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Divide and conquer methods
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Tree traversal
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Trees

B Tree - connected graph without cycles
B here: binary and rooted root

Tree traversal
B Depth-first search

m Pre-order — first parent, then subtrees
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. subtree
B Breadth-first search " Ty(v)

m Assignes vertices to levels corresponding to depth



Trees

B Tree - connected graph without cycles

B here: binary and rooted o, root
| I(0)
Tree traversal .
B Depth-first search right -
m Pre-order — first parent then subtrees subtree
In-order — left child, parent, right child ~ Tr(v)
O — first subtrees, then parent
. subtree
B Breadth-first search Tl(v)

m Assignes vertices to levels corresponding to depth

Isomporphism  simple axial Q\ /Q



| evel-based layout — applications

Both reacting to light One or both do not react to light

Road traffic
acciden

Admission
pupils

Age
<52 years >52 years
Good Grade Admission
65.7/10.7 of injury pupils
Minor Moderate <54 years >54 years One or both Neither react

or severe

Good Poor Good Poor
&) 16/4 22 4

react to light to light

Glasgow Poor
Coma Scale 7.4/0.3
>5
Good Poor
23 5.6/0.5

Decision tree for outcome prediction after traumatic brain injury

Source: Nature Reviews Neurology
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B What are properties of the layout?
B What are the drawing conventions?
B What are aesthetics to optimise?

Drawing conventions

B Vertices lie on layers
and have integer coordinates

B Parent above children and
“within their X-range”
(typically, centered )

B Edges are straight-line
segments

B Isomorphic subtrees have
identical drawings



Level-based layout — drawing style

Admission
Both reacting to light pupils One or both do not react to light
Road traffic
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B What are properties of the layout?
B What are the drawing conventions?
B What are aesthetics to optimise?

Drawing conventions

B Vertices lie on layers
and have integer coordinates

B Parent above children and
“within their X-range”
(typically, centered )

B Edges are straight-line
segments

B Isomorphic subtrees have
identical drawings

Drawing aesthetics
B Area
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Input: A binary tree T
Output: A leveled drawing of T

Y-cooridinates: depth of vertices
X-cooridinates: based on in-order tree traversal
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L evel-based layout A simple approach

Input: A binary tree T
Output: A leveled drawing of T

Y-cooridinates: depth of vertices
X-cooridinates: based on in-order tree traversal

Issues:

B Drawing is wider
than needed

B Parents not in the
center of span of
their children
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Input: A binary tree T
Output: A leveled drawing of T
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| evel-based layout: A divide and conquer approach

Input: A binary tree T
Output: A leveled drawing of T

Base case: A single vertex @ Iy

Divide: Recursively apply the algorithm to

draw the left and right subtrees

Conquer: »— Place the root to the center of its children

Place subtrees close to each other




| evel-based layout: A divide and conquer approach

Input: A binary tree T
Output: A leveled drawing of T

Base case: A single vertex @ Iy

Divide: Recursively apply the algorithm to

draw the left and right subtrees

Conquer: »— Place the root to the center of its children

‘ QUESTION: How close to each

‘ other to place the subtrees?

Place subtrees close to each other
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Approach-1: Non-overlapping enclosing rectangles

T I
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Distance 1 or 2 (so that root is
placed on grid point)




| evel-based layout: A divide and conquer approach

Approach-1: Non-overlapping enclosing rectangles

T I
T\ T

Distance 1 or 2 (so that root is
placed on grid point)

Approach-2: Overlapping enclosing rectangles

Distance 1 or 2 (so that root is
placed on grid point)




Implementation: Non-overlapping rectangles

B In a bottom up manner (by a post-order traversal) we compute for each
vertex the 5-tuple:

s oAf FE DA &

Width of enclosing Distance to left Distance to right x-distance to left x-distance to right
rectangle boundary boundary child child
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B In a bottom up manner (by a post-order traversal) we compute for each
vertex the 5-tuple:

s oAf FE DA &

Width of enclosing Distance to left Distance to right x-distance to left x-distance to right
rectangle boundary boundary child child

m For leaves: (0,0,0, —, —)

