
Information
Processing
Letters

Information Processing Letters 57 (1996) 215-223

Routing on trees
Antonios Symvonis ’

Basser Department of Computer Science, University of Sydney, Sydney, N.S.W 2006, Australia

Received 1 February 1995; revised I October 1995
Communicated by R.G. Dromey

Abstract

In this paper, we study the permutation packet routing problem on trees. We show that every permutation can be routed

on a tree of n vertices in n - 1 routing steps. We provide two algorithms that produce such routing schedules. The first
algorithm builds in O(n’) time a schedule that needs 0(n’) bits for its description while the second one produces in 0(n”)
time a schedule that can be described with 0(n log n) bits.

Keywords: Algorithms; Off-line routing; Permutation; Routing number; Routing model; Trees

1. Introduction

The permutation packet routing problem on a con-
nected undirected graph is the following: We are given
a graph G = (YE) and a permutation 7r of the ver-
tices of G. Every vertex u of G contains a packet des-
tined for r(u). Our task is to route all packets to their
destinations.

During the routing, the movement of the packets
follows a set of rules. These rules specify the routing

model. Routing models might differ on the way edges
are treated (unidirectional, bidirectional), the number
of packets a vertex can receive (transmit) in a single
step, the number of packets that are allowed to queue
in a vertex (queue-size), etc. Usually, routing models
are described informally.

Let rtu (G, 7r) be the number of steps required to
route permutation T on graph G by using routing
model M. The routing number of graph G with respect
to routing model M, rtM(G), is defined to be

’ Email. symvonis@cs.su.oz.au.

over all permutations 7~ of the vertex set V of G.
The routing number of a graph was first defined

by Alon, Chung and Graham in [11. In their routing
model, the only operation allowed during the routing
was the exchange of packets at the endpoints of an
edge of graph G. The exchange of packets at the end-
points of a set of disjoint edges (a matching on G)
can occur in one routing step. We refer to this model
as the matching routing model and, for a graph G, we
refer to the routing number of G with respect to the
matching routing model, simply as the routing num-
ber of G, denoted by ti(G) . In [I], it was shown that
rr(T) < 3n for any tree T of n vertices.

A lot of work has been devoted to the study of
packet routing problems (see [41 and the references
therein). As it is natural, several routing models have
been considered. However, most of the papers in the
literature consider model which are quite different than
the unrealistic matching routing model.

In this paper, we will consider a routing model

0020-0190/96/$12.00 @ 1996 Elsevier Science B.V. All rights reserved
SSDf 0020-0190(95)00208-1

216 A. Symvonis/lnformation Processing Leiters 57 (1996) 215-223

which is closely related to the routing models used
in practice. At any time step, all edges can carry at
most one packet in each direction. Moreover, at each
time step, at most d(u) packets can be found in any
vertex u of degree d(u) and no pair of these pack-
ets competes for the same communication link. A dif-
ferent way to describe this restriction is to say that
with each communication link there is an associated
buffer that can hold at most one packet. The routing
schedule has to assure that this buffer is never over-
loaded. In addition, we assume that each node can
store the packet that originates from it (until its trans-
mission) at no extra cost. This is a common assump-
tion in packet routing algorithms. We will refer to this
model as the simpli$ed routing model and we will de-
note the routing number of graph G with respect to it
by rt’(G).

The only previous work on off-line packet rout-
ing which applies to a large class of interconnection
networks is that of Annexstein and Baumslag [2].
They presented a method to solve the permutation off-
line packet routing problem on product graphs. They
proved that if we know how to route off-line any
permutation on graphs G and H (without using any
queues) in at most r(G) and r(H) routing steps, re-
spectively, then we can route off-line any permutation
on the product graph F = G x H in

r(F) =2.min(r(G),r(H)) +max(r(G),r(H))

steps (again, without creating any queues). The
method of Annexstein and Baumslag cannot be used
for routing permutations on trees since trees are not
product graphs.

