
A General Method for De
ection Worm Routing on

Meshes Based on Packet Routing Algorithms

Alan Roberts, Antonios Symvonis,

Abstract| In this paper, we consider the de
ection worm
routing problem on n � n meshes. In de
ection routing a
message cannot be queued and it is always moving until it
reaches its destination. In worm routing, the message is
considered to be a worm; a sequence of k 
its which, during
the routing, follow the head of the worm which knows the
destination address. We show how to derive a de
ection
worm routing algorithm from a packet routing algorithm
which uses queues of size O(f(N)) (N is the side-length of
the mesh in which the packet routing algorithm is applied).
Our result generalises the method of Newman and Schuster
in which only packet routing algorithms with a maximum
queue of 4 packets can be used.
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I. Introduction

Routing messages between the processors of a parallel ma-

chine is a crucial task which directly a�ects the performance

of the machine. As a consequence, a huge amount of e�ort

has been devoted to the development of e�cient routing algo-

rithms. Usually, the parallel machine (or better, the underly-

ing interconnection network) is represented as a directed graph

where nodes represent the processors and directed edges repre-

sent unidirectional communication links. Some times undirected

graphs are used as well, with the understanding that each undi-

rected edge represents a bidirectional communication link. In

the rest of the paper, we assume that the processors operate in

a synchronous mode and that they are able to simultaneously

transmit and receive along all of their communication links.

Message routing has been abstracted in several ways. In

packet routing it is assumed that a message can be transmitted

between two adjacent processors in a single step as a packet. If

packets can be stored in intermediate nodes during the trip from

their origin to their destination, the routing model is referred as

store-and-forward. In a di�erent model known as de
ection (or

hot-potato) routing, packets continuously move between proces-

sors from the time they are injected into the network until the

time they are consumed at their destination.

The advantage of de
ection routing over the store-and-

forward model is obvious. No queueing area is required at the

processors. However, the fact that packets always move implies

that at any step each processor must transmit the packets it re-

ceived during the previous step (unless some packets reach the

processor they are destined for). As a result, several packets

might be derouted away from their destination. This makes the

analysis extremely di�cult. Consequently, even though de
ec-

tion routing algorithms have been around for several years [2],

most of the research focuses on the store-and-forward model.

The assumption that a whole message can be transmitted in

a single step between adjacent processors is not a very realistic

one, especially when the messages are long. It is more natural to

assume that the amount of information that can be transmitted
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between processors in a single step is a hardware dependent

variable (the width of the communication channel). This leads

to the modelling of a message as a worm; a sequence of 
its,

each of size equal to the width of the communication channel, in

which only the �rst 
it knows the destination address. During

the routing of a worm, all routing decisions are made by the

processors which hold the head of the worm. The rest of the 
its

(the body of the worm) simply follow the path of the head. When

the worms are allowed to be queued at intermediate processors

waiting for the release of a communication link, we say that

routing is performed according to the store-and-forward worm

routing model. When queueing is not allowed, the de
ection

worm routing model is used. In this paper, we assume that

each worm consists of k 
its, that is, all worms are of equal size.

If at most h1 packets (worms) originate from any processor,

and, at most h2 packets (worms) are destined for any processor,

then we say that we have an (h1; h2) routing problem. When

h1 = 1 and h2 > 1 we have a many-to-one routing problem

(many processors send packets (worms) to one processor), when

h1 > 1 and h2 = 1 we have a one-to-many routing problem (one

processor sends packets (worms) to many processors), and when

h1 = h2 = 1 we have the permutation routing problem.

In the limited space available, it is almost impossible to pro-

vide a complete set of references on di�erent routing models and

on routing algorithms for these models on di�erent interconnec-

tion networks. For this reason, we only provide references that

are necessary for the development/understanding of the results

in this paper. We refer readers interested in the area of routing

to Leighton's book [6], to Tompa's lecture notes [16] and to the

survey article on methods for message routing [7].