(0,0,0,—, —) (0,0,0,—, —)



Implementation: Non-overlapping rectangles

B In a bottom up manner (by a post-order traversal) we compute for each

vertex the 5-tuple:

2k o

£ ok &

£

Width of enclosing Distance to left
rectangle boundary

Distance to right x-distance to left
boundary child
Rule-1:

x-distance to right
child

B Parent centered above children

B Parent at grid point

N

Horizontal distance: 1 or 2
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B In a bottom up manner (by a post-order traversal) we compute for each
vertex the 5-tuple:

s oAf FE DA &
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Rule-2:

B Parent above and one unit to the
left /right of single child
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B In a bottom up manner (by a post-order traversal) we compute for each
vertex the 5-tuple:
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rectangle boundary boundary child child
Rule-1:

B Parent centered above children

B Parent at grid point

N
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B Computation of x-coordinates by pre-order traversal
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B Computation of x-coordinates by pre-order traversal

(6,3,3,2,2

(211, 1) B y-coordinate: the depth of each node
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Implementation: Non-overlapping rectangles

B Computation of x-coordinates by pre-order traversal
(6.3,3,2,2)_a30) &=

B y-coordinate: the depth of each node
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B Computation of x-coordinates by pre-order traversal

\ (6,3,3,2,2

(2,1,1,—-,1)&(1,-1)

(3.0

B y-coordinate: the depth of each node

(2,2,0,1,-)

(2,1,1,1,1) (0,0,0, —, —)

(0,0,0,—,—)
(0,0,0,—,—) (0,0,0,—,—)
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Implementation: Non-overlapping rectangles

B Computation of x-coordinates by pre-order traversal

(6,3,3,2,2) _al(3.0)

(211, 1) , B y-coordinate: the depth of each node

The final drawing
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Implementation: Overlapping rectangles

Recall...

Approach-1: Non-overlapping enclosing rectangles
Approach-2: Overlapping enclosing rectangles

Distance 1 or 2 (so that root is
placed on grid point)
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\

contour
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Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing

The left/right contour of a leveled tree drawing of height & is the sequence
of vertices (vg, ..., v} ) such that vertex v; is the leftmost/rightmost vertex
at depth 1

11 -
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Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing
The left/right contour of a leveled tree drawing of height & is the sequence

of vertices (vg, ..., v} ) such that vertex v; is the leftmost/rightmost vertex
at depth 1
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Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing

The left/right contour of a leveled tree drawing of height & is the sequence
of vertices (vg, ..., v} ) such that vertex v; is the leftmost/rightmost vertex
at depth 1
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Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing

The left/right contour of a leveled tree drawing of height & is the sequence
of vertices (vg, ..., v} ) such that vertex v; is the leftmost/rightmost vertex
at depth 1
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Implementation: Overlapping rectangles

The left/right contour of leveled tree drawing
The left/right contour of a leveled tree drawing of height & is the sequence
of vertices (vg, ..., v} ) such that vertex v; is the leftmost/rightmost vertex

at depth 1

® | eft contour

e Right contour




Implementation: Overlapping rectangles

Computation of the left contour of a tree rooted at u, given
—the left contours of its subtrees
—the heights of its subtress
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Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]
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Implementation: Overlapping rectangles
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Implementation: Overlapping rectangles
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Implementation: Overlapping rectangles
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Implementation: Overlapping rectangles

Total cost for computing the contours of a tree:
[We build each contour in a bottom-up fashion through a postorder traversal.]

C(T)< Y 1+min(h(T)), h(T)))

ueV(T)
=n+ Z min(h(T}), h(TX))
ueV(T)
<n+n (Lemma 1)
= 2n
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15 -



Implementation: Overlapping rectangles

Lemma 1: For each n-vertex binary tree it holds that:

Z min(h(T}), h(TX)) <

Proof:

B The height of each subtree is equal to the length of the
left /right contour

B We connect each vertex from contour of the shorter subtree
to the visible vertex on the contour of the opposite subtree.
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Implementation: Overlapping rectangles

Lemma 1: For each n-vertex binary tree it holds that:

Z min(h(T}), h(TX)) <

Proof:

B The height of each subtree is equal to the length of the
left /right contour

B We connect each vertex from contour of the shorter subtree
to the visible vertex on the contour of the opposite subtree.

