
© The Author 2012. Published by Oxford University Press on behalf of The British Computer Society. All rights reserved.
For Permissions, please email: journals.permissions@oup.com

doi:10.1093/comjnl/bxs088

Maximizing the Total Resolution
of Graphs

E.N. Argyriou
1
, M.A. Bekos

2
and A. Symvonis

1,∗

1School of Applied Mathematical and Physical Sciences, National Technical University of Athens,
15780 Zografou, Athens, Greece

2Institute for Informatics, University of Tübingen, Sand 13, 72076 Tübingen, Germany
∗Corresponding author: symvonis@math.ntua.gr

A major factor affecting the readability of a graph drawing is its resolution. In the graph drawing
literature, the resolution of a drawing is either measured based on the angles formed by consecutive
edges incident on a common vertex (angular resolution) or by the angles formed at edge crossings
(crossing resolution). In this paper, we introduce the notion of ‘total resolution’, that is, the minimum
of the angular and crossing resolution. To the best of our knowledge, this is the first time where the
problem of maximizing the total resolution of a graph over all its drawings is studied. The main
contribution of the paper consists of drawings of asymptotically optimal total resolution for complete
graphs (circular drawings) and for complete bipartite graphs (two-layered drawings). In addition,
we present and experimentally evaluate a force-directed-based algorithm that constructs drawings

of large total resolution.

Keywords: graph drawing; angular; crossing and total resolution

Received 23 February 2012; revised 24 April 2012
Handling editor: Iain Stewart

1. INTRODUCTION

Graphs are widely used to depict relations between objects.
There exist several criteria that have been used to judge the
quality of a graph drawing [1, 2]. From a human point of
view, it is necessary to confront drawings that are easy-to-
read, i.e. they should nicely convey the structure of the objects
and their relationships. From an algorithmic point of view, the
quality of a drawing is usually evaluated by some objective
function and the main task of a graph drawing algorithm is to
determine a drawing that minimizes or maximizes the specific
objective function. Various such functions have been studied
by the graph drawing community, among them, the number of
crossings among pairs of edges, the number of edge bends, the
maximum edge length, the total area occupied by the drawing
and so on [2, 3].

Over the past years, a significant amount of research effort
has been devoted to the problem of reducing the number of
crossings. This is reasonable, since it is commonly accepted that
edge crossings may negatively affect the quality of a drawing.
Toward this direction, there also exist eye-tracking experiments
that confirm the negative impact of edge crossings on the
human understanding of a graph drawing [4–6]. However, the

computational complexity of the edge crossing minimization
problem, which is NP-complete in general [7], implies that
the computation of high-quality drawings of dense graphs is
difficult to achieve.

Apart from the edge crossings, another undesired property
that may negatively influence the readability of a drawing is the
presence of edges that are too close to each other, especially if
these edges are adjacent. Thus, maximizing the angles among
incident edges becomes an important esthetic criterion, since
there is some correlation between the involved angles and the
visual distinctiveness of the edges.

Motivated by the cognitive experiments by Huang [8] and
Huang et al. [9] that indicate that the negative impact of an
edge crossing is reduced in the case where the crossing angle
is >70◦, we study a new graph drawing scenario in which both
the angular and crossing resolution1 are taken into account in
order to produce a straight-line drawing of a given graph. To
the best of our knowledge, this is the first attempt, where both
the angular and crossing resolution are combined to produce

1The term angular resolution denotes the smallest angle formed by two
adjacent edges incident on a common vertex, whereas the term crossing
resolution refers to the smallest angle formed by a pair of crossing edges.

The Computer Journal, 2012

 The Computer Journal Advance Access published June 27, 2012

2 E.N. Argyriou et al.

drawings with high resolution. We show how to construct
drawings that asymptotically maximize the minimum of the
angular and crossing resolution for the classes of complete
and complete bipartite graphs (Section 3). We also present a
more practical, force-directed-based algorithm that constructs
drawings of large angular and crossing resolution (Section 4).

1.1. Previous work

Formann et al. [10] were the first to study the angular
resolution of straight-line drawings. They proved that deciding
whether a graph of maximum degree d admits a drawing
of angular resolution 2π/d (i.e. the obvious upper bound)
is NP-hard. They also proved that several types of graphs
of maximum degree d (including planar graphs, complete
graphs, hypercubes, multidimensional meshes and tori) have
angular resolution �(1/d). Malitz and Papakostas [11] proved
that any planar graph of maximum degree d admits a planar
straight-line drawing with angular resolution �(1/7d). Garg
and Tamassia [12] showed a continuous trade-off between the
area and the angular resolution of planar straight-line drawings.
Gutwenger and Mutzel [13] gave a linear time and space
algorithm that constructs a planar polyline grid drawing of a
connected planar graph with n vertices and maximum degree
d on a (2n − 5) × (3

2n − 7
2) grid with at most 5n − 15 bends

and minimum angle > 2/d . Bodlaender and Tel [14] showed
that planar graphs with angular resolution at least π/2 are
rectilinear.

A graph is called a right angle crossing (or RAC for short)
graph if it admits a polyline drawing in which every pair of
crossing edges intersects at a right angle. Didimo et al. [15]
were the first to study RAC drawings and they showed that any
straight-line RAC drawing with n vertices has at most 4n − 10
edges. Arikushi et al. [16] presented bounds on the number of
edges of polyline RAC drawings with at most one or two bends
per edge.Angelini et al. [17] showed that there are acyclic planar
digraphs not admitting straight-line upward RAC drawings and
that the corresponding decision problem is NP-hard. They also
constructed digraphs whose straight-line upward RAC drawings
require exponential area. Argyriou et al. [18] proved that the
problem of deciding whether a given graph admits a straight-
line RAC drawing (i.e. the upwardness requirement is relaxed) is
NP-hard. Di Giacomo et al. [19] presented trade-offs between
the crossing resolution, the maximum number of bends per
edges and the area of a drawing. Didimo et al. [20] presented a
characterization of complete bipartite graphs that admit straight-
line RAC drawings. Di Giacomo et al. [21] presented upper and
lower bounds to the crossing resolution of complete graphs.
van Kreveld [22] studied how much better (in terms of the area
required, edge-length and angular resolution) an RAC drawing
of a planar graph can be than any planar drawing of the same
graph. Eades and Liotta [23] proved that a maximally dense
RAC graph (i.e. |E| = 4|V | − 10) is also 1-planar, i.e. it
admits a drawing in which every edge is crossed at most once.

Dujmovic et al. [24] studied α Angle Crossing (or αAC for
short) graphs, in which the smallest angle formed by an edge
crossing is at least α. For this class of graphs, they proved
upper and lower bounds for the number of edges. Angelini et al.
[25] presented algorithms for computing non-planar drawings
of planar graphs that require subquadratic area, assuming that
the angles formed by edge crossings are arbitrarily close to 90◦
and the maximum number of bends per edge is bounded by a
fixed constant.

