
An Emperical Study of O�-Line Permutation Packet

Routing on 2-Dimensional Meshes Based on the

Multistage Routing Method
Antonios Symvonis, Jonathon Tidswell

Abstract| In this paper we present the multistage o�-line
method, a new and rather natural way to model o�-line

packet routing problems, which reduces the problem of o�-

line packet routing to that of �nding edge disjoint paths
on a multistage graph. The multistage o�-line method can

model any kind of routing pattern on any graph and can

incorporate the size of the maximum queue allowed in any

processor. The paths for the packets are computed by a
greedy heuristic method. Based on the multistage o�-line

method, we study the permutation packet routing problem

on 2-dimensional meshes. We ran millions of experiments
based on random generated data and, for all of our experi-

ments, we were able to compute a solution of length equal

to the maximum distance a packet had to travel, and thus,

match the actual lower bound for each routing pattern.

Keywords| Mesh, multistage graph, o�-line algorithm,

packet routing, permutations.

I. Introduction

A crucial component of any large scale parallel machine is the
algorithm which is used to route messages (also called packets)
between nodes in the underlying network. For a parallel com-
puter to be computationally e�ective, it must be able to route
messages from their origin processors to their destination pro-
cessors quickly and with small, preferably constant size, queues
(queues are created while two packets are competing for the
same communication channel). This is the task of the packet
routing algorithm.
During the course of the execution of a parallel algorithm,

several communication patterns are generated. It is fair to as-
sume that these patterns are not known in advance, and thus,
all the routing decisions have to be taken during the execution
of the algorithm. In other word, routing is performed by an on-

line algorithm. However, this is not always the case. In several
algorithms the communication patterns are known in advance.
Algorithms which perform matrix operations are such an exam-
ple. When this situation arises, we can handle the communica-
tion part of the algorithm o�-line. Solving the routing problem
in an o�-line fashion has great practical bene�ts. The router
becomes part of the compiler. Besides its usual and well known
functions, the compiler also generates code which routes packets
of information through speci�c paths [3]. This results in faster
execution time. All the overhead that would be required by the
on-line routing algorithm is eliminated. We have to emphasise
that this amount of overhead is signi�cant. This is probably the
reason why, in practice, despite the existence of optimal routing
algorithms in terms of time and space, the parallel computing
industry prefers to use very simple and non-optimal algorithms.
Parallel machines based on the mesh interconnection network
serve as an example.

A. Symvonis is with the Basser Department of Computer Sci-
ence, University of Sydney, Sydney, N.S.W. 2006, Australia.
Email:symvonis@cs.su.oz.au.

J. Tidswell is with the Department of Computing, School of Mathemat-
ics, Physics, Computing and Engineering, Macquarie University, NSW
2109 Australia. Email:jont@mpce.mq.edu.au.

Another reason for which we are keen to investigate the o�-
line packet routing problem is because we hope that an o�-line
solution can help us to design better on-line algorithms. A lot
of work has been done on on-line packet routing [8], [10], [11],
[12], [14], [15], [16], [17], [18], [20] (see [13] for more references).
However, for all nontrivial networks, the question of whether
it is possible to route a permutation in optimal time by using
no queues (or constant queues of small size, say 2-5 packets)
is still open. One way to attack the problem is to obtain an
o�-line solution and to learn from its structure. This approach
was proved successful in [8].

In this paper, we study the o�-line packet routing problem.
Formally, in an o�-line packet routing problem we are given a
graph which represents the underlying interconnection network
of a parallel machine and a set of routing requests. Each re-
quest consists of a tuple (origin; destination) where origin and
destination are vertices in the graph. We are required to com-
pute a path for each request. The computed paths have to be
such that, when all requests are routed together, the routing is
e�cient. In other words, it is fast (near the lower bound) and
requires small constant size queueing area in each node. Usu-
ally lower bound are obtained based on distance and bisection
arguments.

The only previous work on o�-line packet routing which ap-
plies to a large class of interconnection networks is that of An-
nexstein and Baumslag [1]. They presented a method to solve
the permutation o�-line packet routing problem on product
graphs. They proved that if we know how to route o�-line any
permutation on graphs G and H (without using any queues) in
at most r(G) and r(H) routing steps, respectively, then we can
route o�-line any permutation on the product graph F = G�H

in r(F) = 2 �min(r(G); r(H)) + max(r(G); r(H)) steps (again,
without creating any queues). Their method can be used suc-
cessfully only for a limited class of routing problems. It is useful
only when the routing problem is a permutation and only when
the interconnection network is the product of two graphs on
which we know how to route permutations e�ciently. More im-
portantly, the number of routing steps required for the routing
of a given permutation � on F is not expressed as a function
of the actual lower bound (for permutation �) but rather as a
function of upper bounds on the number of steps required to
route any permutation on graphs G and H.

