_l(v)$

root

- Pre-order first parent, then subtrees
- In-order left child, parent, right child
- Post-order first subtrees, then parent
- Breadth-first search
 - Assignes vertices to levels corresponding to depth

axial

Isomporphism simple

Level-based layout – applications

Decision tree for outcome prediction after traumatic brain injury Source: Nature Reviews Neurology

Level-based layout – applications

Family tree of LOTR elves and half-elves

Level-based layout – drawing style

- What are properties of the layout?
- What are the drawing conventions?
- What are aesthetics to optimise?

Level-based layout – drawing style

What are properties of the layout?What are the drawing conventions?

- Vvnat are the drawing conventions
 V/het are costhetics to optimize?
- What are aesthetics to optimise?

Drawing conventions

- Vertices lie on layers and have integer coordinates
- Parent above children and "within their X-range" (typically, centered)
- Edges are straight-line segments
 - Isomorphic subtrees have identical drawings

Level-based layout – drawing style

What are properties of the layout?What are the drawing conventions?

What are aesthetics to optimise?

Drawing conventions

- Vertices lie on layers and have integer coordinates
- Parent above children and "within their X-range" (typically, centered)
- Edges are straight-line segments
- Isomorphic subtrees have identical drawings
- Drawing aestheticsArea

Input: A binary tree T **Output:** A leveled drawing of T

Y-cooridinates: depth of vertices **X-cooridinates:** based on in-order tree traversal

Input: A binary tree T **Output:** A leveled drawing of T

Y-cooridinates: depth of verticesX-cooridinates: based on in-order tree traversal

Input: A binary tree *T* **Output:** A leveled drawing of *T*

Y-cooridinates: depth of verticesX-cooridinates: based on in-order tree traversal

Input: A binary tree T**Output:** A leveled drawing of T

Y-cooridinates: depth of vertices **X-cooridinates:** based on in-order tree traversal

ssues:

- Drawing is wider than needed
- Parents not in the center of span of their children

Input: A binary tree *T* **Output:** A leveled drawing of *T*

Input: A binary tree T **Output:** A leveled drawing of T

Base case: A single vertex •

Input: A binary tree T **Output:** A leveled drawing of T

Input: A binary tree T **Output:** A leveled drawing of T

Input: A binary tree T **Output:** A leveled drawing of T

Input: A binary tree T **Output:** A leveled drawing of T

Approach-1: Non-overlapping enclosing rectangles

Approach-2: Overlapping enclosing rectangles

In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:

Width of enclosing rectangle

Distance to left boundary

Distance to right boundary

x-distance to left child

x-distance to right child

In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:

Width of enclosing rectangle

Distance to left boundary

Distance to right boundary

x-distance to left child

x-distance to right child

In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:

Width of enclosing rectangle

For leaves: (0, 0, 0, -, -)

Distance to left boundary

Distance to right boundary

x-distance to left child

x-distance to right child

(0, 0, 0, -, -) (0, 0, 0, -, -) (0, 0, 0, -, -)(0, 0, 0, -, -)(0, 0, 0, -, -)

In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:

Width of enclosing rectangle

Distance to left boundary

Distance to right boundary

x-distance to left child

Rule-1:

Parent at grid point

Horizontal distance: 1 or 2

In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:

rectangle

Distance to left

boundary

Distance to right

boundary

x-distance to left

Rule-1:

IE-1:

- Parent centered above children
- Parent at grid point

Horizontal distance: 1 or 2

In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:

Width of enclosing rectangle

Distance to left boundary

Distance to right boundary

x-distance to left child

child

Rule-2:

Parent above and one unit to the left/right of single child

In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:

rectangle

Distance to left

boundary

Distance to right boundary

x-distance to left child

Rule-2:

child

Parent above and one unit to the left/right of single child

In a bottom up manner (by a post-order traversal) we compute for each vertex the 5-tuple:

rectangle

Distance to left

boundary

Distance to right

boundary

x-distance to left child

Rule-1:

- Parent centered above children
- Parent at grid point

Horizontal distance: 1 or 2

Computation of *x***-coordinates by pre-order traversal**

Computation of *x***-coordinates by pre-order traversal**

■ *y*-coordinate: the depth of each node
Computation of *x***-coordinates by pre-order traversal**

y-coordinate: the depth of each node

Computation of *x***-coordinates by pre-order traversal**

■ *y*-coordinate: the depth of each node

Computation of *x***-coordinates by pre-order traversal**

y-coordinate: the depth of each node

Computation of *x***-coordinates by pre-order traversal**

■ *y*-coordinate: the depth of each node

Computation of *x***-coordinates by pre-order traversal**

■ *y*-coordinate: the depth of each node

Recall...

Approach-1: Non-overlapping enclosing rectangles

Recall...

Approach-1: Non-overlapping enclosing rectangles Approach-2: Overlapping enclosing rectangles T_1 T_2 T_2 T_2 T_3 T_4 T_4

Recall...

Recall...

Approach-1: Non-overlapping enclosing rectangles Approach-2: Overlapping enclosing rectangles T_1 T_2 T_2 Distance 1 or 2 (so that root is placed on grid point)

Recall...

Recall...

Approach-1:Non-overlappingenclosingrectanglesApproach-2:Overlappingenclosingrectangles

Recall...