B We can charge each connection to the vertex at its left endpoint

B Observe that we have at most one connection out of the right
side of each vertex. Thus, at most n connections.
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‘Theorem. (Reingold & Tilford '81)

Let T be a binary tree with n vertices. We can
construct a drawing I' of T in O(n) time, such that:

I' i1s planar, straight-line and strictly downward

[ is leveled: y-coordinate of vertex v is —depth(v)
Vertical and horizontal distances are at least 1
Each vertex is centred wrt its children

Area of T is in O(n?)

Simply isomorphic subtrees have congruent
drawings, up to translation

Axially isomorphic trees have congruent drawings,
up to translation and reflection around y-axis
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L evel-based layout — result

generalisable

‘Theorem. (Reingold & Tilford '81)
Let T be a binary tree with n vertices. We can
Vv

construct a drawing I' of T in O(n) time, such that:
W [ is planar, straight-line and strictly downward

m I is leveled: y-coordinate of vertex v is —depth(v)

B Vertical and horizontal distances are at least 1

B Each vertex is centred wrt its children

m Area of Tis in O(n?)

B Simply isomorphic subtrees have congruent
drawings, up to translation

B Axially isomorphic trees have congruent drawings,

up to translation and reflection around y-axis
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| evel-based layout — area

B Presented algorithm tries
to minimise width

B Does not always achieve that!

B Divide-and-conquer strategy
cannot achieve optimal width

Suboptimal
structure leads to
better drawing

10

12

B Drawing with min width
(but without the grid) can be
constructed by an LP

B Problem is NP-hard on grid
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Applications
B Cons cell diagram in LISP

B Cons(constructs) are memory objects

which hold two values or pointers to values

Source: after gajon.org/trees-linked-lists-common-lisp/

1 3 /
10 11
4 /
12
2 6 / /

Drawing conventions

B Children are vertically and
horizontally aligned with their
parent

Drawing aesthetics
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Applications Drawing conventions
m Cons cell diagram in LISP | m Children are vertically and
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which hold two values or pointers to values parent
7 3 ; B The bounding boxes of the
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5| 0 —iil/ disjoint
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Drawing aesthetics
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Drawing-style: hv-drawings

Applications Drawing conventions
B Cons cell diagram in LISP | m Children are vertically and
B Cons(constructs) are memory objects horizontally aligned with their
which hold two values or pointers to values parent
7 3 ; B The bounding boxes of the
subtrees of the children are
5| 0 i/ disjoint
4 /

Drawing aesthetics

9 12|/ B Height, width, area
D 6 7 8]/

Source: after gajon.org/trees-linked-lists-common-lisp/



hv-drawings — algorithm

Input: A binary tree T
Output: A hv-drawing of T

Base case: @
Divide: Recursively apply the algorithm to
draw the left and right subtrees

Conquer:
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hv-drawings — algorithm

Input: A binary tree T
Output: A hv-drawing of T

Base case: @
Divide: Recursively apply the algorithm to
draw the left and right subtrees

Conquer: horizontal combination

vertical combination
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Right-heavy approach
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B Place the larger subtree to the right
B Size of subtree := number of vertices

‘Lemma. Let T be a binary tree. The drawing
constructed by the right-heavy approach has
B width at most and

L height at most
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Right-heavy approach
B Always apply horizontal combination
B Place the larger subtree to the right
m Size of subtree := number of vertices

at least -2
at least -2

at least -2

e O

‘Lemma. Let T be a binary tree. The drawing
constructed by the right-heavy approach has
B width at most 7 — 1 and

L height at most log 7.

\
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hv-drawing — right-heavy hv-layout

Right-heavy approach

B Always apply horizontal combination
B Place the larger subtree to the right
m Size of subtree := number of vertices
at least -2
at least -2
at least -2
How to implement this

In linear time?
\

‘Lemma. Let T be a binary tree. The drawing
constructed by the right-heavy approach has
B width at most 7 — 1 and

L height at most log 7.