For the case of n � n meshes, the algorithm of Annexstein
and Baumslag [1] produces paths of length 3n � 3. Later on,
Krizanc [9] presented an algorithm which, for n � n meshes,
creates paths of length 2:5n and uses queues of size at most
2. When queues of size 4 are allowed, the length of the paths
reduces to 2:25n. Krizanc's algorithm can be considered to be a
�ne tuning of the algorithm of Annexstein and Baumslag. Using
a di�erent method, Kaklamanis, Krizanc and Rao [6] produced
a solution to a permutation problem on a 2-dimensional mesh
(of side length n) of size 2n�1 which uses queues of size 4. This
latter result is very impressive since 2n�2 is the diameter of an
n� n mesh and the queue-size is quite small. However, in this

paper we demonstrate that it is reasonable to believe that the
above result can be further improved. Our experimental work
showed that it was always possible to �nd a solution in which
the routing terminated after so many steps as the maximum
distance some packet had to travel (in the permutation studied)
and without using queues.

We propose a new method for the o�-line packet routing prob-
lem. Our method accommodates any kind of interconnection
network and any kind of routing pattern. Furthermore, our
method incorporates a queue of variable length which reects
the bu�ering capabilities of the processors in the parallel ma-
chine. An additional feature of the method is that it attempts
to compute paths which are of length close to the actual lower
bound (dictated by the routing pattern under consideration)
rather than a general worst case lower bound.

The rest of the paper is organised as follows: In the next
section, we de�ne the terminology used in the paper. In Sec-
tion III, we present the multistage o�-line routing method. In
Section IV, we apply our method to examine o�-line permuta-
tion routing on 2-dimensional meshes. We present an extended
study of the permutation problem based on simulations. For all
the simulations we ran on randomly generated data, the num-
ber of routing steps required by our algorithm is equal to the
maximum distance a packet has to travel, and thus, optimal.
We also present upper bounds on the length of the solutions
obtained by using the multistage method for routing permu-
tations on 2-dimensional meshes. We conclude in Section V,
with a discussion on the potential of our method and on open
problems.

II. Preliminaries

A �nite directed graph G = (V;E) is a structure which
consists of a �nite set of vertices V and a �nite set of edges
E = fe1; e2; : : : ; ejEjg. Each edge is incident to the elements of
an ordered pair of vertices (u; v). u is the start-vertex of the
edge and v is its end-vertex. Edges with the same start and
end-vertices are called self-loops. We de�ne the directed self-

loop augmented graph GSL = (V;E0) of G to be the graph with
E0 = E [fev = (v; v)j v 2 V g (one self loop is added for each
vertex in G, provided that it does not already exist). Edges
with the same start-vertex and the same end-vertex are called
parallel. We say that a directed graph which contains parallel
edges is a directed multigraph . A directed path is a sequence
of edges e1; e2; : : : such that the end-vertex of ei�1 is the start-
vertex of ei. The set Neighbors(v;G) is de�ned to be the set of
vertices in G which can be reached from v by crossing just one
edge. Formally, Neighbors(v;G) = fwj (v; w) 2 E of Gg.

An o�-line routing problem R is de�ned by a triple (G;P; k)
where G = (V;E) is the directed graph representing the net-
work in which the routing takes place (vertices in V repre-
sent processors and edges in E represent unidirectional com-
munication links). The elements in set P represent the m

packets to be routed. Formally, P = fp1; p2; : : : ; pmj pi =
(origi; desti); origi; desti 2 V; 1 � i � mg. Finally, k is the
maximum number of packets which are allowed to queue at any
processor during the routing. Note that, in the literature, the
maximum queue-size allowed was not part of the de�nition. We
decided to include it in the statement of the problem in order to
get solutions which are closer to reality and also utilise resources
at the maximum.

There is no restriction on the number of packets which origi-
nate from, or, are destined for, a certain processor. If at most h1
packets originate from any processor and at most h2 packets are
destined for any processor, then we say that we have an (h1; h2)

packet routing problem. If h1 = 1 we have a many-to-one rout-

ing problem (many processors send packets to one processor), if
h2 = 1 we have a one-to-many routing problem (one processor
sends packets to many processors), and when h1 = h2 = 1 we
have the permutation routing problem.

A solution of length L for the o�-line packet routing problem
R = (G;P; k) is a set of directed paths, SOLUTION(R) =
fd1; d2; : : : ; dmg where di is the directed path corresponding to
packet pi. The paths are taken on graph GSL, the self-loop
augmented graph of G, instead of G. We do that in order to
make possible to incorporate self-loops in the directed paths.
A self-loop from vertex v in the path of some packet indicates
that the packet was queued in processor v at the corresponding
routing step. Each directed path contains at most L+1 vertices.
For i = 1 : : :m we have that di = v0i v

1
i : : : v

l

i; 0 � l � L; v0i =
origi and vli = desti:

In order to have a valid solution for the routing problem, the
directed paths must satisfy the following two conditions:

1. At any routing step, each edge which corresponds to a
unidirected communication link appears in at most one
directed path, and

2. at any routing step, each self loop appears in at most k
directed paths.