The left/right contour of leveled tree drawing

The left/right contour of leveled tree drawing

The left/right contour of leveled tree drawing

The left/right contour of leveled tree drawing

The left/right contour of leveled tree drawing

The left/right contour of leveled tree drawing

The left/right contour of leveled tree drawing

The left/right contour of leveled tree drawing

The left/right contour of leveled tree drawing

The left/right contour of leveled tree drawing

The left/right contour of leveled tree drawing

The left/right contour of leveled tree drawing

Computation of the left contour of a tree rooted at u, given

- -the *left contours* of its subtrees
- -the *heights* of its subtress

Computation of the left contour of a tree rooted at *u*, given -the *left contours* of its subtrees -the *heights* of its subtress

Case-1: $h(T_{u}^{L}) = h(T_{u}^{R})$

Computation of the left contour of a tree rooted at *u*, given -the *left contours* of its subtrees -the *heights* of its subtress

Case-1: $h(T_{u}^{L}) = h(T_{u}^{R})$

O(1)-time

Computation of the left contour of a tree rooted at *u*, given –the *left contours* of its subtrees –the *heights* of its subtress

Case-1: $h(T_{u}^{L}) = h(T_{u}^{R})$

Case-2:
$$h(T_{u}^{L}) < h(T_{u}^{R})$$

12 - 4

Computation of the left contour of a tree rooted at *u*, given –the *left contours* of its subtrees –the *heights* of its subtress

Case-1: $h(T_{u}^{L}) = h(T_{u}^{R})$

Case-2:
$$h(T_u^L) < h(T_u^R)$$

Computation of the left contour of a tree rooted at *u*, given –the *left contours* of its subtrees –the *heights* of its subtress

Case-1: $h(T_{u}^{L}) = h(T_{u}^{R})$

Case-2:
$$h(T_{u}^{L}) < h(T_{u}^{R})$$

O(1)-time

Computation of the left contour of a tree rooted at *u*, given -the *left contours* of its subtrees -the *heights* of its subtress

Case-1: $h(T_{u}^{L}) = h(T_{u}^{R})$ **Case-2:** $h(T_{u}^{L}) < h(T_{u}^{R})$

O(1)-time

[We traverse T_u^L and T_u^R simultaneously in order to identify vertex *a* of T_{u}^{R}]

Computation of the left contour of a tree rooted at *u*, given –the *left contours* of its subtrees –the *heights* of its subtress

Computation of the left contour of a tree rooted at *u*, given –the *left contours* of its subtrees –the *heights* of its subtress

Total cost for computing the contours of a tree:

[We build each contour in a bottom-up fashion through a postorder traversal.]

Total cost for computing the contours of a tree:

[We build each contour in a bottom-up fashion through a postorder traversal.]

Total cost for computing the contours of a tree:

[We build each contour in a bottom-up fashion through a postorder traversal.]

Total cost for computing the contours of a tree:

Total cost for computing the contours of a tree:

Total cost for computing the contours of a tree:

Total cost for computing the contours of a tree:

Total cost for computing the contours of a tree:

Total cost for computing the contours of a tree:

Total cost for computing the contours of a tree:

Total cost for computing the contours of a tree:

Total cost for computing the contours of a tree:

Total cost for computing the contours of a tree:

Total cost for computing the contours of a tree:

Total cost for computing the contours of a tree:

Total cost for computing the contours of a tree:

Total cost for computing the contours of a tree:

$$C(T) \leq \sum_{u \in V(T)} 1 + \min(h(T_u^L), h(T_u^R))$$

Total cost for computing the contours of a tree:

[We build each contour in a bottom-up fashion through a postorder traversal.]

$$C(T) \leq \sum_{u \in V(T)} 1 + \min(h(T_u^L), h(T_u^R))$$

= $n + \sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R))$
< $n + n$ (Lemma 1)
= $2n$

Thus, $C(T) \leq 2n$

Lemma 1: For each *n*-vertex binary tree it holds that:

$$\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n$$

Lemma 1: For each *n*-vertex binary tree it holds that:

$$\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n$$

- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.

Lemma 1: For each *n*-vertex binary tree it holds that:

$$\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n$$

- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.

Lemma 1: For each *n*-vertex binary tree it holds that:

$$\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n$$

- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.

Lemma 1: For each *n*-vertex binary tree it holds that:

$$\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n$$

- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.

Lemma 1: For each *n*-vertex binary tree it holds that:

$$\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n$$

- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.

Lemma 1: For each *n*-vertex binary tree it holds that:

$$\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n$$

- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.

Lemma 1: For each *n*-vertex binary tree it holds that:

$$\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n$$

- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.

Lemma 1: For each *n*-vertex binary tree it holds that:

$$\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n$$

- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.

Lemma 1: For each *n*-vertex binary tree it holds that:

$$\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n$$

- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.

Lemma 1: For each *n*-vertex binary tree it holds that:

$$\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n$$

- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.

Lemma 1: For each *n*-vertex binary tree it holds that:

$$\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n$$

- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.

Lemma 1: For each *n*-vertex binary tree it holds that:

$$\sum_{u \in V(T)} \min(h(T_u^L), h(T_u^R)) < n$$

- The height of each subtree is equal to the length of the left/right contour
- We connect each vertex from contour of the shorter subtree to the visible vertex on the contour of the opposite subtree.
- We can charge each connection to the vertex at its left endpoint
- Observe that we have at most one connection out of the right side of each vertex. Thus, at most n connections.

Theorem. (Reingold & Tilford '81)

Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that:

Theorem. (Reingold & Tilford '81)

Let T be a binary tree with n vertices. We can construct a drawing Γ of T in O(n) time, such that:
Γ is planar, straight-line and strictly downward
Γ is leveled: y-coordinate of vertex v is -depth(v)
Vertical and horizontal distances are at least 1

Each vertex is centred wrt its children

Theorem. (Reingold & Tilford '81)

Let T be a binary tree with n vertices. We can construct a drawing Γ of T in O(n) time, such that:
Γ is planar, straight-line and strictly downward
Γ is leveled: y-coordinate of vertex v is -depth(v)
Vertical and horizontal distances are at least 1
Each vertex is centred wrt its children
Area of Γ is in O(n²)

Theorem. (Reingold & Tilford '81)