Computing right-heavy hv-layout in linear time

B At each node u we store the 5-tuple:
u s (X, Yu, Wy, Hy, sy)
where:

m x,, 1, are the x and v coordinates of u
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Computing right-heavy hv-layout in linear time

B At each node u we store the 5-tuple:
u s (X, Yu, Wy, Hy, sy)
where:

m x,, 1, are the x and y coordinates of u

m IV, is the width of the layout of subtree T},
m [, is the height of the layout of subtree Tj,
B s, is the size of T}
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Computing right-heavy hv-layout in linear time

B Compute in a bottom-up fashion (by a post-order traversal) s,,, W, and H,

u: ® 5, =Sy +5Syw+1

u
o if (sy < sw) Ut
H,, = max(Hy, + 1, Hy) —/
else u v
H, = max(Hp +1,Hy)__ - —* th
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B Compute in a top-down fashion (by a pre-order traversal) x,, and v,
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u: ® For subtree rooted at v and placed below u:
Xv = Xy —_— lé '[w
Yo =Yu—1

® For subtree rooted at w and placed to the right of u: J
xW — Xu _|_ WU _|_ ].

Yw = Yu
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Computing right-heavy hv-layout in linear time

B Compute in a top-down fashion (by a pre-order traversal) x,, and v,

r. e x, =0, yr:O 7’0,0)
u: ® For subtree rooted at v and placed below u:
w
Xz) — Xu \‘ u
v
Yo =Yu —1 I—
® For subtree rooted at w and placed to the right of u: J
X = Xy _|_ WU _|_ ].
Yw = Yu

Total time: O(n)
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hv-drawing

— result (1)

.

p
Theorem.

Let T be a binary tree with n vertices. The
right-heavy algorithm constructs in O(72) time a

drawing I' of T s.t.:

m I is hv-drawing (planar, orthogonal)

B Width is at most 7 — 1

B Height is at most log

B Areaisin O(nlogn)

B Simply and axially isomorphic subtrees have
congruent drawings up to translation
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hv-drawing — result (1)

‘Theorem.

Let T be a binary tree with n vertices. The

right-heavy algorithm constructs in O(72) time a

drawing I' of T s.t.:

m I is hv-drawing (planar, orthogonal)

B Width is at most 7 — 1

B Height is at most log

B Areaisin O(nlogn)

B Simply and axially isomorphic subtrees have
congruent drawings up to translation

.

General rooted tree

®
largest
¢ sub-
tree
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hv-drawing — balanced layout

Balanced approach
B Recursively compute layout for left and right subtrees
B Apply

m horizontal combination if vertex is at odd depth

m vertical combination if vertex is at even depth
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‘Lemma. Let T be a binary tree. The drawing constructed - Base case: h =0 @
by balanced approach has Wo =0, Hy = 0
® area (1) and

W constant aspect ratio )

even height: h = 2k

W, Hy,
B compute W), 1, Hj 11 B compute W) o, Hj o
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'Lemma. Let T be a binary tree. The drawing constructed Base case: h =0 @
by balanced approach has Wo = 0, Hy = 0

® area (1) and
W constant aspect ratio

even height: h = 2k Whia =2W; +2
Wh, Hh Hh+2 — 2Hh + 3
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hv-drawing — balanced layout

'Lemma. Let T be a binary tree. The drawing constructed Base case: h =0 @
by balanced approach has Wo = 0, Hy = 0

® area (1) and
W constant aspect ratio

even height: h = 2k Whia =2W; +2
Wh, Hh Hh+2 — 2Hh + 3

— 2(2h/2 _ W, =2yn —2
Wi, 2(2}1/2 ) = v
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hv-drawing — balanced layout

‘Lemma. Let T be a binary tree. The drawing constructed Base case: h =0 @
by balanced approach has Wh = 0 H —0
® area (1) and ol
B constant aspect ratio Base case: 1 = 1
\ - Wiy =1 H; =1
even height: h = 2k Whia =2W; +2
W, H, Hy 1o =2H, +3
Wy, =202"2-1) ___ =2/n—
Hy = 3(2"2 —1) =3/ —
odd height: h = 2k + 1 Wiio =2W);, 43 W), =2v2n —
Wh, Hh Hh_|_2 :2Hh‘|—2 h :%\/27’1
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hv-drawing — result (2)

‘Theorem.