The rest of the paper is organised as follows: In
Section 2, we give definitions for terms we use in
the paper. In Section 3, we show that r?‘(T) < n
for any tree T = (YE) of n vertices. We achieve
this upper bound by demonstrating an algorithm that
computes a routing schedule of at most 12 - 1 steps for
any permutation over the vertex set of T. The routing
schedule requires 0(n2) bits for its description and is
computed in 0(n2) time. In Section 4, we describe an
algorithm that produces a routing schedule that needs
0(n logn) bits for its description in 0(n3) time. We
conclude in Section 5 with further research that has to
be done in this area.

2. Preliminaries

We assume that the reader is familiar with the stan-
dard graph theory terminology and notation (see [31) .
Given an undirected graph G, we can transform it to a
directed one by substituting each edge (u, u) in E(G)
by the pair of anti-parallel edges (u, u) and (u, u).
We denote the graph produced by the above transfor-
mation by GD. The set Neighbors(u, G) is defined to
be the set of vertices in G that can be reached from u
by crossing just one edge. Formally,

Neighbors(u, G) = {w 1 (u, w) E E of G}.

We define the directed self-loop augmented graph
GsL = (YE’) of G = (V!E) to be the graph with E’ =
EU {e” = (u,u)) u E V}.

A permutation packet routing problem R is defined
to be the pair (G, r) where G = (VE) is the di-
rected graph that represents the network in which the
routing will take place and 7r is the permutation to be
routed. Formally, the set P of) VJ packets to be routed
is defined by P = {p~,pz,.. .,plvl 1 pi = (i,r(i)),
i, r(i) E V, 1 < i 6 [VI}. A more general defini-
tion that incorporates the maximum allowed queue-
size was given in [51. Note that, even though the in-
formal definition of most routing models involves an
undirected graph G with bidirectional communication
links, the corresponding directed graph GD can be used
in the formal definition of the routing problem.

An of-line solution (or routing schedule) of
length L for the off-line packet routing problem R =
(G, 7r) is a set of directed paths SOLUTION(R) =
{dl,dz>. . . , dlvl} where di is the directed path corre-
sponding to packet pt. The paths are taken on graph
GsL, the self-loop augmented graph of G, instead of
G. A self-loop from vertex u in the path of some
packet indicates that the packet was not advanced at
the corresponding routing step. Each directed path
contains at most L + 1 vertices. For i = I,. . . , (V(we
have that

+u?,! u! I I .‘. I’ O<l<L,

where, UP = i and uf = r(i). In order to have a valid
solution for our routing problem, the directed paths
must satisfy the condition: “At any routing step, each
edge that corresponds to an unidirected communica-
tion linkappears in at most one directedpath.” An off-

A. Symvonis/lnformation Processing Letters 57 (1996) 215-223 217

line solution is said to be uninterrupted if no packet
gets delayed once it starts its movement.

In order to describe the solution of a permutation

routing problem we need to specify for each packet the
path it follows during the routing. In the worst case,

a solution of length L can be represented by a two
dimensional matrix SOLUTION of 1 VI rows (one for

each packet) and L + 1 columns (one for each routing

step). SOLUTION[p, t], 0, < t < L, is the vertex

in which packet p is after t routing steps. The space

needed for reporting the solution is 0(1 VI L log 1 VI)
bits. However, in cases in which there is a unique path
between any pair of vertices of the underlying graph

and derouting is not allowed, a path can be determined

simply by knowing if at a given step the packet is

advanced towards its destination. In this case space of
0(j V/ L) bits is sufficient. Furthermore, if it also holds
that the movement of the packets is uninterrupted, then

only the step in which each packet starts its routing

needs to be stored and, thus, 0(IV1 log L) bits are

sufficient for reporting the routing schedule.

Given a tree T, we denote the unique path in T
from vertex K to vertex u by path(u, u). The number

of edges in path(u, u) is denoted by pathsize(u, u).
We assume that, if w is a vertex in path(u, u), we can
determine the vertex that is immediately after w in the

path from u to u in constant time. It is easy to do so

by using a /VI x /VI matrix N such that N[U, u] con-
tains the first vertex (not including u) of puth(u, u).
Of course, some preprocessing is necessary to initial-

ize matrix N and several algorithms for doing so are

available. Obvious choices include shortest path al-

gorithms and tree traversal techniques [31 which can
optimally initialize matrix N in 0(lV12) time. In the

rest of the paper, we assume that the information of

matrix N is available to us.

