
International Journal of Foundations of Computer Science Vol. 12 No. 4 (2001) 411-434
© World Scientific Publishing Company

ON THE ROUTING N U M B E R OF COMPLETE d-ARY TREES

ALAN ROBERTS

Basser Department of Computer Science, University of Sydney

Sydney, N.S.W. 2006, Australia

and

ANTONIOS SYMVONIS1

Basser Department of Computer Science, University of Sydney
Sydney, N.S.W. 2006, Australia

Received 22 October 1997
Revised 7 March 2000

Communicated by Prank Hsu

ABSTRACT

We consider the routing number of trees, denoted by r£(), with respect to the matching
routing model. For an arbitrary n-node tree T, it is known that rt(T) < 3n/2 + O(logn).
In this paper, by providing a recursive off-line permutation routing algorithm, we show
that the routing number of an n-node complete d-ary tree of height h(T) > 1 is bounded
from above by n + o{n). This is near optimal since, for an n-node complete d-ary tree T
of height h(T) > 1 it holds that rt(T) > n.

Keywords: Routing, trees, matching model, permutation.

1. Introduction

The permutation packet routing problem on a connected undirected graph is the
following: We are given a graph G = (V, E) and a permutation IT of the vertices of
G. Every vertex vofG contains a packet destined for 7T(V). Our task is to route all
packets to their destinations.

During the routing, the movement of the packets follows a set of rules. These
rules specify the routing model. Routing models might differ on the way edges
are treated (unidirectional, bidirectional), the number of packets a vertex can re­
ceive/transmit in a single step, the number of packets that are allowed to queue in
a vertex (queue-size), etc. Usually, routing models are described informally.

Let HM (G, 7r) be the number of steps required to route permutation IT on graph
G by using routing model M. The routing number of graph G with respect to

1 Currently with Department of Mathematics, University of Ioannina, GR-45110 Ioannina,
Greece. The work of Dr. Symvonis was supported by an ARC Institutional Grant.

411

412 A. Roberts & A. Symvonis

routing model M, rtM{G), is defined to be

rtM(G) = max HM (G, 7r)
7T

over all permutations 7r of the vertex set V of G.
The routing number of a graph was first defined by Alon et al. in [2]. In their

routing model, the only operation allowed during the routing is the exchange of the
packets at the endpoints of an edge of graph G. The exchange of the packets at the
endpoints of a set of disjoint edges (a matching on G) can occur in a single routing
step. During the routing, a packet might enter its destination node, however, it
is not consumed (that is, removed from the routing) at that time. Instead, the
routing terminates at the step where all packets are in their destination nodes
simultaneously for the first time. We refer to this model as the matching routing
model and we refer to the routing number of graph G with respect to the matching
routing model simply as the routing number of G, denoted by rt(G).

The matching routing model was introduced in [2] by Alon et al. Their work
included an off-line algorithm for routing permutations on arbitrary trees of n nodes
in at most 3n routing steps. Roberts, Symvonis, and L. Zhang [13] managed to
reduce the required number of routing steps to 2.3n and, later on, L. Zhang [17]
managed to route any permutation in at most 3n/2+logn routing steps. This result
is near optimal since it is known that there exist n-node trees for which there are
permutations that require [3(n — 1)/2J routing steps under the matching model [2].
Note that, for an arbitrary n-node graph G it is implied that rt(G) < 3n/2 + logn
since any permutation can be routed along the edges of a spanning tree of G. The
matching routing model has been also used by Houle and Turnet in the study of load
balancing for mesh connected networks [7]. Algorithms for routing permutations
on trees under different routing models have been presented by Borodin, Rabani
and Schieber [3] (hot-potato routing model) and Symvonis [15] (simplified routing
model).

There has been some recent work on routing patterns different than permuta­
tions under an extension of the matching model that allows for the consumption of
packets when they reach their destination. Krizanc and L. Zhang [9] studied the
case where each node of the tree can be the destination of more that one packet and
showed that the routing can be completed within 9n steps. Independently, Pantziou,
Roberts and Symvonis [10, 11] provided an algorithm that handles dynamic routing,
that is, allows the creation of packets while the routing of other packets takes place.
A consequence of their analysis is that the same problem studied by Krizanc and
L. Zhang can be solved in at most 3n routing steps.

In this paper we study the routing number of complete cf-ary trees with respect
to the matching routing model. We show that it is easier (that is, faster) to route
a permutation on a complete d-ary tree of n-nodes than on an arbitrary tree with
the same number of nodes. We present an off-line algorithm which routes any
permutation in a complete d-ary tree within n + o(n) steps. For clarity reasons, we
have chosen to present our algorithm in the way it evolved through our research.
Firstly we describe how to route a permutation on an n-node complete binary tree

On the Routing Number of Complete d-ary Trees 413

in | n + o(n) routing steps. Then, we extend the algorithm to route a permutation
in an n-node complete d-ary tree in (1 + -^^n + o(n), and finally we extend the
later algorithm to achieve a routing time of n + o(n) steps.

The paper is organised as follows: In Section 2 we present definitions that are
used throughout the paper as well as some known results regarding routing and
heap construction on rooted trees which are necessary for our analysis. Sections
3 and 4 present non-optimal recursive algorithms for routing on complete binary
and complete d-ary trees, respectively. By stretching recursion to its limits, the
non-optimal algorithms are extended in Section 5 to yield an algorithm that routes
each permutation within n + o(n) steps. We conclude in Section 6.

2. Preliminaries

A tree T = (V, E) is an undirected acyclic graph with node set V and edge set E.
Throughout the paper we assume n-node trees, i.e., |V| = n. We use the notation
V(T) and E(T) to denote the node set and edge set of T, respectively. A tree T
is rooted if one of its nodes, say r, is distinguished as its root. Consider a tree T
which is rooted at node r. If node u appears in the simple path from r to node v,
then we say that u is an ancestor of v or, equivalently, that v is a descendant of u.
If (u, v) is an edge of the tree and u is an ancestor of v we say the u is the parent of
v or, equivalently, that v is a child of u. Nodes that are children of the same parent
are called siblings. Nodes with no children are called leaves. All non-leaf nodes are
referred as internal nodes.

The depth dxiv) of node v is defined to be the distance (length of a shortest
path) from the root r to v. The height of tree T, denoted by /i(T), is defined to be
h(T) = maxvev(T)dT(v). We say that a node v is a level-i node (or, at depth-level i)
if dxiv) = i. The root of the tree is a level-0 node. We say that an edge e is a level-i
edge if it connects a level-i node with a level-(i + 1) node. All edges connected to
the root r are level-0 edges. The lowest common ancestor of nodes v and u, denoted
lca(v,u), is defined to be their common ancestor of largest depth-level.

To comply with the conventional drawing of rooted trees in which the root of a
tree (or subtree) is the topmost node of its drawing, and in order to facilitate the
description of our algorithms/proofs, we give some additional definitions. We say
that a level-i node u is below a level-j node v, if v is an ancestor of u (it is also
implied that i >j + l). Equivalently, we say that node v is above node u.

A subtree rooted at v, denoted by Tv, consists of v, all descendants of v and the
edges between them. A partial tree is a connected subgraph of a tree. (Note the
difference between a subtree and a partial tree.) By T% we denote the partial tree
of T which is rooted at r and contains all level-j nodes, 0 < j < i.