Force-directed methods are commonly used for drawing
graphs [26–29]. In such a framework, a graph is treated as
a physical system with forces acting on it. Then, a good
configuration or drawing can be obtained from an equilibrium
state of the system. An overview of force-directed methods
and their variations can be found in the graph drawing
books [2, 3]. Brandenburg et al. [30] presented an experimental
comparison of five well-known force-directed and randomized
graph drawing algorithms. Bertault [31] presented a force-
directed method that preserves the edge crossing properties
of an input layout, i.e. two edges cross in the produced
drawing if and only if they cross in the input drawing as
well. More recently, Lin and Yen [32] presented a force-
directed method that leads to drawings with high angular
resolution. In their work, pairs of edges incident on a
common vertex are modeled as charged springs, that repel each
other, guaranteeing the absence of any overlap among edges
incident on a common vertex. Didimo et al. [33] proposed
a framework that combines force-directed and planarization-
based approaches to obtain polyline drawings of non-planar
graphs with a small number of crossings, high crossing
resolution and good geodesic edge tendency.2 In the context
of polyline drawings again, crossing resolution and geodesic
edge tendency are also the main optimization criteria of a
force-directed algorithm of Didimo et al. [34] that computes
a simultaneous embedding of two input graphs in order to
support website traffic analysis by means of graph visualization
techniques.

The rest of this paper is structured as follows. In Section 2, we
introduce preliminary notions and notation that are used in the
rest of this paper. In Sections 3, we present theoretical results
for the classes of complete bipartite and complete graphs. In
Section 4, we present a force-directed algorithm, which results
in the drawings of large angular and crossing resolution. We
conclude in Section 6 with open problems and future work.

A preliminary version of this work has appeared in [35]. At
the same time, Huang et al. [36] have independently published
a force-directed algorithm, which uses a subset of the forces
utilized in our algorithm and different functions to control the
magnitude of these forces.

2For an edge e = (u, v) with bends, the term geodesic edge tendency
refers to the maximum distance from a point of e to the straight-line segment
connecting u and v.

The Computer Journal, 2012

Maximizing the Total Resolution of Graphs 3

2. PRELIMINARY NOTIONS AND NOTATION

Let G = (V , E) be an undirected graph. Given a drawing �(G)

of G, we denote by pu = (xu, yu) the position of vertex u ∈ V

on the plane. The vector from pu to pv which has unit length is
denoted by −−→

pupv , where u, v ∈ V . The degree of vertex u ∈ V

is denoted by d(u). Let also d(G) = maxu∈V d(u) be the degree
of the graph.

Given a pair of points q1, q2 ∈ R2, with a slight abuse of
notation, we denote by ‖q1−q2‖ the Euclidean distance between
q1 and q2. We refer to the line segment defined by q1 and q2 as
q1q2.

Let −→α and −→γ be two vectors. The vector that bisects the
angle between −→α and −→γ is −→α /‖−→α ‖ + −→γ /‖−→γ ‖. We denote
by Bsc(−→α , −→γ) the corresponding unit length vector. Given a
vector

−→
β , we refer to the unit length vector that is perpendicular

to
−→
β and precedes it in the clockwise direction, as Perp(

−→
β).

Some of our proofs use the following elementary geometric
properties:

tan (ω1 ± ω2) = tan ω1 ± tan ω2

1 ± (− tan ω1 · tan ω2)
, (1)

tan (ω/2) = sin ω

1 + cos ω
, (2)

ω ∈
(

0,
π

2

)
⇒ tan ω > ω. (3)

3. DRAWINGS WITH OPTIMAL TOTAL
RESOLUTION FOR COMPLETE AND
COMPLETE BIPARTITE GRAPHS

In this section, we first define formally the total resolution of a
drawing. Then, we present two methods for obtaining drawings
of asymptotically optimal total resolution for complete and
complete bipartite graphs. In particular, we prove that (i) any
complete graph Kn admits a circular drawing of total resolution
O(1/n), which is asymptotically optimal, and, (ii) any complete
bipartite graph Kn,m admits a layered drawing of total
resolution O(1/ max {n, m}), which is also asymptotically
optimal. Obviously, the problem of determining the maximum
total resolution for the case of planar straight-line drawings
of planar graphs is equivalent to the corresponding problem
of determining the maximum angular resolution, which is a
well-studied problem in the graph drawing literature. Therefore,
we concentrate our study on non-planar classes of graphs. As
a first step toward solving the total resolution maximization
problem on arbitrary non-planar graphs, we study the intuitively
easier cases of complete and complete bipartite graphs, for
which we seek to obtain circular and two-layered drawings
of maximum total resolution, respectively. Note that such
drawings are common for the visualization of complete and
complete bipartite graphs. The formal definition of the term
‘total resolution’ is given below.

Definition 3.1. The total resolution of a drawing is defined
as the minimum of its angular and crossing resolution.

We first consider the case of complete graphs. Let Kn =
(V , E) be a complete graph, where V = {u0, u1, . . . , un−1} and
E = V × V . Our aim is to construct a circular drawing of Kn

of maximum total resolution. Our approach is constructive and
quite common when dealing with complete graphs. A similar
construction has been given by Formann et al. [10] for obtaining
optimal drawings of complete graphs, in terms of angular
resolution. Consider a circle C of radius rc > 0 centered at (0, 0)

and inscribe a regular n-polygon Q on C. In our construction,
the vertices of Kn coincide with the vertices of Q. Without loss
of generality, we further assume that u0, u1, . . . , un−1 appear in
this order in the counter-clockwise direction around (0, 0), as
illustrated in Fig. 1a.

Theorem 3.1. A complete graph Kn admits a circular
drawing of total resolution O(1/n), which is asymptotically
optimal.

Proof. We prove that the angular resolution of the presented
drawing of Kn is π/n, whereas its crossing resolution is 2π/n.
First, observe that the length arc of circle C that connects two
consecutive vertices ui and u(i+1)modn is equal to 2πrc/n for
each i = 0, 1, . . . , n − 1. Therefore, the angular resolution
of the drawing is π/n, as desired. Now let ei = (ui, ui′) and
ej = (uj , uj ′) be two crossing edges. Without loss of generality,
we assume that i < j < i ′ < j ′, as in Fig. 1a. The crossing of
ei and ej defines two angles φc and φ′

c such that φc +φ′
c = π . In

Fig. 1a, φc is exterior to the triangle formed by the crossing of ei

and ej and the vertices uj and ui′ (refer to the dark-gray triangle
of Fig. 1a). Therefore: φc = (j ′ − i ′)(π/n) + (j − i)(π/n).
Similarly, φ′

c = (i ′ − j)(π/n) + (n − (j ′ − i))(π/n). In the
case in which j = (i + 1) mod n and j ′ = (i ′ + 1) mod n

[i.e. the vertices ui (ui′ , respectively) and uj (uj ′ , respectively)
are consecutive], angle φc receives its minimum value, which is
equal to 2π/n. Similarly, we can prove that the minimum value
of φ′

c is also 2π/n. This establishes that the crossing resolution
of the drawing is 2π/n. Note that the same upper bound for
the crossing resolution of Kn has been independently proved by
Di Giacomo et al. [21].

We now proceed to consider the class of complete bipartite
graphs. Since an n-vertex complete bipartite graph is a subgraph
of an n-vertex complete graph, a drawing of �(1/n) total
resolution for the complete bipartite graph can be derived by
the optimal drawing for the complete graph. However, if the
vertices of the graph must have integer coordinates (i.e. we
restrict ourselves to grid drawings), few results are known
regarding the area needed for such a drawing.An upper bound of
O(n3) area can be derived by Bárány and Tokushige [37]. This
motivates us to separately study the class of complete bipartite
graphs, since we can drastically improve this bound. Note that

The Computer Journal, 2012

4 E.N. Argyriou et al.

(a) (b)

FIGURE 1. Illustrations of our constructions. (a) A circular drawing of Kn. (b) A 2-layered drawing of Km,n.

trade-offs between (angular or crossing) resolution and area
have been studied in the past. Malitz and Papakostas [11]
showed that there exist graphs that always require exponential
area for straight-line embeddings maintaining good angular
resolution. The claim remains true, if circular arc edges are used
instead of straight lines [38]. More recently, Angelini et al. [17]
constructively showed that there exist graphs whose straight-
line upward RAC drawings require exponential area.