- Let T be a binary tree with n vertices. We can construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that:
- \blacksquare Γ is planar, straight-line and strictly downward
- **\Gamma** is leveled: y-coordinate of vertex v is -depth(v)
- Vertical and horizontal distances are at least 1
- Each vertex is centred wrt its children
- Area of Γ is in $\mathcal{O}(n^2)$
- Simply isomorphic subtrees have congruent drawings, up to translation
- Axially isomorphic trees have congruent drawings, up to translation and reflection around y-axis

Theorem. (Reingold & Tilford '81) Let T be a binary tree with n vertices. We can generalisable construct a drawing Γ of T in $\mathcal{O}(n)$ time, such that: \square Γ is planar, straight-line and strictly downward Vertical and horizontal distances are at least 1 Each vertex is centred wrt its children Area of Γ is in $\mathcal{O}(n^2)$ Simply isomorphic subtrees have congruent drawings, up to translation Axially isomorphic trees have congruent drawings, up to translation and reflection around y-axis

Level-based layout – area

- Presented algorithm tries to minimise width
- Does not always achieve that!

Level-based layout – area

Level-based layout – area

Level-based layout – area

Level-based layout – area

Presented algorithm tries to minimise width Does not always achieve that! Divide-and-conquer strategy cannot achieve optimal width 12 Drawing with min width (but without the grid) can be Suboptimal constructed by an LP structure leads to better drawing 10

Level-based layout – area

Presented algorithm tries to minimise width Does not always achieve that! Divide-and-conquer strategy cannot achieve optimal width 12 Drawing with min width (but without the grid) can be Suboptimal constructed by an LP structure leads to better drawing Problem is NP-hard on grid 10

Applications

- Cons cell diagram in LISP
- Cons(constructs) are memory objects which hold two values or pointers to values

Source: after gajon.org/trees-linked-lists-common-lisp/

Applications

- Cons cell diagram in LISP
- Cons(constructs) are memory objects which hold two values or pointers to values

Source: after gajon.org/trees-linked-lists-common-lisp/

Applications

- Cons cell diagram in LISP
- Cons(constructs) are memory objects which hold two values or pointers to values

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

Drawing aesthetics

Applications

- Cons cell diagram in LISP
- Cons(constructs) are memory objects which hold two values or pointers to values

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

Children are vertically and horizontally aligned with their parent

Drawing aesthetics

Applications

- Cons cell diagram in LISP
- Cons(constructs) are memory objects which hold two values or pointers to values

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

- Children are vertically and horizontally aligned with their parent
- The bounding boxes of the subtrees of the children are disjoint

Drawing aesthetics

Applications

- Cons cell diagram in LISP
- Cons(constructs) are memory objects which hold two values or pointers to values

Source: after gajon.org/trees-linked-lists-common-lisp/

Drawing conventions

- Children are vertically and horizontally aligned with their parent
- The bounding boxes of the subtrees of the children are disjoint

Drawing aesthetics

Height, width, area

hv-drawings – algorithm

Input: A binary tree T **Output:** A hv-drawing of T

Base case:

Divide: Recursively apply the algorithm to draw the left and right subtrees

Conquer:

hv-drawings – algorithm

Input: A binary tree T **Output:** A hv-drawing of T

Base case:

Divide: Recursively apply the algorithm to draw the left and right subtrees

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

Right-heavy approach

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

at least ·2

Right-heavy approach

at least $\cdot 2$

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

Right-heavy approach

at least ·2

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

Right-heavy approach

at least $\cdot 2$

at least -2

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

Right-heavy approach

at least $\cdot 2$

at least -2

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

Right-heavy approach

at least $\cdot 2$

at least $\cdot 2$

at least -2

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

Right-heavy approach

at least $\cdot 2$

at least $\cdot 2$

at least -2

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

Right-heavy approach

at least $\cdot 2$

at least $\cdot 2$

at least -2

- Always apply horizontal combination
- Place the larger subtree to the right
 - Size of subtree := number of vertices

How to implement this in linear time?

At each node u we store the 5-tuple: $u : (x_u, y_u, W_u, H_u, s_u)$ where:

• x_u, y_u are the x and y coordinates of u

At each node u we store the 5-tuple: $u : (x_u, y_u, W_u, H_u, s_u)$ where:

• x_u, y_u are the x and y coordinates of u

At each node u we store the 5-tuple: $u : (x_u, y_u, W_u, H_u, s_u)$ where:

- x_u, y_u are the x and y coordinates of u
- W_u is the width of the layout of subtree T_u
- H_u is the height of the layout of subtree T_u

• s_u is the size of T_u

Compute in a bottom-up fashion (by a post-order traversal) s_u , W_u and H_u

Compute in a bottom-up fashion (by a post-order traversal) s_u , W_u and H_u

 $u: \quad \bullet \ s_u = s_v + s_w + 1$
u:

Compute in a bottom-up fashion (by a post-order traversal) s_u , W_u and H_u

• $s_u = s_v + s_w + 1$ • if $(s_v < s_w)$ $H_u = \max(H_v + 1, H_w)$ else $H_u = \max(H_w + 1, H_v)$

Compute in a bottom-up fashion (by a post-order traversal) s_u , W_u and H_u

- $s_u = s_v + s_w + 1$ • if $(s_v < s_w)$ $H_u = \max(H_v + 1, H_w)$ else $H_u = \max(H_w + 1, H_v)$
 - $W_u = W_v + W_w + 1$

 \mathcal{U} :

Compute in a top-down fashion (by a pre-order traversal) x_u and y_u

Compute in a top-down fashion (by a pre-order traversal) x_u and y_u

 $r: \quad x_r = 0, \quad y_r = 0$ r(0, 0)

Compute in a top-down fashion (by a pre-order traversal) x_u and y_u

 $r: \quad x_r = 0, \quad y_r = 0$ $u: \quad \text{For subtree rooted at } v \text{ and placed below } u:$ $x_v = x_u$ $y_v = y_u - 1$ For subtree rooted at w and placed to the right of u: $x_w = x_u + W_v + 1$

$$y_w = y_u$$

Compute in a top-down fashion (by a pre-order traversal) x_u and y_u

r(0, 0)

71)

 $r: \quad \bullet \ x_r = 0, \quad y_r = 0$

u: • For subtree rooted at v and placed below u:

$$\begin{array}{l} x_v = x_u \\ y_v = y_u - 1 \end{array}$$

• For subtree rooted at w and placed to the right of u: $x_w = x_u + W_v + 1$ $y_w = y_u$

Total time: O(n)

Theorem.

```
Let T be a binary tree with n vertices. The right-heavy algorithm constructs in O(n) time a drawing \Gamma of T s.t.:
```

- **Γ** is hv-drawing (planar, orthogonal)
- Width is at most n-1
- Height is at most $\log n$
- Area is in $\mathcal{O}(n \log n)$

Theorem.

