Visualisation of graphs

Introduction The graph visualisation problem

Antonios Symvonis · Chrysanthi Raftopoulou Fall semester 2020

The slides of this presentation were created by researchers at Karlsruhe Institute of Technology (KIT), TU Wien, U Wuerzburg, U Konstanz, ...

What is a graph?

graph G = (V, E)
vertices V =
$$\{v_1, v_2, \dots, v_n\}$$
edge E = $\{e_1, e_2, \dots, e_m\}$

What is a graph?

graph G = (V, E)
vertices V = {
$$v_1, v_2, ..., v_n$$
}
edge E = { $e_1, e_2, ..., e_m$ }

Representation?

What is a graph?

graph G = (V, E)
vertices V = {
$$v_1, v_2, ..., v_n$$
}
edge E = { $e_1, e_2, ..., e_m$ }

Representation?

Set notation

 $V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}\}$ $E = \{\{v_1, v_2\}, \{v_1, v_8\}, \{v_2, v_3\}, \{v_3, v_5\}, \{v_3, v_9\}, \{v_3, v_{10}\}, \{v_4, v_5\}, \{v_4, v_6\}, \{v_4, v_9\}, \{v_5, v_8\}, \{v_6, v_8\}, \{v_6, v_9\}, \{v_7, v_8\}, \{v_7, v_9\}, \{v_8, v_{10}\}, \{v_9, v_{10}\}\}$

What is a graph?

graph G = (V, E)
vertices V = {
$$v_1, v_2, ..., v_n$$
}
edge E = { $e_1, e_2, ..., e_m$ }

Representation?

Set notation

 $V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}\}$ $E = \{\{v_1, v_2\}, \{v_1, v_8\}, \{v_2, v_3\}, \{v_3, v_5\}, \{v_3, v_9\}, \{v_3, v_{10}\}, \{v_4, v_5\}, \{v_4, v_6\}, \{v_4, v_9\}, \{v_5, v_8\}, \{v_6, v_8\}, \{v_6, v_9\}, \{v_7, v_8\}, \{v_7, v_9\}, \{v_8, v_{10}\}, \{v_9, v_{10}\}\}$

v_1 :	v_2 , v_8	<i>v</i> 6:	v_4 , v_8 , v_9
v_2 :	v_1 , v_3	v_7 :	v ₈ , v ₉
<i>v</i> 3:	v_2 , v_5 , v_9 , v_{10}	v_8 :	v_1 , v_5 , v_6 , v_7 , v_9 , v_{10}
v_{4} :	v_5 , v_6 , v_9	<i>v</i> 9:	<i>v</i> ₃ , <i>v</i> ₄ , <i>v</i> ₆ , <i>v</i> ₇ , <i>v</i> ₈ , <i>v</i> ₁₀
v_5 :	v_3 , v_4 , v_8	v_{10} :	<i>v</i> 3, <i>v</i> 8, <i>v</i> 9

What is a graph?

graph
$$G = (V, E)$$
vertices $V = \{v_1, v_2, ..., v_n\}$
edge $E = \{e_1, e_2, ..., e_m\}$

Representation?

Set notation

 $V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}\}$ $E = \{\{v_1, v_2\}, \{v_1, v_8\}, \{v_2, v_3\}, \{v_3, v_5\}, \{v_3, v_9\}, \{v_3, v_{10}\}, \{v_4, v_5\}, \{v_4, v_6\}, \{v_4, v_9\}, \{v_5, v_8\}, \{v_6, v_8\}, \{v_6, v_9\}, \{v_7, v_8\}, \{v_7, v_9\}, \{v_8, v_{10}\}, \{v_9, v_{10}\}\}$

v_1 :	v_2 , v_8	v_6 :	v_4 , v_8 , v_9
v_2 :	v_1 , v_3	v_7 :	v_8 , v_9
v_3 :	v_2 , v_5 , v_9 , v_{10}	v_8 :	v_1 , v_5 , v_6 , v_7 , v_9 , v_{10}
v_{4} :	v_5 , v_6 , v_9	v_9 :	<i>v</i> ₃ , <i>v</i> ₄ , <i>v</i> ₆ , <i>v</i> ₇ , <i>v</i> ₈ , <i>v</i> ₁₀
v_5 :	v_3 , v_4 , v_8	v_{10} :	<i>v</i> 3, <i>v</i> 8, <i>v</i> 9