Let Km,n = (V1 ∪ V2, E) be a complete bipartite graph,
where V1 = {u1

1, u
1
2, . . . , u

1
m}, V2 = {u2

1, u
2
2, . . . , u

2
n} and

E = V1×V2. Without loss of generality, we assume that m ≥ n.
As already stated, we seek to obtain two-layered drawings in
which the vertices of V1 and V2 lie on two parallel lines, say
L1 and L2, respectively. For the sake of simplicity, we assume
that both L1 and L2 are horizontal. We first provide a geometric
construction according to which the vertices are not required to
be on grid points and then we show how to convert it into a grid
drawing.

Initially, we consider a square R = AB��, whose top and
bottom sides coincide with L1 and L2, respectively (Fig. 1b). Let
H be the height (and width) of R. According to our approach,
the vertices of V1 (V2, respectively) reside alongside �� (AB,
respectively) of R. To specify the exact positions of the vertices
u1

1, u
1
2, . . . , u

1
m alongside ��, we first construct a bundle of

m semi-lines, say �1, . . . , �m, each of which emanates from
vertex B and crosses side �� of R, so that the angle formed
by B� and semi-line �i is equal to (i − 1) · �̂B�/(m − 1)

for each i = 1, . . . , m. These semi-lines split angle �̂B�

into m − 1 angles, each of which is equal to π/4 · (m − 1),
since �̂B� = π/4. Say φ = π/4 · (m − 1). Then, we place
vertices u1

i at the intersection of semi-line li and �� for each
i = 1, . . . , m (Fig. 1b). Symmetrically, we compute the position
of the vertices of V2 alongside AB of R.

We denote by ai the horizontal distance between two
consecutive vertices u1

i and u1
i+1, i = 1, . . . , m − 1. We also

define an additional bundle of m semi-lines, say �′
1, . . . , �

′
m, that

emanate from vertex A. More precisely, semi-line l′i emanates
from vertex A and passes through the intersection of lm−i and
�� (i.e. vertex u1

m−i) for each i = 1, . . . , m (Fig. 1b). Let φ′
i be

the angle formed by two consecutive semi-lines l′i and l′i+1 for
each i = 1, . . . , m − 1. We are now ready to investigate some
geometric properties of the proposed construction.

Lemma 3.1. For each i = 1, 2, . . . , m − 1, it holds that
ai−1 < ai .

Proof. By induction. For the base of the induction, we have
to show that a1 < a2. First observe that a1 = H tan φ and
a1 + a2 = H tan 2φ. Therefore,

a2 = H(tan 2φ − tan φ) =(1)

a1 · (1 + tan 2φ · tan φ).

However, both tan φ and tan 2φ are greater than zero, which
immediately implies that a1 < a2. For the induction hypothesis,
we assume that ∀k, with k < m− 1, it holds that ak−1 < ak and
we prove that ak < ak+1. Obviously, a1 +· · ·+ ak = H tan kφ.
Based on Equation (1) and similarly to the base of the induction,
we have:

(i) ak+1 = H tan φ · (1 + tan (k + 1)φ · tan kφ);
(ii) ak = H tan φ · (1 + tan (k − 1)φ · tan kφ).

To complete the proof, observe that (k+1)φ > (k−1)φ.

Lemma 3.2. For each i = 2, . . . , m− 1, it holds that φ′
i−1 >

φ′
i .

Proof. The proof is by induction. For the base of the
induction, we have to prove that φ′

1 > φ′
2 or equivalently

The Computer Journal, 2012

Maximizing the Total Resolution of Graphs 5

that tan φ′
1 > tan φ′

2. It holds that tan φ′
1 = am−1/H and

tan (φ′
1 + φ′

2) = (am−1 + am−2)/H . By combining these
relationships with Equation (1), we have that tan φ′

2 =
Ham−2/(H

2 + a2
m−1 + am−1am−2). Therefore,

tan φ′
1 > tan φ′

2 ⇔ H 2(am−1 − am−2) + a3
m−1 + a2

m−1am−2 > 0,

which trivially holds due to Lemma 3.1. For the induction
hypothesis, we assume that ∀k, with k < m − 1, it holds that
φ′

k−1 > φ′
k and we have to show that φ′

k > φ′
k+1. Observe that

tan φ′
k = tan(φ′

1 + · · · + φ′
k) − tan(φ′

1 + · · · + φ′
k−1)

1 + tan(φ′
1 + · · · + φ′

k) · tan(φ′
1 + · · · + φ′

k−1)

= Ham−k

H 2 + (am−1 + · · · + am−k)

(am−1 + · · · + am−k+1)

,

tan(φ′
k+1) = Ham−(k+1)

H 2 + (am−1 + · · · + am−(k+1))

(am−1 + · · · + am−k)

.

By Lemma 3.1 we have that (am−1 + · · · + am−(k−1)) <

(am−1+· · ·+am−(k+1)) and H ·am−k > H ·am−(k+1). Therefore,
tan φ′

k > tan φ′
k+1.

Lemma 3.3. It holds that φ′
m−1 ≤ φ.

Proof. We equivalently prove that tan φ′
m−1 ≤ tan φ.

tan φ′
m−1 ≤ a1

H
⇔ a1/H

1 + ((a1 + · · · + am−1)/H)

· ((a2 + · · · + am−1)/H)

≤ a1

H

⇔ 1

1 + (H − a1)/H
≤ 1

⇔ a1 ≤ H,

which obviously holds.

Lemma 3.4. Angle φ′
m−1 is the smallest angle among all the

angles formed in the drawing.

Proof. From Lemma 3.2, it follows that angle φ′
m−1 is the

smallest angle among all φ′
i , i = 1, . . . , m − 1. Additionally,

each angle φ′
i gets larger when the endpoint of the bundle

(i.e. vertex u2
n) moves alongside AB toward the intersection

point of AB and the perpendicular bisector of line segment
u1

m−(i−1)u
1
m−i , where it obtains its greatest value. From that

point on and to its right, it continuously decreases, until it gets
its minimum value when vertex u2

1 is reached. At this point,
it becomes equal to φ, which by Lemma 3.3 is greater than
angle φ′

m−1. Therefore, φ′
m−1 is the smallest angle among all

the angles formed by pairs of consecutive edges incident on
any vertex of V2. Since m ≥ n, the same holds for the vertices
of V1. Therefore, φ′

m−1 defines the angular resolution of the
drawing.

We now proceed to show that the crossing resolution of
the constructed drawing is always greater than the angular
resolution. To realize this, consider two crossing edges (refer
to the bold, crossing dashed-edges of Fig. 1b). Their crossing
defines (a) a pair of angles that are smaller than 90◦ and
(b) another pair of angles that are larger than 90◦. Obviously,
only the acute angles participate in the computation of the
crossing resolution (see angle φc in Fig. 1b). However, in
a complete bipartite graph the acute angles formed by two
crossing edges are always exterior to a triangle having two of
its vertices on V1 and V2, respectively (refer to the gray-colored
triangle of Fig. 1b). Therefore, the crossing resolution is always
greater than the angular resolution, as desired.