In this paper, we concentrate on de
ection worm rout-

ing on n � n meshes. De
ection worm routing on meshes

was �rst examined by Bar-Noy, Schieber, Raghavan and

Tamaki [1]. They studied permutation routing and presented

O(k2:5n2O(
p

log n log log n))-step and O(kn1:5)-step deterministic

and O(kn)-step randomised algorithms. Newman and Schus-

ter [10] described a method to obtain de
ection worm rout-

ing algorithms based on store-and-forward packet routing al-

gorithms. Their method was general enough to work for any

routing patterns, not only permutations. However, the packet

routing algorithms used in their method were restricted to use

queues of at most four packets per processor. By employing

the sorting algorithm of Schnorr and Shamir [13] they obtained

an O(k2:5n)-step de
ection worm routing algorithm for rout-

ing permutations. They also presented an O(k1:5n)-step o�-

line algorithm. Newman and Schuster also observed that better

results for routing permutations could be obtained if fast al-

gorithms for 1 � h routing [9], [14] or h � h routing [14] were

available. Sibyen and Kaufmann [14] used such algorithms to

derive an O(k1:5n)-step deterministic de
ection worm routing

algorithm for permutations. Finally, Roberts and Symvonis [12]

developed an O(kn)-step deterministic o�-line algorithm based

on the multistage o�-line routing method [15].

Even though the method of Newman and Schuster [10] is

e�ective in deriving de
ection worm routing algorithms from

store-and-forward packet routing algorithms, it has a major



drawback. Only packet routing algorithms which use queues of

at most 4 packets per node can be used. In this paper, we gen-

eralise their method to allow it to use packet routing algorithms

of queue-size f(N), where f(N) is a function of the side-length

N of the mesh in which the packet routing algorithm is applied.

The use of packet routing algorithms of queue-size f(N) results

to worm routing algorithms for k-
it worms on n � n meshes

which terminate after O((f(N)k)2:5n) steps, where N satis�es

N = np
(f(N)+4)k+1

and 1 � k � �
n2

f(N)
, for a small positive

constant �.

Despite being a theoretical result which proves that the re-

striction placed on the queue size of the simulated packet rout-

ing algorithm is unnecessary, the result increases the number of

candidate packet routing algorithms that can be used in deriving

de
ection worm routing algorithms (for example, the algorithms

in [4], [5], [8], [9], [11]) and also leads to simpler de
ection worm

routing algorithms since the packet routing algorithms which

use queues of at most 4 packets are, in general, more compli-

cated than those which use larger queues.

The paper is organised as follows: In Section 2, we give a

high-level description of the routing algorithm. The algorithm

partitions the n� n mesh into groups of processors that are re-

ferred as supernodes. In Section 3, we describe the operational

structure of each supernode, i.e., the special role that each pro-

cessor of the supernode plays during the routing. In Section 4,

we describe how a single routing step of the packet routing al-

gorithm is simulated by the processors of the n�n mesh which

operate in the worm de
ection routing model. We conclude in

Section 5.

II. A High-Level Description of the Routing

Algorithm

For the purposes of this section and in order to facilitate the

task of drawing �gures, the n � n mesh Mn will be considered

to be an undirected graph with edges capable of simultaneous

transmission along both directions. We construct an e�cient

k-worm routing algorithm by treating each worm as though it

were a packet and by simulating the operations of a packet

routing algorithm. Let A(N) be the packet routing algorithm

(operating on MN ) of which the operations we intent to simu-

late. We assume that A(N) completes the routing within tA(N)

steps and uses queues of size f(N) packets. Algorithm A(N)

is suitable for our method if the following assumption regarding

the routing model is satis�ed.

Assumption 1: On any given step all decisions regarding the

movement of any packet are made locally by the node that cur-

rently stores the packet without considering the contents of any

other node.

In the original work of Newman and Schuster [10], any suit-

able for simulation packet routing algorithm A(N) had to also

satisfy:

Assumption 2: A(N) uses a queue-size of at most 4 packets.

Relaxing Assumption 2 results in an increase in the number of

packet routing algorithms which are suitable for simulation. As

we show, an O((f(N)k)2:5n)-step algorithm can be derived from

an O(N)-step packet routing algorithm which requires queue of

size at most f(N) packets and satis�es Assumption 1.

A. The Algorithm

For simplicity of exposition, we consider only the case where

we have to route a permutation. As it is pointed out in the

closing section of the paper, the algorithm is able to handle

any routing pattern, provided that a suitable packet routing

algorithm exists.