Let T be a binary tree with n vertices. The balanced

algorithm constructs in O(77) time a drawing I of T

S.T.:

®m T is hv-drawing (planar, orthogonal)

B Width/Height is at most 2

m Areaisin O(n)

B Isomorphic subtrees have congruent drawings up to
translation only if the roots are both on odd or
both on even depth.

g
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hv-drawing — result (2)

‘Theorem.

Let T be a binary tree with n vertices. The balanced

algorithm constructs in O(77) time a drawing I of T

S.T.:

®m T is hv-drawing (planar, orthogonal)

B Width/Height is at most 2

m Areaisin O(n)

B Isomorphic subtrees have congruent drawings up to
translation only if the roots are both on odd or
both on even depth.

g

Optimal area?
B Not with divide & conquer approach, but
B can be computed with Dynamic Programming.
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Optimum hv-layout for binary trees

B Possible arrangements:

(1)

(2)
w to the right of u

u 0

w} L

(3)

(4)
v to the right of u

u

u

w
0 u
U T
(5) (6)

u has only one child



Optimum hv-layout for binary trees

Algorithm Optimum_hv-layout
Input: Vertex v
Output: A list with all possible hv-layouts for T

If h(Ty) ==0). —v is the only vertex in the tree
return trivial single vertex hv-layout
else
1. Build lists L1 and Ly of all possible hv-layouts of T} and TX, resp.
2. Combine Ly and Ly (by applying all possible arrangements) to build list L of
all possible hv-layouts for T
3. return L
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Optimum hv-layout for binary trees

Algorithm Optimum_hv-layout
Input: Vertex v
Output: A list with all possible hv-layouts for T

If h(Ty) ==0). —v is the only vertex in the tree
return trivial single vertex hv-layout
else
1. Build lists L1 and Ly of all possible hv-layouts of T} and TX, resp.
2. Combine Ly and Ly (by applying all possible arrangements) to build list L of
all possible hv-layouts for T
3. return L

B From the list at the root of the tree, select the optimum hv-layout.
Optimum w.r.t.: area, perimeter, height, width, ...
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Optimum hv-layout for binary trees

Obervation 1: The number of possible hv-layouts is exponential
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Obervation 1: The number of possible hv-layouts is exponential

Obervation 2: The number of possible enclosing rectangles is at most n

[n possible different heights and 7n possible different widths]

O<w<n

2

0<h<mn
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Obervation 1: The number of possible hv-layouts is exponential

Obervation 2: The number of possible enclosing rectangles is at most 12

[n possible different heights and 7n possible different widths]

Obervation 3: We only need to keep the enclosing rectangles that are not fully
covered by other enclosing rectangles. We refer to them as atoms.
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Optimum hv-layout for binary trees

Obervation 1: The number of possible hv-layouts is exponential

Obervation 2: The number of possible enclosing rectangles is at most 12

[n possible different heights and 7n possible different widths]

Obervation 3: We only need to keep the enclosing rectangles that are not fully
covered by other enclosing rectangles. We refer to them as atoms.

Lemma: For an n-vertex binary tree we have at most n — 1 atoms.

Proof: Observe that:
B Let each atom be of the form |w X h].

B There is only one atom for each w, 0 <w <n —1. O
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Optimum hv-layout for binary trees

Time Analysis:

1. Simple implementation:

B Combining the n° rectangles in each of L; and Ly to get a list of n* rectangles.
= O(n*) time

B Remove duplicate rectangles = O(n*) time

B Repeat for each internal tree node = O(n-n*) = O(n°) total time
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B Repeat for each internal tree node = O(n-n*) = O(n°) total time

2. Implementation based on “atom-only” lists [Observation-3]

B Combine the 1 atoms in each of L; and Ly and remove duplicates = O(n?) time
B Repeat for each internal tree node = O(n-1n?) = O(n>) total time