Let T be a binary tree with n vertices. The right-heavy algorithm constructs in O(n) time a drawing Γ of T s.t.:

- **Γ** is hv-drawing (planar, orthogonal)
- Width is at most n-1
- Height is at most $\log n$
- Area is in $\mathcal{O}(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings up to translation

Theorem.

Let T be a binary tree with n vertices. The right-heavy algorithm constructs in O(n) time a drawing Γ of T s.t.:

- **Γ** is hv-drawing (planar, orthogonal)
- Width is at most n-1
- Height is at most $\log n$
- Area is in $\mathcal{O}(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings up to translation

Bad aspect ratio $\Omega(n / \log n)$

Theorem.

```
Let T be a binary tree with n vertices. The
right-heavy algorithm constructs in O(n) time a
drawing \Gamma of T s.t.:
```

- \blacksquare Γ is hv-drawing (planar, orthogonal)
- Width is at most n-1
- \blacksquare Height is at most $\log n$
- Area is in $\mathcal{O}(n \log n)$
- Simply and axially isomorphic subtrees have congruent drawings up to translation

General rooted tree

- Recursively compute layout for left and right subtrees
- Apply
 - horizontal combination if vertex is at odd depth
 - vertical combination if vertex is at even depth

- Recursively compute layout for left and right subtrees
- Apply
 - horizontal combination if vertex is at odd depth
 - vertical combination if vertex is at even depth

- Recursively compute layout for left and right subtrees
- Apply
 - horizontal combination if vertex is at odd depth
 - vertical combination if vertex is at even depth

Balanced approach

- Recursively compute layout for left and right subtrees
- Apply
 - horizontal combination if vertex is at odd depth
 - vertical combination if vertex is at even depth

0

- Recursively compute layout for left and right subtrees
- Apply
 - horizontal combination if vertex is at odd depth
 - vertical combination if vertex is at even depth

- Recursively compute layout for left and right subtrees
- Apply
 - horizontal combination if vertex is at odd depth
 - vertical combination if vertex is at even depth

Balanced approach

- Recursively compute layout for left and right subtrees
- Apply
 - horizontal combination if vertex is at odd depth
 - vertical combination if vertex is at even depth

0

Balanced approach

- Recursively compute layout for left and right subtrees
- Apply
 - horizontal combination if vertex is at odd depth
 - vertical combination if vertex is at even depth

0

- Recursively compute layout for left and right subtrees
- Apply
 - horizontal combination if vertex is at odd depth
 - vertical combination if vertex is at even depth

- Recursively compute layout for left and right subtrees
- Apply
 - horizontal combination if vertex is at odd depth
 - vertical combination if vertex is at even depth

- Recursively compute layout for left and right subtrees
- Apply
 - horizontal combination if vertex is at odd depth
 - vertical combination if vertex is at even depth

- Recursively compute layout for left and right subtrees
- Apply
 - horizontal combination if vertex is at odd depth
 - vertical combination if vertex is at even depth

- Recursively compute layout for left and right subtrees
- Apply
 - horizontal combination if vertex is at odd depth
 - vertical combination if vertex is at even depth

- Recursively compute layout for left and right subtrees
- Apply
 - horizontal combination if vertex is at odd depth
 - vertical combination if vertex is at even depth


```
Lemma. Let T be a binary tree. The drawing constructed
by balanced approach has
area \mathcal{O}(n) and
constant aspect ratio
```

Lemma. Let T be a binary tree. The drawing constructed by balanced approach has area O(n) and constant aspect ratio

Base case: h = 0 • $W_0 = 0$, $H_0 = 0$

```
Lemma. Let T be a binary tree. The drawing constructed
by balanced approach has
area \mathcal{O}(n) and
constant aspect ratio
```

```
Base case: h = 0 • W_0 = 0, H_0 = 0
```

even height: h = 2k W_h , H_h

```
Lemma. Let T be a binary tree. The drawing constructed
by balanced approach has
area \mathcal{O}(n) and
constant aspect ratio
```

```
Base case: h = 0 • W_0 = 0, H_0 = 0
```

even height: h = 2k W_h , H_h \blacksquare compute W_{h+1} , H_{h+1}

```
Lemma. Let T be a binary tree. The drawing constructed
by balanced approach has
area O(n) and
constant aspect ratio
```

Base case: h = 0 • $W_0 = 0$, $H_0 = 0$

even height: h = 2k W_h , H_h \blacksquare compute W_{h+1} , H_{h+1}

Lemma. Let T be a binary tree. The drawing constructed by balanced approach has area $\mathcal{O}(n)$ and constant aspect ratio

even height: h = 2k W_h , H_h \blacksquare compute W_{h+1} , H_{h+1}

$$W_{h+1} = 2W_h + 1$$
$$H_{h+1} = H_h + 1$$

Base case: h = 0 • $W_0 = 0$, $H_0 = 0$

 W_h

 W_{h+}

26 - 7

Lemma. Let T be a binary tree. The drawing constructed by balanced approach has area O(n) and constant aspect ratio