A d-ary tree, d > 2 is defined to be a rooted tree of which all internal nodes
have exactly d children. A d-ary tree T is said to be complete if all of its leaves are
level-/i(T) nodes. It is easy to verify that in a complete d-ary tree there are exactly
d% level-i nodes and that the tree is of height h(T) = U°Sd nJ > where n is the number
of nodes of the tree. For the purposes of this paper, we will use a special naming
convention for the nodes of complete d-tree T. We provide a recursive definition for

414 A. Roberts & A. Symvonis

are

this naming convention.

• The root r of the tree is denoted by ^(o,i)-
• The children of the internal node r^ j) , 0 < i < h(T), 1 < j < d%

{r(i+ifjb) I d(j - 1) + 1 < k < dj}.

In the rest of the paper, when we draw a complete d-ary tree we position node
r^ j) above (higher than) node r^i) if ^ < &• We position node r^ j) to the left of
node r^*.) if j < k. Figure 1 shows a complete ternary tree using the introduced
naming and layout conventions.

Level-0 node

Level-1 nodes

Level-2 nodes * (iv

Level-0 edges

Level-1 edges

Fig. 1. A complete ternary tree.

Most of the work available on the routing number of trees (including this one)
is based on off-line recursive routing algorithms. In order to be able to apply
recursion, we must identify subtrees in which all packets destined for nodes in
the subtree have arrived in it (and, as a consequence of the fact that we route
permutations, no packet wants to leave the subtree). We say that a subtree is a
destination subtree for a packet if it contains the node the packet is destined for.
The following lemma considers the situation in which we want to route packets to
their destination subtree.

Lemma 1 Consider a tree T (rooted at r) and a permutation that has to be routed.
Let the number of packets that have to cross the root r in order to reach their
destination be m and assume that these packets form partial trees rooted at the
children of r. Then these m packets can be routed into their destination subtrees
(rooted at children of r) within at most m + d—l steps, where d is the degree of r.

Proof. An off-line routing algorithm which achieves the stated bound was
originally given in [2]. Since we use this fact several times in the paper, we briefly
describe how the routing of the packets is performed in order to guarantee the stated
performance.

Call the packets that have already reached their destination subtree proper and
all the other packets improper. According to the lemma, the improper packets form
partial trees rooted at children of r. Without loss of generality assume that the
packet p initially at r is also destined for r and thus, it can be classified as a proper
packet (if not, we can save one routing step). The routing consists of at most d — 1
cycles. A cycle starts with the packet p leaving the root r and ends with p returning

On the Routing Number of Complete d-ary Trees 415

to it. We describe the routing actions that occur within such a cycle. We select
a subtree rooted at a child of r which still contains improper packets (note that if
the routing is not over yet, at least two such subtrees exist). As it is assumed by
the lemma, there exists an improper packet, say gi, at the root of the subtree. We
swap qi with p and the cycle starts. After the first step, q\ is at the root r. During
the second step, we swap q\ with the improper packet, say g25 at the root of the
subtree q\ wants to enter. Note that because we route a permutation q<i must exist.
We proceed in the same manner until the packet p returns to the root. At that step
the cycle ends. It is quite easy to see that during every step of a cycle but the first
one, one improper packet enters its destination subtree. This, together with the
facts that i) initially there are m improper packets and ii) at most d — 1 cycles can
occur, implies that routing terminates after m + d — 1 steps. Some (obvious) details
must still be specified in order to be able to route the packets as described. Firstly,
the root of each subtree must be able to provide r with improper packets (provided
they exist) at least every second step. This is achieved by routing packets that just
entered the subtree "deep" into it, i.e., to a node which has no descendant holding
improper packets. Secondly, in order to have at most d — 1 cycles we must ensure
that packet p is the last improper packet that leaves the subtree it is currently in.
This is again achieved by routing p deep into the subtree. •

During the course of our off-line routing algorithm we do need to solve the
problem of heap construction. Consider a rooted tree T and let each of its nodes
have a key-value associated with it. We say that T is heap ordered if each non-leaf
node satisfies the heap invariant: "the key-value of the node is not larger than the
key-values of its children". When the key-value at each node is carried (or associated
with) the packet currently in the node, the problem of heap construction is simply
to route the packets on the tree in a way that guarantees that at the end of the
routing the packets are heap-ordered based on the key-values they carry. Needless
to say, we are interested in forming the heap in the smallest number of parallel
routing steps when routing is performed according to the matching routing model.

The notion of the heap was introduced by Williams [16]. Floyd [5] described how
to create a heap efficiently. More details can be found in Knuth's book [8]. Heaps
are also discussed in the context of the Parallel Random Access Machine (PRAM)
model [4, 12, 18]. Rao and W. Zhang [12] and W. Zhang and Korf [18] described
how to construct a heap (implemented as a complete binary tree) of n elements in
2 log2 n steps.

Let the height of the tree T be h(T). It is not difficult to heap-order T within
0((h(T))) routing steps. This is achieved by establishing the heap property in a
bottom-up manner. (If we assume that all subtrees rooted at children of node x are
heap ordered then the subtree rooted at Xj i.e., -i-x") can be heap ordered in exactly
h(Tx) routing steps.) However, we can heap-order a tree substantially faster. We
describe an algorithm that completes the task in at most 2h(T) routing steps. The
algorithm for arbitrary rooted trees can be considered to be a generalisation of
the odd-even transposition sorting method [1, 6, 8] and is similar to the algorithm
proposed in [12, 18].

416 A. Roberts & A. Symvonis

Algorithm Odd-Even-Heap.. Construction(T)
/* W.l.o.g., we assume that all key-values associated with the packets are distinct. */

1. Assign label h(T) — i to each level-i edge, 0 < i < h(T).

2. t = l

3. While t < 2h(T) do

(a) For any node u with edges connecting to its children labelled congruent
to t mod 2, select out of the children of u the child, say v, that contains
the packet of the smallest key-value. Order for a comparison between
the key-values of the packets at u and v to take place at time t. If the
key-value of the packet at v is smaller than the key value of the packet
at tx, a swap of the packets takes place.

(b) t = t + l

The similarity of AlgorithmOdd-Even-Heap-Construction() with the odd-even
transposition method should be obvious. At odd (even) steps only odd (even)
labelled edges can be active. However, because of the restrictions of the matching
routing model, out of the potentially active edges that are connected to the same
node, only one becomes active.

The proof originally reported in [12] appears to generalise to arbitrary trees, and
thus, supports the following theorem. A different analysis of the algorithm based on
potential function arguments that supports the same theorem was given by Roberts
and Symvonis in [14].

Theorem 1 Algorithm Odd-EvenJIeap_Construction() heap-orders any tree T in
at most 2h(T) steps, where h(T) is the height of the tree T.

3. Routing on Complete Binary Trees

Consider a complete binary tree T of n nodes. We assume the naming and draw­
ing conventions for complete trees which were described in Section 2 (see Figure 2).
Recall that a subtree rooted at node x is denoted by Tx and that by Tl we denote
the complete partial tree of T of depth i (rooted at the root of T).

Algorithm Route-on^Complete-BinaryJIree /* RCBT for short */

1. Assign to every packet destined for a node in T 1 a class-value of 0. The
remaining packets are assigned a class-value of 1.

2. Heap-order T with respect to the class-values of its packets.

3. Route the class-0 packets into the subtrees rooted at level-2 nodes such that
each such subtree contains at most 1 class-0 packet.