Assume an interconnection network, represented by a di-
rected graph G, in which each processor has a queueing area
of k packets. Let P be a class of routing patterns and con-
sider the set R = f(G; P; k) j P 2 Pg of routing problems.
Denote by LB(G;P; k) the number of routing steps required to
solve the routing problem (G;P; k) by any routing algorithm.
LB(G;P; k) is a lower bound on the length of any o�-line routing
solution for (G;P; k). Because LB(G; P; k) depends on the rout-
ing pattern P , we refer to it as the actual lower bound (for rout-
ing pattern P). De�ne LB(G;P; k) = maxP2P(LB(G;P; k)).
We refer to LB(G;P; k) at the worst case lower bound (for the
class of routing patterns P).

When our problem is that of routing permutations on an a�b
mesh, a worst case lower bound is a+b�2 since it takes so may
routing steps for a packet initially at the top-left corner of the
mesh to reach the bottom-right one. For a speci�c permutation
P , an actual (distance) lower bound with respect to P is the
maximumof the distances that individual packets have to travel.

III. The Multistage Off-Line Packet Routing Method

In this section, we present a new way to model the o�-line
packet routing problem as a graph theoretic problem. For rea-
sons that will become evident in the rest of the section, we call
our method the multistage o�-line packet routing method.

A. The Multistage Graph

Consider any routing problem R = (G;P; k) where G =
(V;E) is the directed graph which represents the interconnec-
tion network in which the routing takes place, P is the set of
packets to be routed and, k is the maximum number of packets
which can be queued at any processor. Our goal is to achieve
routing time near the actual lower bound of the problem. As-
sume a lower bound of T routing steps for the problem under
consideration (for now consider worst case trivial lower bounds).

We construct a multistage directed multigraph G0 = (V 0; E0)
where V 0 = f(v; t)j v 2 V and 0 � t � Tg and E0 =
f((v; t); (w; t+ 1)) j w 2 neighbors(v;G) and 0 � t < Tg [

fe1v; : : : ; e
k

v je
i

v = ((v; t); (v; t+ 1)) ; v 2 V; 0 � t < T; 1 � i � kg:

The edges in the �rst term of E0 represents the communication
that can take place between adjacent vertices of the intercon-
nection network at any time. The edges in the second term of

G

t=1t=0 t=4t=3t=2

G’

Fig. 1. A chain of 5 vertices and its corresponding multistage graph.

E0 represent a queue which resides in any vertex v and can grow
up to k packets. Figure 1 shows the resulting graph when the
interconnection network is a chain of length 5 and no queues are
allowed during the routing. For permutations, an obvious lower
bound of 4 routing steps which is based on a distance argument
applies.

Let tower(G0; v) be the set of vertices of graph G0 (the con-
structed multistage graph) which correspond to vertex v in G.
Formally, tower(G0; v) = f(v; t)j v 2 V; (v; t) 2 V 0; 0 � t � Tg:

Theorem 1: Assume any routing problem R = (G;P; k) on
graph G. R has a solution of length L if and only if for
each packet pi = (origi; desti) 2 P there exist a path from
a vertex (origi; t) in tower(G0; origi) to vertex (desti; t

0) in
tower(G0; desti); t � t0 � L and all such paths are mutually
edge disjoint.

Proof: First assume a solution SOLUTION(R) =
fd1; d2; : : : ; dmg where di is the directed path corresponding to
packet pi = (origi; desti). We can map all directed paths in
SOLUTION(R) to directed paths in the multistage graph G0.
For any directed path di = v0i v

1
i : : : v

l

i; 0 � l � L; 1 � i � m,
we map edge (vti ; v

t+1

i
) of di to edge ((v

t

i ; t); (v
t+1

i
; t+1)) of G0.

Since in SOLUTION(R), at any time step, each edge which
corresponds to transmission of a packet appears in at most one
directed path, these edges will never map in the same edge of G0.
Also, since in G0 there are k edges from vertex ((v; t); (v; t+1)),
we can map the (at most) k identical self loops which appear at
any routing step of SOLUTION(R) to di�erent edges of G0.

Similarly,, we can obtain from a set of edge disjoint paths,
each of the form (origi; t) : : : (desti; t

0), for packet pi, a solu-
tion SOLUTION(R) = fd1; d2; : : : ; dmg for the routing prob-
lem R = (G;P; k) of length L, where L is the maximum stage
number out of all stages reached by some path.

Theorem 1 states that the problem of obtaining an o�-line
solution to a routing problem reduces to the problem of �nding
edge disjoint paths in the directed multigraph G0. This allows
us to view the problem from a di�erent view and to treat it as
a graph theoretic problem.

Note that the number of stages of the resulting multistage
graph G0 was de�ned in terms of a known lower bound. If this
lower bound is less than the actual lower bound, we will fail
to �nd a solution. The fact that G0 can be extended by the
addition of new stages resolves this problem.