3. Fast “atom-based” implementation

B Combine the n atoms in each of L1 and Ly and remove duplicates by a “merge-like”
operation = O(n) time
B Repeat for each internal tree node = O(n-1n) = O(n?) total time
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Optimum hv-layout for binary trees

Time Analysis:

2. Implementation based on “atom-only” lists [Observation-3]

B Combine the n atoms in each of L; and Ly and remove duplicates = O(n?) time
B Repeat for each internal tree node = O(n-n?) = O(n>) total time
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Optimum hv-layout for binary trees

Time Analysis:

2. Implementation based on “atom-only” lists [Observation-3]

B Combine the n atoms in each of L; and Ly and remove duplicates = O(n?) time
B Repeat for each internal tree node = O(n-n?) = O(n>) total time

atoms: array of length n
atomsli] = atom with length i

B for each combination of L1 and L» update array of atoms

32 -



Optimum hv-layout for binary trees

Time Analysis:

2. Implementation based on “atom-only” lists [Observation-3]

B Combine the n atoms in each of L; and Ly and remove duplicates = O(n?) time
B Repeat for each internal tree node = O(n-n?) = O(n>) total time

atoms: array of length n
atomsli] = atom with length i

B for each combination of L1 and L» update array of atoms

Obervation: width is increasing  w; < w;
height is decreasing h; > h;
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Optimum hv-layout for binary trees

Time Analysis:
3. Fast “atom-based” implementation

B Combine the n atoms in each of L1 and Ly and remove duplicates by a “merge-like”
operation = O(n) time
B Repeat for each internal tree node = O(n-n) = O(n?) total time
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3. Fast “atom-based” implementation
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operation = O(n) time
B Repeat for each internal tree node = O(n-n) = O(n?) total time
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operation = O(n) time
B Repeat for each internal tree node = O(n-n) = O(n?) total time

T ap: {po, .- Prts Pi = (w/ivh/i)
aR: {40, -+ et 5 = (w]-,h].)
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B H=max{h; +1, h;}
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Time Analysis:
3. Fast “atom-based” implementation

B Combine the n atoms in each of L1 and Ly and remove duplicates by a “merge-like”
operation = O(n) time
B Repeat for each internal tree node = O(n-n) = O(n?) total time
u uI\)

uy ap: {po, .- Prts Pi = (w/ivh/i)
ar: 140, --+.4q¢}, qi = (w]-,h].)

combination c(p;, q;): For fixed p; = (wj, h;)
BW=uw + ZU; +1 B W is increasing

lH:max{hi—l—l,h;} — i, for 1 > hi+ 1
h;, for h}ghi+1



Optimum hv-layout for binary trees

Time Analysis:

3. Fast “atom-based” implementation

B Combine the n atoms in each of L1 and Ly and remove duplicates by a “merge-like”
operation = O(n) time

B Repeat for each internal tree node = O(n-n) = O(n?) total time

ug

T

ar: {po,
ﬂRi{qO,

combination c(p;, q;):

m W:wi+w;+1

B H=max{h; +1, h;}

o Pk P = (w/i'h/i)
et qi = (w]-,h].)

For fixed Pi = (wi, hl)

B W is increasing

enclos

ﬂ

'
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Optimum hv-layout for binary trees

Time Analysis:
3. Fast “atom-based” implementation

B Combine the n atoms in each of L1 and Ly and remove duplicates by a “merge-like”

operation = O(n) time
B Repeat for each internal tree node = O(n-n) = O(n?) total time
U u
up f ar. . {po,...,pk}, Pi = (wi,hi)
. Ao 1,
ar: {40+ qe}, g = (w]-,h].)

combination c(p;, q;): For fixed p; = (wj, h;)
BW=uw + ZU; +1 B There exists smallest j(i) s.t. h;(i) <h+1
B H=max{h; +1, h;.} B atoms defined only for j < j(i)

B /(i) is increasing

B c(py-,q;) enclosed by c(p;, q;) for j < j(i)
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Optimum hv-layout for binary trees