Base case:
$$h = 0$$
 • $W_0 = 0$, $H_0 = 0$

even height: h = 2k W_h , H_h

$$W_{h+2} = 2W_h + 2$$

 $H_{h+2} = 2H_h + 3$

Lemma. Let *T* be a binary tree. The drawing constructed
by balanced approach has
area
$$O(n)$$
 and
constant aspect ratio
even height: $h = 2k$
 W_h , H_h
 $W_{h+2} = 2W_h + 2$
 $H_{h+2} = 2H_h + 3$

Base case:
$$h = 0$$
 • $W_0 = 0$, $H_0 = 0$

$$W_{h} = 2(2^{h/2} - 1)$$

$$W_{h} = 3(2^{h/2} - 1)$$

$$W_{h} = 2\sqrt{n} - 2$$

$$W_{h} = 2\sqrt{n} - 2$$

$$H_{h} = 3\sqrt{n} - 3$$

Lemma. Let *T* be a binary tree. The drawing constructed
by balanced approach has
area
$$\mathcal{O}(n)$$
 and
constant aspect ratio
even height: $h = 2k$
 W_h, H_h
$$W_{h+2} = 2W_h + 2$$

 $H_{h+2} = 2H_h + 3$
 $W_h = 2(2^{h/2} - 1)$
 $H_h = 3(2^{h/2} - 1)$
 $W_h = 2\sqrt{n} - 2$
 $H_h = 3\sqrt{n} - 3$
odd height: $h = 2k + 1$
 W_h, H_h
$$W_{h+2} = 2W_h + 3$$

 $W_h = 2\sqrt{n} - 2$
 $H_h = 3\sqrt{n} - 3$
$$W_h = 2\sqrt{2n} - 3$$

 $H_h = \frac{3}{2}\sqrt{2n} - 2$

```
Theorem.
Let T be a binary tree with n vertices. The balanced
algorithm constructs in O(n) time a drawing \Gamma of T
s.t.:
 Γ is hv-drawing (planar, orthogonal)
 Width/Height is at most 2
 Area is in \mathcal{O}(n)
```
hv-drawing – result (2)

Theorem.

Let T be a binary tree with n vertices. The balanced algorithm constructs in O(n) time a drawing Γ of T s.t.:

- Γ is hv-drawing (planar, orthogonal)
- Width/Height is at most 2
- Area is in $\mathcal{O}(n)$
- Isomorphic subtrees have congruent drawings up to translation only if the roots are both on odd or both on even depth.

hv-drawing – result (2)

Theorem.

Let T be a binary tree with n vertices. The balanced algorithm constructs in O(n) time a drawing Γ of T s.t.:

- Γ is hv-drawing (planar, orthogonal)
- Width/Height is at most 2
- Area is in $\mathcal{O}(n)$
- Isomorphic subtrees have congruent drawings up to translation only if the roots are both on odd or both on even depth.

Optimal area?

- Not with divide & conquer approach, but
- can be computed with Dynamic Programming.

Algorithm Optimum_hv-layout

Input: Vertex vOutput: A list with all possible hv-layouts for T_v

If $h(T_v) == 0$. —v is the only vertex in the tree return trivial single vertex hv-layout

else

- 1. Build lists L_1 and L_2 of all possible hv-layouts of T_u^L and T_u^R , resp.
- 2. Combine L_1 and L_2 (by applying all possible arrangements) to build list L of all possible hv-layouts for T_v
- 3. return L

Algorithm Optimum_hv-layout

Input: Vertex vOutput: A list with all possible hv-layouts for T_v

If $h(T_v) == 0$. —v is the only vertex in the tree return trivial single vertex hv-layout

else

- 1. Build lists L_1 and L_2 of all possible hv-layouts of T_u^L and T_u^R , resp.
- 2. Combine L_1 and L_2 (by applying all possible arrangements) to build list L of all possible hv-layouts for T_v
- 3. return L

From the list at the root of the tree, select the optimum hv-layout. Optimum w.r.t.: area, perimeter, height, width, ...

Obervation 1: The number of possible hv-layouts is exponential

Obervation 1: The number of possible hv-layouts is exponential

Obervation 2: The number of possible enclosing rectangles is at most n^2 [*n* possible different heights and *n* possible different widths]

Obervation 1: The number of possible hv-layouts is exponential

Obervation 2: The number of possible enclosing rectangles is at most n^2 [*n* possible different heights and *n* possible different widths]

Obervation 3: We only need to keep the enclosing rectangles that are not fully covered by other enclosing rectangles. We refer to them as *atoms*.

Obervation 1: The number of possible hv-layouts is exponential

Obervation 2: The number of possible enclosing rectangles is at most n^2 [*n* possible different heights and *n* possible different widths]

Obervation 3: We only need to keep the enclosing rectangles that are not fully covered by other enclosing rectangles. We refer to them as *atoms*.

Lemma: For an *n*-vertex binary tree we have at most n - 1 atoms.

Obervation 1: The number of possible hv-layouts is exponential

Obervation 2: The number of possible enclosing rectangles is at most n^2 [*n* possible different heights and *n* possible different widths]

Obervation 3: We only need to keep the enclosing rectangles that are not fully covered by other enclosing rectangles. We refer to them as *atoms*.

Lemma: For an *n*-vertex binary tree we have at most n - 1 atoms.

Proof: Observe that:

- Let each atom be of the form $[w \times h]$.
- There is only one atom for each w, $0 \le w \le n-1$.

