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Abstract. In this paper we consider the flit-serial packet-routing problem, where 
each packet consists of a sequence of k flits and is, thus, called a snake. Based 
on the properties of the snake during the routing, we give a formal definition of 
three different packet-routing models, namely, the store-and-forward model, the 
cut-through model, and the cut-through with partial cuts model. Surprisingly, all 
previous work has focused on the store-and-forward model. We also introduce the 
restricted cut-through model, which is unrealistic, but is proved to be a very powerful 
tool in the effort to bound the time required by a routing problem. We study the cut- 
through with partial cuts model which is most commonly used in practice. We 
present the first algorithms, deterministic and probabitistic, based on this model for 
the permutation routing problem on a chain, on a square mesh, and on a square torus. 

1. Introduction 

The development of efficient packet-routing algorithms is a very important task in the 
construction of parallel computers. In a parallel architecture different computing ele- 
ments must be able to communicate with each other fast. This means that each processor 
must be able to route packets of information fast. Furthermore, for the routing scheme 
to be efficient, the size of the queues that will be created during the routing must be 
bounded. 

In this paper we have chosen to study the packet-routing problem on the mesh 
architecture because the two-dimensional layout of most implementation technologies 
suggests a two-dimensional grid topology which makes it easy to interconnect the pro- 
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A 4 x 4 mesh (a) and a 4 x 4 torus (b). 

cessors. Since the distance between neighbouring processing elements is constant on the 
grid, the time needed for communication between any pair of connected elements is also 
constant. Furthermore, although the grid has a large diameter (2n - 2), its topology is 
well matched with many problems. 

An n x n mesh o f  processors is defined to be a graph G = (V, E), where V = 
{(i, j ) l l  < i, j _< n} and an edge e -- ((i, j ) ,  (k, l)) belongs to E if Ik - i[ + I1 - J l  = 1. 
Processor (i, j )  will be also denoted by P/,j. The n x n mesh is illustrated in Figure l(a). 
At any one step, each processor can communicate with all of  its neighbours by the 
use of  bidirectional links (channels). We define the distance between two processors 
P = (i, j )  and Q = (k, l) as dis tance(P,  Q) = [k - il-t- I1 - Jl. I f d i s tance (P ,  Q) = 1, 
then P and Q are neighbours. If  the mesh is supported with wrap-around connections, 
then the resulting network is called torus [3] (Figure l(b)). For the toms, we have that 
distance_torus(P, Q) = min(n - Ik - i[, [k - il) + min(n - I1 - J], [l - J[). The width 
o f  the channel is defined to be the number of  bits that can be transmitted in one step from 
a processor to one of its neighbours. Processors have a local storage area where they can 
queue incoming packets. The processors are assumed to work in a synchronous MIMD 
model. 

In a permutat ion problem, each processor has one packet to transmit to another 
processor. At the end, each processor receives exactly one packet (1-1 routing). The 
problem here is to route all packets to their destinations fast and without the use of  large 
additional queueing area (buffers) in each processor. 

Usually, the size of  a packet is larger than the number of  bits the channel can 
accommodate in one step. This forces us to break each packet into smaller pieces, called 
flits. So, we can think of a packet as an ordered collection of k flits, where k depends on 
the width of  the channel and the size of the entire packet. 

The packet-routing problem can be studied by two different approaches. In the first 
one we consider the k flits as k distinct packets, which we try to route independently 
( independent  split approach). There are several problems with this approach. First, each 
processor will receive k flits which it must be able to combine in order to retrieve the 
initial packet. Since the order in which the flits are received is not fixed, we must associate 
with each flit a flit number  that will indicate the position of  the flit in the initial packet. 
Secondly, since each flit is routed independently from the others, a destination address 
must be attached to it. So, if the constants of the problem (packet-size and width of  
channel) require to break the initial packet into k flits, then (log k + 2 log n) bits are to 
be stored in each flit for bookkeeping information, on top of actual message information. 
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However, another problem arises if the width of the channel is less than (log k + 2 log n) 
bits. In this case this scheme cannot work, since there is no space left within a flit to host 
any part of  the initial message. 