Lemma 3.5. It holds that φ′
m−1 ≥ φ/2.

Proof. We equivalently prove that tan φ′
m−1 > tan(φ/2). Let x

be the length of edge (u2
1, u

1
2) in the produced drawing. Then,

by Equation (2) and since x > H , we have the following:

tan
φ

2
= a1/x

1 + H/x
<

a1

2H
.

From the above relationship, it follows that in order to complete
the proof of this lemma, it is enough to prove that tan φ′

m−1 >

a1/2H . So, we have

tan φ′
m−1 >

a1

2H
⇔ a1/H

1 + ((a1 + · · · + am−1)/H)

·((a2 + · · · + am−1)/H)

>
a1

2H

⇔ 1

1 + (H − a1)/H
>

1

2

⇔ a1 > 0,

which obviously holds.

Theorem 3.2. A complete bipartite graph Km,n admits a two-
layered drawing of total resolution O(1/max{m, n}), which is
asymptotically optimal.

Proof. The proof id immediately follows from Lemmas 3.4
and 3.5.

Assume, without loss of generality, that L1 and L2 are two
horizontal lines, L2 coincides with x-axis and the drawing
produced by our algorithm has a1 = 1. Then, we can express
the height of drawing �(Km,n) as a function of φ, as follows:

a1 = 1 ⇐⇒ tan φ · H = 1 ⇐⇒ H = 1/ tan φ.

Based on the above, the area of �(Km,n), which is equal
to H 2, is bounded by 1/ tan2 φ. By Equation (3), this is
further bounded by 1/φ2. By Theorem 3.2, it holds that φ =
O(1/ max{m, n}). Therefore, the total area occupied by the
drawing is O(max{m2, n2}). However, the vertices of Km,n in

The Computer Journal, 2012

6 E.N. Argyriou et al.

�(Km,n) are not necessarily located at grid points. To achieve
this, we move the horizontal line L1 to the horizontal grid line
immediately above it and each vertex of both V1 and V2 to the
rightmost grid-point to its left. In this manner, we obtain a new
drawing �′(Km,n), in which every vertex is located at a grid
point. By Lemma 3.1, it follows that there are no two vertices
sharing the same gridpoint, since a1 is equal to one grid unit.
Since neither horizontal line L1 nor any vertex of Km,n moves
more than one unit of length, the total resolution of �′(Km,n)

is not asymptotically affected, and, in addition, the height of
the drawing is not significantly greater (i.e. asymptotically it
remains the same). The following theorem summarizes this
result.

Theorem 3.3. A complete bipartite graph Km,n admits a two-
layered grid drawing of a total resolution of �(1/max{m, n})
and area of O(max{m2, n2}).

4. A FORCE-DIRECTED ALGORITHM

We present a force-directed algorithm that, starting from
an initial drawing computed by a classical force-directed
technique, results in a drawing of improved total resolution.
The algorithm reinforces the classical force-directed algorithm
of Eades [27] with some additional forces exerted to the vertices
of the graph. More precisely, these additional forces involve
springs and some extra attractive or repulsive forces on vertices
with degree greater than 1 and on the endpoints of edges that
are involved in an edge crossing. This aims to ensure that the
angles between incident edges and the angles formed by pairs
of crossing edges will be as large as possible in an equilibrium
state of the model.

The classical force-directed algorithm of Eades [27] models
the vertices of the graph as electrically charged particles that
repel each other, and its edges by springs in order to attract
adjacent vertices. Based on experimental results, we employ
the attractive forces of the classical force-directed algorithm

of Eades and omit the repulsive ones. In addition, we have
chosen to use springs that follow the logarithmic law instead
of the Hooke’s law, in order to avoid exerting strong forces on
distant vertices. More precisely, the attractive forces (denoted
by Fspring) follow the following formula:

Fspring(pu, pv) = Cspring · log
||pu − pv||

�spring
· −−→
pupv,

(u, v) ∈ E,

where Cspring and �spring capture the stiffness and the natural
length of the springs, respectively. Recall that −−→

pupv denotes the
unit length vector from pu to pv .

We first describe our approach for the case where two edges,
say e = (u, v) and e′ = (u′, v′), are involved in a crossing.
Let pc be their intersection point (see the gray-colored point of
Fig. 2). Without loss of generality, we assume that u is to the left
of v, u′ to the left of v′, yu′ < yu and yv < yv′ , as in Fig. 2. Let
θvv′ be the angle formed by the line segments pcpv and pcpv′
in a counter-clockwise order around u from pcpv to pcpv′ . To
avoid confusion, we assume that θvv′ = θv′v , i.e. we abuse the
counter-clockwise measurement of the angles that would result
in θvv′ = 2π − θv′v . Similarly, we define the remaining angles
of Fig. 2. Obviously, θvv′ + θv′u = π . Ideally, we would like
θvv′ = θv′u = π/2, i.e. e and e′ form an RAC. As we will shortly
see, the magnitude of the forces that we apply on the vertices
u, u′, v and v′ depends on (a) the angles θvv′ and θv′u and (b) the
lengths of the line segments pcpu, pcpu′ , pcpv and pcpv′ .

The physical model that describes our approach is illustrated
in Fig. 2. Initially, for each pair of crossing edges at point pc,
we place springs connecting consecutive vertices in the counter-
clockwise order around pc, as in Fig. 2a. The magnitude of
the forces due to these springs should capture our preference
for right angles. Consider the spring connecting v and v′. The
remaining ones are treated symmetrically. We set the natural
length, say �vv′

spring, of the spring connecting the vertices v and

v′ to be
√‖pc − pv‖2 + ‖pc − p′

v‖2. This quantity corresponds
to the length of the line segment that connects v and v′ in the

(b)(a)

FIGURE 2. Forces applied on vertices in order to maximize the crossing resolution. (a) Springs on vertices involved in crossing. (b) Repelling or
attractive forces based on the angles.

The Computer Journal, 2012

Maximizing the Total Resolution of Graphs 7

optimal case where θvv′ = π/2. So, in an equilibrium state of
this model on a graph consisting only of e and e′, edges e and
e′ will form an RAC. In conclusion, the force on v due to the
spring of v′ is defined as follows:

Fcros
spring(pv, pv′) = Ccros

spring · log
‖pv − pv′ ‖

�vv′
spring

· −−−→
pvpv′ .

The remaining forces of Fig. 2a are defined similarly. Note that,
in the formula above, the constant Ccros

spring is used to control
the stiffness of the springs.

So far, we have managed to express our preference for RACs
based on the lengths of the line segments pcpu, pcpu′ , pcpv

and pcpv′ . The same can be achieved using the angles θvv′ and
θv′u (Fig. 2b). We again restrict our description on the angle
formed by the line segments pcpv and pcpv′ . Ideally, we would
like to exert forces on the vertices v and v′ such that: (i) when
θvv′ → 0, the magnitude of the force is very large (in order
to repel v and v′) and (ii) when θvv′ → π/2, the magnitude
of the force is very small. A function, say f : R → R, which
captures this property is:f (θ) = |π/2 − θ |/θ . Having specified
the magnitude of the forces, it remains to specify its direction.
More precisely, we set the direction of the force on v (due to v′)
to be perpendicular to the line that bisects the angle θvv′ (refer
to the dash-dotted line lvv′ of Fig. 2b), or equivalently parallel
to the unit length vector Perp(Bsc(

−−→
pcpv,

−−−→
pcpv′)). Recall that

Perp and Bsc refer to the perpendicular and bisector vectors,
respectively (Section 2). It is clear that if θvv′ < π/2, the forces
on v and v′ should be repulsive (in order to enlarge the angle
between them), otherwise attractive. This can be captured by the
sign function. Summarizing the above, we use the following
formula, which expresses the force on v due to v′.