On the Routing Number of Complete d-ary Trees 417

4. Partition the packets into classes. A new class-value is assigned to every
packet in the tree as follows:

Current node

^ a . i)
T
-^(1,2)

r
rp
-*r(2,l)

T
J"r(2,2)

T
^(2 ,3)

T
• lr(2,4)

T
T
r (U)
r (l ,2)

Destination
T i j T
J"r(2,3) W J'r(2,4)

"^(2,1) W -Lr(2,2)

-^(2,1) ^"^(2,2) ^^^(2,3) ^ ^ r (2 , 4) T
r(2,2)

l r (2 , l)

^(2 ,4)

T
r(2,3)
T l

T
T I j T
^ ^ . l) r(2,2)

T u T
J"?> (2 ,3) W J"r(2,4)

Class-value
0
0
0
1
1
1
1
2
3
2*
2*

i = l ,2 ,3 ,4

Class-2* packets (if any) become either class-1 or class-3 packets during the
next step of the routing.

5. Heap-order tree T with respect to the class-values of their packets. During
the heap construction, update the class of packets as follows:

• When a class-1 packet reaches the root of T, it immediately becomes a
class-0 packet.

• When a class-2* packet enters its destination subtree (rooted at a level-2
node), it immediately becomes a class-3 packet.

• When a class-2* packet enters a subtree (rooted at a level-2 node) that
does not contain its destination, it immediately becomes a class-1 packet.

• If at the end of the heap construction a class-2* packet is still at a level-1
node, it becomes a class-1 packet.

6. Route the packets to their destination subtrees (T1, and T r (2.}, i = 1,2,3,4).

7. Recursively route the packets in T1 , andTr{2i), i = 1,2,3,4.

It should be obvious that Algorithm Route-on^Complete-Binary^Tree completes
the routing correctly. No matter what the distribution of the packets at the end of
Step 5 is, Steps 6 and 7 correctly complete the routing. Actually, the first 5 steps
are executed in order to ensure that the distribution of the packets after Step 5
allows for the implementation of Step 6 in at most n + 1 routing steps.

Some explanations are necessary regarding Steps 4 and 5 and the class updates
that happen for some packets. According to the algorithm, if during the heap
construction a class-1 packet reaches the root of T, then that packet becomes a
class-0 packet. We do this update in order to stop packets from crossing the root
to the other side of the tree. The class update does not affect the analysis of the

418 A. Roberts & A. Symvonis

Fig. 2. A complete binary tree.

heap construction algorithm since the packet remains at the root till the end of the
heap construction. Another possible class update is that of class-2* packets which
become either class-1 or class-3 packets. Recall that a class-2* packet is initially
located at a level-1 node and is destined for one of the subtrees rooted at its children.
Firstly observe that during the heap-construction at Step 5, it is not possible for a
class-2* packet to move to the root of T. If this was not the case, it would require
the class-2* packet being swapped with a class-3 packet at the root of T, a situation
which cannot occur. Thus, a class-2* packets either moves to a node towards the
leaves of the tree or it remains in its current position (at the level-1 nodes of T).
In the case where a class-2* packet enters its destination subtree, we update it to
a class-3 packet. Note that this update does not cause any problems to the heap
construction algorithm, because the packet never moved upwards in the tree. If the
class-2* packet enters the subtree which does not contain its destination, it becomes
a class-1 packet. Again this class change does not cause any problems to the heap
construction algorithm. If during the heap construction a class-2* packet does not
move, i.e., it remains at a level-1 node, it is updated to a class-1 packet. This
update happens at the end of the heap construction algorithm and certainly does
not affect its complexity.

A final comment regarding the first three steps of the algorithm. The purpose
of these steps is to distribute the class-2 packets in a balanced way among subtrees
Tr(1 x) and T r (1 2) . These steps are not really necessary. If we omit them, we can still
achieve routing on a complete binary tree in | n + o(n) with the algorithm of this
section but the refinement of Step 6 that follows would be slightly more complicated.
This becomes evident in the cases of d-ary trees (examined in the next 2 sections)
where the terms hidden in the o(n) notation are also affected. If our final goal was
only to examine routing on complete binary trees instead of d-ary trees, the first 3
steps of Algorithm RCBT could be safely left out.

3.1. Refinement of Step 6

During the routing of Step 6, packets that enter their correct subtree continue
moving towards the leaves of the subtree. Their movements stops when they reach
a node such that all descendent nodes of it hold class-3 packets. This movement of

On the Routing Number of Complete d-ary Trees 419

packets towards the leaves of their destination subtree guarantees that the packets
which have to exit the subtree are always close to the root of the subtree.

Also note that during the movement of a packet towards the leaves of the tree
no problems occur if the packet is swapped with other packets that want to move
upwards. This is because both packets move towards their destination subtree and
this movement can be easily accommodated. The problems start when a packet that
moved upwards because of a swap with another packet, reaches the node (other than
the root) where it has to switch direction and start moving towards the leaves of
the tree. In Step 6, this can only happen at the 2 level-1 nodes. This is because we
are only interested in routing the packets to their destination subtree, not to their
destination node. The reason that we would like the packets to switch the direction
of their movement is because we do not want them to cross from one side of the
tree to the other. However, this change of direction requires that for consecutive
steps level-1 edges adjacent to the same node are active. This has an effect on the
flow of packets from Tr{11) to T r (12) and vice versa.

In order to be able to bound the number of routing steps required by Step 6 of
the algorithm, we assume for the moment that the flow of packets is uninterrupted.
This means that packets which are moving towards the leaves of the tree proceed
uninterrupted and as a result of their movement, some packets that have to move
upwards during the trip to their destination subtrees do so (later on, these pack­
ets reach the root and they start their movement towards the leaves). What we
described above does actually happen if we have to route a permutation in which
all packets initially in Tr{ll) are destined for Tr{12) and vice versa. In this case the
routing is performed as described in the proof of Lemma 1 and its analysis is quite
simple [2]. However, we have to route permutations that do not conform with the
above pattern. In these permutations, packets have to change direction at level-1
nodes.

We deal with the problem of packets that want to turn at level-1 nodes by
introducing (in the description of the refinement of Step 6) the "freeze command"
which freezes any routing that is taking place at parts of the tree. During these
"frozen steps" packets are able to change direction at a level-1 node. This is done
by swapping the packet that wants to change direction of movement with the packet
at the root of its destination subtree (which is a level-2 node). W.l.o.g, assume that
the level-1 node v contains packet p that just arrived from its child u and wants to
change direction of movement and enter the subtree Tw which is rooted at the level-
2 node w (which is a child of v). During the "frozen step" packet p is swapped with
the packet at node w while the routing in T\TU is frozen. The routing continues
in Tu because we want to load u with a packet that wants to exit Tu (if it exists).
This is necessary if we want to guarantee the uninterrupted flow of the packets in
the case where we might need to execute two or more consecutive freeze commands
for packets that want to turn at node v.

The time spent on these freeze commands is time well spent. Assume that we
have an initial estimate on how difficult (in terms of required routing steps) the
routing problem at hand is. As we will see, whenever we freeze the routing for one

420 A. Roberts & A. Symvonis

step, we are able to update our estimate regarding the required number of routing
steps. More specifically, for each freeze command we execute, we can save at least
one routing step from our initial estimate. Thus, the extra routing steps due to the
freeze commands does not affect the worst case complexity.