The Second approach (flit-serial routing) [1], [4], [9], [18], [19] is to consider the 
k flits as a snake. All flits will follow the first one, called the head, which knows the 
destination address. Moreover, the snake cannot be broken, i.e., consecutive flits in the 
initial packet will always be at the same or at adjacent processors. The last flit of  the 
snake is called the tail. Note that in the flit-serial routing approach no additional space is 
needed for information used to combine flits when they arrive at their destination. The 
order in which the flits arrive at their destination specifies their position in the initial 
packet. 

More formally, at time t, a k flit snake s can be represented by the (k + 1)- 
tuple Is1, s2 .... si .... sk, t], where si is a processor and si, si+l are identical or adja- 
cent processors, i = 1 . . . . .  k - 1. We define the length of  snake s at time t to be 

= ~ i=1  dlstance(si, Si+l) + 1, that is, the number of  processors over which length(s, t) k-1 �9 
the snake is distributed. We say that a snake s is travelling in full  extension at time t, 
if length(s, t) = k. For a snake s at time t, we define the function collisions(s, t) to be 
collisions(s, t) = (number of  processors that hold more than one flit of snake s at time t). 
The processors that have more than one flit of  the same snake at a given time are called 
collision points. If  a snake is travelling in full extension, then collisions(s, t) = 0, i.e., 
there are no processors that hold two or more flits of that snake. Using the previously 
defined functions length( ) and collisions(), we can now distinguish the following three 
types of  flit-serial routing models: 

�9 Store-and-forward model. A snake s that is routed using the store-and-forward 
model at any time t has length(s, t) < 2 (Figure 2(a)). 

�9 Cut-through model. A snake s that is routed using the cut-through routing model 
has, at any time t, collisions(s, t) < 2. Moreover, the collision points are at the 
processors that hold the head or the tail of the snake (Figure 2(b)). 

�9 Cut-through with partial cuts model. In the cut-through with partial cuts routing 
model, for any snake s at time t, we have 0 _< collisions(s, t) <_ k/2,  i.e., we 
may have as many as k /2  collision points in snake s. Observe that in the cut- 
through routing model, whenever a collision occurs, the whole snake must reach 
the processor at the collision point before the snake continues its routing. This 
does not hold for cut-through with partial cuts routing (Figure 2(c)). 

We should point out here that a standard terminology about the different routing 
models does not exist in the literature. For example, the cut-through with partial cuts 
model was first described in [9] by Kermani and Kleinrock. However, it is referred to as 
wormhole in [18] by Ngai. A different definition for wormhole routing is given by Dally 
and Seitz in [4]. The most frequently used definitions are those found in [4] and [9 ] .  

Because of  its restricted nature, the store-and-forward model is probably the simplest 
to analyse of  the three flit-serial models defined above. In fact, all of  the previous work on 
the permutation routing problem is based on the store-and-forward model. For example, 
the authors in [21], [11], [16], [17], [20], and [24] consider the case where all flits of  a 
packet are transmitted in one step. These results can be immediately interpreted to the 
store-and-forward model if we multiply the final time complexity by the number of  flits 
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Fig. 2. Three flit-serial routing models: (a) The store-and-forward model, (b) the cut-through model, and 
(c) the cut-through with partial cuts model. 

in a packet. There have been deterministic [11], [16], [20] and probabilistic [21], [24] 
approaches based on this model. The trivial greedy algorithm routes the packets to the 
correct column and then to the correct row in 2n - 2  steps. The size of  the queues, however, 
can be as bad as 2n/3 [15]. An average case analysis of several greedy algorithms on 
arrays under a variety of assumptions can be found in [ 14]. In that paper, Leighton shows 
that certain greedy algorithms perform surprisingly well on the average. The nontrivial 
solutions given to this problem are based on parallel sorting algorithms [22], [23]. Kunde 
[ 11 ] was the first to use parallel sorting to obtain a deterministic algorithm that completes 
the routing in 2n + O (n/ f  (n)) steps and with queues of  size O (f(n)). Later, Leighton et 
al. [ 16] derived a deterministic algorithm that completes the routing in 2n - 2 steps using 
constant-size queues of about 1000 packets. The queue size was reduced to about 150 
packets 1 by Rajasekaran and Overholt [20]. Probabilistic algorithms have been derived 