Time Analysis:
3. Fast “atom-based” implementation

B Combine the n atoms in each of L1 and Ly and remove duplicates by a “merge-like”
operation = O(n) time
B Repeat for each internal tree node = O(n-n) = O(n?) total time
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Optimum hv-layout for binary trees

Time Analysis:
3. Fast “atom-based” implementation

B Combine the n atoms in each of L1 and Ly and remove duplicates by a “merge-like”
operation = O(n) time
B Repeat for each internal tree node = O(n-n) = O(n?) total time

0 j0) j1)  j) ji+1)
0
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Optimum hv-layout for binary trees

Time Analysis:
3. Fast “atom-based” implementation

B Combine the n atoms in each of L1 and Ly and remove duplicates by a “merge-like”
operation = O(n) time
B Repeat for each internal tree node = O(n-n) = O(n?) total time

0 j(0) j(1)  j) jE+1)
0 enclosed by c(po, (o))
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Optimum hv-layout for binary trees

Time Analysis:
3. Fast “atom-based” implementation

B Combine the n atoms in each of L1 and Ly and remove duplicates by a “merge-like”
operation = O(n) time
B Repeat for each internal tree node = O(n-n) = O(n?) total time
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Optimum hv-layout for binary trees

Time Analysis:

3. Fast “atom-based” implementation

B Combine the n atoms in each of L1 and Ly and remove duplicates by a “merge-like”
operation = O(n) time
B Repeat for each internal tree node = O(n-n) = O(n?) total time
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Optimum hv-layout for binary trees

Time Analysis:

3. Fast “atom-based” implementation

B Combine the n atoms in each of L1 and Ly and remove duplicates by a “merge-like”
operation = O(n) time
B Repeat for each internal tree node = O(n-n) = O(n?) total time

0
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Optimum hv-layout for binary trees

Time Analysis:
3. Fast “atom-based” implementation

B Combine the n atoms in each of L1 and Ly and remove duplicates by a “merge-like”
operation = O(n) time
B Repeat for each internal tree node = O(n-n) = O(n?) total time
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Optimum hv-layout for binary trees

Time Analysis:
3. Fast “atom-based” implementation

B Combine the n atoms in each of L1 and Ly and remove duplicates by a “merge-like”
operation = O(n) time
B Repeat for each internal tree node = O(n-n) = O(n?) total time

‘combinel(atoms a;, atoms ay)
| i<0
j< 0
while i < k and /| < / do
compute combination
if h; > 1; + 1 then
| j<j+1
else
| i—i+1
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Radial layout — applications
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Phylogenetic tree
by Colicelli, ScienceSignaling, 2004
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Radial layout — applications

)
-

Flare Visualization Toolkit code structure
by Heer, Bostock and Ogievetsky, 2010

Creek MyTH
FAmILY SPIRAL

Greek Myth Family
by Ribecca, 2011
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Radial layout — drawing style

Drawing conventions

B Vertices lie on circular layers
according to their depth

B Drawing is planar

Drawing aesthetics
B Distribution of the vertices
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Radial layout — drawing style

Drawing conventions

B Vertices lie on circular layers
according to their depth

B Drawing is planar

Drawing aesthetics
B Distribution of the vertices

How may an algorithm optimise
the distribution of the vertices?
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Radial layout — algorithm attempt

Idea
B Angle corresponding to size £(u) of T(u):
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Radial layout — algorithm attempt
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Radial layout — algorithm attempt

Idea
B Angle corresponding to size £(u) of T(u):
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Radial layout — algorithm attempt

Idea
B Angle corresponding to size £(u) of T(u):
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Radial layout — how to avoid crossings
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Radial layout — how to avoid crossings
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Radial layout — how to avoid crossings
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Radial layout — how to

avold crossings
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Radial layout — how to avoid crossings

B 7, — angle of the wedge
corresponding to vertex u
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Radial layout — how to avoid crossings

B 7, — angle of the wedge
corresponding to vertex u

B /(u) — number of nodes in
the subtree rooted at u

B p; — raduis of layer 1

Ty . _Pi
W cos 2 Pit1
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Radial layout — how to avoid crossings