Time Analysis:

- 1. Simple implementation:
 - Combining the n^2 rectangles in each of L_1 and L_2 to get a list of n^4 rectangles. $\Rightarrow O(n^4)$ time
 - Remove duplicate rectangles $\Rightarrow O(n^4)$ time
 - Repeat for each internal tree node $\Rightarrow O(n \cdot n^4) = O(n^5)$ total time

Time Analysis:

- 1. Simple implementation:
 - Combining the n^2 rectangles in each of L_1 and L_2 to get a list of n^4 rectangles. $\Rightarrow O(n^4)$ time
 - Remove duplicate rectangles $\Rightarrow O(n^4)$ time
 - Repeat for each internal tree node $\Rightarrow O(n \cdot n^4) = O(n^5)$ total time
- 2. Implementation based on "atom-only" lists [Observation-3]
 - Combine the *n* atoms in each of L_1 and L_2 and remove duplicates $\Rightarrow O(n^2)$ time Repeat for each internal tree node $\Rightarrow O(n \cdot n^2) = O(n^3)$ total time

Time Analysis:

- 1. Simple implementation:
 - Combining the n^2 rectangles in each of L_1 and L_2 to get a list of n^4 rectangles. $\Rightarrow O(n^4)$ time
 - Remove duplicate rectangles $\Rightarrow O(n^4)$ time
 - Repeat for each internal tree node $\Rightarrow O(n \cdot n^4) = O(n^5)$ total time
- 2. Implementation based on "atom-only" lists [Observation-3]
 - Combine the *n* atoms in each of L_1 and L_2 and remove duplicates $\Rightarrow O(n^2)$ time Repeat for each internal tree node $\Rightarrow O(n \cdot n^2) = O(n^3)$ total time

3. Fast "atom-based" implementation

- Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time
- Repeat for each internal tree node $\Rightarrow O(n \cdot n) = O(n^2)$ total time

Time Analysis:

- 2. Implementation based on "atom-only" lists [Observation-3]
 - Combine the *n* atoms in each of L_1 and L_2 and remove duplicates $\Rightarrow O(n^2)$ time Repeat for each internal tree node $\Rightarrow O(n \cdot n^2) = O(n^3)$ total time

Time Analysis:

2. Implementation based on "atom-only" lists [Observation-3]

Combine the *n* atoms in each of L_1 and L_2 and remove duplicates $\Rightarrow O(n^2)$ time Repeat for each internal tree node $\Rightarrow O(n \cdot n^2) = O(n^3)$ total time

atoms: array of length natoms[i] = atom with length i

for each combination of L_1 and L_2 update array of atoms

Time Analysis:

2. Implementation based on "atom-only" lists [Observation-3]

Combine the *n* atoms in each of L_1 and L_2 and remove duplicates $\Rightarrow O(n^2)$ time Repeat for each internal tree node $\Rightarrow O(n \cdot n^2) = O(n^3)$ total time

atoms: array of length natoms[i] = atom with length i

for each combination of L_1 and L_2 update array of atoms

Obervation: width is increasing $w_i < w_j$ height is decreasing $h_i > h_j$

Time Analysis:

- 3. Fast "atom-based" implementation
 - Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time

Time Analysis:

- 3. Fast "atom-based" implementation
 - Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time

Time Analysis:

- 3. Fast "atom-based" implementation
 - Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time

Repeat for each internal tree node $\Rightarrow O(n \cdot n) = O(n^2)$ total time

$$u_{L}^{u} = \{p_{0}, \dots, p_{k}\}, p_{i} = (w_{i}, h_{i})$$
$$a_{R}: \{q_{0}, \dots, q_{\ell}\}, q_{j} = (w_{j}', h_{j}')$$

combination $c(p_i, q_j)$: $W = w_i + w'_j + 1$

 $\blacksquare H = \max\{\frac{h_i}{h_i} + 1, \frac{h'_j}{h_i}\}$

Time Analysis:

- 3. Fast "atom-based" implementation
 - Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time

$$a_{L}: \{p_{0}, \dots, p_{k}\}, p_{i} = (w_{i}, h_{i})$$

$$a_{R}: \{q_{0}, \dots, q_{\ell}\}, q_{j} = (w'_{j}, h'_{j})$$
Combination $c(p_{i}, q_{j})$:
$$W = w_{i} + w'_{j} + 1$$

$$W = w_{i} + w'_{j} + 1$$

$$W = \max\{h_{i} + 1, h'_{j}\}$$

$$W = k_{i} + 1, h'_{j}$$

Time Analysis:

- 3. Fast "atom-based" implementation
 - Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time

$$a_{L}: \{p_{0}, \dots, p_{k}\}, p_{i} = (w_{i}, h_{i})$$

$$a_{R}: \{q_{0}, \dots, q_{\ell}\}, q_{j} = (w'_{j}, h'_{j})$$

$$M = w_{i} + w'_{j} + 1$$

$$W = w_{i} + w'_{j} + 1$$

$$H = \max\{h_{i} + 1, h'_{j}\}$$

$$H = \{h_{i} + 1, h'_{j}\}$$

$$H = \{h_{i} + 1, h'_{j}\}$$

$$W = h_{i} + 1$$

Time Analysis:

- 3. Fast "atom-based" implementation
 - Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time

Repeat for each internal tree node $\Rightarrow O(n \cdot n) = O(n^2)$ total time

$$u_{L}^{u} = \{p_{0}, \dots, p_{k}\}, p_{i} = (w_{i}, h_{i})$$
$$a_{R}: \{q_{0}, \dots, q_{\ell}\}, q_{j} = (w_{j}', h_{j}')$$

combination $c(p_i, q_j)$: $W = w_i + w'_j + 1$ $H = \max\{h_i + 1, h'_i\}$

For fixed $p_i = (w_i, h_i)$

- **There exists smallest** j(i) s.t. $h'_{j(i)} \leq h_i + 1$
- **atoms defined only for** $j \leq j(i)$

iiii j(i) is increasing

■ $c(p_{i'>i}, q_j)$ enclosed by $c(p_i, q_j)$ for $j \le j(i)$

Time Analysis:

- 3. Fast "atom-based" implementation
 - Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time

Time Analysis:

- 3. Fast "atom-based" implementation
 - Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time

