
Information Processing Letters 71 (1999) 235–239

A note on deflection worm routing on meshes

Antonios Symvonis1

Basser Department of Computer Science, University of Sydney, Sydney, N.S.W. 2006, Australia

Received 1 April 1997; received in revised form 1 February 1999
Communicated by R.G. Dromey

Abstract

We prove the existence of asymptotically optimal routing schedules for deflection worm routing of permutations onn× n
meshes. We achieve this by deriving an off-line algorithm which routes permutations in O(kn) steps wherek is the number
of flits of a worm. The best to date off-line algorithms for deflection worm routing of permutations were due to Newman and
Schuster (1995) and Sibeyn and Kaufmann (on-line) (1994) which completed the routing in O(k1.5n) routing steps. 1999
Elsevier Science B.V. All rights reserved.

Keywords:Deflection routing; Mesh connected computer; Packet routing; Permutation routing; Worm routing; Parallel processing

1. Introduction

Message routing has been abstracted in several
ways. Inpacket routingit is assumed that a message
can be transmitted between two adjacent processors
in a single step as apacket. If packets can be stored
in intermediate nodes during the trip from their ori-
gin to their destination, the routing model is referred
to asstore-and-forward. In a different model known
asdeflection(or hot-potato) routing, packets continu-
ously move between processors from the time they are
injected into the network until the time they are con-
sumed at their destination.

The advantage of deflection routing over the store-
and-forward model is obvious. No queuing area is
required at the processors. However, the fact that
packets always move implies that at any step each
processor must transmit the packets it received during
the previous step (unless they were destined for it). As

1 Email: symvonis@cs.su.oz.au.

a result, several packets might be routed away from
their destination. This makes the analysis extremely
difficult.

The assumption that a whole message can be trans-
mitted in a single step between adjacent processors is
not a very realistic one, especially when the messages
are long. It is more natural to assume that the amount
of information that can be transmitted between proces-
sors in a single step is a hardware dependent variable
(thewidth of the communication channel). This leads
to the modeling of a message as aworm; a sequence of
k flits, each of size equal to the width of the commu-
nication channel, in which only the first flit knows the
destination address. During the routing of a worm, all
routing decisions are made by the processors which
hold the head of the worm. The rest of the flits (the
bodyof the worm) simply follow the path of the head.
When the worms are allowed to be queued at interme-
diate processors waiting for the release of a communi-
cation link, we say that routing is performed according
to thestore-and-forward worm routingmodel. When

0020-0190/99/$ – see front matter 1999 Elsevier Science B.V. All rights reserved.
PII: S0020-0190(99)00105-2

236 A. Symvonis / Information Processing Letters 71 (1999) 235–239

queuing is not allowed, thedeflection worm routing
model is used. See [8] for a good review of message
routing in parallel machines.

In this research note, we concentrate on deflection
worm routing of permutations onn × n meshes. De-
flection worm routing on meshes was first examined
by Bar-Noy et al. [1]. They studied permutation rout-
ing and presented O(k2.5n2O(

√
logn log logn))-step and

O(kn1.5)-step deterministic and O(kn)-step random-
ized algorithms.

Newman and Schuster [3] described a method to
obtain deflection worm routing algorithms based on
store-and-forward packet routing algorithms. Their
method was general enough to work for any rout-
ing patterns, not only permutations. By employing the
sorting algorithm of Schnorr and Shamir [4] they ob-
tained an O(k2.5n)-step deflection worm routing algo-
rithm for routing permutations. They also presented an
O(k1.5n)-step off-line algorithm. Newman and Schus-
ter also observed that better results for routing permu-
tations could be obtained if fast algorithms for one-
to-many routing [2,5] or many-to-many routing [5]
were available. Sibyen and Kaufmann [5] used such
algorithms to derive an O(k1.5n)-step deflection worm
routing algorithm for permutations.

This research note makes a theoretical contribu-
tion to the literature of off-line deflection worm rout-
ing algorithms. We present an O(kn)-step off-line al-
gorithm for routing permutations onn × n meshes.
The existence of such an algorithm was implied by
the O(kn)-step randomized algorithm of Bar-Noy
et al. [1] through standard but not constructive argu-
ments. The best off-line algorithm known till now was
the O(k1.5n)-step algorithm of Newman and Schus-
ter [3]. Sibyen and Kaufmann [5] managed to achieve
the same number of steps by an on-line algorithm.
Note that an O(kn)-step solution to a permutation
problem is asymptotically optimal as a standard bi-
section argument reveals an�(kn)-step lower bound.
Finding an O(kn)-step off-line algorithm was posed as
an open problem in [3].