3. Routing on trees

In this section, we show that rt’(T) < n. We prove

this bound by exhibiting an algorithm that, given a
tree T = (YE) of n vertices and a permutation z-
on T’s vertex set, produces a routing schedule for the
permutation problem (TD, or) of length at most it - 1.
The routing schedule is produced in O(n2) time and
requires O(n2> bits for its description.

3.1. The routing graph

For each vertex u E V we construct the set

S,, = {uU 1 u E Neighbors(u, T)} U {u,,,}

(“con” stands for “consume”). The set VR = &_v S,,
will be the vertex set of an auxiliary directed graph

TR = (VR, ER) which we will use in the algorithm.

We call TR the routing graph. The edge set of the

routing graph will be different at each stage of the off-

line routing algorithm. We denote by Ta = (VR, EF)
the routing graph at stage i. EF is the edge set of qR.

During the course of the routing, we denote by

current(p) the current position of packet p while, by

orig(p) we denote its origin and by d&(p) we de-
note its destination. Since the routing is happening
on a tree, for each packet p, there is a unique sim-

ple path puth(current(p) , dest(p)) from current(p)
to dest(p) . We denote by f(p) the first vertex on this

path (not including current(p)) and by s(p) the sec-

ond one. In the case that s(p) and/or f(p) are not
well defined (puth(current(p), dest(p)) is too short

for s(p) and/or f(p) to have meaning), we assume

that they return the special value “con” (for “con-

sumed”).

To define graph qR = (VR, Ep) we simply have
to specify Er since VR is fixed. Er contains at most

IV1 edges, one for each packet that has not reached

its destination after i routing steps (stages). The edge

that corresponds to packet p, denoted by edge(p), is

defined as follows:

L

(currenr(p)f(,,), ~(P).QI)

edge(p) =
if_f(p) + desr(p),

(current(p)f(t,), f(~h~~)

otherwise.

What we want to represent with each edge is the in-

formation that, if in this routing step packet p travels

through edge (current(p),f(p)) of T, then in the
next step it will compete for edge (f(p) , s(p)) of T.
An example of a routing graph is given in Fig. 1.

The following lemmata follow from the construc-
tion of the routing graph.

Lemma 1. Let VR be the vertex set of the routing
graph constructed from tree T = (YE) . Then, 1 VRI =
31VI - 2.

218

T:

A. Symvonidlnformarion Processing Letiers 57 (1996) 215-223

2

_----
Q

-------- *-
/’ 5
\ 4

5 @ @;;: d/!Yo ---.___ ____---- a-*

__

‘s-6

---.-

-. _-------- -. \
:

‘.
0 6 con ‘)

,’
,’ 7 5 0 7con

I
-._____--* ‘.__ .____- _I’

Fig. I. The numbers next to the vertices of the tree T represent the destination of the packet located in that vertex. Graph TR is the routing

graph which corresponds to tree T and the permutation-to be routed.

Lemma 2. Assume a distribution of 1 VI packets at the

vertices of a tree T = (V E) which satisJies the require-

ment that no two packets compete for the same edge

in a given direction, i.e., there does not exist a pair

of packets p and q such that current(p) = current(q)

and f(p) = f(q). Then, the corresponding routing

graph TR consists of a collection of directed (toward

the root) trees and a set of isolated vertices.

3.2. An 0(n2) off-line routing algorithm for trees

Consider any tree T,, rooted at vertex u which is

a (not strongly connected) component of a routing

graph TR (see for example the tree rooted at vertex 56

in Fig. I). If at the first routing step we advance all

the packets that correspond to the edges of the tree,
then, at the second step, the edges of the original tree
T that correspond to vertices of in-degree greater than

1, will be requested by more than one packet. (To
see this, recall what is the information that a routing
graph represents.) To avoid this situation, we will not
advance all packets. We will advance the packets that
correspond to only one path (arbitrary chosen) con-
necting u (the root of T,,) with one of the leaves of T,,.