Time Analysis:

- 3. Fast "atom-based" implementation
 - Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time

Time Analysis:

- 3. Fast "atom-based" implementation
 - Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time

Time Analysis:

- 3. Fast "atom-based" implementation
 - Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time

Time Analysis:

- 3. Fast "atom-based" implementation
 - Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time

Time Analysis:

- 3. Fast "atom-based" implementation
 - Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time

Time Analysis:

- 3. Fast "atom-based" implementation
 - Combine the *n* atoms in each of L_1 and L_2 and remove duplicates by a "merge-like" operation $\Rightarrow O(n)$ time

```
combine1(atoms a_L, atoms a_R)
```

```
i \leftarrow 0

j \leftarrow 0

while i \leq k and j \leq \ell do

compute combination

if h'_j > h_i + 1 then

\lfloor j \leftarrow j + 1

else

\lfloor i \leftarrow i + 1
```

Radial layout – applications

Radial layout – applications

Flare Visualization Toolkit code structure by Heer, Bostock and Ogievetsky, 2010

Greek Myth Family by Ribecca, 2011

Radial layout – drawing style

Drawing conventions

- Vertices lie on circular layers according to their depth
- Drawing is planar

Drawing aesthetics

Distribution of the vertices

Radial layout – drawing style

Drawing conventions

- Vertices lie on circular layers according to their depth
- Drawing is planar

Drawing aestheticsDistribution of the vertices

How may an algorithm optimise the distribution of the vertices?

Radial layout – algorithm attempt

Idea

Angle corresponding to size $\ell(u)$ of T(u):

$$\tau_u = \frac{\ell(u)}{\ell(v) - 1} \tau_v$$

Radial layout – algorithm attempt

Idea

Angle corresponding to size $\ell(u)$ of T(u):

$$\tau_u = \frac{\ell(u)}{\ell(v) - 1} \tau_v$$

Idea

$$\tau_u = \frac{\ell(u)}{\ell(v) - 1} \tau_v$$

Idea

Angle corresponding to size $\ell(u)$ of T(u):

$$\tau_u = \frac{\ell(u)}{\ell(v) - 1} \tau_v$$

 $\frac{1}{10}$

Idea

Idea

Idea

Idea

• τ_u – angle of the wedge corresponding to vertex u

- $\tau_u \text{angle of the wedge}$ corresponding to vertex u
- $\ell(u)$ number of nodes in
 the subtree rooted at u
- \blacksquare ρ_i raduis of layer i

$$\square \cos \frac{\tau_u}{2} = \frac{\rho_i}{\rho_{i+1}}$$

- τ_u angle of the wedge corresponding to vertex u
- $\ell(u)$ number of nodes in
 the subtree rooted at u
- ρ_i raduis of layer *i*

$$\cos \frac{\tau_u}{2} = \frac{\rho_i}{\rho_{i+1}}$$
$$T_u = \min\{\frac{\ell(u)}{\ell(v)-1}\tau_v, 2 \arccos \frac{\rho_i}{\rho_{i+1}}\}$$

- $\tau_u \text{angle of the wedge}$ corresponding to vertex u
- $\ell(u)$ number of nodes in
 the subtree rooted at u
- \blacksquare ρ_i raduis of layer i

$$\cos \frac{\tau_u}{2} = \frac{\rho_i}{\rho_{i+1}}$$
$$\tau_u = \min\{\frac{\ell(u)}{\ell(v)-1}\tau_v, 2\arccos \frac{\rho_i}{\rho_{i+1}}\}$$

Alternative: $\alpha_{\min} = \alpha_u - \frac{\tau_u}{2} \ge \alpha_u - \arccos \frac{\rho_i}{\rho_{i+1}}$ $\alpha_{\max} = \alpha_u + \frac{\tau_u}{2} \le \alpha_u + \arccos \frac{\rho_i}{\rho_{i+1}}$

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$)

begin

postorder(r) $preorder(r, 0, 0, 2\pi)$ **return** $(d_v, \alpha_v)_{v \in V(T)}$ // vertex pos./polar coord.

postorder(vertex v)

calculate the size of the subtree recursively

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$)

begin

```
postorder(r)
preorder(r, 0, 0, 2\pi)
return (d_v, \alpha_v)_{v \in V(T)}
// vertex pos./polar coord.
```

 $postorder(vertex v) \\ \mid \ell(v) \leftarrow 1$

foreach child w of v **do** $\begin{bmatrix}
postorder(w) \\
\ell(v) \leftarrow \ell(v) + \ell(w)
\end{bmatrix}$

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$) begin postorder(r) $preorder(r, 0, 0, 2\pi)$ return $(d_v, \alpha_v)_{v \in V(T)}$ // vertex pos./polar coord. postorder(vertex v) $\ell(v) \leftarrow 1$ foreach child w of v do postorder(w) $\ell(v) \leftarrow \ell(v) + \ell(w)$

Determine wedge for u

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$)

begin

```
postorder(r)
   preorder(r, 0, 0, 2\pi)
   return (d_v, \alpha_v)_{v \in V(T)}
   // vertex pos./polar coord.
postorder(vertex v)
   \ell(v) \leftarrow 1
   foreach child w of v do
     postorder(w)
    | \ell(v) \leftarrow \ell(v) + \ell(w)
```

```
preorder(vertex v, t, \alpha_{\min}, \alpha_{\max})
     d_v \leftarrow \rho_t
     \alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2
     if t > 0 then
           \alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos \frac{\rho_t}{\rho_{t+1}}\}
          \alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\}
     left \leftarrow \alpha_{\min}
      foreach child w of v do
           right \leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\max} - \alpha_{\min})
           preorder(w, t + 1, left, right)
          left \leftarrow right
```