B. The Modelling Power of the Multistage O�-Line Packet

Routing Method

The de�nition for a routing problem which we use in this
paper is quite general. When combined with Theorem 1, it
reveals the modelling power of the multistage o�-line routing
method. The multistage routing method can model routing
problems on any graph and of any routing pattern, not just

permutations. Queues can be also modelled. This enables the
routing algorithm to fully utilise all the available resources of
the interconnection network.1

Theorem 1 reveals another important aspect of the modelling
power of the multistage routing method. For a given routing
problem, any solution of the problem can be mapped to a set
of edge disjoint paths on the produced multistage graph. Thus,
the set of paths which corresponds to the optimal solution for
the routing problem on hands is also contained in the multistage
graph. It is up to us to identify this set of paths. In Section IV,
we will provide a heuristic way to �nd edge disjoint paths for
routing permutations on 2-dimensional meshes. That heuristic
produced optimal solutions (with respect to the actual lower
bound) for all the permutations we studied. For the same prob-
lem, i.e., routing permutations on an a� b mesh, a � b, we will
also provide a path selection algorithm which produces routing
solutions of size at most a+ 2b� 3 steps. The same result can
be obtained by the method of Annexstein and Baumslag since
an a � b mesh is the product of two line graphs of size a and
b, respectively. However, it is notable that our proof is simpler
and shorter.

Another interesting feature of the multistage routing method
is that it can be used to derive actual lower bounds. While there
are methods (usually based on distance and/or bisection argu-
ments) which can be used in deriving lower bounds for simple
routing patterns such as permutations, they are not very helpful
for arbitrary routing patterns. The reader who is familiar with
graph theory and the theory of NP-completeness, realizes that
the problem of obtaining edge-disjoint paths in a graph reduces
to the multicommodity integral ow problem. This problem is
known to be NP-complete [4]. However, the non-integral version
of this multicommodity ow problem is polynomially reducible
to linear programming [5] and thus, it can be solved in polyno-
mial time [7]. We can exploit this fact to obtain lower bounds
on the required number of routing steps for a given routing
problem. Assume that we have constructed a multistage net-
work of L stages. Then, if the non-integral multicommodity
ow problem does not have a solution, its integral version does
not have one either, and thus, the length of the optimal solution
of our routing problem is bounded from below by L. By using
a binary-like search, we can compute the smallest L for which
the non-integral multicommodity ow problem accepts a solu-
tion. This is an actual lower bound for the routing problem on
hands. To the best of our knowledge, the above method is the
only known way to compute actual lower bounds for non-trivial
routing problems and it can prove quite useful in evaluating the
performance of heuristic routing methods.

C. A Class of Routing Algorithms

So far, we developed a method for studying the o�-line packet
routing problem as a graph theoretic routing problem. For each
packet pi = (origi; desti) we want to �nd a path in G0 from
some node in tower(G0; origi) to some node in tower(G0; desti)
such that all the paths are edge disjoint. As we mentioned
in the previous section, the problem of obtaining edge-disjoint
paths in a graph reduces to the multicommodity integral ow

problem. An immediate consequence is that it is unlikely to
�nd an e�cient algorithm. However, more research is required
in order to take into account the fact that the underlying graph
is a multistage network obtained from a speci�c interconnection
network.

1The de�nition of the routing problem as well as the construction of
the multistage graph can be easily modi�ed to accommodate queues of
non-uniform size.

Even though there is not an e�cient way to obtain edge-
disjoint paths, the multistage o�-line method is suitable for the
emperical study of the o�-line packet routing problem. For most
of the routing problems it is the only method available. Even
for permutation problems on product graphs, it is worthwhile
to spend at least the same amount of time as in the method
of Annexstein and Baumslag, trying to �nd solutions which are
closer to the actual lower bound.

Since G0 can be always extended by adding new stages, it is
obvious that a solution to the o�-line packet routing problem
always exists. However, we are interested in solutions of mini-
mum length. In our study, we use algorithms which fall within
following greedy framework:

Algorithm Find Edge Disjoint Paths

1. Sort all packet according to some ordering criterion.
2. For each packet p = (orig; dest), according to its order in
the sorted list, do:

� Find a path from a node in tower(G0; orig) to some node
in tower(G0; dest).

� Update G0 by removing the edges which belong in the
identi�ed path.

The above framework leaves the designer of the routing algo-
rithm with a lot of freedom. Firstly, an ordering criterion has
to be selected. The order in which paths are assigned to packets
can greatly a�ect the length of the solution. For some order-
ing criteria, we are able to prove upper bounds on the length
of the produced solutions. After �xing the order in which the
paths are assigned to the packets, we have to provide a path

selection scheme. Again, several choices are available. In the
case where more than one minimal paths for each (origin, des-

tination) pair exist, one path has to be selected. Non-minimal
paths might be also considered. In general, the choice of the
path selection method a�ects the quality of the solution and
our ability to claim bounds about it. The interconnection net-
work under consideration is of great inuence in our selection
of the ordering criterion and the path selection scheme.