1 Originally a queue size of 58 packets was claimed, but an error in there analysis was reported in [2]. 
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as well. The first one, derived by Valiant and Brebner [24], completed the routing in 
3n + o(n) steps using O (log n)-size queues. Later, Krizanc et al. [t0], [21] derived an 
algorithm that routes the packets in 2n + O(logn) steps using constant-size queues. 
All probabilistic algorithms route the packets correctly with high probability. Finally, 
a heuristic based on the odd-even transposition method which requires small queues 
of constant size was designed by the authors [17]. Experimental results on randomly 
generated data show that the number of steps required to complete the routing is almost 
equal to the maximum distance a packet has to travel. 

Kunde [11] considered the problem of permutation routing by splitting a packet 
into k flits. He derived that the routing can be completed after kn + o(n) routing steps. 
However, he used the k-independent split approach, where each of the k flits of a packet 
is routed independently from the others and an overhead of information is required. 

As was indicated earlier, all previous work has focussed on the store-and-forward 
model or on routing all of the k flits independently. Here we study the cut-through with 
partial cuts model which is the one most commonly used in practice. We present the first 
algorithms based on this model for the permutation routing problem on a chain, on a 
square mesh, and on a square toms. 

The remainder of the paper studies the packet2-routing problem using the cut- 
through with partial cuts routing model. The paper is divided into sections as follows. 
In Section 2 we study the permutation routing on a chain of processors, as well as two 
more general routing problems on a chain, namely, the many-to-one and the one-to-many 
routing problems. In Section 3 we study the routing problem on the mesh. We describe 
an algorithm that is based on different colourings of the packets. We give a deterministic 
colouring that results in an algorithm that completes the routing after 3nk/2 § o(n) 
routing steps, using queues of size 3 f (n)/2 packets. A random colouring of the packets 
results in an algorithm that completes the routing in nk + o(n) routing steps with high 
probability. We als O show that if we break the packet into two snakes instead of one, we 
can reduce the number of routing steps for the deterministic algorithm. In Section 4 we 
examine the permutation routing problem on the toms. We conclude in Section 5. 

2. Rout ing  on a Chain  of  Processors 

In this section we describe a simple algorithm based on the cut-through with partial 
cuts routing model for the permutation routing problem on a chain of n processors. 
We give an algorithm that completes the routing after n(k § 1)/2 + k Steps, for any 
permutation routing problem. We also state and prove, using the same model, some 
lemmata concerning routing on a chain of processors, where the initial and the final 
distributions of the packets on the chain do not form a permutation problem. These 
lemmata are used later, when we examine the routing in the two-dimensional mesh of 
processors. 

2 In the rest of the paper the terms "snake" and "packet" are used interchangeably. 
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2.1. Permutation Routing on a Chain 

Each processor in the chain has a FIFO queue associated with each one of its two channels 
(bidirectional edges) that connects it with its left and right neighbours. Such a queue can 
hold up to k flits. Initially, each processor places the packet it has to transmit in the queue 
associated with the channel the packet has to cross in order to approach its destination. 

A l g o r i t h m  Route_on_a_Chain 

At step 0: Each processor transmits the head of  the snake towards its destination. 
At  step i, i > 0: Each processor: 

1. Appends the flits it received at step i - 1 to the end of  the appropriate queues. 
2. Transmits the flits which are at the front of  the queues  

Observe that with this algorithm each processor always transmits if  it has at least 
one flit in its queue. This has the effect that no packet can over pass another one during 
its trip to the destination. 

In order to prove that routing can be completed in n(k + 1)/2 + k steps, we define 
a "weaker" routing model which we call the restricted cut-through model. 

Definition. We say that routing is done using the restricted cut-through model, if, for 
every snake s, a time instance t = lk exists such that: 

1. length(s, t ')  _< 2 ,  for any t '  < t. 
2. length(s, t + i) = i -t- 1, for any 0 < i < k - 1. 
3. length(s, t') = k, for any t '  > t + k - 1. 

4. length(s, t" + i) = k - i, for any 0 < i < k, where t" is the step when the head 
of  snake s reaches its destination. 