B 7, — angle of the wedge
corresponding to vertex u

B /(u) — number of nodes in
the subtree rooted at u

B p; — raduis of layer 1

Ty — _Pi
ICOSz—piH

_ ind L) oi
mT= mm{g(v)_lrv, 2 arccos Pi+1}
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Radial layout — how to avoid crossings

B 7, — angle of the wedge
corresponding to vertex u

B /(u) — number of nodes in
the subtree rooted at u

B p; — raduis of layer 1

Ty — _Pi
W cos 3 Pi+1
_ i L) Pi
mT= mm{mu)]arccos Pi+1}
B Alternative:
Nmin = Ny — 4= > (v, — arccos pfﬁ
Pi

Mmax = &y + 4 < wy + arccos o



Radial layout — pseudocode

RadialTreeLayout(tree T, root r € T, radii p1 < - -+ < pg)

postorder(r)

preorder(r, 0,0, 277)

| return (dy, a0 )pey(T) .
| // vertex pos./polar coord.:

calculate the size of the
subtree recursively
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RadialTreeLayout(tree T, root r € T, radii p1 < - -+ < pg)

postorder(r)

preorder(r, 0,0, 277)

| return (dy, a0 )pey(T) .
| // vertex pos./polar coord.:

l(v) <1
foreach child w of v do

L postorder(w)
((v) + £(v) + L(w)
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Radial layout — pseudocode

RadialTreeLayout(tree T, root r € T, radii p1 < - -+ < pg) Determine wedge for u

postorder(r)

preorder(r, 0,0, 277)

| return (dy, a0 )pey(T) .
| // vertex pos./polar coord.:

l(v) <1
foreach child w of v do

L postorder(w)
((v) + £(v) + L(w)
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Radial layout — pseudocode

RadialTreeLayout(tree T, root r € T, radii p1 < -+ < .{?k) Determine wedge for u
'begin I i

postorder(r)

preorder(r, 0, 0, 271)

| return (dy, a0 )pey(T) .
| // vertex pos./polar coord.:

l(v) <1 |
foreach child w of v do X

postorder(w) ' ‘
L l(v) < £(v) + £(w)

S~ -
e e, e - =-—-
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Radial layout — pseudocode

RadialTreeLayout(tree T, root r € T, radii p1 < -+ < .{?k) Determine wedge for u
'begin I i

postorder(r)

preorder(r, 0, 0, 271)

| return (dy, a0 )pey(T) .
| // vertex pos./polar coord.:

l(v) <1
foreach child w of v do

L postorder(w)
0(v) < £(v) + 4(w)

=~ o
————————

Xmax
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Radial layout — pseudocode

postorder(r)

preorder(r, 0,0, 277)

| return (dy, a0 )pey(T) .
| // vertex pos./polar coord.:

l(v) <1
foreach child w of v do

L postorder(w)
((v) + £(v) + L(w)




Radial layout — pseudocode

RadialTreeLayout(tree T, root r € T, radii p1 < - -+ < o)

begin preorder(vertex v, t, ®min,» Xmax)
postorder(r) dy < py
preorder(r, 0, 0, 271) &y — (Xmin + Xmax ) /2
return (dy, o) pey(T) if £ > 0 then
// vertex pos./polar coord. K min <— Max{ &min, &y —arccos ppf_
postorder(vertex v) fmax <= Min{&max, &y +arccos ppi h
£(v) 1 . left — Xmin
f°react" Zh"? Z;) RicAce foreach child w of v do
postorder(w - t(w) .
oy ) + e right < Ieft + 7755”7 (8max — tmin)
L preorder(w, t + 1, left, right)
| left < right
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Radial layout — result
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Other tree visualisation styles
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Other tree visualisation styles
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Other tree visualisation styles
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Other tree visualisation styles
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| iterature

|GD Ch. 3.1] for divide and conquer methods for rooted trees

B [RT81] Reingold and Tilford, " Tidier Drawings of Trees” 1981 — original paper for
level-based layout algo

B [SR83] Reingold and Supowit, " The complexity of drawing trees nicely” 1983 —
NP-hardness proof for area minimisation & LP

B treevis.net — compendium of drawing methods for trees
(links on website)
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