2. Preliminaries

A finite directed graphG = (V ,E) is a structure
which consists of a finite set of verticesV and a
finite set of edgesE = {e1, e2, . . . , e|E|}. Each edge is

incident to the elements of an ordered pair of vertices
(u, v)whereu is the start-vertex of the edge andv is its
end-vertex. We will use the notationE(G) andV (G)
to denote the edge set and the vertex set of graphG,
respectively. Adirected pathis a sequence of edges
e1, e2, . . . such that the end-vertex ofei−1 is the start-
vertex ofei . The setNeighbors(v,G) is defined to be
the set of vertices inG which can be reached fromv
by crossing just one edge. Formally,

Neighbors(v,G)= {w | (v,w) ∈E(G)}.
LetMn denote ann×n two-dimensional mesh.Mn

hasn2 vertices, each represented by an ordered pair of
integers(row,column) where 06 row,column6 n−
1. Each vertex(i, j), 06 i, j 6 n − 1, has outgoing
edges to its four neighbors(i − 1, j), (i + 1, j),
(i, j − 1), (i, j + 1), provided that they exist.

A deflection packet(worm) routing problemR is
defined by a tuple(G,P) whereG = (V ,E) is the
directed graph representing the network in which
the routing will take place (vertices inV represent
processors and edges inE represent unidirectional
communication links). The elements in setP represent
them packets (worms) to be routed. Formally,

P = {p1,p2, . . . , pm |
pi = (origi ,desti),

origi ,desti ∈ V (G), 16 i 6m
}
.

Even though there is no restriction on the number of
packets (worms) which originate from (or, are destined
for) a certain processor, in this research note we focus
on permutations, that is, exactly one packet (worm)
originates from each node and exactly one packet
(worm) is destined for each node.

Consider any routing problemR = (G,P) where
G = (V ,E) is the directed graph which represents
the interconnection network in which the routing takes
place andP is the set of worms to be routed. Our goal
is to achieve routing time near the lower bound for the
problem. Assume an upper bound ofT routing steps
for the problem under consideration (for now consider
a worst case trivial upper bound).

We construct amultistage directed graphG′ =
(V ′,E′) as follows:

V ′ = {(v, t) | v ∈ V and 06 t 6 T
}

and

A. Symvonis / Information Processing Letters 71 (1999) 235–239 237

Fig. 1. A chain of five vertices and its corresponding multistage
graph.

E′ = {((v, t), (w, t + 1)) |w ∈ neighbors(v,G)

and 06 t < T
}
.

The edges inE′ represent the communication that
can take place between adjacent vertices of the inter-
connection network at any time.

Fig. 1 shows the resulting graph when the intercon-
nection network is a chain of length 5. For routing per-
mutations on a chain of five processors, an obvious up-
per bound of 4 routing steps applies.

Let tower(G′, v) be the set of vertices of graphG′
(the constructed multistage graph) which correspond
to vertexv in G. Formally,

tower(G′, v)= {(v, t) | 06 t 6 T }.
We can think of the stages of the multistage graph

G′ as representing time. In that sense, the route of any
flit will be a directed path from a vertex in the flit’s
origin-tower to a vertex in the flits destination-tower.
So, an off-line solution to a deflection worm routing
problem can be seen as a collection of paths. However,
the paths must satisfy several conditions which reflect
the fact that we are routing worms and that only one
flit can be transmitted along any communication link
in a single step.

Definition. A valid off-line solution of lengthL for
the deflection worm routing problemR = (G,P) is
a set of directed paths, one path for each flit of each
worm, in the multistage graphG′ of G, such that:
(i) the head of wormpi = (origi ,desti) ∈ P travels

from a vertex(origi , t
′) in tower(G′,origi) to

vertex (desti , t ′′) in tower(G′,desti), t ′ 6 t ′′ 6
L − k + 1, wherek is the number of flits in a
worm,

(ii) if the j th flit of a worm, 16 j < k, travels
from vertex(v, t) to vertex(w, t + 1), 2 then the
(j + 1)th flit of the worm travels from vertex(v,
t + 1) to vertex(w, t + 2),

(iii) all paths are edge disjoint.

Given the above definition, the goal of an off-
line deflection worm routing algorithm is to de-
rive a collection of paths, one for each flit of each
worm, such that they form a valid off-line solution
of the smallest possible lengthL. The reduction of
the routing problem to the derivation of a collection
of edge disjoint paths on a multistage graph is re-
ferred as themultistage off-line routing methodand
it was introduced by Symvonis and Tidswell [7]. The
method was originally used for deriving off-line so-
lutions to single packet (k = 1) routing problems on
meshes and tori. It was also used successfully in
obtaining optimal off-line solutions for routing on
trees [6].