Fcros
angle(pv, pv′) = Ccros

angle · sign
(
θvv′ − π

2

)
· f (θvv′)

· Perp(Bsc(
−−→
pcpv,

−−−→
pcpv′)),

where constant Ccros
angle controls the strength of the force.

Similarly, we define the remaining forces of Fig. 2b.

Consider now a vertex u ∈ V that is incident on d(u) edges,
say e0 = (u, v0), e1 = (u, v1), . . . , ed(u)−1 = (u, vd(u)−1);
see Fig. 3a. We assume that e0, e1, . . . , ed(u)−1 are consecutive
in the counter-clockwise order around u in the drawing of
the graph. Similarly to the case of two crossing edges, we
proceed to connect the endpoints of consecutive edges around
u by springs, as in Fig. 3a. In this case, the natural length of
each spring, should capture our preference for angles equal to
2π/d(u) (i.e. the obvious upper bound). To achieve this, we
proceed as follows: For each i = 0, 1, . . . , d(u) − 1, we set
the natural length, say lispring, of the spring connecting vi with
v(i+1)mod(d(u)), to be

�i
spring =

√
‖ai‖2 + ‖bi‖2 − 2‖ai‖‖bi‖ · cos (2π/d(u)),

where ai = ei and bi = e(i+1) mod(d(u)). The quantity
�i
spring corresponds to the length of the line segment that

connects vi with v(i+1) mod(d(u)) in the optimal case where the
angle formed by ei and e(i+1) mod(d(u)) is 2π/d(u) for each
i = 0, 1, . . . , d(u) − 1. Therefore, the spring forces between
consecutive edges follow the formula

Fangular
spring (pvi

, pv(i+1)mod(d(u))
; u)

= C
angular
spring · log

‖pvi
− pv(i+1) mod(d(u))

‖
�i
spring

· −−−−−−−−−→
pvi

pv(i+1)mod(d(u))
,

where the quantity C
angular
spring is a constant that captures the

stiffness of the spring.
Now let θi be the angle formed by ei and e(i+1) mod(d(u)),

measured in the counter-clockwise direction from ei to
e(i+1) mod(d(u)), i = 0, 1, . . . , d(u) − 1. Similarly to the case
of two crossing edges, we exert forces on vi and v(i+1) mod(d(u))

perpendicular to the bisector of θi , as illustrated in Fig. 3b.
However, in this case, we need a magnitude function such
that: (i) when θi → 0, the magnitude of the force is very
large (in order to repel vi and v(i+1) mod(d(u))) and (ii) when
θi → 2π/d(u), the magnitude of the force is very small. Such

(b)(a)

FIGURE 3. Forces applied on vertices in order to maximize the angular resolution. (a) Springs on consecutive edges around u. (b) Repelling or
attractive forces based on the angles.

The Computer Journal, 2012

8 E.N. Argyriou et al.

a function, say g : R×V → R, is g(θ; u) = |2π/d(u) − θ |/θ .
Having fully specified the forces applied on the endpoints of
consecutive edges and their directions, we are now ready to
provide the exact formulas that the forces follow:

Fangular
angle (pvi

, pv(i+1) mod(d(u))
; u)

= C
angular
angle · sign

(
θi − 2π

d(u)

)
· g(θi; u)

· Perp(Bsc(
−−−→
pupvi

,
−−−−−−−−−→
pupv(i+1) mod(d(u))

)),

where C
angular
angle is a constant to control the strength of the

force. We note that our experimental evaluation has shown that
forces Fx

cros and Fx
angle, where x ∈{cros,angular} have

complementary effect and produce better drawings when they
are both present. We stimulate that this is due to the fact that the
movement of the vertices is determined as a result of a larger
number of vectors. In addition, by setting zero values to either
Ccros
spring and Ccros

angle, or, Cangular
spring and C

angular
angle , our algorithm

can be configured to maximize only the angular or the crossing
resolution, respectively.

4.1. Time complexity analysis

Our approach is outlined in Algorithm 1. On each iteration,
the algorithm computes three types of forces. Type-1 forces
correspond to attractive forces of the classical force-directed
model among pairs of adjacent vertices of the graph. Their
computation requires O(E) time per iteration. In Type-2 forces
of Algorithm 1, we compute forces due to edge crossings. In a
straightforward manner, the computation of all edges that are
involved in crossings in Line 7 of Algorithm 1 needs O(E2)

time. Having computed all pairs of crossings edges, we can
compute their associated forces in constant time for each pair
of crossing edges. Therefore, Type-2 forces can be computed in
O(E2) time per iteration. In Type-3 forces of Algorithm 1, we
compute forces due to the angles between consecutive edges.
To cope with this case, initially we have to sort the incident
edges of each vertex of the graph in cyclic order (see Line 16
of Algorithm 1). This can be done in O(d(G) log d(G)) time,
where d(G) denotes the degree of the graph. Lines 18–20,
where we compute the forces, need an extra O(d(G)) time.
Thus, Type-3 forces needs O(E + V d(G) log d(G)) time per
iteration. Summarizing the above, each iteration of Algorithm 1
takes O(E2 + V (V + d(G) log d(G))) time.

The computational complexity of Algorithm 1 can be
further improved using standard techniques adopted from
computational geometry [39–41]. More precisely, if K is the
number of pairwise-crossing edges, then the K intersections in
Type-2 force can be reported in O(K + E log2 E/ log log E)

time [41, p. 277], which leads to a total time complexity
O(K + E log2 E/ log log E + V (V + d(G) log d(G))) per
iteration.

Algorithm 1: Force-directed algorithm.
Input : An undirected graph G and an initial placement

P = (pv)v∈V .
Output: A drawing of G of large angular and crossing

resolution.

for (t ← 1 to Iterations) do1

{Type 1: Spring forces.}2

foreach u ∈ V do3

Fu(t) ←
∑

v:(u,v)∈E

Fspring(pv, pu);
4

end5

{Type 2: Forces applied on vertices in order to6

maximize the crossing resolution.}
foreach (pair of intersecting edges e = (u, v) and7

e′ = (u′, v′)) do

// The relative positions of edges e and e′ are8

illustrated in Fig. 2.;

Fv(t) += Fcros
spring(pv, pv′) + Fcros

spring(pv, pu′) +9

Fcros
angle(pv, pv′) + Fcros

angle(pv, pu′);

Fv′(t) += Fcros
spring(pv′ , pu) + Fcros

spring(pv′ , pv) +10

Fcros
angle(pv′ , pu) + Fcros

angle(pv′ , pv);

Fu(t) += Fcros
spring(pu, pv′) + Fcros

spring(pu, pu′) +11

Fcros
angle(pu, pv′) + Fcros

angle(pu, pu′);