After Step 5 (heap construction), the packets of class-0 form a partial subtree
rooted at r(0ji). The routing of Step 6 mainly concentrates on packets of class-0
and moves them to their correct subtree Tr,2i), i = 1,2,3,4. We now describe how
this is done. W.l.o.g., assume that the packet p at r(0)i) is destined for TT{21). All
other cases can be handled symmetrically. After the first swap, p finds itself at node
r(i,i)- Now we have four cases to consider:

1- r(2,i) contains a class-0 packet Say that this packet is q. In this case, p swaps
with q and it enters its destination subtree Tr(2 iy At this stage, it "becomes"
a class-3 packet. (In the following steps, it continues moving towards the
bottom (leaves) of the tree until it reaches a node of which all descendants are
class-3 packets.) If at the same time that the swap of p and q is taking place,
r(o,i) gets a new class-0 packet, q will be swapped with it in subsequent steps
and thus, the flow of class-0 packets continues.

2- r(2,i) contains a class-1 packet. Let q be the packet at node (̂2,1) • We dis­
tinguish the following cases based on the class of the packet, say g', at node
r(2,2)-

(a) r(2,2) contains a class-0 packet. We swap p with q and then we issue 1
freeze command. During this extra step, q (now at r(i}1)) swaps with
q'. After this swap, q' is able to move towards its destination subtree
(through a subsequent swap with the packet at ?"(o,i)) while q has reached
its destination subtree Tr(2 2) and starts moving towards its leaves.

(b) r(2,2) contains a class-1 packet. This is an interesting case. Firstly ob­
serve that the class-0 packets in Tr(11} are exhausted. We swap p with
q and then we issue 1 freeze command. During this extra step, q (now
a* r(i,i)) swaps with q1 while p (now at r^,i)) swaps with the packet of
smaller class immediately below it (one must exist since we route a per­
mutation). Now, after the first freeze command, we have at node ?™(i,i)
a class-1 packet and at node r^,i) a class-1 or a class-2 packet0. In the
case where there is a class-2 packet at node r(2,1), we issue a final freeze
command and during the extra step we swap the packets at nodes r(i,i)
and r(2ji). In the case where there is a class-1 packet at node r^i), we
also execute a freeze command and make the same swap but this freeze
command is not the last one. More specifically, we continue issuing freeze
commands and making swaps that have as a result to route class-1 pack­
ets to their destination subtree. This sequence of freeze commands ends
when a class-2 packet arrives at node (̂1,1) • Such a class-2 packet must

aThis packet arrived at node r*(2,i) during the frozen step. This is why it is very important
that during the frozen step the routing in Tr,2 x) continues uninterrupted.

On the Routing Number of Complete d-ary Trees 421

exist since we assumed that the packet p that triggered the sequence was
a class-0 packet.

(c) r(2}2) contains a class-2 packet. We swap p with q and then we execute a
freeze command. During the extra step q (now at r(1?1)) swaps with q\
This case can be considered as a special case of 2b where the sequence
of class-1 packets consists of only 1 packet.

(d) "̂(2,2) contains a class-3 packet. Impossible (because of the initial sorting
and the fact that we are routing a permutation).

3. r(2,i) contains a class-2 packet. Let q be the packet at node r(2ji). We dis­
tinguish the following cases based on the class of the packet, say g;, at node
r(2,2)-

(a) r(252) contains a class-0 packet. Swap p with q and then issue a freeze
command. During the extra step swap q with qf. This keeps q from being
trapped into T r (12) (there might be many class-0 packets that want to
reach T r (11}). In subsequent steps q moves towards the leaves of Tr(22)

but it always stays above class-2 or class-3 packets in any leaf-to-root
path6.

(b) (̂2,2) contains a class-1 packet. We simply swap p with q. Note that
because of the initial balancing of the class-2 packets, there is no chance
that q will be trapped into T r (12) . No freeze command is needed.

(c) r(2,2) contains a class-2 packet. As in Case 3b.

(d) y*(2,2) contains a class-3 packet. As in Case 3b.

4- r(2,i) contains a class-3 packet. This is impossible. The fact that the packets
were heap-ordered together with the fact that r(2,i) contains a class-3 packet
imply that all packets in Tr{21) have destinations inside it. Then, p must have
a destination outside Tr{2A)

Notice that when the routing of class-0 packets finishes, we must have at node
r(i,i) a class-2 packet. Thus, all packets at the subtrees below it must contain only
class-3 packets which in turn implies that the routing of Step 6 is over (for T r (M)) .

Lemma 2 The routing that occurs during Step 6 of Algorithm RCBT terminates
after at most n + 1 routing steps.

Proof. Without loss of generality, consider the number of packets that have
to cross the root of the tree in order to enter their destination subtree rooted at a
level-2 node. These packets are all class-0 packets. Let their number be denoted
by ra. Moreover, because of the initial sorting, if our only concern was to get them
into their correct subtrees rooted at level-1 nodes, we could do it in m + 1 steps
(Lemma 1). However, since our plans are more ambitious and we want to get each

bNote that this case can occur at most 1 time. This is because of the balanced distribution of
the class-2 packets during the first 3 steps of the algorithm.

422 A. Roberts & A. Symvonis

packet into its correct destination subtree which is rooted at a level-2 node, we have
to employ the freeze commands.

Disregard for the moment the freeze commands due to Case 3a. During the
frozen steps due to all other cases, one class-1 packet moves into its correct subtree.
Let the total number of class-1 packets be k. This implies that k freeze commands
were executed, each requiring 1 routing step. Thus, if we ignore the freeze commands
due to case 3a, we have that the routing will terminate after (ra + 1) + k steps.
Case 3a can contribute at most 2 extra routing steps. This is because it can occur
at most once for each subtree rooted at a level 1 node (a property due to the
first three "balancing" steps of the algorithm). Finally we might also need one
extra routing step for the last packet to enter its destination subtree (recall that
the routing described in Lemma 1 only routes the packets into their destination
subtrees that are rooted at level-1 nodes). Thus, the total number of required
routing steps is at most (ra-bl) + & + 2 + l = ra + fc-|-4. Since m + k < n — 3, we
conclude that the routing of Step 6 terminates after at most n + 1 steps. •

3.2. Analysis of Algorithm RCBT

Theorem 2 Algorithm RCBT routes in an off-line fashion any permutation in an
n-node complete binary tree in at most | n + o(n) routing steps.
Proof. Let T(n) denote the number of routing steps required by the algorithm
for routing a permutation on a complete binary tree of n nodes. Steps 1 and 4
do not require any routing. From Theorem 1 we know that Step 2 of Algorithm
RCBT finishes after at most 2 log n routing steps. Step 3 of the algorithm requires
at most 3 routing steps. Steps 5 and 6 require at most 2logn and n + 1 routing
steps, respectively. The recursive part of the routing requires T (^ ^) steps since
the routing in all 5 trees is done in parallel.

Thus, we can write the following recurrence relation for the required number of
routing steps:

T^KTf1?-^) + n + 41ogn + 4

For the base of our recursion we have that:
T(l) = 0 (Only the identical permutation can be defined on an 1-node tree.)
T(3) = 3 (A chain of 3 nodes. Use odd-even transposition.)
By solving the recurrence relation we get that T(n) < ~n + o(n). •

4. Routing on Complete d-ary Trees

We use a generalisation of algorithm Route-on-GompleteJiinaryJTree for routing
on complete d-ary trees. However, Step 4 of the algorithm for d-ary trees is described
differently. This is done in order to facilitate the description of the asymptotically
optimal algorithm of the next section.

On the Routing Number of Complete d-ary Trees 423

Algorithm Route-on-.GompleteA-aryJTree /* RCdT for short */

1. Assign to every packet destined for a node in Tl a class-value of 0. The
remaining packets are assigned a class-value of 1.