3. Off-line optimal deflection worm routing

The off-line algorithm must describe for each worm
the path that each of its flits takes. But, since we can
deduce the movement of the whole worm from the
movement of the head, only paths for the heads of
the worms are necessary. Given a routing schedule
of L steps and the fact that at mostn2/k worms
might be moving at any step, we conclude that about
Ln2/k bits are necessary for the description of the
routing schedule. SinceL = �(kn), we expect that
a routing schedule will require�(n3) bits for its
description.

However, the routing schedule that our algorithm
will produce can be described with O(n2 log(kn))
bits. This is because the paths will be of a spe-
cial form. More precisely, after each worm starts its
routing it will move on a minimal path, first hor-
izontally to its destination column and then verti-
cally to its destination node. Since theseone-bend
paths can be deduced from each(origin,destination)
pair, the only information that is required to de-
scribe the routing of a worm is the step in which

2 In other words, the edge((v, t), (w, t + 1)) belongs to the path
assigned to thej th flit of the worm.

238 A. Symvonis / Information Processing Letters 71 (1999) 235–239

the worm starts moving. Thus, O(n2 log(kn)) bits suf-
fice.

In the description of the algorithm, variablestart[p]
contains the routing step in which wormp starts
moving.

Algorithm Off-line_mesh_routing

1. Construct a multistage graphG′ of 4kn stages for an
n× n mesh as described in Section 2.

2. G′current=G′
3. while there are more worms to be routeddo

(a) Letp = (orig,dest) be the next worm to be routed.
(b) stage= 0
(c) routed= false

/* routedwill become true when a set of edges has */
/* been assigned top. */

(d) while (not routed) do
(i) Let S be the set of edges ofG′ which are

required in order to route wormp in such a way
that the head departs from node(orig,stage) and
moves horizontally to the column destination
and then vertically todest.

(ii) if S ⊆E(G′current)

thenE(G′current)=E(G′current)− S
start[p] = stage
routed= true

elsestage= stage+ 1

Definition. When algorithmOff-line_mesh_routingis
used to produce a routing schedule, we say thatworm
p is delayed by wormq at stept if worm q used during
its routing the first edge which prevents (because it
was removed fromG′current) wormp to start its routing
(as described in the algorithm) at timet .

Lemma 1. Consider two wormsp and q which are
routed with AlgorithmOff-line_mesh_routing. With-
out loss of generality, assume that paths have already
been assigned to the flits of wormq . Then, during the
path assignment phase(step3(d)) of the algorithm,
wormq can delay wormp by at most2k− 1 steps.

Proof. Worm p is delayed by wormq at time t if
the first edge which is not present inG′current but is
required for the routing ofp was used for the routing
of a flit of q . Recall that worms move first horizontally
to their destination column and then vertically to their
destination node, that is, they move along minimal
paths. We consider two cases:

(i) An edge which was required for the routing of the
head ofp was used byq . This corresponds to the
head ofp “bumping into” wormq . Since worm
q consists ofk flits, it can delayp by at mostk
steps.

(ii) An edge which was required for the routing of a
flit of the body ofp was used byq . The missing
edge was used for the routing of the head of
q . This corresponds to the head ofq “bumping
into” the body ofp. By saying that the the head
of q “bumped into” the body ofp, we mean
that, if the body ofp consisted of a sufficiently
smaller number of flits, then its routing could be
completed. Since the body ofp consists ofk − 1
flits, p can be delayed by at mostk − 1 steps.

From the two cases, we conclude thatq can delayp
by at most 2k − 1 steps. 2
Theorem 1. Given ann× n mesh and a permutation
π of its vertices that has to be routed using the
deflection worm routing model where each worm
consists ofk flits, Algorithm Off-line_mesh_routing
produces an optimal routing schedule ofO(kn)-steps.