We can choose the packets which will move during the
next step (and also notify the ones that will not) by a
simple traversal of the tree (in the opposite direction

from that indicated by the edges) in O(1 V(T)) 1) time.
We are now ready to present a high level description

of the first off-line routing algorithm for trees.

Algorithm OfS_ne~ree_routing_l (T, r)

/* 17 is the permutation to be routed on tree T */

1. i=O /* i denotes the number of routing steps

(stages) completed so far */

2. While there are still packets that have not reached

their destination do

(4

(b)

Cc)

Cd)

Based on the current position of the packets

(after i steps of routing) construct the routing
graph qR,

Choose, based on the trees that form 7;“, the

packets that will move in step i + 1.
Move the packets, i.e., update the data struc-
ture that keeps track of the current position

and the journey of each packet.
i=i+l

Theorem 3. Assume a tree T of n vertices and a per-
mutation r on its vertex set that has to be routed. Then,
Algorithm Off_line_tree_routing_l (T, r) produces an

o#-line routing solution of at most n - 1 steps which
can be described with O(n*) bits, in O(n*) time. As

a consequence, r?(T) < n.

A. Symvonis/lnformarion Processing Letters 57 (1996) 21.5223 219

Proof. First observe that Step 2(b) of Algo-

rithm OfS_line_tree_routing_l (T, ?r) is well defined.
More specifically, it is not difficult to prove by in-

duction that at the beginning of each iteration of the
while-loop the invariant “there does not exist a pair

of packets p and q such that current(p) = current(q)

und f(p) = f(q)” holds. Then, by Lemma 2 we

conclude that TR consists of a collection of directed

(towards the root) rooted trees and isolated vertices.
Next, we prove that the produced schedule is of at

most n - 1 routing steps. We do that by showing that

any arbitrary packet p reaches its destination after n- 1
steps. In each of the rooted trees in TR, every vertex

but the root can be considered to contain a packet that

wants to move. 2 Assume that packet p did not move

during some stage. For that stage, consider the path

from current(p) to the root u of the tree T,, that p
belongs to, and the path in T,, of which the packets were

advanced (see Fig. 2). Obviously, p does not belong

in that path. p was not advanced because the decision

taken at vertex current(x) was to advance packet q

instead of packet y, the ancestor of p. In this case, we
say that packet q delayed packet p. Note that the above

definition of delay allows for only one packet to delay

packet p at each stage. The fact that derouting never

happens, implies that (i) p cannot be delayed by the
same packet twice, and (ii) the packets initially at the

vertices of the path path(or&(p), dest(p)) cannot

delay p. Thus, p can be delayed by at most

II - (puthsize(orig(p),dest(p)) + 1)

packets. So, p will reach its destination after at most

n - (puthsize(orig(p),dest(p)) + I)

+ (puthsize(orig(p),de.st(p)) = n - 1

routing steps.
For the time analysis, we know from Lemma 1 that

the number of vertices of the routing graph TR that
corresponds to a tree of II vertices is 3n - 2. Based

on this, it is not difficult to implement each iteration

of the while-loop in O(n) time. Since there will be
at most n - 1 iterations, we conclude that Algorithm

OffJine_tree_routing_l (T, W) produces an off-line so-
lution in 0(n2) time. At each routing step, each packet

* The packet that corresponds to vertex uX in one of the rooted

trees of TR resides in vertex 1’ of T.

x
9 .

. l . . .

P
.

.
.

.
l

5 . .
. .

. .

Fig. 2. Only the packets which reside in solid vertices are advanced.

either advances towards its destination or waits at some

vertex. So, the journey of each packet can be described

by an array of O/l entries. So, to report the routing

schedule we need space for 0(n2) bits. 0

4. A more compact routing schedule

In this section, we present an algorithm based on

the multistage off-line routing method introduced by

Symvonis and Tidswell in [51. Given a permutation 7r
to be routed on tree T = (YE), we produce a routing

schedule of at most n - 1 routing steps that can be
described with 0(n log n) bits.