Let A(N) be a permutation packet routing algorithm which

satis�es Assumption 1 and uses queues of size at most

f(N) < n packets. Choose N such that it satis�es N =

n=(
p

(f(N) + 4)k + 1). Without loss of generality, we assume

that n, N , f(N),
p
f(N) + 4, k, and

p
k are integers. In ad-

dition, we assume that k is even. Note that this immediately

implies that
p

(f(N) + 4)k is even1.

For the purposes of the algorithm, we treat the n � n mesh

as an N �N mesh of supernodes; each supernode being a sub-

mesh of size (
p

(f(N) + 4)k + 1) � (
p

(f(N) + 4)k + 1). The

rows and columns inside each supernode are numbered from 0

to
p

(f(N) + 4)k in the same way that the overall mesh is.

The algorithm then consists of (
p

(f(N) + 4)k+ 1)4 rounds.

During the (i; j; k; l)-th round, 0 � i; j; k; l �
p

(f(N) + 4)k+1,

we route all worms that originate at node (i; j) of a supernode

and are destined for node (k; l) of some supernode. Accordingly,

since we consider permutations, at the beginning of each round,

there is at most one worm generated inside each supernode and

at most one worm is destined for every supernode. Each worm is

treated as though it were a packet. Decisions on sending worms

from one supernode to another are made using a packet routing

algorithm. The supernodes act like an N � N mesh of nodes

with respect to this packet routing algorithm. Each supernode

has a queue size of at most f(N) packets.

Each step of the packet routing algorithm is simulated by

an underlying algorithm that determines the way in which the

worms are moved about. From now on, we refer to a step of the

packet routing algorithm as a superstep. Each round proceeds

\superstep" by \superstep" until all worms have arrived at their

destinations. The algorithm proceeds \round" by \round" until

the whole permutation has been routed.

The high level description of the algorithm is identical to

that of Newman and Schuster [10]. However, since we allow the

use of a larger class of packet routing algorithms, we have to

modify the structure of the supernode and to drastically re�ne

the simulation of the superstep.

III. The Operational Structure of a Supernode

The layout of the sub-meshes that are used to simulate su-

pernodes participating in the packet routing algorithms is shown

in Figure 1. Each sub-mesh contains several regions of impor-

tance. Below we give a description of their function by showing

how they �t into the simulation of the packet routing algorithm.

In the next section, we describe each of the phases of the simu-

lation in detail.

Each sub-mesh is divided into quarters by the
1

2

p
(f(N) + 4)k column and the

1

2

p
(f(N) + 4)k row of processors. We refer to these as the

vertical and horizontal lanes. There are two command proces-

sors positioned on the vertical lane. These processors make

the routing decisions of the supernode that is being simulated

by the sub-mesh. The top command processor has coordinates

( 1
2

p
(f(N) + 4)k; 1

2

p
(f(N) + 4)k� 1), the bottom one has co-

ordinates ( 1
2

p
(f(N) + 4)k; 1

2

p
(f(N) + 4)k + 1). During the

simulation, both of these command processors are aware of the

packet routing algorithm that is simulated and thus, if they both

see the same data, they can make decisions which are in
uenced

by their position in the sub-mesh but are not in con
ict with

the decision of the other command processor. The usefulness of

1We can always satisfy these requirements by modifying k; f(N); n

in a way such that the correctness of the algorithm and the asymptotic
analysis are not a�ected.
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Fig. 1. The sub-mesh that is used to simulate a supernode with respect to the packet routing algorithm A(n). Each bu�er stores a single
worm of length k.

this property will become evident during the description of the

superstep simulation.

Within a supernode there are two main storage areas. One in

each half of the sub-mesh. Within these areas worms are stored

head to tail, forming a snake2 that covers the storage area as

shown in Figure 1. Each snake can store up to 1

2
f(N) worms.

The snakes simulate the queue of packets within a supernode.

There are several times during the simulation of a superstep

that it is necessary for the command processors to consider all

of the worms stored within a supernode. This is done by si-

multaneously moving the snakes of each storage area along a

cycle that passes through the command processors. The cycle

of the left storage snake begins at its start position at the bot-

tom row of the sub-mesh, as shown in Figure 1. From there, it

moves out up the vertical lane, through the command proces-

sors, and back into the storage area through the tail position

shown. The cycle of the right storage snake is the same except

that it moves in the opposite direction, down the vertical lane.