2. Heap-order T with respect to the class-values of its packets.

3. Route the class-0 packets into the subtrees rooted at level-2 nodes such that
each subtree rooted at a level-1 node contains at least 1 (and at most 2) class-0
packets.

4. Partition the packets into classes. A new class-value is assigned to packet p,
currently at node curr and destined for node dest, as follows:

• Let I be the level of the lowest common ancestor of nodes curr and dest,
i.e., I = dT(lca(curr,dest)).

• If dest is in T 1 then p is a class-2 packet
else if curr is a level-1 node and dest is in Tcurr\{curr} then p is a
class-2* packet
else if I > 1 then p is a class-3 packet
else p is a class-Z packet0.

Class-2* packets (if any) become either class-1 or class-3 packets during the
next step of the routing.

5. Heap-order tree T with respect to the class-values of their packets. During
the heap construction, update the class of packets as follows:

• When a class-1 packet reaches the root of T, it immediately becomes a
class-0 packet.

• When a class-2* packet enters its destination subtree (rooted at a level-2
node), it immediately becomes a class-3 packet.

• When a class-2* packet enters a subtree (rooted at a level-2 node) that
does not contain its destination, it immediately becomes a class-1 packet.

• If at the end of the heap construction a class-2* packet is still at a level-1
node, it becomes a class-1 packet.

6. Route the packets to their destination subtrees (T1, and Tr(JM), 1 < i < d2).

7. Recursively route the packets in T1 , and T r (2 i) , 1 < i < d2.

Lemma 3 The routing that occurs during Step 6 of Algorithm RCdT terminates
after at most n + d2 — 1 routing steps.

cNote that for complete binary trees the class assigned to each packet is identical with the class
assigned by algorithm Route-on-Complete-Binary-Tree.

424 A. Roberts & A. Symvonis

Proof. To prove the lemma we have to describe the details of the routing in
Step 6. We can distinguish cases as we did for algorithm RCBT but this would
be a tedious repetition. Thus, we only describe what are the differences between
the routing that takes place at Step 6 of algorithm RCBT and that of algorithm
RCdT.

Since in algorithm RCBT we were concerned with binary trees, in all sub-cases
of parts 2 and 3 of the refinement of Step 6 there was only one sibling of node
Tr{2l) to consider. When routing in complete d-ary trees with algorithm RCdT,
all sub-cases must be updated to account for the fact that each level-2 node has
exactly d — 1 siblings. So, in the refinement of Step 6 of algorithm RCdT case 2(a)
is changed to: uRBdT : 6.2(a) There exists a sibling node of Tr{21) which contains
a class-0 packet", case 2(b) is changed to: (iRBdT : 6.2(6) There exists a sibling
node ofTr{21) which contains a class-1 packet", and so on. Most importantly, these
sub-cases are organised in an "if ... then ... else if ... else ..." statement. We
proceed to case 2(6) only if we fail to locate a node satisfying case 2(a).

As in the analysis of algorithm RCBT (Lemma 2), we are able to account for
all frozen steps which involve class-1 packets. However, we have to pay the extra
cost for the cases that a class-2 packet (located at a level-1 node) is swapped with
a class-0 packet (located at a level-2 node). In this case, no class-2 packet enters
the same subtree (rooted at a level-2 node) twice. Because of the initial balancing
at most 2 class-2 packets are in any subtree rooted at a level-1 node (and thus, at
a level-1 node). This implies that the extra number of routing steps for a given
subtree rooted at a level-1 node is at most 2(d — 1). This situation can occur at
every subtree rooted at a level-1 node. Because of the initial balancing, in one
subtree we can have at most 2(d — 1) extra steps while in all of the remaining ones
we can have a total of at most (d — l) 2 extra steps (d — 1 extra steps for each of
the remaining d — 1 subtrees rooted at level-1 nodes). We conclude that the total
number of extra routing steps due to class-2 packets is d2 — 1. Thus, the routing of
Step 6 will terminate within n + d2 — 2 steps. Q

Note 1. If we had omitted the first three "balancing" steps of the algorithm,
(9(d3) extra steps might be needed to account for the freeze commands due to class-
2 packets (located at level-1 nodes) swapped with class-0 packet (located at level-2
nodes). This could happen in the case where all (or most of) the class-2 packets
end up (after the heap-ordering of step 5) in the same subtree (rooted at a level-2
node) and then the routing proceeds in such an unfortunate way that these class-2
packets have to enter every subtree rooted at a level-2 node.

Note 2. A more careful refinement of Step 6 of algorithm RCdT that requires
n + 2d steps is possible. In this refinement, we initially avoid swaps between class-
1 and class-2 packets. Instead, we swap the class-1 packet with a class-0 packet
(provided it exists). After the class-0 packets are exhausted, we proceed as usual.
This simple modification guarantees that the swaps which involve class-2 packets in
subtrees rooted at different level-1 nodes do not interfere with each other. Since only
lower order terms are affected by this improvement, we omit a detailed description.
However, we use the improvement described here when we deal (in the next section)

On the Routing Number of Complete d-ary Trees 425

with d-ary trees with d > j ^ ~ .

Theorem 3 Algorithm RCdT routes in an off-line fashion any permutation on an
n-node complete binary tree in (1 + -^rzi)71 + °(n) steps.

Proof. Let T(n) denote the number of routing steps required by the algorithm
for routing a permutation on a complete d-ary tree of n nodes. Step 1 does not
involve any routing. Step 2 can be completed within 21ogdn steps while Step 3
can be completed within 2d steps (there are exactly d-\-1 packets destined for T1) .
Step 4 does not require any routing while Step 5 terminates after at most 2 logd n
steps. By Lemma 3, Step 6 requires n 4- d2 - 2 steps. Step 7 requires T(n ~^ + 1 ^)
steps. Thus, we can write the recurrence relation

T(n) < T (?—^±li\ + n + 4 log n + 2d + d2.

This recurrence relation together with the facts that T(l) = 0 and T(d + 1) < 4^
(routing on a "star" [2]) imply that

T(n)< (1 + ^-^)71 + 0(71).

This completes the proof. •

5. Stretching the M e t h o d to its Limits

In this section, we describe how to route a permutation on a d-ary tree in n-\-o(n)
routing steps. We achieve this by generalising Algorithm RCdT. In Algorithm
RCdT we routed the packets to their destination subtrees rooted at level-2 nodes
and then we proceeded recursively. We extend this idea by routing the packets to
their destination subtrees rooted at nodes deeper in the tree. More specifically, we
restrict the recursive routing to trees of 0(y/n) nodes. Consider a complete d-ary
tree of n nodes. Let h = [logd n\ be the height of the tree. For simplicity, in our
description of the routing algorithm we assume that h is even. The case where h is
odd is treated in a similar way. Consider the partial subtree T* that is rooted at
r and call its nodes top nodes. Tree T* has exactly d^ < d 2 = ^/n top nodes
as leaves. Moreover, T* has less than 2^fn nodes. The children of the level-|
top nodes of T"* are the roots of d^+ 1 subtrees Tr . , 1 < i < d^+ 1 . each of

height I — 1 (and thus, of at most ^fn nodes). Our algorithm routes the packets
to their correct subtrees, i.e., T* and Tr . , 1 < i < d^+1 . Then the routing
is completed either recursively, or by executing Algorithm RCdT, or by executing
the algorithm described in [2]. Again, it is critical for the algorithm to route the
packets to their correct subtree fast.

For clarity, we describe the algorithm by specifying the postconditions of each of
its steps. In the refinement of the steps we show how to achieve these postconditions.