Proof. The proof of the theorem follows from the
property in Lemma 1 and the deadlock-free nature
of the one-bend path algorithm. Consider an arbi-
trary wormp. Whenp is routed by AlgorithmOff-
line_mesh_routing, it can interfere with at most 2n−2
other worms, i.e.,n − 1 worms which originate in
the same row asp andn − 1 worms which are des-
tined for the same column asp. From Lemma 1
we know that each of these worms can delayp by
at most 2k − 1 steps. Thus,p will start its routing
after at most(2n − 2)(2k − 1) + 1 steps. Since it
might be at most 2n − 2 steps away from its desti-
nation,p’s tail will reach its destination after at most
(2n−2)(2k−1)+1+(2n−2+k−1)< 4kn=O(kn)
steps. A routing schedule of O(kn) steps is asymptoti-
cally optimal. 2
Analysis of Algorithm Off-line_mesh_routing

The algorithm requires memory to store the multi-
stage graphsG′, G′current, setS and arraystart. This
amounts to a total of O(kn3). A careful implementa-
tion of the algorithm can spare the use ofG′ andS
(they were used in the presentation for clarity reasons).

A. Symvonis / Information Processing Letters 71 (1999) 235–239 239

For a worst case time analysis assume that each worm
is delayed for O(kn) steps. It takes O(kn) steps in the
worst case to realize that the worm is being delayed.
This is because the missing edge fromG′current might
be one of the last edges in the worm’s (almost suc-
cessful) potential route. Thus, a route will be assigned
to each worm after O(k2n2) time. Since there aren2

worms to be routed, the algorithm will terminate after
O(k2n4) time. More careful implementation, talking
into account the fact that a single worm can delay an-
other worm at most 2k − 1 steps, can reduce the time
complexity to O(kn4).

Variations of Algorithm Off-line_mesh_routing

Several versions of AlgorithmOff-line_mesh_rout-
ing are possible and will produce similar results. What
we presented is a very general version of it. We can
refine the algorithm by specifying an order in which
the worms will be routed. The arbitrary order used
in the presentation resulted in an optimal algorithm.
So any other ordering might only reduce the constant
factor hidden in thebig-Ohnotation. Whenk = 1 the
presented algorithm results in a routing schedule of
4n − 4 steps. If the worms (or packets, since they
have only 1 flit) are routed in a lexicographical order
with respect to the pair(hor,vert) wherehor is the
horizontal distance they have to travel andvert is the
vertical one, a routing schedule of 3n−3 steps will be
produced (see [7] for details).

4. Conclusions

In this research note, we described an algorithm for
off-line deflection worm routing of permutations in an
n× n mesh in O(kn)-steps, wherek is the number of
flits in each worm. Even though the algorithm obeys

the rules of deflection routing, it can be considered an
“extreme” case of a deflection routing algorithm. This
is because the presented algorithm avoids queuing
by scheduling the time that each worm is sent on.
However, the result of this paper suggests that it might
be possible to get the same (optimal) performance with
an on-line algorithm. Designing such an algorithm is
an open problem.

References

[1] A. Bar-Noy, P. Raghavan, B. Schieber, H. Tamaki, Fast deflec-
tion routing for packets and worms, in: Proc. 12th Annual ACM
Symposium on Principles of Distributed Computing (PODC
93), Ithaca, NY, August 1993, pp. 75–86.

[2] F. Makedon, A. Symvonis, Optimal algorithms for the many-to-
one routing problem on two-dimensional meshes, Microproces-
sors and Microsystems 17 (6) (1993) 361–367.

[3] Newman, Schuster, Hot potato worm routing via store-and-
forward packet routing, J. Parallel Distributed Comput. 30 (1)
(1995) 76–84.

[4] C.P. Schnorr, A. Shamir, An optimal sorting algorithm for mesh
connected computers, in: Proc. 18th Annual ACM Symposium
on Theory of Computing, Berkeley, CA, ACM Press, New York,
1986, pp. 255–263.

[5] J.F. Sibeyn, M. Kaufmann, Deterministic 1− k routing on
meshes, in: P. Enjalbert , E.W. Mayr, K.W. Wagner (Eds.),
Proc. 11th Annual Symposium on Theoretical Aspects of
Computer Science, STACS 94 (Caen, France, February 1994),
Lecture Notes in Comput. Sci., Vol. 775, Springer, Berlin, 1994,
pp. 237–248.

[6] A. Symvonis, Optimal algorithms for packet routing on trees, in:
Proc. 6th International Conference on Computing and Informa-
tion (ICCI’94), Peterborough, Ontario, May 1994, pp. 144–161.
Also TR 471, Basser Department of Computer Science, Univer-
sity of Sydney, September 1993.

[7] A. Symvonis, J. Tidswell, An empirical study of off-line
permutation packet routing on 2-dimensional meshes based on
the multistage routing method, IEEE Trans. Comput. 45 (5)
(1996) 619–625.

[8] M. Tompa, Lecture notes on message routing in parallel ma-
chines, Technical Report 94-06-05, Department of Computer
Science and Engineering, University of Washington, June 1994.