4.1. The multistage ofS-line routing method

Consider any routing problem R = (G, %) where,

G = (YE) is the directed graph and r is the permu-
tation to be routed. Assume a trivial upper bound of

B routing steps for the problem under consideration.
(For the case of trees of n vertices, let B = 2n. Later

on, we will see that it is sufficient to set B = n.)
We construct a multistage directed graph GM =

(V”,EM), where VM = {(u,t) (u E V and 0 <
t < B} and EM = {((u,t),(w.t + 1)) I w E
Neighbors(v, G) and 0 < t < B}. The edges of
EM represent the communication that can take place
between adjacent vertices of the interconnection net-
work at any time. Fig. 3 shows the resulting graph
when the interconnection network is a chain of 5 ver-

220 A. SymvonMlnformation Processing Letters 57 (1996) 215-223

tices. For permutations, an obvious lower bound of
4 routing steps that is based on a distance argument
applies. For a graph G = (YE), the multistage graph
GM has 0(IVlB) vertices and 0(IEIB) edges.

Let tower(GM, u) be the set of vertices of the mul-
tistage graph GM that corresponds to vertex u in G.
Formally, tower(G”,u) = {(u,t) 1 u E r! (u,t) E
V”, 0 < t < B}. The following theorem (proven
in [51) allows us to approach the off-line packet rout-
ing problem from a different point of view.

Theorem 4. Let R = (G, r) be a routing problem.
R has an uninterrupted solution of length L if and
only if for each packet p there exists a path from
a vertex (orig(p),t) in tower(G”,orig(p)) to ver-
tex (dest(p), t’) in tower(GM, dest(p)), t’ = t +
distance(orig(p) , dest(p)) 6 L and all such paths
are mutually edge disjoint.

Algorithm OfS__line_tree_roufing2(T, 7r)
/* IT is the permutation to be routed on tree T */
1. Let P denote the set of packets to be routed. For

each packet p E P let STARTROUTING = 0.
2. Order the packets in P. The way we order the pack-

ets will be specified later. 3
3. While P # 8 do

(a)

(b)
(cl

Cd)

(e)

Remove the next packet from P (with respect
to P’s ordering).
Let it be packet p.
start = 0
While there does not exist a path in GM
from (orig(p),start) to (dest(p) ,start +
pathsize(orig(p),dest(p)))
do start = start + 1
Update GM by removing from it the edges of
the path from (orig(p) , start) to (dest(p) ,
start +pathsize(orig(p),dest(p)))
START-ROUTING(p) = start

The routing schedule that Algorithm OfS-line-tree-
routing2(T, r) produces has the property that when
a packet starts its movement it is never delayed at
any intermediate vertex. Because of that property, the
schedule can be fully described by simply stating the

3 Different orderings result to routing schedules of different 4 Note that this definition of delay is different from that used in

lengths. the proof of Theorem 3.

step in which each packet starts its movement towards
its destination. To do this, we need 0(n log n) bits.

The following lemma can be used to provide a
first upper bound on the time complexity of Algo-
rithm Off_lineJree_routing2(T, r).

Lemma 5. Assume a tree T of n vertices and a per-
mutation r on its vertex set that has to be routed.
Then, for an arbitrary ordering of the packets, Algo-
rithm Off_line_tree_routingZ(T, rr) produces a rout-
ing schedule in which all packets start their routing
within n steps and, as a consequence, in the worst
case a routing schedule of length at most 2n - 1 is
produced.

Proof. Assume that we try to assign a path in the
multistage graph GM for packet p and we fail. This
means that, for some start, there exist some edges
in the unique path from vertex (orig(p),sfarf> to
vertex (dest(p), start+pathsize(orig(p), dest(p)))
that are missing. Let e be the first missing edge and
let q be the packet that used it. We say that packer q
delayed packet P.~ The way we assign paths in Al-
gorithm Off_line~ree_routing2(T, 72) guarantees that
when a packet starts moving, it is never delayed again.
This, in turn, implies that packet p cannot be de-
layed by packet q more than once. Thus, within the
first n tries (start = 0. . . n - 1) we are guaranteed
to find a path. Given the fact that the maximum dis-
tance a packet has to travel is at most n - 1, we con-
clude that the produced routing schedule is of length
atmost2n- 1.