It takes exactly 1

2
f(N)k+

p
(f(N) + 4)k steps to complete one

cycle. Note that because the algorithm is a de
ection algorithm,

the storage snakes are always cycling around (we show how this

is done in the next section). At various times during the exe-

cution of the algorithm the storage snakes may contain gaps or

may even be empty. However, for the purposes of timing the

di�erent phases we always consider the head and tail positions

of the storage snakes to be where they would be if the snake

were full.

Transmission and reception of packets to and from neighbour-

ing supernodes can occur on any given superstep of the packet

2There must exist a better term. Train might be a more appropri-
ate term, but, in that case, worms must be renamed to \waggons" and,
unfortunately, waggons are not as 
exible as worms....

routing algorithm. To facilitate this, each supernode contains

four bu�ers. Each bu�er is capable of storing a single worm of

k 
its and there is one bu�er for each of the four directions that

the simulated supernode can communicate in. Each bu�er is

designed to transmit in the direction of its arrow, as shown in

Figure 1. Transmission occurs along the vertical and horizontal

lanes of processors. Prior to transmission, the worms which cor-

respond to the packets that are to be transmitted on the next

superstep of the routing, are selected from the storage areas

and placed in the bu�ers. Once this has occurred, the worms

then proceed from each bu�er to the corresponding bu�er in

the neighbouring sub-meshes, using the vertical and horizontal

lanes. After the outgoing worms have been transmitted from

a supernode, incoming worms are stored in the bu�ers. The

so-called head processor of each bu�er is used to store the time

that the bu�er should transmit its worm. When the time comes

for a worm to leave its bu�er it does so by taking a right hand

turn at the head processor of the bu�er and then proceeding in

the direction of its arrow, as shown in Figure 1.

In order to make the algorithm function with even k, it is nec-

essary to make the communication phase take an even number

of time steps. To achieve this, it is necessary to have two types

of bu�ers. Sub-meshes whose center processor has an odd sum

of coordinates have odd bu�ers while sub-meshes whose center

processor has an even sum coordinates have even bu�ers. See

Figure 2. (Notice also the position of the head processor in odd

and even bu�ers.) As a consequence of this, it is also neces-

sary to keep the storage snake cycles of even supernodes3 one

step ahead of those of odd supernodes. Justi�cation for these

distinctions is given when the transmission of a worm from a

supernode is described.

3An even (odd) supernode is one with an even (odd) bu�er.
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Fig. 2. The bu�ers that are used to store incoming and outgoing worms. Figure (a) shows the bu�ers in an even sub-mesh. Figure (b) shows
the bu�ers in an odd sub-mesh. The large white circle at the end of each worm's head represents the head processor of each bu�er.

IV. The Simulation of a Superstep

Each superstep simulates the operation of a processor (i.e., a

supernode) during a single step of the packet routing algorithm.

An invariant of the simulation is that at the beginning of each

superstep the bu�ers of a supernode are empty. This simply

means that all packets currently at the supernode are held in

the storage areas. Assuming that the precondition holds, a su-

perstep can be considered to be a sequence of the following

phases:
A Superstep

� Output selection phase: We select from the stored
worms the ones to be transmitted.

� Extraction phase: We extract the selected worms from
the storage snakes, and we place them in the appropri-
ate bu�ers.

� Transmission phase: We transmit the bu�ered worms
to the neighbouring sub-meshes where they are, again,
temporarily bu�ered.

� Queueing phase: We store the worms that have just
arrived during the transmission phase and place them
into the storage snakes.

� Consumption phase: We consume the worms that have
arrived at their destination sub-meshes (if any).

At the beginning of each round, we �rst generate, and then

we place in the storage snakes the worms that are to be routed.

This gives rise to another phase, the creation phase which we

describe �rst.

A. Creation Phase

Packets are created on the �rst step of a round. The creation

of a packet within a supernode is simulated by the creation and

positioning of a worm within the corresponding sub-mesh. At

the beginning of a round all packets from the previous round

have arrived at their destinations and have been absorbed. Ac-

cordingly, a sub-mesh is empty when a worm is created in it.

When a worm is created, it moves to the starting position

(Figure 1) of the storage area that is nearest its birth place

(origin processor). In doing so, it becomes the �rst worm of

a snake for that storage area. Since all worms are created in

the same processor within each sub-mesh, all worms reach the

starting position at the same time. In the next phase these

newly created worms are placed in the bu�ers in order to prepare

for transmission. In even sub-meshes this takes one step longer

than in odd sub-meshes. In order to synchronise transmissions

from all sub-meshes we therefore create worms in even sub-

meshes one step earlier than we do in odd sub-meshes. The

consequence of this is that the snake cycles of even sub-meshes

are one step ahead of those of odd sub-meshes. This remains an

invariant during all of the phases of the simulation and in fact,

throughout the entire algorithm.