Fu′(t) += Fcros
spring(pu′ , pv) + Fcros

spring(pu′ , pu) +12

Fcros
angle(pu′ , pv) + Fcros

angle(pu′ , pv);
end13

{Type 3: Forces applied on vertices in order to14

maximize the angular resolution.}
foreach (u ∈ V with d(u) > 1) do15

e0, . . . , ed(u)−1 ← incident edges of u in16

counter-clockwise order (see Fig. 3);

Let ei = (u, vi), i = 0, . . . d(u) − 1;17

for (i ← 0 to d(u) − 1) do18

Fu(t) += Fangular
spring (pvi

, pv(i+1)mod(d(u))
; u) +19

Fangular
angle (pvi

, pv(i+1)mod(d(u))
; u);

end20

end21

foreach u ∈ V do22

pu ← pu + δ · Fu(t) ;23

end24

end25

4.2. Similarities and differences with previous techniques

In the work of Lin and Yen [32], the technique that applies
large repelling forces perpendicular to the bisectors of the angles

The Computer Journal, 2012

Maximizing the Total Resolution of Graphs 9

formed by consecutive edges of a vertex, when these angles are
small, is referred to as edge–edge repulsion. In their work, the
function, say g : R → R, which controls the magnitude of the
force is g(θ) = cot(θ/2), where θ is the angle formed by two
consecutive edges incident on a common vertex. Observe that
g has the same property as the one we used, i.e. g(θ) is very
large, when θ → 0. We preferred to use a different function
to control the magnitude of the forces in order to maintain a
uniform approach in both crossing and angular cases.

Huang et al. [36], who have independently published a similar
to our force-directed algorithm, use only ‘angular’ forces (i.e.
that depend only on the angles formed either by edge crossings
or by consecutive edges incident on a common vertex) with
different functions to control their magnitudes and different
directions. They do not use ‘spring’ forces to affect the angular
or the crossing resolution (apart from the ones of the classical
force-directed algorithm of Eades [27]). In Section 4.3, we
provide an experimental comparison of these techniques.

In Didimo et al. [33, 34], the crossing resolution is improved
in a post-processing step in which every pair of crossing edges
is associated with a disk centered at the crossing point. The
intersection points of this disk with the edges participating at
the crossing define four new vertices that form a four-cycle,
called cage.Appropriate forces are then applied so that the cages
are eventually drawn as close to squares as possible, which
enforces their diagonals to cross at large angles. Since these
techniques result in drawings with bends, they are not included
in our experimental comparison.

4.3. Experimental results

In this section, we present the results of the experimental evalua-
tion of our algorithm. Apart from our algorithm, we have imple-
mented the classical force-directed algorithm of Eades [27],
the algorithm of Lin and Yen [32] and the algorithm of Huang
et al. [36]. The implementations are in Java using the yFiles
library (http://www.yworks.com). The experiment was per-
formed on a Linux machine with 2.00 GHz CPU and 2 GB RAM
using the Rome graphs (a collection of around 11.500 graphs)
obtained from graphdrawing.org. Figure 8 illustrates a drawing
of a Rome graph with 99 vertices and 135 edges produced by
our force-directed algorithm. Even though our force-directed
algorithm focuses on angular, crossing and total resolution, we
provide data on the performance of the algorithm with respect
to the total area, edge length and number of crossings (Fig. 5).

The experiment was performed as follows. First, each Rome
graph was laid out using the SmartOrganic layouter of yFiles.
This layout was the input layout of all algorithms, in order to
speed up the experiment and overcome problems associated
with local minimum traps, especially in large graphs. If both the
angular and the crossing resolution between two consecutive
iterations of each algorithm were not improved more than
0.001◦, we assumed that the algorithm has converged and we did
not proceed any more. We note that the termination condition

FIGURE 4. A visual presentation of our experimental results on
resolution: the X-axis corresponds to the number of vertices of
the graph and the Y -axis to the resolution measured in degrees.
(a) Total resolution results. (b) Angular resolution results. (c) Crossing
resolution results.

is quite strict and demands a large number of iterations.
The maximum number of iterations that an algorithm could
perform in order to converge was set to 100.000. However,
very few graphs required the maximum number of iterations
in order to converge to a layout. Once an algorithm converged,
we measured its angular, crossing and total resolution, its
average edge length, the number of crossings, running time
and required number of iterations to converge. We note that
our algorithm is evaluated as (a) Angular-Only, (b) Crossing-
Only and (c) Mixed. The results are illustrated in Figs 4–6. The
values plotted in Figs 4–6 are average values over all graphs in
the Rome database of a specific size (i.e. number of vertices).

The Computer Journal, 2012

http://www.yworks.com

10 E.N. Argyriou et al.

FIGURE 5. A visual presentation of our experimental results on
common graph drawing metrics: The X-axis indicates the number of
vertices of the graph. (a and b) The Y -axis corresponds to the area
and the average edge length of the produced drawings, respectively.
(c) The Y -axis corresponds to the number of crossings of the produced
drawings.

The total resolution maximization problem: The plot in Fig. 4a
indicates that our Mixed algorithm clearly outperforms all other
drawing algorithms of the experiment. More specifically, in
80.46% (respectively, 90.83%) of the graphs of the experiment,
the Mixed algorithm yields a better solution compared with
the algorithm of Lin–Yen (respectively, Huang et al.) with an
average improvement of 10.21◦ (respectively, 11.63◦). The plot
in Fig. 4a also shows that the Mixed algorithm managed to
produce drawings of total resolution of ∼20◦ for graphs of more
than 50 vertices in the Rome database. An example of such a
drawing is given in Fig. 8.

FIGURE 6. A visual presentation of our experimental results on
algorithm’s efficiency: The X-axis indicates the number of vertices
of the graph. (a and b) The Y -axis corresponds to the running
time measured in milliseconds and the iterations needed to converge,
respectively.

The angular resolution maximization problem: The plot in
Fig. 4b shows that the Angular-Only algorithm yields drawings
with better angular resolution compared with the other drawing
algorithms of the experiment. More specifically, in 67.82%
(respectively, 92.12%) of the graphs of the experiment, the
Angular-Only algorithm yields a better solution compared with
the algorithm of Lin–Yen (respectively, Huang et al.) with
an average improvement of 6.73◦ (respectively, 12.75◦). The
angular resolution of the drawings produced by the Mixed
algorithm is almost equal to the ones produced by the algorithm
of Lin and Yen. Note that the algorithm of Lin and Yen, in
contrast to ours, does not modify the embedding of the initial
layout (see [32] for more details), i.e. it needs a close-to-final
starting layout and improves on it. This explains why the Mixed
algorithm achieves almost the same performance, in terms of
angular resolution, as the one of Lin and Yen. More precisely,
in 59.23% of the graphs, the Mixed algorithm yields a better
solution compared with Lin–Yen’s algorithm, with an average
improvement of 6.49◦.

The crossing resolution maximization problem: In Fig. 4c,
the data were filtered to depict only the results of non-
planar drawings produced by the algorithms and avoid infinity
values in the case of planar ones. Clearly, the Crossing-
Only algorithm outperforms the other drawing algorithms
of the experiment, yielding drawings with better crossing

The Computer Journal, 2012

Maximizing the Total Resolution of Graphs 11

FIGURE 7. Sample drawings produced by our force-directed algorithm. The drawings on each line (of graphs) correspond to the same graph. The
drawing on the left is the input of our algorithm, while the drawing on the right is its output. In the caption of each drawing (a and b) is translated as
follows: (a) [(b), respectively] is the angular (crossing, respectively) resolution measured in degrees. Drawings of these graphs are also presented
either in the classical work of Fruchterman and Reingold [28] or in the work of Lin and Yen [32].