Lemma 5 ensures us that, in the worst case, we
might try n different paths for each packet. Since each
path is at most n - 1 edges long, we might need 0(n*)
time to compute the path of a single packet. Thus,
0(n3) is an upper bound on the time complexity of Al-
gorithm O$_lineJree_routing2(T, W) if an arbitrary
ordering is assumed.

4.2. An ordering that results to an optimal schedule

By being more careful in the order we route the
packets, we can obtain a routing schedule of length

A. Symvonis/lnformation Processing Letters 57 (I 996) 21.5-223 221

L GM

Fig. 3. A chain of 5 vertices and its corresponding multistage graph.

at most 12 - I.
We will compute an ordering for the packets

such that any packet p that has to travel distance
pa&&(orig(p) , &t(p)) to its destination, will
fail to find a path in the multistage graph at most

n - I - p&size(orig(p) , &m(p)) times. Con-

sider any packet p, the path path(orig(p) , dest(p))

and the set of packets I(p) that are initially in ver-
tices of this path. Formally, I(p) = {q 1 orig(q) E
path(orig(p),dest(p))}. Out of the packets in set

I(p), only those that during their travel use some

edges of the directed path path(orig(p> , dest(p))
can delay packet p. Denote the set of these packets

by D(p) (see Fig. 4). However, a packet q E D(p)
can delay packet p only if a path is assigned to q
prior to p. Thus, our strategy will be to construct an

ordering that places p earlier in the order than any

packet of D(p) .
What follows is a high level description of an algo-

rithm that determines an ordering of the packets. Each

packet p has associated with it two variables, namely,

crossings[p] and onfer[p] . The packets will be in-

serted in a priority queue Q in which priorities are

assigned based on the crossings[] values of the pack-

ets. The priority queue supports the standard opera-
tions deletemin(Q : Priority queue) and updute(p :
Packet, u : Value, Q : Priority queue).

Algorithm Order(T, r)
/* r is the permutation to be routed on tree T */

1. For each packet p do
(a) Let e = (orig(p),f(p)) be the first (di-

rected) edge of T that p has to cross.

(b) crossings[p] = the number of packets that
cross edge e during their routing.

(c) In=rt(p, Q>
2. i=l
3. While Q # 0 do

(a) p = deletemin(Q)

(b) order(p) = i
(c) For each packet q E D(p) do

updute(q, crossings(q) - 1, Q)
(d) i=i+ 1

Lemma 6. Assume a tree T of n vertices and a permu-

tation r on its vertex set that has to be routed. Then,
when using the ordering determined by Algorithm

Order(T, 7r), Algorithm Off_line_tree_routingJ(T, rr)
produces a routing schedule of at most n - 1 steps.
Moreover, the ordering is computed in 0(n2) time.

Proof. To prove that Algorithm Order(T, r) produces

the required ordering, we have to verify that the in-
variant “there is a packet p in the priority queue with
crossings[p] = 0” always holds at the beginning of

each iteration of the while-loop of Step 3. This can be

easily proved by induction.

The fact that when we assign a value to order[p],
for every packet p, crossings[p] is equal to 0, guar-
antees that an order-[] value has not been assigned
yet to any of the packets in D(p). Thus, these packets

cannot delay packet p.
Consider now the time complexity of Algorithm

Order(T, 7~). By traversing the paths along which
the packets travel, we can compute for each (di-

rected) edge the number of packets that cross it.

Thus, Step 1 (b) takes O(n2) time. In Step 3, O(n2)
updates can happen. Since the update operations are

actually “decrease by 1” operations, an implementa-
tion (array of linked lists) for which Step 3 requires

0(n2) time is possible. 0

The following theorem summarises the results of
this section.

Theorem 7. Assume a tree T of n vertices and u per-

222 A. Symvonis/lnformation Processing Letters 57 (1996) 215-223

.
.