In other words, a packet gains full extension at time t and maintains that full extension 
until it reaches its destination. Before time t, the snake is routed (as condition 1 imposes) 
according to the store-and-forward model. Also, transmission of  a packet can start only 
at time instances which are multiples of the number of  flits in a packet. A collision occurs 
at time t at processor P ,  if flits that belong to two different packets are in the FIFO queue 
of processor P at time t. 

Lemma 1. When the routing on a chain o f  n processors is performed using the re- 
stricted cut-through model, no collision can occur after step nk /2. 

Proof. We assume that each processor is equipped with an oracle that helps it to decide 
when is the appropriate time for a packet to gain full extension according to the rules 
of the restricted cut-through model. Without loss of generality, consider packets that 
go from left to right. Let them form the sequence A = (Pm, Pm-I . . . . .  P1), m < n. 
If  the length of  sequence A is less than or equal to n/2,  the lemma is true since, every 
k steps, at least one packet gains full extension. Now, we examine the case when the 
length of sequence A is greater than n '2. Assume that a collision occurs after (n /2  § j ) k  
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steps, j > 0. Say that packet P collided with packet Q. This happened because P did 
not gain full extension by time (n/2 + j)k ,  j > O. In tum, Q did so in order to avoid 
a collision with packet R which did not gain full extension by time (n/2 + j )k  - k, 
j > 0, and so on. Thus, in sequence A we can identify the packet that had the collision 
and also (n/2 § j )  packets that caused the collision (since, at least full extension is ob- 
tained every k steps). We now concentrate on those packets. They form the subsequence 
B = (Q(n/2)+j+l, Q(n/2)+j, Q(n/2)+j-1 . . . . .  Q1), where Q(n/2)+j+l is the packet that 
had the collision. Exactly one of these packets is gaining full extension every k steps 
(starting from Q1, Q2 . . . .  ). Let Ix be the initial position (processor) of packet Qz, of 
sequence B. Observe that the destination of packet Qz, initially at Ix, is to the right of po- 
sition (Ix-1 § ~-). (Qz did not gain full extension in order to avoid a collision with Qx_I. If 
the destination of packet Qz was to the left of position (14-1 §  a collision would not be 
possible after step ~.k.) Thus, all packets are going to the right of position n/2 + j .  How- 
ever, there are only n/2 - j such positions to accommodate n/2 + j + 1 packets. Since 
our initial problem was a permutation problem, we run into a contradiction. So, our as- 
sumption that a collision can occur after step nk/2 was false. This completes the proof. [] 

Lemma  2. If the routing on a chain of n processors is performed by Algorithm 
Route_on_a_Chain using the cut-through with partial cuts routing model, no collision 
can occur after step nk/2. 

Proof. At any step of the routing, all flits of a packet in the restricted cut-through 
model are further from their destination, compared with the flits of the same packet in 
the cut-through with partial cuts model. From Lemma 1, we know that nk/2 steps are 
enough for the restricted cut-through model. Thus, nk/2 steps are also enough for the 
cut-through with partial cuts model. [] 

Theorem 1. Using the cut-through with partial cuts routing model, the permutation 
routing problem on a chain of n processors, where each packet consists of k flits, can be 
completed after n(k + 1)/2 + k steps. 

Proof. Use Algorithm Route_on_a_Chain. It guarantees that the snakes remain con- 
nected during the routing. From Lemma 2, we know that no collision can occur after 
step nk/2. The maximum distance a packet has still to travel is n/2. This corresponds 
to the case where the initial position of the packet is at one end of the chain, and the 
destination at the other. After nk/2 steps, the whole packet has already travelled at 
least half of the distance. Now it can gain full extension. So, it needs n/2 + k more 
steps for its tail to reach its destination. Thus, the total number of steps required is 
nk/2 + n/2 + k = n(k + 1 ) / 2 + k .  [] 

2.2. General Routing on a Chain 

In this section we define and examine two more general routing problems in a chain of 
n processors. Later, we use these results in the algorithm for the permutation routing 
problem on a square mesh. 
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Problem 1 (Many-to-One Routing). Initially, each processor has at most one packet 
to route. At the end, a processor can receive more than one packet. 

Problem 2 (One-to-Many Routing). Initially, a processor might have more than one 
packet to route. At the end, each processor receives at most one packet. 