Since we do not fully specify the way we choose the paths in
Algorithm Find Edge Disjoint Paths, it is not possible to give
a precise time complexity analysis. The analysis will be di�er-
ent for each ordering criterion and each path selection scheme.
The space requirements of the method are dictated by two fac-
tors: the space required for the multistage graph and the space
needed to report the solution. In Section III-A, we presented our
method in a static way. A multistage graph was derived from
the initial packet routing problem. When the memory space
required for the storage of the multistage graph is of great con-
sideration, several approaches can be taken to reduce the space
to the minimum. (Equal to the space we need to report the
solution.) The multistage graph can be constructed during the
execution of the algorithm. If new stages are needed we add
them in run time. Also we may choose to add only the part
of a stage which is used by some paths. In order to be able to
do this we need to maintain a linked list representation of the
multistage graph.

IV. Routing Permutations on Two Dimensional Meshes

In this section, we study permutation routing on 2-
dimensional meshes. Given an a � b mesh, a � b, in which
we have to route a permutation, we form a multistage network
of a + 2b stages. We have chosen the number of stages to be
equal to a + 2b since the \product graph method" guarantees
to give a solution of that length. We do not allow packets to
be queued at any intermediate processor during their routing.

However, we assume that each packet can wait for some time at
its origin node. This is a reasonable assumption since at least
so much space is needed in order to store the packet. The same
assumption was made in [14]. The space needed to store the
multistage graph is O((ab)(a+ b)).
In the rest of this section, when we refer to the multistage

routing method, we implicitly assume algorithms which fall in
the framework of Algorithm Find Edge Disjoint Paths. So, in
our study of routing permutations on 2-dimensional meshes, we
have to fully specify the ordering criteria and the path selection
schemes.

A. Packet Ordering Criteria

Several ordering criteria are possible and, as it turns out,
they have a signi�cant e�ect on the quality (i.e., length) of the
routing solution. In our study, we experimented with both des-
tination address dependent and independent orderings.
Destination Address Independent Orderings The ordering of the
packets does not depend on their destination addresses. The
order is inherited from an explicit ordering of the processors
in which the packets reside. So, for each processor ordering
scheme, we get an implicitly de�ned ordering for the packets.
Commonly used orderings are (see Leighton's book [13] for de-
tailed de�nitions):
1. Row-major ordering.

2. Column-major ordering.

3. Snake-like versions of row-major and column-major or-
derings.

4. Random ordering. This ordering is independent of the
origin addresses as well. The order is decided in a random
manner.

Destination Address Dependent Orderings The ordering of the
packets depends on their destination addresses. The inherited
ordering from the destination addresses can be also de�ned as
in the destination address independent ordering but they are
of no special interest. This is because, inverting the roles of
origins and destinations (and following the paths backwards)
results to the same routing problem. So, we are more interested
on orderings which depend on the distance each packet has to
travel to reach its destination. If we associate with each packet
p the pair (pH ; pV) where pH is the distance from the origin-
column to the destination-column of p and pV is the distance
from the origin-row to p's destination-row, we can de�ne the
following ordering criteria:
5. Longest total distance �rst. Packets are sorted in decreas-
ing order with respect to their pH + pV values. Ties are
broken in an arbitrary way or by using any of the inherited
criteria mentioned above.

6. Longest lexicographically-horizontal distance �rst. Pack-
ets are sorted in decreasing order with respect to their pH
values. Ties are resolved as above.

7. Longest lexicographically-vertical distance �rst. Packets
are sorted in decreasing order with respect to their pV val-
ues. Ties are resolved as above.

8. Shortest total distance �rst. Packets are sorted in in-
creasing order with respect to their pH + pV values. The
lexicographic versions of this ordering can be de�ned as in
the longest-distance orderings.

Sorting the packet according to any of the above ordering
criteria can be done in O(N) time for a problem of N pack-
ets. This is achieved by using variants of the counting sorting

method [2]. Note that, for several problems more complicated
orderings which use information about the relative position be-
tween groups of packets and about minimal paths, might be re-
quired to achieve optimal solutions. This is the case for routing

permutations on trees of N nodes. An O(N2) time algorithm
was developed to produce an ordering which, in turn, was used
to achieve an optimal routing solution of length at most N � 1
for any permutation [19].

B. Path Selection Schemes

After sorting the packets according to one of the ordering
criteria mentioned in the previous section, we assign paths to
them in the order they appear in the sorted list. When a path
is assigned, the edges which belong to the path are deleted from
the multistage graph. Then, we proceed with the assignment of
a path to the next packet.

The following algorithm is used to assign a path to packet
pi = (origi; desti) in the multistage graph G0

i. G
0

i is the graph
obtained from the initial multistage graph G0 of our method,
after the deletion of the edges which belong to the paths of
the �rst i � 1 packets. Algorithm Path Selection(Pi; G

0

i) was
obtained after numerous experimentations with several path se-
lection schemes, several of which were quite complicated (based
on the reachability between nodes of G0

i) and did not take into
consideration the special mesh structure of the interconnection
network.

Algorithm Path Selection(Pi; G
0

i)

1. stage = 0
2. while (a path is not yet assigned to pi and stage < a +
2b � distance(origi; desti)) do
if it is possible to route the path from node (origi; stage)
horizontally to the correct column and then vertically to
the destination, then assign that path to pi

else if it is possible to route the path from node
(origi; stage) vertically to the correct row and then hor-
izontally to the destination then assign that path to pi

else stage = stage+ 1
3. if a path is not yet assigned to packet pi

then signal the failure of the algorithm.