The distance that newly created worms have to travel in

order to reach their prescribed starting position is O(k +p
(f(N) + 4)k). The time cost for this phase is therefore

O(k +
p
f(N)k).

B. Output Selection Phase

At the beginning of any given superstep, a supernode may

have several packets in its queue. The supernode decides which

(if any) of these to transmit to neighbouring supernodes. This

process is simulated by selecting worms from the storage snakes

of a sub-mesh. In order to decide which worms to transmit

during the current superstep of the routing, the command pro-

cessors must review all of the worms within a sub-mesh. This

is done by moving the snake of each storage area along a cy-

cle that passes through the command processors, as described

previously. Once this cycle is completed, all worms have passed

through the command processors. By this time the command

processors have decided which worms (if any) are to be transmit-

ted on the next step of the simulated packet routing algorithm.

The output selection phases ends once the cycle of the stor-

age snakes is completed. The total time taken to complete the

output selection phase is therefore O(f(N)k).

C. Extraction Phase

Once the output selection phase is complete, the chosen

worms must be extracted into the bu�ers in order to transmit

them. This is accomplished during the extraction phase. The

storage snakes cycle around again, and the chosen worms are

extracted into the bu�ers by the command processors. Worms

that have to go to either of the top two bu�ers are extracted by

the top command processor. Worms that have to go to either of

the bottom two bu�ers are extracted by the bottom command

processor. When a worm is extracted from a vertical lane into

a bu�er on its right (left), it takes a right (left) turn at the

relevant command processor and proceeds directly to its right

(left) curling itself up into the bu�er. Extraction of a worm into

an even bu�er (see Figure 2) takes k+ 1 steps, whereas extrac-

tion into an odd bu�er takes k steps. Since the snakes cycles of

even sub-meshes are one step ahead of the odd sub-meshes, this

ensures that the di�erence in bu�ering times does not cause a



synchronisation problem.

After a worm has been extracted from a snake, the snake

continues to cycle around. It may be some time before all of the

worms have been extracted and transmission is ready to occur.

In order to preserve the de
ection property of the algorithm,

extracted worms are therefore made to cycle inside the bu�ers

until transmission is ready to occur. To complete a bu�er-cycle,

the worm's head simply follows the worm's tail around until the

worm is back at its starting position again. Each such cycle

takes exactly k steps.

Observe that if we simply extract the worms directly from the

snakes, there is a problem. Any worm extracted from a snake

and moved to one of the bottom bu�ers is two steps out of phase

with a worm extracted from the same snake and moved to one

of the top bu�ers. This problem is solved as follows: When a

worm is extracted from the left snake and moved to one of the

bottom bu�ers, an additional delay of two steps is added using

the method delineated in Figure 3. Similarly, when a worm is

extracted from the right snake and moved to one of the top

bu�ers an additional delay of two steps is added. In this way

all bu�er cycles are synchronised.

Fig. 3. A 2 step delay. Many such delays can be executed, one for
each processor along the path of a worm. In this way it is possible
to produce even delays of any length, limited only by the length
of the path.

In the queueing phase which occurs later, it is necessary to

place incoming packets into the queues of each supernode. This

is simulated by placing incoming worms into the storage snakes.

To do this in a satisfactory way, it is necessary to guarantee that

there are at least two worm-sized gaps in each storage snake

after the extraction phase has ended. This is accomplished by

having the storage snakes cycle another time in this phase.

Assumption 1 implies that on any superstep each supernode

must have room for at least four new packets. A direct conse-

quence of this is that there always are at least four worm-sized

gaps somewhere in the storage snakes of a sub-mesh. If there

are less than two gaps in one particular snake then there are

more than two in the other one. Consider the processor that is

at the center of the sub-mesh. As the snakes cycle around, they

pass through it in opposite directions. Eventually there is a gap

on one side of it but not on the other. When this occurs, the

worm that is entering the processor from one side is re
ected

backwards, �lling the gap that is entering the processor from

the other side. In this way we take gaps away from one snake

and put them into the other one. This process continues until

both snakes have at least two gaps in them. This is certain to

be the case once this second cycle of the storage snakes is over.