Theorem 2. Using the cut-through with partial cuts routing model, the many-to-one 

routing problem on a chain o f  n processors can be solved in (k - 1)m § n steps, where 

m is the total number o f  packets on the chain, and k is the number offl i ts in a packet. 

Proof  Route the packets using Algorithm Route_on_a_Chain. To show that ( k -  1)m §  
steps are enough to complete the routing, we use again the restricted cut-through model. 
We want to prove that, using this model, routing will be completed after (k - 1)m § n 
steps. Then we can conclude that (k - 1)m §  steps are enough to route all packets, even 
when we are using the cut-through with partial cuts model. Without loss of  generality, 
consider packets that are going from left to right. In the worst case, all m packets belong 
to that category. The use of  the restricted cut-through model guarantees that in every k 
steps, at least one packet gains full extension. So, after km steps, all packets have gained 
full extension. Consider now the tail of  the leftmost packet. It can be at most n - m 
steps away from its destination. Thus, we need m k  § (n - m) = (k - 1)m + n steps to 
complete the routing. [] 

Theorem 3. Using the cut-through with partial cuts routing model, the one-to-many 

routing problem on a chain o f  n processors, can be solved in (k - 1)m + n steps, where 

m is the total number o f  packets on the chain, and k is the number offl i ts in a packet. 

Proof. The routing algorithm is a modification of Algorithm Route_on_a_Chain. How- 
ever, we now have a queue, since, initially, a processor might have more than one packet 
to send. At any instant, when a processor has just completed the transmission of the 
last flit of a packet, it starts the transmission of the packet that has to go farthest. In 
order to prove that (k - 1)m + n steps are enough to complete the routing we use again 
the restricted cut-through model. Without loss of generality, consider only the packets 
that have to move to the right. Consider such a packet before it gains full extension, 
and at time instances that are multiples of  k. It is either delayed by another packet that 
has to go further, or it is advanced to the next processor (using the store-and-forward 
model). We assume that, until the time it gains full extension it is delayed/~ times. This 
implies that by time mk it advances m - # times. If, by m - # advances, it reaches its 
destination we are done. Otherwise, by time m k  its tail will be at most n - tt steps away 
from its destination. To see that, observe that since it was delayed by tt packets, it is not 
destined for the rightmost # processors. Also it has advanced m - / x  positions closer 
to its destination. By combining these two facts, we get that its tail still has to travel at 
most (n - #)  - (m - #)  = n - m positions to the right. This implies that the routing 
will be completed after mk + (n - m) = (k - 1)m + n steps. [] 
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Before we proceed, we have to emphasize that the restricted cut-through model that 
was used in the proofs of the first three theorems is not used by our algorithms. This 
model is an unrealistic one because it is provided with the ability to guess whenever or 
not a collision will occur in the future routing of  any packet. However, it turns to be a 
very useful tool for the proof of  these theorems. 

3. R o u t i n g  o n  a n  n x n M e s h  o f  P r o c e s s o r s  

In this section we describe an algorithm for the permutation routing problem on an 
n x n mesh of processors. The algorithm is based on a colouring of the packets with 
two different colours, black and white. From now on, when we talk about a black (white) 
packet (or snake), we mean a packet (or snake) that is coloured black (white). We present 
two simple deterministic colouring strategies which guarantee that the routing can be 
completed after 3nk/2 + O(kn/ f (n))  steps. Using this algorithm, at most 3f (n ) /2  
packets are queued at any one processor at any one time. A third algorithm which relies 
on random colourings completes the routing with high probability in nk+o(n) steps using 
queues of the same size. The technique used to bound the queue size at a processor was 
introduced by Kunde in [11] and has been used by several other researchers [15], [20]. 
Typical functions that we can use as f (n )  are the log n and the ~ functions. Provided 
that an efficient colouring exists, and that it can be computed quickly, our algorithm can 
route all packets in nk + 0 (kn/ f (n))  steps. Finally, we give a deterministic algorithm 
that achieves this time by breaking each snake into two equal parts and routing them 
separately (as opposed to Kunde's k-independent splitting). 