The Computer Journal, 2012

12 E.N. Argyriou et al.

FIGURE 8. A drawing of Rome graph grafo10129.99 consisting of
99 vertices and 135 edges with angular resolution 20.15◦ and crossing
resolution 26.12◦.

resolution. More specifically, in 92.26% (respectively, 78.47%)
of the graphs of the experiment, the Crossing-Only algorithm
yields a better solution compared with the algorithm of Lin–
Yen (respectively, Huang et al.). The average improvement
implied by the Crossing-Only algorithm is 27.13◦ (respectively,
17.08◦) w.r.t. the algorithm of Lin–Yen (respectively, Huang
et al.). The Mixed algorithm yields a better solution in
85.23% (respectively, 54.62%) of the graphs of the experiment
compared with the algorithm of Lin–Yen (respectively, Huang
et al.) with an average improvement of 18.75◦ (respectively,
11.17◦).

From the above discussion, it follows that our algorithm
results in drawings with better resolution than the ones produced
by the other algorithms of the experiment. However, the
experimental evaluation also shows that the average edge length
of the drawings produced by our algorithm is larger than the
average edge length of the drawings produced by the other
algorithms (Fig. 5a). The edge length is influenced by the
natural spring length used by the force-directed algorithms. In
the experiment, the natural length of the springs was set to 150
units. The average edge length of the drawings produced by the
Mixed algorithm was 225.11 units, whereas the corresponding
ones of Eades, Lin–Yen and Huang et al. were 191.61, 167.1
and 198.45 units, respectively. The experimental evaluation also
shows that our algorithm produces drawings of comparable
area to that required by the algorithms of Eades and Huang

et al. All these algorithms are outperformed by the algorithm
of Lin and Yen, which produced the most compact drawings.
Despite the fact that the Mixed algorithm produces drawings of
larger edge length compared with the drawings produced by the
algorithms of Eades and Huang et al., its produced drawings
are of comparable area. This may be attributed to the fact that,
as the experimental analysis shows, it produces drawings with
a larger number of crossings. More precisely, Fig. 5c shows
that the Mixed algorithm yields drawings of almost the same
crossings as the one of Lin and Yen and slightly more than the
algorithms of Eades and Huang et al.

Finally, Fig. 6a and b summarizes the running time
performance of the algorithms and the iterations required to
converge, respectively. The Mixed algorithm needs, on average,
5191 ms and 1298 iterations to converge, whereas the algorithm
of Huang et al. (which is of the same time complexity) 6626
and 1694, respectively. The algorithm of Lin and Yen needs,
on average, 6123 ms and 1920 iterations to converge. Note
that the time complexity of Lin–Yen’s algorithm is better than
ours. However, the termination condition takes into account
the crossing improvement and therefore the algorithm of Lin
and Yen needs more iterations to converge, which explains this
contradiction. In the running time experiment, we exclude the
algorithm of Eades, since it does not take into account the
angular or the crossing resolution and, therefore, it needs more
iterations to converge, as depicted in Fig. 6b.

5. SAMPLE DRAWINGS

In this section, we present some sample drawings produced by
our force-directed algorithm. Figure 7 depicts (some easy to
produce) drawings of known graphs. Drawings of these graphs
are also presented either in the classical work of Fruchterman
and Reingold [28] or in the work of Lin and Yen [32]. In Fig. 8,
we present a drawing of a Rome graph with 99 vertices and 135
edges.

6. CONCLUSIONS

In this paper, we introduced and studied the total resolution
maximization problem. Our work leaves several open problems.
It would be interesting to try to identify other classes of graphs
that admit optimal drawings. Even the case of planar graphs
is of interest, as by allowing some edges to cross (say at large
angles), we may improve the angular resolution and therefore
the total resolution. In [22], a class of graphs satisfying this
property is given.

ACKNOWLEDGEMENTS

The authors would also like to thank the anonymous reviewers
for their valuable comments and suggestions to improve the
quality of the paper.

The Computer Journal, 2012

Maximizing the Total Resolution of Graphs 13

FUNDING

The work of E.N.A. has been co-financed by the European
Union (European Social Fund—ESF) and Greek national funds
through the Operational Program ‘Education and Lifelong
Learning’ of the National Strategic Reference Framework
(NSRF)—Research Funding Program: Heracleitus II. Investing
in knowledge society through the European Social Fund.

REFERENCES

[1] Di Battista, G., Eades, P., Tamassia, R. and Tollis, I.G. (1994)
Algorithms for drawing graphs: an annotated bibliography.
Comput. Geom., 4, 235–282.

[2] Kaufmann, M. and Wagner, D. (eds) (2001) Drawing Graphs:
Methods and Models. Lecture Notes in Computer Science 2025.
Springer.

[3] Di Battista, G., Eades, P., Tamassia, R. and Tollis, I.G. (1999)
Graph Drawing: Algorithms for the Visualization of Graphs.
Prentice Hall.

[4] Purchase, H.C. (2000) Effective information visualisation: a
study of graph drawing aesthetics and algorithms. Interact.
Comput., 13, 147–162.

[5] Purchase, H.C., Carrington, D.A. and Allder, J.-A. (2002)
Empirical evaluation of aesthetics-based graph layout. Empir.
Softw. Eng., 7, 233–255.

[6] Ware, C., Purchase, H., Colpoys, L. and McGill, L. (2002)
Cognitive measurements of graph aesthetics. Inf. Vis., 1, 103–
110.

[7] Garey, M. and Johnson, D. (1983) Crossing number is NP-
complete. SIAM J. Algebr. Discret. Methods, 4, 312–316.

[8] Huang, W. (2007) Using Eye Tracking to Investigate Graph
Layout Effects. Proc. 6th Int. Asia-Pacific Symp. Visualization
(APVIS 2007), Sydney, Australia, February 5–7, pp. 97–100.
IEEE.

[9] Huang, W., Hong, S.-H. and Eades, P. (2008) Effects of Crossing
Angles. Proc. VGTC Pacific Visualization Symp. (PacificVis
2008), Kyoto, Japan, March 5–7, 2008 pp. 41–46. IEEE.

[10] Formann, M., Hagerup, T., Haralambides, J., Kaufmann, M.,
Leighton, F., Symvonis, A., Welzl, E. and Woeginger, G. (1993)
Drawing graphs in the plane with high resolution. SIAM J.
Comput., 22, 1035–1052.

[11] Malitz, S.M. and Papakostas, A. (1994) On the angular resolution
of planar graphs. SIAM J. Discret. Math., 7, 172–183.

[12] Garg, A. and Tamassia, R. (1994) Planar Drawings and Angular
Resolution: Algorithms and Bounds. Proc. 2nd Annual European
Symp. (ESA ’94), Utrecht, The Netherlands, September 26–28,
Lecture Notes in Computer Science, pp. 12–23. Springer.

[13] Gutwenger, C. and Mutzel, P. (1999) Planar Polyline Drawings
with Good Angular Resolution. Proc. 6th Int. Symp. Graph
Drawing (GD 1998), Montréal, Canada, August 13–15, Lecture
Notes in Computer Science 1547, pp. 167–182. Springer.

[14] Bodlaender, H.L. and Tel, G. (2004) A note on rectilinearity and
angular resolution. J. Graph Algorithms Appl., 8, 89–94.