If the algorithm terminates because it failed to route some
packet, this means that for the speci�c routing problem in hands
and for the given path selection algorithm, the \product graph
method" [1] performs better. However, as we see in the next
section, after performing millions of experiments, we were not
able to identify such a routing problem.

The time spent in the routing of any path, in the worst case,
is O((a + b)2). This is because, we might fail O(a + b) times
to assign a path to some packet and, at each try, we have to
check O(a + b) edges. Thus, the algorithm terminates after
O((a + b)2ab) time. If we succeed in routing all paths, we will
need O(ab) space (in the word model) to report the solution.
This is because each path can be described just by specifying
the stage in which the routing of the packet starts and the initial
direction (horizontally or vertically) of the path. Note that, in
general, reporting a solution requires
(abL) space, where L is
the length of the optimal solution.

C. Performance

We ran our algorithm using random input data on square and
rectangular meshes. The data were generated with the help of
the random number generator function random() on a MIPS
computer system. random() uses a non-linear additive feedback
random number generator employing a default table of size 31
long integers to return successive pseudo-random numbers in
the range from 0 to 231� 1. The period of this random number
generator is very large, approximately 16((231)� 1). When we
started our experimental study, we hoped that we will be able

to compute for each random permutation a solution of length
less than the diameter of the mesh. Surprisingly, when we com-
bined the longest total distance �rst ordering criterion together
with Algorithm Path Selection() our method surpassed our ex-
pectations. For all the random routing problems, it revealed a
solution of length equal to the maximum distance some packet
had to travel. This is the best we can expect since the length of
that solution matches the distance lower bound for the speci�c
routing pattern. Table I contains the number of experiments we
run for each square mesh. The number of experiments decrease
as the side-length of the meshes increases. This is because we
spent a �xed amount of time on the study of each individual
mesh and the fact that for larger meshes the algorithm requires
more time to compute a solution.

Mesh # of Experiments

10� 10 2075360

20� 20 322190

30� 30 103840

40� 40 46700

50� 50 36380

60� 60 35130

70� 70 34640

80� 80 17420

90� 90 15600

100 � 100 11420

110 � 110 9000

120 � 120 3690

130 � 130 2330

140 � 140 2290

150 � 150 2200

160 � 160 2120

170 � 170 1680

180 � 180 1410

TABLE I

Number of experiments performed for each mesh. All

experiments succeed in producing an optimal solution.

We also performed experiments on rectangular meshes. For
each 2k-node rectangular mesh, 7 � k � 14, we studied rectan-
gular 2m � 2k�m meshes. The number of experiments we per-
formed in each case are given in Tables II, III, IV, V, VI, VII,
VIII, IX. Again, we were not able to identify a routing pattern
for which our method fails to produce an optimal solution.

Mesh # of Experiments

23 � 211 1280

24 � 210 2840

25 � 29 3540

26 � 28 3980

27 � 27 5120

TABLE II

Number of experiments performed each 214-node mesh. All

experiments succeed in producing an optimal solution.

Obviously, checking all possible permutations is out of ques-
tion since for an N -node mesh there are N ! permutations. For a
4�4 mesh there are 16!(� 2:092�1013) permutations. However
we were able to check all 9!(= 362880) possible permutations on
a 3� 3 mesh. For rectangular meshes with less than 12 nodes,

Mesh # of Experiments

22 � 211 900

23 � 210 1180

24 � 29 2500

25 � 28 2880

26 � 27 3360

TABLE III

Number of experiments performed each 213-node mesh. All

experiments succeed in producing an optimal solution.

Mesh # of Experiments

22 � 210 2180

23 � 29 2700

24 � 28 3520

25 � 27 4320

26 � 26 7760

TABLE IV

Number of experiments performed each 212-node mesh. All

experiments succeed in producing an optimal solution.

Mesh # of Experiments

22 � 29 4060

23 � 28 4300

24 � 27 5580

25 � 26 8220

TABLE V

Number of experiments performed each 211-node mesh. All

experiments succeed in producing an optimal solution.

Mesh # of Experiments

22 � 28 3040

23 � 27 3200

24 � 26 5300

25 � 25 7000

TABLE VI

Number of experiments performed each 210-node mesh. All

experiments succeed in producing an optimal solution.

Mesh # of Experiments

22 � 27 14320

23 � 26 11520

24 � 25 16400

TABLE VII

Number of experiments performed each 29-node mesh. All

experiments succeed in producing an optimal solution.

Mesh # of Experiments

22 � 26 44500

23 � 25 71340

24 � 24 108320

TABLE VIII

Number of experiments performed each 28-node mesh. All

experiments succeed in producing an optimal solution.