When incoming worms are inserted into the snakes during

the queueing phase, it is necessary for the head processors of

the bu�ers (Figure 2) to know when to send their worms out

into the vertical lane in order to �t them into a gap. As soon

as both snakes have at least two gaps in them, the command

processors assign two of the gaps in the left snake to the bottom

bu�ers, one each. In the same way, two of the gaps in the right

snake are assigned to the top bu�ers, one each. Information

about each of the assigned gaps is then sent to each bu�er by

the command processor closest to it.

The extraction phase ends when transmission is ready to oc-

cur. Transmission from the top bu�ers cannot occur until the

tail of the left storage snake is at or above the top command

processor. Transmission also cannot occur unless the bu�ered

worms are in their starting position, as shown in Figure 2. Fig-

ure 4 shows the positions of the snake tails when transmission

is ready to occur from the top bu�ers of a sub-mesh. The �gure

shows both the \odd" and \even" cases. Note that the bot-

tom bu�ers of a sub-mesh transmit at the same time as the

top ones. The snakes of a sub-mesh always reach the position

shown in Figure 4, before completing the second cycle of the

extraction phase. The extraction phase is therefore completed

in O(f(N)k) steps.

D. Transmission Phase

Once the extraction phase has ended, the chosen packets are

transmitted from each supernode to the neighbouring supern-

odes. To simulate this, the worms contained in the bu�ers si-

multaneously move down the lanes that are anti-clockwise ad-

jacent to them, in the directions shown in Figure 1. Each worm

continues to move down its designated lane until it is level with

the entry point of the �rst bu�er on its right. It then takes a

right hand turn and moves into this bu�er through the entry

point. These entry points are the circled processors shown in

Figure 4.

As promised earlier, we now explain why it is necessary to

have odd and even bu�ers. On any superstep it may be neces-

sary to keep some packets queued up in a supernode until the

next superstep. As explained previously this is simulated by

cycling the storage snakes. Recall that k is even. It is therefore

necessary to make the travel time between sub-meshes take an

even number of steps. If we did not, the transmitted worms

would be out of phase with the storage snakes of their target

sub-mesh and it might then become impossible to insert them

for storage.

If a worm originates in an odd bu�er, its destination bu�er is

even. As it stands, it takes such a worm k+
p

(f(N) + 4)k� 2

steps to reach the destination bu�er and be stored in there.

On the other hand, if a worm originates in an even bu�er, its

destination bu�er is odd. In that case, transmission takes k +p
(f(N) + 4)k steps.

The algorithm is a de
ection algorithm. Accordingly, during

the time that this communication is taking place, we need to

keep the storage snakes of each sub-mesh moving. We also need

to make sure that the storage snakes do not block any worms

that are being transmitted along the vertical/horizontal lanes.

It is therefore necessary to add a delay to the extraction cycle

using the method shown in Figure 3. Note that the addition of

this delay will not a�ect the extraction phase in any way.

As we have just found out, it takes k+
p

(f(N) + 4)k steps to

complete transmission of worms from even to odd sub-meshes

and k+
p

(f(N) + 4)k� 2 steps for transmissions from odd to

even sub-meshes. The situation which occurs when a a worm is

about to cross from one sub-mesh into another via the vertical

lane is as shown in Figure 5 (the transmission via a horizontal

lane is similar). We now explain why the situation described in

Figure 5 is accurate. To understand the explanation, it is impor-

tant to refer to Figures 1 and 4. We only consider transmission

in the upwards direction as transmission in the downwards di-

rection is symmetrical. In any sub-mesh, the worm which is

transmitted in the upwards direction comes from the top right
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Fig. 4. The positions of the left and right storage snake tails when the top bu�ers are ready to transmit. The �gure also shows the entry
points (white circles) through which worms enter the bu�ers at the end of the transmission phase. Figure (a) shows the bu�ers of even
supernodes. Figure (b) shows the bu�ers of odd supernodes.
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Fig. 5. The snake positions in origin and destination sub-meshes relative to a worm moving up the vertical lane. Figure (a) shows the
\even-to-odd" case. Figure (b) shows the \odd-to-even" case. The horizontal dashed line indicates the border between one sub-mesh and
the next. The vertical dashed lines are there to indicate the vertical lane. As can be seen, a delay must be added to the snake cycles in
order to prevent a collision.