Fig. 4. Only the solid packets can delay packet p.

mutation r on its vertex set that has to be routed. Then,
when using the ordering determined by Algorithm
Order(T, xr) , Algorithm Off_line+ree_routing2(T, ?I)
produces in O(n3) time an off-line routing solution
of at most n - 1 steps which can be described with
0(n log n) bits.

5. Further work

An interesting problem we are currently working
on is to design algorithms with performance close to
the actual lower bound for the permutation on hand.
Such lower bounds can be obtained based on combi-
nations of distance and bisection arguments or, by us-
ing the multistage routing method introduced in [51
and the relation between the routing problem and the
multicommodity flow problem.

Appendix. Proof Of Lemmata 1 and 2

Lemma 8. L..et VR be the vertex set of the routing
graph constructed from tree T = (YE). Then, lVRl =
31VI - 2.

Proof. Observe that for each edge (u, u) of tree T,
we create 2 vertices, namely u,, and u,, in the routing
graph. Thus,

c I{u, 1 u E Neighbors(u,T)}I
!$V

=21q =2(1VI - 1).

Then, the numbe :r of vertices of VR is

lVRl = c l~ul
UEV

=CIb I
1YZV

u E Neighbors(u, T) } U uCon I

=c I{uU I u E Neighbors(u,T)}l + IV1
LCV

=2(IV1 - I) + IV/ = 3/v/ - 2

Lemma 9. Assume a distribution of I V(packets at the
vertices of a tree T = (YE) which satisfies the require-
ment that no two packets compete for the same edge
in a given direction, i.e., there does not exist a pair
of packets p and q such that current(p) = current(q)
and f(p) = f(q) . Then, the corresponding routing
graph TR consists of a collection of directed (toward
the root) trees and a set of isolated vertices.

Pmf. We prove the lemma by showing that (i) all
vertices of the routing graph TR have out-degree at
most 1, and (ii) TR does not contain a directed cycle.

Assume that there is a vertex of TR, say uL,, that
has out-degree greater than 1. Then, from the way TR
is constructed, it is implied that there are at least two
packets p and q such that current(p) = current(q) =
u and f(p) = f(q) = u. Since the lemma states that
no pair of such packets exists, we conclude that each
vertex of TR has out-degree at most 1.

Next we show that TR does not contain a directed
cycle. Notice that, each vertex of TR is of the form
(uV, u,) for some vertices u, u, and r of V (r might
also stand for con). The existence of edge (Us,, u,) in
ER implies that (u, u) is an edge of the original tree
T. This allows us to project any path of TR to a path in
T. We refer to it as the projected path, Now, assume
that TR contains a directed cycle. Then, since T is a
tree the projected cycle must contain a vertex u such
that, for some u E V, (u, u) and (u, u) are consecutive
edges of the projected cycle. This, in turn, implies
that the directed cycle of TR contains the sub-path
(uo, u,) (u,,, u,). However, the first edge of the path
cannot belong in the routing graph since the existence
of edge (u,,, u,,) in TR implies that a packet from vertex
u will move to vertex u and then back to u, i.e., it is
derouted. 0

A. Symvonidlnformation Processing Letters 57 (1996) 215-223 223

References [4] FT. Leighton, Methods for message routing in parallel

machines, in: Proc. 24th Ann. ACM Symp. on the Theory of
1 I I A. Alon, F.R.K. Chung and R.L. Graham, Routing Computing, Victoria, BC, Canada (1992) 77-96.

permutations on graphs via matchings, in: Proc. 25th Ann. [5] A. Symvonis and J. lidswell, A new approach to off-line

ACM Symp. on the Theory of Computing, San Diego, CA packet muting. Case study: 2-dimensional meshes, in: Proc.

(1993) X3-591; also: SIAM J. Discrete Math., to appear. the 1992 DAGSIPC Symp., Dattmouth Institute for Advanced

12 I E Annexstein and M. Baumslag, A unified approach to off- Graduate Studies in Parallel Computation Hanover, NH

line permutation routing on parallel networks, Math. Systems (1992) 84-93.

Theory 24 (I99 I) 233-25 I.
I 3 I S. Even, Graph Algorithms (Computer Science Press,

Rockville, MD, 1979).