Mesh # of Experiments

22 � 25 160120

23 � 24 205860

TABLE IX

Number of experiments performed each 27-node mesh. All

experiments succeed in producing an optimal solution.

we checked exhaustively all permutations. For all of them, we
were able to construct an optimal solution. So we can state the
theorem:

Theorem 2: The multistage o�-line method when using the
longest total distance �rst ordering criterion together with Algo-

rithm Path Selection() produces optimal solutions for any per-
mutation problem on any rectangular mesh of 12 or less nodes.
Quite interesting are also the results of our simulations with

di�erent ordering criteria. For the row-major, column-major

(and their snake-like variants), random and the shortest to-

tal distance �rst (and its lexicographic variants) orderings, we
were able to identify permutations for which solutions of length
greater than the diameter of the mesh were produced. However,
these solutions were never worse that those of the \product
method". For the longest lexicographically-horizontal distance

�rst and longest lexicographically-vertical distance �rst order-
ings, we identi�ed permutations for which our method produced
solutions of length greater than the actual distance lower bound
(for the permutation on hands). However, we were not able to
identify any permutation for which our method failed to pro-
duce a solution of length smaller or equal to the diameter of the
mesh. This is quite interesting since it suggests that the lexico-
graphic orderings might be useful in proving upper bounds on
the length of the solutions produced by the multistage method.
Experimentation with variants of Algorithm Path Selection() in
which all generated paths extend horizontally (vertically) and
then vertically (horizontally) revealed similar behaviour. How-
ever, these variants failed to match the performance of Algo-
rithm Path Selection() in producing solutions of length equal to
the actual distance lower bound when the longest total distance
�rst ordering criterion was used. In this case, solutions of length
less than or equal to the diameter of the mesh were produced.

D. Some Upper Bounds

In this section, we prove some upper bounds on the length of
the routing solutions produced when the multistage method is
applied for routing permutations on 2-dimensional meshes. For
all of our proofs, we will assume a path selection scheme which
is a variant of that of Algorithm Path Selection(). More specif-
ically, all produced paths will �rst extend horizontally and then
vertically. For completeness, we give a high level description of
this path selection scheme.

Algorithm Horizontal First Path Selection(Pi; G
0

i)

1. stage = 0
2. while (a path is not yet assigned to packet pi) do

if it is possible to route the packet from node
(origi; stage) horizontally to the correct column
and then vertically to the destination

then assign that path to pi
else stage = stage+ 1

Observation 1: Assume that the path selection scheme Hor-
izontal First Path Selection() is used in deriving o�-line rout-
ing solutions with the multistage method for meshes. Consider

packets p and q and further assume that a path has been al-
ready assigned to packet q. Then, during the path assignment
process, packet q can \delay" p by at most one step.

By saying that \packet q delays packet p" we mean that at
some stage of the path assignment process for packet p, we
failed to assign a path to p because the path already assigned
to q used an edge of the multistage graph required by p's ten-
tative path. The observation follows from the fact that in the
produced routing schedules a packet is never delayed after it
starts moving.

Theorem 3: Let � be a permutation to be routed on an a� b

mesh, a � b. Then, by using any packet ordering criterion
and path selection scheme Horizontal First Path Selection(),
the multistage o�-line routing method produces a routing sched-
ule for � of length at most 2(a+ b)� 4.

Proof: Consider any packet p. Since p will move �rst hor-
izontally and then vertically, there are at most a � 1 packets
which can delay p in its origin-row and at most b � 1 packets
which can delay p in its destination-column. Taking into ac-
count that each of these a + b � 2 packets can delay p exactly
once, and the fact that p is initially at most a+ b�2 steps away
from its destination, we conclude that p's routing schedule is of
length at most 2(a+ b)� 4.

Theorem 4: Let � be a permutation to be routed on an a� b

mesh, a � b. Then, by using the longest lexicographically-

horizontal distance �rst packet ordering criterion and path selec-
tion scheme Horizontal First Path Selection(), the multistage
o�-line routing method produces a routing schedule for � of
length at most a+ 2b� 3.

Proof: Consider any packet p. Let h and v be the distances
which p has to travel in the horizontal and vertical direction,
respectively. W.l.o.g., assume that p has to move towards the
west. Then, since we are using the longest lexicographically-

horizontal distance �rst ordering criterion, the packets which are
originally at the h west-most positions in p's origin-row cannot
delay p. So, at most a� h� 1 packets initially in p's origin-row
can delay it. During the vertical routing, a delay of at most
b� 1 steps is possible. Taking into account that p has to travel
h+ v distance and that v � b� 1, we conclude that p's routing
schedule is of length at most (a�h�1)+(b�1)+h+(b�1) =
a+ 2b� 3.

Note that, the length of the routing schedule guaranteed by
Theorem 4 is exactly the same with that promised by the \prod-
uct method" when applied to a� b meshes. However, the proof
is simpler and shorter. Note also, that the upper bounds were
obtained by a combination of ordering criteria and a path selec-
tion scheme which in practice resulted to non-optimal routing
schedules.