426 A. Roberts & A. Symvonis

Algorithm FastJR,oute-on-Complete-d-ary-Trees /* FasLRCdT for short */

1. Let h = [log^nj be the height of the tree. W.l.o.g., assume that h is even.

2. [Balancing] Call the packets destined for T% top packets. Route the packets
in the tree such that at the end of this step:

(a) All top packets are in subtrees rooted at level-(| + 1) nodes.

(b) All subtrees rooted at a level-i top node contain at least J2j=o d3 (and

at most X)/=o d3 + *) *°P Packets.

3. Perform routing and assign new class numbers to the packets such that at the
end of this step the following conditions are satisfied:

(a) The balancing of top packets (as described in the previous step) is main­
tained.

(b) Let p be an arbitrary packet currently at node curr and destined for
node dest and let I be the level of the lowest common ancestor of nodes
curr and dest, i.e., I = dT(lca(curr,desi)).
If dest is in T "2 then p is a class-(| + 1) packet
else if I > | then p is a class-(| + 2) packet
else p is a class-Z packet.

(c) The tree is heap-ordered with respect to the class numbers assigned to
its packets.

4. Route the packets to their destination subtrees (T 2", and Tr . , 1 < i <

dt+1).

5. Recursively, or by using Algorithm RCdT, route the packets in T^ , and
Tr . , 1 < i < d*+1.

5.1. Refinement of Step 2 of Algorithm FastJICdT

The purpose of Step 2 is to distribute the top packets (referred as class-(| + 1)

packets in Step 3) into subtrees rooted at level-(| + 1) nodes. This minimises the

overhead due to their movement in the refinement of Step 4. Consider postcondi-

tion 2(b). Note that a tree rooted at a level-i top node contains exactly Xll=o $

top nodes. Thus, exactly X)/=o <® ^°P Pa°kets are destined for it. Since at most

l2j=o d3 -\-i top packets can be in it after completion of the step, we only allow as
many top packets as the number of nodes in the path from the root of the subtree
(rooted at a level-i node) to the root r of the d-ary tree. (This fact will play an
important role in bounding the number of steps required to realize Step 4 of the al­
gorithm.) Also observe that, because of postcondition 2(a), no top packet is located
at a top node at the beginning of Step 4.

On the Routing Number of Complete d-ary Trees 427

Step 2 corresponds to the first three steps of algorithms RCBT and RCdT and is
implemented in a similar way. First we assign a class value of 0 to each top packet
and a class value of 1 to the remaining packets. Then we heap-order the tree.
After the heap-ordering, all top packets form a partial tree rooted at r. Finally, we
complete the step by computing how many packets have to enter/leave each subtree
and then routing the packets according to our computations. The fact that we do
not care which specific top packet enters each subtree makes routing easy.

Lemma 4 The postconditions of Step 2 of algorithm Fast J tCdT can be satisfied in
at most logd n + 4-y/n routing steps.

Proof. We satisfy the postconditions as described in the refinement of Step 2
above. Let \x be the exact number of the top packets, \x < 2^/ri. Assigning class
values does not require any routing. By Theorem 1 we know that the tree can be
heap-ordered in 2 logd n routing steps. For the routing that follows the worst case
occurs when, after the heap-ordering, the top packets form a "broomstick" pattern
where top packets are positioned at nodes on the path from the root r of the tree to
a level-1 node, say ra, and the remaining top packets are in subtree Tm. During the
routing, at most \x — h top packets have to exit Tm and exactly 1 of them can exit
every 2 steps. Thus, they exit Tm after at most 2(/i — h). An additional number
of h routing steps may be required for the last packet to reach the root and then
move to an appropriate subtree. The total number of required routing steps is at
most 2 logd n + 2(/x — h) + h = 2 logd n + 2/i — h < logd n + 4y/n since h < logd n
and fi < 2y/n. •

5.2. Refinement of Step 3 of Algorithm Fast_RCdT

Step 3 of Algorithm Fast.RCdT corresponds to Steps 4 and 5 of algorithms
RCBT and RCdT. While it is possible to design a dynamic version of the heap-
ordering algorithm in which class values change during the heap-ordering (as in
Step 5 of algorithms RCBT and RCdT), we choose to present a simpler to analyse,
but slightly slower, algorithm that guarantees the postconditions of Step 3.

The implementation of Step 3 consists of a bottom-up fashion heap construction.
We initially assign to all packets class values as specified by postcondition 3(b).
Note that postcondition 3(a) is initially satisfied since it was also the postcondition
of Step 2. We show how to build a heap such that 3(a) and 3(b) are invariants
throughout the construction (will be referred to as such) and 3(c) is also true at the
end.

Assume that 3(a) and 3(b) are currently true and that all subtrees rooted at a
level-i node, i > 0, are heap-ordered with respect to their current class values. (All
subtrees rooted at leaf nodes are trivially heap-ordered.) Consider any packet p at
a level-(i — 1) node u and let class(p) be its class value. Furthermore, let q be the
packet of the smallest class value (class(q)) located at a level-i node, say v, that is
a child of u. By our (inductive) assumption, Tv is heap-ordered. We consider two
cases:

1. class(p) < class(q). No swap of the packets is necessary. Subtree Tu is

428 A. Roberts & A. Symvonis

heap-ordered and since no packet updated its class value, 3(a) and 3(b) still
hold.

2. class(p) > class(q). The two packets must be swapped in order to establish
the heap invariant at node u. We consider the following cases:

(a) p is a class-(^ + 2) packet. Since invariant 3(b) is satisfied, it is implied
that i > | + 1. After the swap, both p and q maintain their original
class values and q is located at a level-(i — 1) node, i — 1 > | . Thus,
invariants 3(a) and 3(b) are still valid.

(b) p is a class-(^ + 1) packet. Since invariant 3(a) is satisfied, it is implied
that i > f + 1. After the swap, both p and q maintain their original
class values and since p, the class-(| + 1) packet, moves towards the
leaves of the d-ary tree, invariant 3(a) is maintained. Since q moves to a
level- (i — 1) node, (i — 1) > | , invariant 3(b) is also satisfied.

(c) class(p) < | . After the swap, and if necessary, we update the class
values of p and q such that invariant 3(b) is re-established. Since the
destination of p and q remains the same, it is impossible that during the
update one of them becomes a class-(| + 1) packet. Thus, invariant 3(a)
is maintained.

Note that packet p has to keep moving towards the leaves of the tree until it
reaches a node for which the heap invariant is true. At the worst case, this happens
when p reaches the leaves of the tree, i.e., after h — i routing steps. When we
establish the heap invariant at the root r of the d-ary tree, all the postconditions
of Step 3 are satisfied. It is trivial to see that this happens in less than h2 routing
steps. Since h = logd n, we can state the following lemma:

Lemma 5 The postconditions of Step 3 of algorithm Fast J lCdT can be satisfied in
less than logd n routing steps.

5.3. Refinement of Step 4 of Algorithm Fast_RCdT

The routing of Step 4 of Algorithm Fast-RCdT is performed in a fashion that
can be described as an extension of the odd-even transposition method. In order
to demonstrate the method, assume for the moment that all packets want to cross
the root of the tree, i.e., they all are class-0 packets. Consider the packet that is
initially at the root and assume that it is destined for subtree T r (M) , 1 < i < d.
Then, during the first step of the algorithm, edge {r(o,i),r(i,i)) is active while all
the even-level edges of Tr(1 i} (with respect to ^(o,i)) a n d all the odd-level edges of
Tr ., , i ^ if, (with respect to ^(o,i)) a r e potentially actived. After the swap of the
packets over edge (r ^ i) , ^ ! ^)) , assume that the new packet at the root is destined
for subtree Tr(1 }, 1 < j < d, i ^ j . Then, at the second step of the routing, edge
0"(o,i)5^(i,j)) is active while the even-level edges of Tr{1J) (w.r.t. r(0ji)) and the

dWe use the term potentially active to indicate that only one of the edges that connect a node
with its children can be active at any time.