	A	dj	ac	cer	יַכו	y I	ma	atr	ix		
1	0	1	0	0	0	0	0	1	0	0	$\mathbf{\lambda}$
	1	0	1	0	0	0	0	0	0	0	
	0	1	0	0	1	0	0	0	1	1	
	0	0	0	0	1	1	0	0	1	0	
	0	0	1	1	0	0	0	1	0	0	
	0	0	0	1	0	0	0	1	1	0	
	0	0	0	0	0	0	0	1	1	0	
	1	0	0	0	1	1	1	0	1	1	
	0	0	1	1	0	1	1	1	0	1	
/	0	0	1	0	0	0	0	1	1	0	/

What is a graph?

graph G = (V, E)
vertices V = {
$$v_1, v_2, ..., v_n$$
}
edge E = { $e_1, e_2, ..., e_m$ }

Representation?

Set notation

 $V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}\}$ $E = \{\{v_1, v_2\}, \{v_1, v_8\}, \{v_2, v_3\}, \{v_3, v_5\}, \{v_3, v_9\}, \{v_3, v_{10}\}, \{v_4, v_5\}, \{v_4, v_6\}, \{v_4, v_9\}, \{v_5, v_8\}, \{v_6, v_8\}, \{v_6, v_9\}, \{v_7, v_8\}, \{v_7, v_9\}, \{v_8, v_{10}\}, \{v_9, v_{10}\}\}$

v_1 :	v_2 , v_8	v_6 :	v_4 , v_8 , v_9
v_2 :	v_1 , v_3	v_7 :	v_8 , v_9
<i>v</i> 3:	v_2 , v_5 , v_9 , v_{10}	v_8 :	v_1 , v_5 , v_6 , v_7 , v_9 , v_{10}
v_{4} :	v_5 , v_6 , v_9	<i>v</i> g:	<i>v</i> ₃ , <i>v</i> ₄ , <i>v</i> ₆ , <i>v</i> ₇ , <i>v</i> ₈ , <i>v</i> ₁₀
v_5 :	v_3 , v_4 , v_8	<i>v</i> 10:	v3, v8, v9

What is a graph?

graph
$$G = (V, E)$$
vertices $V = \{v_1, v_2, ..., v_n\}$
edge $E = \{e_1, e_2, ..., e_m\}$

Representation?

Set notation

```
V = \{v_1, v_2, v_3, v_4, v_5, v_6, v_7, v_8, v_9, v_{10}\}

E = \{\{v_1, v_2\}, \{v_1, v_8\}, \{v_2, v_3\}, \{v_3, v_5\}, \{v_3, v_9\}, \{v_3, v_{10}\}, \{v_4, v_5\}, \{v_4, v_6\}, \{v_4, v_9\}, \{v_5, v_8\}, \{v_6, v_8\}, \{v_6, v_9\}, \{v_7, v_8\}, \{v_7, v_9\}, \{v_8, v_{10}\}, \{v_9, v_{10}\}\}
```

v_1 :	v_2 , v_8	<i>v</i> 6∶	v_4 , v_8 , v_9
v_2 :	v_1 , v_3	v_7 :	v_8 , v_9
v_3 :	v_2 , v_5 , v_9 , v_{10}	v_8 :	v_1 , v_5 , v_6 , v_7 , v_9 , v_{10}
v_{4} :	v_5 , v_6 , v_9	<i>v</i> g:	<i>v</i> ₃ , <i>v</i> ₄ , <i>v</i> ₆ , <i>v</i> ₇ , <i>v</i> ₈ , <i>v</i> ₁₀
v_5 :	v_3 , v_4 , v_8	v_{10} :	<i>v</i> 3, <i>v</i> 8, <i>v</i> 9

Graphs are a mathematical representation of real physical and abstract networks.

. . .

Graphs are a mathematical representation of real physical and abstract networks.

Abstract networks

- Social networks
- Communication networks
- Phylogenetic networks
- Metabolic networks
- Class/Object Relation
 Digraphs (UML)

3 - 3

. . .

Graphs are a mathematical representation of real physical and abstract networks.

Abstract networks

- Social networks
- Communication networks
- Phylogenetic networks
- Metabolic networks
- Class/Object Relation
 Digraphs (UML)

Physical networks

- Metro systems
- Road networks
- Power grids

. . .

- Telecommunication networks
- Integrated circuits

Graphs are a mathematical representation of real physical and abstract networks.

People think visually – complex graphs are hard to grasp without good visualisations!

Graphs are a mathematical representation of real physical and abstract networks.