V. Conclusions

Several interested problems are raised from our method and
deserve further investigation. The general problem of �nding
edge disjoint paths reduces to the integral multicommodity ow
which, in turn, is NP-Complete. However, we do not know how
the complexity of the problem is a�ected by the fact that we
have to deal with a multistage graph which is constructed in
a special way. Also, the kind of the graph the routing takes
place might a�ect the complexity. Another area which deserves
further research is that of the path selection algorithms. We
provided a general framework for the algorithm which can ac-
commodate several heuristic methods depending on the under-
lying interconnection network. However, our study for the mesh
was so successful that, for any random permutation problem we
studied we produced the optimal algorithm. This suggests that

the particular algorithm may always produce an optimal solu-
tion. The fact that it turns to be an optimal algorithm for all the
small meshes we exhaustively investigated, is very encouraging.

References

[1] F. Annexstein, M. Baumslag, \A uni�ed approach to O�-Line Per-
mutation Routing on Parallel Networks", Mathematical Systems
Theory, Vol. 24, pp. 233{251, 1991. pp. 398-406..

[2] T.H. Cormen, C.E. Leiserson, R.L. Rivest, \Introduction to Algo-
rithms", MIT Press/McGraw-Hill, Cambridge, MA, 1990.

[3] E. Dahl, \Mapping and Compiled Communication on the Connection

Machine", Proceedings of the 5th Distributed Memory Computing
Conference, Charleston, South Carolina, April 1990, pp.756-766.

[4] M.R Garey, D.S. Johnson, \Computers and Intractability. A Guide
to the Theory of NP-Completeness", 1979, W.H Freeman and Com-
pany, New York.

[5] A. Itai, \Two-Commodity Flow", Journal of the Association for
Computing Machinery, Vol. 25, No. 4, October 1978, pp. 596-611.

[6] C. Kaklamanis, D. Krizanc, S. Rao, \Simple Path Selection for Op-

timal Routing on Processor Arrays", Proceedings of the 4th An-
nual ACM Symposium on Parallel Algorithms and Architectures,
SPAA'92, June 1992, San Diego, pp. 23-30.

[7] N. Karmarkar, \A New Polynomial-Time Algorithm for Linear Pro-
gramming", Combinatorica, Vol. 4, pp. 373-395, 1984.

[8] M. Kaufmann, J. Sibeyn, T. Suel, \Derandomizing Algorithms for
Routing and Sorting on Meshes", Proceedings of the Fifth Annual
ACM-SIAM Symposium on Discrete Algorithms, Arlington, VA,
1994, pp. 669-679.

[9] D. Krizanc,\A Note on O�-Line Routing on a Mesh-Connected Pro-
cessor Array", Parallel Processing Letters, Vol. 1, No. 1, 1991, pp.
67-70.

[10] D. Krizanc, S. Rajasekaran, Th. Tsantilas, \Optimal Routing Al-
gorithms for Mesh-Connected Processor Arrays", VLSI Algorithms
and Architectures (AWOC'88), J. Reif, editor, Lecture Notes in
Computer Science 319, 1988, pp. 411-422.

[11] M. Kunde, \Routing and Sorting on Mesh-Connected Arrays", VLSI
Algorithms and Architectures (AWOC'88), J. Reif, editor, Lecture
Notes in Computer Science 319, 1988, pp. 423-433.

[12] F.T. Leighton, \Average Case Analysis of Greedy Routing Algo-

rithms on Arrays", Proceedings of the 2nd Annual ACM Symposium
on Parallel Algorithms and Architectures, SPAA '90, July 2-6, 1990,
Crete, Greece.

[13] F.T. Leighton, \Introduction to Parallel Algorithms and Architec-
tures: Arrays, Trees, Hypercubes", Morgan Kaufmann, San Mateo,
California, 1992.

[14] F.T. Leighton, B. Maggs, S. Rao, \ Universal Packet Routing Algo-

rithms", Proceedings of the 29th Annual Symposium on the Foun-
dations of Computer Science, 1988, pp. 256-269.

[15] F.T. Leighton, F. Makedon, I.G. Tollis, \A 2n-2 Algorithm for
Routing in an n � n Array With Constant Size Queues", Proceed-
ings of ACM Symposium on Parallel Algorithms and Architectures,
SPAA'89, June 1989, pp. 328-335.

[16] F. Makedon, A. Symvonis, \An E�cient Heuristic for Permutation
Packet Routing on Meshes with Low Bu�er Requirements", IEEE
Transactions on Parallel and Distributed Systems, Vol. 3, No. 4,
March 1993, pp. 270-276.

[17] S. Rajasekaran, R. Overholt, \Constant Queue Routing on a Mesh",
Journal of Parallel and Distributed Computing, Vol. 15, 1992, pp.
160-166.

[18] A.G. Ranade, \How to Emulate Shared Memory", Proceedings of the

28th IEEE Symposium on Foundation of Computer Science, 1987,
pp. 185-194.

[19] A. Symvonis, \Optimal Algorithms for Packet Routing on Trees",

Proceedings of the 6th International Conference on Computing and
Information (ICCI'94), Peterborough, Ontario, Canada, 1994, pp.
144{161.

[20] L.G. Valiant, G.J. Brebner, \Universal Schemes for Parallel Commu-

nication", Proceedings of the 13th Annual ACM Symposium on the
Theory of Computing, May 1981, pp. 263-277.