On the Routing Number of Complete d-ary Trees 429

odd-level edges of Tr(1 .} (w.r.t. ^(0,1)) a r e potentially active. The odd-level edges
of Tr{li) are active in order to allow for a new class-0 packet to reach node r^y
The routing continues in the same fashion where the potentially active edges during
step i are determined by the destination of the packet at the root of the tree at the
end of step i — 1.

(a) (b) (c)

Fig. 3. The actions taking place during a "frozen" step due to a packet changing
direction.

However, not all packets are class-0 packets. We now see how to deal with class-i
packets, i ^ 0. During the routing, and at a given step, we can distinguish two types
of packets. Packets that want to move towards the root of the tree in order to reach
their destination subtree, and those packets that want to move towards the leaves
of the tree. Assume that no two packets that want to move towards the leaves of
the tree are at adjacent nodes. (This will obviously be the case if all packets are
initially class-0 packets.) All of these packets can move one step towards the leaves
of the tree at the same time, provided that the edges they have to use are active.
We want to keep this property, i.e., no two packets that want to move towards
the leaves of the tree are at adjacent nodes, as an invariant. This will guarantee
that a class-0 packet crosses the root of the tree at each step, provided it exists.
Consider the packets that move closer to the leaves during the current step. If the
packets they were swapped with want to move (after the swap) towards the root,
the invariant is obviously maintained. However, this is not the situation in the case
where one of these packets reached the node where it has to turn. In this case, we
might have two consecutive packets that want to move towards the leaves. Consider
the situation described in Figure 3(a). White packets want to move towards the
root and black packets want to move towards the leaves (the arrows also indicate

430 A. Roberts & A. Symvonis

the desired direction of movement). We focus on the grey packet located at node
w that wants to change direction of movement at node u, the parent of w. While
the invariant is maintained in Figure 3(a), after one step of routing it is not valid
anymore. This can be seen in Figure 3(b) where the grey packet (now located at
node u), the packet located at the parent of u, and the packet located at w, want to
move towards the leaves of the tree and are at adjacent nodes. We re-establish the
invariant by executing a freeze command. During the frozen step we swap the packet
that just changed direction (the grey packet in Figure 3(b)) with the packet at the
root of the subtree it wants to move into (the white packet at node v in Figure 3(b)).
This re-establishes the invariant. During the frozen step we also make swaps along
the even-level edges of Tw (with respect to w). This results with reloading node w
with a packet that wants to move towards the root (Figure 3(c)). This is necessary
for the case where we need to execute two consecutive freeze commands. In the
case where more than two packets want to turn during the same step, in order to
avoid possible conflicts we first execute the freeze command for the packets that are
closer to the leaves of the tree.

What remains to be specified is how we treat the case where we have packets
that, at the beginning of Step 4 of Algorithm FasLRCdT, want to move towards
the leaves of the tree and occupy adjacent nodes. This situation clearly violates the
invariant. However, it is easy to establish the invariant by starting routing these
packets towards the leaves (the ones closest to the leaves first). This will re-establish
the invariant after at most og£n steps (without counting the frozen steps that we
might have to interleave). The above procedure guarantees that as long as class-0
packets exist the root is going to hold one or, in the case that it does not, at least
one of its children will do so.

Consider now the case where the root does not hold a class-0 packet. In this
case it has to hold a class-(| + 1) packet. Our aim will be to make this situation
infrequent. We now describe how to achieve this. Recall the balancing of the class-
(| + 1) packets that was performed during Step 2 of Algorithm Fast-RCdT. Every

&—% • £—i •

subtree rooted at a level-i top node contains between 2 | = o $ ano^ X)/=o d3 + i
top (i.e., class-(| -j- 1)) packets. Consider such a level-i, node, say u, where i > 0.
During the routing we allow a class-(^ + 1) packet to move from u to its parent, say
v, only if the last i packets that have subtree Tu as their destination have started
arriving in it. In this case, the packet (located at v) that is going to enter Tu

is swapped with the class-(| + 1) packet located at u. If there are i — 1 or more
packets that are still expected to arrive in Tv, the class-(| + 1) packet starts moving
towards the leaves of the tree in such a way that the balancing invariant 2(b) is
never violated and the packet's final position is below packets of lower class. To
initiate the movement of the class-(| + 1) packet we use a freeze command. During
the frozen step we perform a swap. The swap of the class-(^ + 1) packet that was
just described corresponds with the swaps of the class-2 packets in Algorithm RCdT
the cost of which had to be added in the number of required routing steps but was,
fortunately, absorbed in the o(n) term.

Lemma 6 The routing of Step 4 of algorithm FastJtCdT can be completed after

On the Routing Number of Complete d-ary Trees 431

n + 0(d^/nlogdn) routing steps.

Proof. Assume that there are m class-0 packets. There always is one of them
next to the root (if we ignore the frozen steps) and thus they all start their movement
towards the leaves of the tree within m + d — 1 steps (see Theorem 1). Consider the
remaining, say fc, class-i packets, 0 < i < | . They start their movement towards
the leaves after executing a freeze command. Since each packet is responsible for
exactly one freeze command, k additional steps are required. Finally, the last packet
that changed the direction of its movement might need og

2
dn extra steps in order

to enter its destination subtree which is rooted at a level-(~ + 1) node.
We still have to pay the price for the frozen steps due to swaps initiated by

class-(| + 1) packets. Consider an arbitrary level-i top node u, 0 < i < | . For
each class-(| + 1) packet that arrives at node u from its children we might have
to issue a freeze command. Node u can receive at most i + 1 class-(| + 1) packets
from each of its children. This is because the subtree rooted at a level- (i + 1) node
can find itself with at most i + 1 more class-(| + 1) packets than the number of top
nodes in it. As long as the other children of u have space for these packets, i.e., the
children of u contain class-j packets, 0 < j < | , that want to exit from the subtrees
rooted at them, they are forwarded to these subtrees. This results in having the
same packet causing more than one freeze command at the same node, each time
arriving from a different child of that node.

Since there are 0(<\/n) top nodes and since each of them can receive at most
og

2
rfn class-(| + 1) packets from each of its d — 1 children, 0(d^/nlogdn) freeze

commands might be executed. Within m + k + d — 1 steps (ignoring the frozen
steps) all other packets start their movement towards the leaves and after at most

og
2

rfn additional steps the last one enters its destination subtree. Since m + k < n,
we conclude that the routing of Step 4 of algorithm FasLRCdT is completed after
n + 0 (dy^ log d n) routing steps. •

Theorem 4 Algorithm Fast J tCdT routes in an off-line fashion any permutation
on an n-node complete d-ary tree inn-\- o(n) steps, provided that j ~ ^ = o(j^r^)-

Proof. Let T(n) denote the number of routing steps required by the algorithm
for routing any permutation on a complete d-ary tree of n nodes. Step 1 does not
involve any routing. By Lemma 4, Step 2 can be completed within logd n + 4^/n
routing steps. By Lemma 5, Step 3 can be completed within log^n routing steps.
By Lemma 6, Step 4 can be completed within n + 0(d^logdn) routing steps. In
Step 5, we apply the routing recursively on a tree of at most 2^/n nodes.