bu�er and so it is this bu�er that we now consider for the pur-

pose of our explanation. As shown in Figure 4 the head of the

top right bu�ered worm in an even sub-mesh is three proces-

sors behind the tail position of the left hand storage snake when

transmission is ready to occur. The head of the worm which is

being transmitted upwards therefore follows the tail of the left

hand storage snake as it moves up the vertical lane, at a distance

of three processors behind it. Finally, noting that the storage

snake cycles of even sub-meshes are one step ahead of the cycles

of odd sub-meshes, we conclude that the situation is as shown

for the \even-to-odd" case. Similar reasoning may be applied

to the \odd-to-even" case. This concludes the explanation.

In order to prevent the blocking of transmission and ensure

that the snakes are in the correct position to receive incom-

ing worms that are to be stored in the supernode's queue once

transmission has occurred (the queueing phase), a delay of k+4

steps is added to the extraction cycle of all sub-meshes using the

technique of Figure 3. Figure 6 shows the situation of Figure 5,

after this delay have been added. Also, a two step delay is added

during the bu�ering of all incoming worms in even sub-meshes.

This delay will be justi�ed in the subsection that describes the

queueing phase. The important thing to state here is that the

k+4 step delay which gives us the situation of Figure 6 ensures

that the head of the left hand storage snake of the sub-mesh

which was the destination of the transmission is exactly three

processors away from the tail of the newly bu�ered worms when

transmission is complete.

E. Queueing Phase

Once the transmitted worms have arrived in a supernode,

they must be stored in its queue. This is simulated by the

insertion of the received worms from the bu�ers into the storage

snakes. In the output selection phase we guaranteed that each

storage snake would have at least two worm-sized gaps in it. It
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is into these gaps that we now insert the transmitted worms.

During the output selection phase, one gap was assigned to

each bu�er. The storage snakes now come around for another

cycle. As the gaps in the snakes pass by the bu�ers, the worms

are inserted into the gaps via the command processors. Any

one of these bu�ered worms may have to wait for some time

before the gap assigned to its bu�er has come around. Accord-

ingly, worms cycle inside their bu�ers until their gap becomes

available. Any worms that are in the bottom two bu�ers are

inserted into gaps in the left storage snake. Any worms that

are in the top two bu�ers are inserted into gaps in the right

storage snake. Due to the actions taken in the output selection

phase, each snake is guaranteed to have at least two gaps in

it, ensuring that there always are enough gaps available to do

insertions in this way. In order to insert a worm into one of the

storage snakes, its gap must reach the command processor at

the exact same time that the worm does.The delays mentioned

at the end of the last section ensure that the head of a bu�ered

worm and the head of the snake into which it is to be stored are

equidistant from the relevant command processor. In the case

of even bu�ers this distance is 2 processors while, in the case of

odd bu�ers this distance is 3 processors. This is exactly right

considering that the storage snakes of even supernodes are one

step ahead of the storage snakes of odd supernodes. All worms

are inserted into storage once the snakes have completed their

queueing cycle. The queueing phase is therefore completed in

O(f(N)k) steps.

F. Consumption Phase

Once the queueing phase has been completed, it is possible

that some worms may have reached their destination supern-

odes. Such worms must be consumed. The worm's target pro-

cessor may lie anywhere within the sub-mesh. At the end of the

queueing phase the bu�ers are empty and all worms are stored

inside the storage snakes. The snakes then begin a death cycle

as shown in Figure 7. If a worm has a target processor that lies

on the path of the cycle, it will be absorbed as the cycle goes

around. Worms that have targets which lie in the bu�ers or the

lanes, will be sent there by the appropriate white circled pro-

cessors. Each white circled processor is responsible for sending

worms to a particular region. There is one white circled pro-

cessor for each bu�er and two for each lane, one at each end. If

a worm has to go to one of these places, it will be drawn out

of the cycle by the �rst white circled processor it meets that is

assigned to its target region, as the cycle passes through.

The death cycle takes f(N)k + 4 steps to complete. At

the end of the death cycle it is possible that the absorption

of some worms may not have �nished yet. To take account of

this fact and to ensure synchronisation, the storage snakes must

be delayed by a small number (O(k)) of extra steps using the

method of Figure 3. We conclude that the absorption phase

takes O(f(N)k) steps to complete.