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$) preorder(vertex $v, t, \alpha_{\min}, \alpha_{\max}$) begin postorder(r) $d_v \leftarrow \rho_t$ $preorder(r, 0, 0, 2\pi)$ $\alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2$ return $(d_v, \alpha_v)_{v \in V(T)}$ if t > 0 then // vertex pos./polar coord. $\alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos \frac{\rho_t}{\rho_{t+1}}\}$ $\alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\}$ postorder(vertex v) $\ell(v) \leftarrow 1$ *left* $\leftarrow \alpha_{\min}$ foreach child w of v do foreach child w of v do postorder(w) $right \leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\max} - \alpha_{\min})$ $| \ell(v) \leftarrow \ell(v) + \ell(w)$ preorder(w, t + 1, left, right) $left \leftarrow right$

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots <$ $\langle \rangle$ begin pre postorder(r) $preorder(r, 0, 0, 2\pi)$ return $(d_v, \alpha_v)_{v \in V(T)}$ // vertex pos./polar coord. postorder(vertex v) $\ell(v) \leftarrow 1$ foreach child w of v do postorder(w) $\ell(v) \leftarrow \ell(v) + \ell(w)$

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$) preorder(vertex v, t, α_{\min} , α_{\max}) begin postorder(r) $d_v \leftarrow \rho_t$ $\alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2$ //output $preorder(r, 0, 0, 2\pi)$ return $(d_v, \alpha_v)_{v \in V(T)}$ if t > 0 then // vertex pos./polar coord. $\alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos \frac{\rho_t}{\rho_{t+1}}\}$ $\alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\}$ postorder(vertex v) $\ell(v) \leftarrow 1$ *left* $\leftarrow \alpha_{\min}$ foreach child w of v do foreach child w of v do postorder(w) $right \leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\max} - \alpha_{\min})$ $\mid \ell(v) \leftarrow \ell(v) + \ell(w)$ preorder(w, t + 1, left, right) $left \leftarrow right$

Runtime?

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$) preorder(vertex v, t, α_{\min} , α_{\max}) begin postorder(r) $d_v \leftarrow \rho_t$ $preorder(r, 0, 0, 2\pi)$ return $(d_v, \alpha_v)_{v \in V(T)}$ if t > 0 then // vertex pos./polar coord. postorder(vertex v) $\ell(v) \leftarrow 1$ *left* $\leftarrow \alpha_{\min}$ foreach child w of v do foreach child w of v do postorder(w) $\mid \ell(v) \leftarrow \ell(v) + \ell(w)$ preorder(w, t + 1, left, right)*left* \leftarrow *right* Runtime? $\mathcal{O}(n)$

 $\alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2$ //output $\alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos \frac{\rho_t}{\rho_{t+1}}\}$ $\alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\}$ $right \leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\max} - \alpha_{\min})$

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$) preorder(vertex v, t, α_{\min} , α_{\max}) begin postorder(r) $d_v \leftarrow \rho_t$ $preorder(r, 0, 0, 2\pi)$ return $(d_v, \alpha_v)_{v \in V(T)}$ if t > 0 then // vertex pos./polar coord. postorder(vertex v) $\ell(v) \leftarrow 1$ *left* $\leftarrow \alpha_{\min}$ foreach child w of v do foreach child w of v do postorder(w) $\mid \ell(v) \leftarrow \ell(v) + \ell(w)$ preorder(w, t + 1, left, right)*left* \leftarrow *right* Runtime? $\mathcal{O}(n)$

Correctness?

 $\alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2$ //output $\alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos \frac{\rho_t}{\rho_{t+1}}\}$ $\alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\}$ $right \leftarrow left + \frac{\ell(w)}{\ell(v)-1} \cdot (\alpha_{\max} - \alpha_{\min})$

RadialTreeLayout(tree T, root $r \in T$, radii $\rho_1 < \cdots < \rho_k$) preorder(vertex v, t, α_{\min} , α_{\max}) begin postorder(r) $d_v \leftarrow \rho_t$ $\alpha_v \leftarrow (\alpha_{\min} + \alpha_{\max})/2$ //output $preorder(r, 0, 0, 2\pi)$ return $(d_v, \alpha_v)_{v \in V(T)}$ if t > 0 then // vertex pos./polar coord. $\alpha_{\min} \leftarrow \max\{\alpha_{\min}, \alpha_v - \arccos \frac{\rho_t}{\rho_{t+1}}\}$ $\alpha_{\max} \leftarrow \min\{\alpha_{\max}, \alpha_v + \arccos \frac{\rho_t}{\rho_{t+1}}\}$ postorder(vertex v) $\ell(v) \leftarrow 1$ *left* $\leftarrow \alpha_{\min}$ foreach child w of v do foreach child w of v do postorder(w) $right \leftarrow left + \frac{\ell(w)}{\ell(v) - 1} \cdot (\alpha_{\max} - \alpha_{\min})$ $\mid \ell(v) \leftarrow \ell(v) + \ell(w)$ preorder(w, t + 1, left, right)*left* \leftarrow *right* Runtime? $\mathcal{O}(n)$ *Correctness?* \checkmark

Radial layout – result

Theorem.

Let T be a tree with n vertices. The RadialTreeLayout algorithm constructs in O(n) time a drawing Γ of T s.t.:

- \blacksquare Γ is radial drawing
- Vertices lie on circle according to their depth
- Area quadratic in max degree times height of T (see book if interested)

Writing Without Words: The project explores methods to visualises the differences in writing styles of different authors.

Similar to ballon layout

A phylogenetically organised display of data for all placental mammal species.

Fractal layout

treevis.net

Literature

- [GD Ch. 3.1] for divide and conquer methods for rooted trees
- [RT81] Reingold and Tilford, "Tidier Drawings of Trees" 1981 original paper for level-based layout algo
- [SR83] Reingold and Supowit, "The complexity of drawing trees nicely" 1983 NP-hardness proof for area minimisation & LP
- treevis.net compendium of drawing methods for trees
 (links on website)