Thus, we can write the recurrence relation

T(n) < T(2y/n) + n + 0(d^/nlogdn + log^n).

Instead of solving the recurrence relation (and thus applying the algorithm recur­
sively) we use any routing algorithm for trees (that terminates in a number of steps
that is linear to the number of nodes of the tree, e.g., algorithm RCdT or the al­
gorithm of [2]) to perform the routing that corresponds to the T(2y /n) term. By
doing so, we get that T{n) = n + o(n), provided that j ^ = ° (f ^ ;) - n

432 A. Roberts & A. Symvonis

As Theorem 4 indicates, in n + o(n) routing steps we can route any permutation
on a complete d-ary tree provided that j - ^ = ° (w ^) - However, our objective is to
complete the routing on d-ary trees of n nodes in n + o(n) steps for any possible d.
We achieve this as follows: In the case where d < j ^ ~ we use algorithm FasLRCdT
to perform the routing and thus, Theorem 4 guarantees that the routing finishes
within n + o(n) steps. In the case where d > j ^ we use algorithm RCdT that was
described in Section 4.

Consider an n-node complete d-ary tree T of height h(T) > 1, d > j * ^ . Let x be
the number of nodes in each subtree of T rooted at level-2 nodes. Since there exist
one level-0 node, d level-l nodes and d2 level-2 nodes, it holds that: d2x + d +1 = n
and thus,

n — d—1 n ^ n . 2

d2 d2 (j/JL)2
V log n '

Thus, if we use algorithm RCdT to do the routing, the recursive routing of T 1 and
of the subtrees rooted at level-2 nodes is completed in at most 3max(d + l,log2n)
steps if the algorithm of [2] is used. Thus, the cost of the routing at the second
(and last) level of the recursion is absorbed in the lower order term. If we also use
the refinement that was briefly described in Note 2 of page 14, all packets reach
their destination subtree rooted at a level-2 node in about n + 2d steps. The above,
together with the fact that for all n-node complete d-ary trees of height h(T) > 1
it holds that d < <y/n, allow us to state our final theorem regarding routing on
complete d-ary trees.

Theorem 5 Any permutation on an n-node complete d-ary tree can be routed in
an off-line fashion inn + o(n) routing steps.

The result does not hold for the marginal case where the height of the d-ary tree
is 1. In that case, d = n — 1 and the tree is identical to the star graph that was
used in [2] for the proof of the [3(n — l) /2j lower bound on the routing number of
arbitrary trees.

6. Conclusions

We presented an off-line algorithm that routes a permutations (with respect to
the matching routing model) on a complete d-ary tree of n nodes in at most n+o(n)
routing steps. The routing performance of the algorithm is near optimal (within
a lower order term) since it is easy to construct an instance of the problem that
requires n steps for its solution (a binary rooted tree where all packets in its left
subtree are destined for nodes in its right subtree, and vice versa). As a result of
our work, the routing number for complete d-ary trees was substantially reduced.
However, there are several questions raised in this paper. We list some of them
below.

(i) What is the exact routing number of complete d-ary trees? Can we eliminate
the o(n) term from Theorem 5?

(ii) All the algorithms developed in this paper are off-line algorithms. Design and
analyse on-line algorithms for routing on trees using the matching model.

On the Routing Number of Complete d-ary Trees 433

(iii) Our result holds for complete d-ary trees of height greater than 1. When the
height of the tree is 1, the lower bound of [3(n — 1)/2J steps applies. However,
in this case the tree is identical to the star graph. Can we incorporate the
"shape" of the tree in the derived lower bound? It appears that trees of very
large degree "similar" to the star graph have large routing number.

(iv) This paper demonstrates the need for non-recursive algorithms. We managed
to prove that the routing number of n-node complete d-ary trees is at most
n + o(ri) by employing a complicated recursive algorithm and an elaborate
analysis and proof of correctness. In a sense, we stretched recursion to its
limits. Non-recursive routing algorithms need to be examined. Can we extend
the potential-function based analysis of the non-recursive heap construction
algorithm given in [10, 11] to cover general routing algorithms?

References

1. S. Akl, Parallel Sorting Algorithms, Academic Press, 1985.
2. N. Alon, F.R.K. Chung, R.L. Graham, "Routing permutations on graphs via match­

ings", SI AM Journal on Discrete Mathematics, 7(3):513-530, 1994.

3. A. Borodin, Y. Rabani, B. Schieber, "Deterministic many-to-many hot potato rout­
ing", IEEE Transactions on Parallel and Distributed Systems, 8(6):587-596, 1997.

4. N. Deo, S. Prasad, "Parallel heap: An optimal parallel priority queue", The Journal
of Supercomputing, 6(l):87-98, March 1992.

5. R.W. Floyd, "Algorithm 245: Treesort 3", Communications of ACM, 7:701, 1964.
6. N. Haberman, "Parallel neighbor-sort (or the glory of the induction principle)",

Technical Report AD-759 248, National Technical Information Service, US Depart­
ment of Commerce, 5285 Port Royal Road, Springfieldn VA 22151, 1972.

7. M. Houle, G. Turner, "Dimension-exchange token distribution on the mesh and the
torus", Parallel Computing, 24(2):247-265, 1998.

8. D.E. Knuth, The Art of Computer Programming. Volume 3: Sorting and Searching,
Addison-Wesley, 1973.

9. D. Krizanc, L. Zhang, "Many-to-one packet routing via matchings", in Proceedings
of the Third Annual International Computing and Combinatorics Conference, CO­
COON '97, Shanghai, China, August 1997, eds. Tao Jiang, D. T. Lee, LNCS 1276,
(Springer-Verlag), pp. 11-17.

10. G. Pantziou, A. Roberts, A. Symvonis, "Dynamic tree routing under the 'matching-
with-consumption' model", in Proceedings of the 7th International Symposium
on Algorithms and Computation ISAAC '96, Osaka, Japan, December 1996, eds.
T. Asano, Y. Igarashi, H. Nagamochi, S. Miyano, S. Suri LNCS 1178, (Springer-
Verlag), pp. 275-284.

11. G. Pantziou, A. Roberts, A. Symvonis, "Many-to-many routing on trees via match­
ings", Theoretical Computer Science, 185(2) :347-377, 1997.

12. N. Rao, W. Zhang, "Building heaps in parallel", Information Processing Letters,
37:355-358, March 1991.

13. A. Roberts, A. Symvonis, L. Zhang, "Routing on trees via matchings", in Pro­
ceedings of the Fourth Workshop on Algorithms and Data Structures (WADS'95),
Kingston, Ontario, Canada, August 1997, LNCS 955, (Springer-Verlag), pp. 251-
262.

434 A. Roberts & A. Symvonis

14. A. Roberts, A. Symvonis, "Potential-functionbased Analysis of an off-line Heap
Construction Algorithm", Journal of Universal Computer Science, 6(2):240-255,
2000.

15. A. Symvonis, "Routing on trees", Information Processing Letters, 29(4):215-223,
1996.

16. J.W.J Williams, "Algorithm 232: Heapsort", Communications of ACM, 7:347-348,
1964.

17. L. Zhang, "Optimal bounds for matching routing on trees", SIAM Journal on
Discrete Mathematics, 12(l):64-77, 1999.

18. W. Zhang, R.E. Korf. "Parallel heap operations on an EREW PRAM", Journal
of Parallel and Distributed Computing, 20(2):248-255, February 1994.