From the above discussion, it is obvious that a superstep can

be simulated by O(f(N)k) steps of the de
ection worm routing

algorithm. This leads to the following theorem:

Theorem 1: Let A(N) be an O(N)-step permutation packet

routing algorithm for MN which uses queues of size f(N) and

satis�es Assumption 1. Then there is a permutation de
ection

worm routing algorithm dA(n) forMn, which routes k-
it worms

in O((f(N)k)2:5n) steps, where N satis�es N = np
(f(N)+4)k+1

and 1 � k � �
n2

f(N)
, for a small positive constant �.

Proof: The algorithm presented in the previous section

requires (
p

(f(N) + 4)k + 1)4 rounds to complete. In each

round, a complete run of the packet routing algorithm A(N)

is simulated on an N � N mesh of supernodes where each su-

pernode is simulated by a sub-mesh. Each superstep of the

routing that takes place during a round is simulated by a �xed

number of di�erent phases. As we have seen, no phase requires

more that O(f(N)k) steps to complete. Each round is therefore

completed in O(f(N)kN) steps. The whole algorithm therefore

takes O((
p

(f(N) + 4)k+1)4f(N)kN) = O((f(N)k)2:5n) steps

to complete.

An upper bound on the worm-size must be placed for the
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Fig. 7. The death cycle of the worms within a sub-mesh. The cycle passes completely through both storage areas. Any worm that has a
target processor in the sub-mesh which does not lie on the cycle will be sent to its target by the appropriate white circled processor.

bound on the number of routing steps to be valid. It can be

easily seen that 1 � k � �
n2

f(N)
, for a small positive constant �,

must hold.

V. Discussion

In this paper, we generalised the method of Newman and

Schuster [10] for obtaining de
ection worm routing algorithms

on two-dimensional meshes by simulating known packet routing

algorithms. We achieved this by relaxing the requirement that

the simulated packet routing algorithm uses queues of at most 4

packet. Note that the proposed algorithm is not restricted only

to permutations. It is equally valid to use the same simulation to

perform other kinds of routing. However, special consideration

must be taken for the generation of the worms at the beginning

of each round and for the consumption of worms that reach their

destination supernode. Since we have explained how to consume

worms that arrive at their destination supernode, many-to-one

routing problems can be easily solved. One-to-many routing

problems can also be solved provided that we know how to store

the worms that are to be routed into the storage snakes.

When we evaluate routing algorithms we usually focus on

the resources used, that is, the number of routing steps and

the queue size. One important aspect of the algorithms which

is underestimated is their simplicity. The literature of routing

algorithms is full of complex optimal algorithms (even with re-

spect to the constants hidden in the big-Oh notation) and small

queues. However, most of them are treated as impractical due

to their complicated logic. It is obvious, that these algorithms

cannot be used in simulations. On the other side, there are

several near optimal algorithms that are extremely simple. For

permutation routing, the algorithm of Han and Stanat [3] (in

one of its versions) terminates after 5:5n routing steps (1:5n

steps move information between adjacent processors consisting

only of one integer) and uses queues of at most 5 packets per

node. For many-to-one routing, the algorithm of Makedon and

Symvonis [9] requires 2n
p
m+ o(n) routing steps and queues of

at most 16 packets per node, where m is the maximum number

of packets destined for a single node (the queue size can be fur-

ther reduced but this will require a more complicated control

structure). Both of the above algorithms appear to be inferior

(within a constant factor) to existing algorithms. The algorithm

of Han and Stanat [3] uses more routing steps that the optimum

2n-2 which was achieved in [8] and [11], and smaller queues. The

algorithm of Makedon and Symvonis [9] uses larger queues (16

packets) compared to the algorithm of [14] which uses queues

of 4 packets per node. However, both of the above mentioned

algorithms are extremely simple and should be preferred in sim-

ulations.

We close by noting that the result presented in this paper as

well as in the paper of Newman and Schuster [10] are unlikely to

lead to e�cient implementations of worm de
ection routing al-

gorithms. Rather, they demonstrate the existence of fast worm

de
ection algorithms. Further research must focus on practi-

cal algorithms. The indication from this paper and from [10]

and [12] is that such algorithms exist.
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