[15] Didimo, W., Eades, P. and Liotta, G. (2011) Drawing graphs with
right angle crossings. Theor. Comput. Sci., 412, 5156–5166.

[16] Arikushi, K., Fulek, R., Keszegh, B., Moric, F. and Toth, C. (2010)
Graphs that Admit Right Angle Crossing Drawings. Proc. 36th
Int. Workshop on Graph Theoretic Concepts in Computer Science
(WG 2010), Zarós, Crete, Greece, June 28–30, Lecture Notes in
Computer Science, pp. 135–146. Springer.

[17] Angelini, P., Cittadini, L., Di Battista, G., Didimo, W., Frati, F.,
Kaufmann, M. and Symvonis, A. (2010) On the Perspectives
Opened by RightAngle Crossing Drawings. Proc. 17th Int. Symp.
Graph Drawing (GD 2009), Chicago, IL, USA, September 22–
25, Lecture Notes in Computer Science, pp. 21–32. Springer.

[18] Argyriou, E.N., Bekos, M.A. and Symvonis, A. (2011) The
Straight-Line RAC Drawing Problem is NP-Hard. Proc. 37th
Int. Conf. Current Trends in Theory and Practice of Computer
Science (SOFSEM 2011), Novy Smokovec, Slovakia, January
22–28, Lecture Notes in Computer Science, pp. 74–85. Springer.

[19] Di Giacomo, E., Didimo, W., Liotta, G. and Meijer, H. (2010)
Area, Curve Complexity, and Crossing Resolution of Non-planar
Graph Drawings. Proc. 17th Int. Symp. Graph Drawing (GD
2009), Chicago, IL, USA, September 22–25, Lecture Notes in
Computer Science, pp. 15–20. Springer.

[20] Didimo, W., Eades, P. and Liotta, G. (2010) A characterization of
complete bipartite graphs. Inf. Process. Lett., 110, 687–691.

[21] Di Giacomo, E., Didimo, W., Eades, P., Hong, S.-H. and Liotta, G.
(2012) Bounds on the crossing resolution of complete geometric
graphs. Discrete Appl. Math., 160, 132–139.

[22] van Kreveld, M. (2011) The Quality Ratio of RAC Drawings
and Planar Drawings of Planar Graphs. Proc. 18th Int. Symp.
Graph Drawing (GD 2010), Konstanz, Germany, September 21–
24, Lecture Notes in Computer Science, pp. 371–376. Springer.

[23] Eades, P. and Liotta, G. (2012) Right Angle Crossing Graphs and
1-Planarity. Proc. 19th Int. Symp. Graph Drawing (GD 2011),
Eindhoven, The Netherlands, September 21–23, Eindhoven, The
Netherlands, September 21–23, Lecture Notes in Computer
Science 7034, pp. 148–153. Springer.

[24] Dujmović, V., Gudmundsson, J., Morin, P. and Wolle, T. (2010)
Notes on Large Angle Crossing Graphs. Proc. 16th Symp.
Computing: The Australasian Theory, CATS ’10, Brisbane,
Australia, January 18–21, pp. 19–24. Australian Computer
Society, Inc.

[25] Angelini, P., Di Battista, G., Didimo, W., Frati, F., Hong, S.-H.,
Kaufmann, M., Liotta, G. and Lubiw, A. (2011) Large Angle
Crossing Drawings of Planar Graphs in Subquadratic Area.
Proc. XIV Spanish Meeting on Computational Geometry (EGC
2011), Alcalá de Henares, June 27–30, Encuentros de Geometría
Computacional. pp. 125–128.

[26] Davidson, R. and Harel, D. (1996) Drawing graphs nicely using
simulated annealing. ACM Trans. Graph., 15, 301–331.

[27] Eades, P. (1984) A heuristic for graph drawing. Cong. Numer.,
42, 149–160.

[28] Fruchterman, T. and Reingold, E.M. (1991) Graph drawing by
force-directed placement. Softw. Pract. Exp., 21, 1129–1164.

[29] Kamada, T. and Kawai, S. (1989) An algorithm for drawing
general undirected graphs. Inf. Process. Lett., 31, 7–15.

[30] Brandenburg, F., Himsolt, M. and Rohrer, C. (1996) An
Experimental Comparison of Force-Directed and Randomized
Graph Drawing Algorithms. Proc. 3rd Int. Symp. Graph Drawing
(GD 1995), Passau, Germany, September 20–22, Lecture Notes
in Computer Science 1027, pp. 76–87. Springer.

The Computer Journal, 2012

14 E.N. Argyriou et al.

[31] Bertault, F. (2000) A force-directed algorithm that preserves
edge-crossing properties. Inf. Process. Lett., 74, 7–13.

[32] Lin, C.-C. and Yen, H.-C. (2005) A New Force-Directed Graph
Drawing Method Based on Edge-Edge Repulsion. Proc. 9th Int.
Conf. Information Visualisation (IV 2005), London, UK, July 6–
8, pp. 329–334. IEEE Computer Society.

[33] Didimo, W., Liotta, G. and Romeo, S. (2011) Topology-Driven
Force-Directed Algorithms. In Brandes, U. and Cornelsen,
S. (eds), Proc. 18th Int. Symp. Graph Drawing (GD 2010),
Lecture Notes in Computer Science 6502, Konstanz, Germany,
September 21–24, pp. 165–176. Springer.

[34] Didimo, W., Liotta, G. and Romeo, S. (2011) A graph drawing
application to web site traffic analysis. J. Graph Algorithms Appl.,
15, 229–251.

[35] Argyriou, E.N., Bekos, M.A. and Symvonis, A. (2011)
Maximizing the Total Resolution of Graphs. Proc. 18th Int. Symp.
Graph Drawing (GD 2010), Konstanz, Germany, September 21–
24, Lecture Notes in Computer Science, pp. 62–67. Springer.

[36] Huang, W., Eades, P., Hong, S.-H. and Lin, C.-C. (2010) Improv-
ing Force-Directed Graph Drawings by Making Compromises
Between Aesthetics. Proc. IEEE Symp. Visual Languages and
Human-Centric Computing (VL/HCC 2010), Leganés-Madrid,
Spain, September 21–25, Lecture Notes in Computer Science,
pp. 176–183. IEEE.

[37] Bárány, I. and Tokushige, N. (2004) The minimum area of convex
lattice n-gons. Combinatorica, 24, 171–185.

[38] Cheng, C.C., Duncanyz, C.A., Goodrichz, M.T. and Kobourovz,
S.G. (1999) Drawing planar graphs with circular arcs. Discrete
Comput. Geom., 25, 117–126.

[39] de Berg, M., van Kreveld, M., Overmars, M. and Schwarzkopf, O.
(2000) Computational Geometry: Algorithms and Applications
(2nd edn). Springer.

[40] O’Rourke, J. (1998) Computational geometry in C (2nd edn).
Cambridge University Press.

[41] Preparata, F.P. and Shamos, M.I. (1985) Computational
Geometry: An Introduction. Springer.

The Computer Journal, 2012

	1 Introduction
	1.1 Previous work

	2 Preliminary Notions and Notation
	3 Drawings with Optimal Total Resolution for Complete and Complete Bipartite Graphs
	4 A Force-Directed Algorithm
	4.1 Time complexity analysis
	4.2 Similarities and differences with previous techniques
	4.3 Experimental results

	5 Sample Drawings
	6 Conclusions