- People think visually complex graphs are hard to grasp without good visualisations!
- Visualisations help with the communication and exploration of networks.

Graphs are a mathematical representation of real physical and abstract networks.

- People think visually complex graphs are hard to grasp without good visualisations!
- Visualisations help with the communication and exploration of networks.
- Some graphs are too big to draw them by hand.

Graphs are a mathematical representation of real physical and abstract networks.

- People think visually complex graphs are hard to grasp without good visualisations!
- Visualisations help with the communication and exploration of networks.
- Some graphs are too big to draw them by hand.

We need algorithms that draw graphs automatically to make networks more accessible to humans.

Jacques Bertin defined visualising variables (1967)

Jacques Bertin defined visualising variables (1967)

■ Jacques Bertin defined visualising variables (1967)

■ Jacques Bertin defined visualising variables (1967)

Here restricted to the standard representation, so-called node-link diagrams.

Here restricted to the standard representation, so-called node-link diagrams.

Graph visualisation problem in: Graph G = (V, E)out:

Here restricted to the standard representation, so-called node-link diagrams.

Graph visualisation problem in: Graph G = (V, E)out: nice drawing Γ of G $\Gamma: V \to \mathbb{R}^2$, vertex $v \mapsto$ point $\Gamma(v)$ $\Gamma: E \to$ curves in \mathbb{R}^2 , edge $\{u, v\} \mapsto$ simple, open curve $\Gamma(\{u, v\})$ with endpoints $\Gamma(u)$ und $\Gamma(v)$

Here restricted to the standard representation, so-called node-link diagrams.

Graph visualisation problem in: Graph G = (V, E)out: nice drawing Γ of G $\Gamma: V \to \mathbb{R}^2$, vertex $v \mapsto$ point $\Gamma(v)$ $\Gamma: E \to$ curves in \mathbb{R}^2 , edge $\{u, v\} \mapsto$ simple, open curve $\Gamma(\{u, v\})$ with endpoints $\Gamma(u)$ und $\Gamma(v)$

But what is a **nice** drawing?

Examples

See slides (and video) with more examples.

1. Drawing conventions and requirements, e.g.,

- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing

- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimised, e.g.

- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimised, e.g.
- crossing/bend minimisation
- edge length uniformity
- minimising total edge length/drawing area
- angular resolution
- symmetry/structure

- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimised, e.g.
- crossing/bend minimisation
- edge length uniformity
- minimising total edge length/drawing area
- angular resolution
- symmetry/structure

 \rightarrow lead to NP-hard optimization problems

- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimised, e.g.
- crossing/bend minimisation
- edge length uniformity
- minimising total edge length/drawing area
- angular resolution
- symmetry/structure

 $[\]rightarrow$ lead to NP-hard optimization problems \rightarrow such criteria are often inversely related

- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimised, e.g.
- crossing/bend minimisation
- edge length uniformity
- minimising total edge length/drawing area
- angular resolution
- symmetry/structure
- 3. Local Constraints, e.g.

 \rightarrow lead to NP-hard optimization problems \rightarrow such criteria are often inversely related

- 1. Drawing conventions and requirements, e.g.,
- straight edges with $\Gamma(uv) = \overline{\Gamma(u)\Gamma(v)}$
- orthogonal edges (i.e. with bends)
- grid drawings
- without crossing
- 2. Aesthetics to be optimised, e.g.
- crossing/bend minimisation
- edge length uniformity
- minimising total edge length/drawing area
- angular resolution
- symmetry/structure
- 3. Local Constraints, e.g.
- restrictions on neighbouring vertices (e.g., "upward").
 restrictions on groups of vertices/edges (e.g., "clustered").

 \rightarrow lead to NP-hard optimization problems \rightarrow such criteria are often inversely related

Graph visualisation problem

in: Graph G = (V, E)out: Drawing Γ of G such that

in: Graph G = (V, E)out: Drawing Γ of G such that drawing conventions are met,

in: Graph G = (V, E)
out: Drawing Γ of G such that
drawing conventions are met,
aesthetic criteria are optimised, and

in: Graph G = (V, E)

out: Drawing Γ of G such that

- drawing conventions are met,
- aesthetic criteria are optimised, and
- some additional constraints are satisfied.

in: Graph G = (V, E)

Out: Drawing Γ of G such that

drawing conventions are met,

- aesthetic criteria are optimised, and
 - some additional constraints are satisfied.

- Many algorithmically interesting questions arise.
- Rendering problem downstream is ignored.