3.1. The Algorithm 

Our routing algorithm needs to sort the packets located in square submeshes as one of  
its steps. Two different orderings are used, namely, the row-wise row-major and column- 
wise column-major orderings. So, before we proceed with the description of the routing 
algorithm, we define these orderings. For the purposes of this paper, we assume that 
the packets to be sorted are n 2 pairs of integers (i, j ) ,  0 < i, j < n - 1. The term 
row-wise means that after sorting, the (in + j + 1)th smallest element is located at 
processor Pi+l,j+l, 0 < i, j < n - 1.3 The term column-wise means that after sorting, 
the (in + j + 1)th smallest element is located at processor Pj+l,i+l, 0 < i, j < n - 1. 
The terms row-major and column-major refers to the ordering relation between packets. 
Assuming that the packets to be sorted are distinct, in row-major ordering (i, j )  < (k, l) 
if and only if i < k or (i = k and j < l) while, in column-major ordering (i, j )  < (k, l) 
if and only if j < I or ( j  = l and i < k). In the case where the pairs to be sorted are not 
distinct, ties are broken arbitrarily. Figure 3(a) shows the packets in a 4 x 4 mesh after 
being sorted (according to their destinations) in row-wise row-major order. Figure 3(b) 
shows the column-wise column-major ordering. Note that in this example more than one 
packets are destined for a single processor: In the case that all destinations are distinct, 
the results look identical (Figure 3(c)). 

3 Recall that rows/columns of the mesh are numbered from 1 to n. 
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Fig. 3. Row-wise row-major (a) and (c) and column-wise column-major (b) and (c) orderings. 

The algorithm for the permutation routing problem on an n • n mesh using the 
cut-through with partial cuts model is based on a colouring strategy and is as follows: 

Algori thm Route_on_a_Square_Mesh 

Step 1. Using a colouring strategy, colour each packet black or white. 
Step 2. 1. Divide the n • n mesh into n / f ( n )  • n / f ( n )  submeshes. 

2. For all submeshes, in parallel do: 
(a) Sort all black packets in row-wise row-major order. 
(b) Sort all white packets in column-wise column-major order. 

(Note that, after the sorting, a processor may contain a black and a 
white packet.) 

Step 3. In parallel do: 
1. Route all black packets vertically, until they reach their row destination. 
2. Route all white packets horizontally, until they reach their column 

destination. 
Step 4. When the routing of step 3 is completed, in parallel do: 

1. Route all black packets horizontally, until they reach their destination. 
2. Route all white packets vertically, until they reach their destination. 

D e f i n i t i o n  A colouring is said to be an (al, a2, bl, b2)-colouring if and only if: 

1, Initially, at most al white packets are in any row. 
2. Initially, at most a2 black packets are in any column. 
3. At most bl white packets are destined for any column. 
4. At most b2 black packets are destined for any row. 

The following lemma shows that the sorting phase of Algorithm Route_on_a_Square 
_Mesh does not destroy the initial colouring, but slightly modifies it. 

L e m m a  3. Assume an arbitrary (u, v, w, x )-colouring of  the packets. Then the division 
of  the mesh into n / f (n ) • n / f  (n) submeshes and the individual sorting of each submesh 
results in a (u + f (n ) ,  v + f (n ) ,  w, x)-colouring, provided that u + f ( n )  < n and 
v +  f ( n )  <_ n. 
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Proof. Obviously, w and x will remain the same. This is because sorting is not changing 
the colour of any packet. It just redistributes the packets within a particular submesh. 
So, we just have to prove that u and v will become u + f ( n )  and v + f (n ) ,  respectively. 
We show this only for u. The proof for v is similar. The mesh can be considered as a 
collection of f ( n )  disjoint horizontal strips, each one consisting of n / f ( n )  rows. Each 
strip consists of f (n) submeshes. Without loss of generality, consider the first strip. Since 
initially we had a (u, v, w, x)-colouring, in the first strip there are at most un / f (n )  white 
packets. 

Let Rij denote the number of white packets in the ith row of the j th  submesh before 
the sorting, and R~j after. The j th submesh contains 

n/f(n) 
Wj= Z Ri j 

i=1 

white packets. After the sorting, w e will have that R~j < V Wj / ( n / f  (n) ) ] = V f (n) Wj / n 7. 
Thus, in the ith row, we will have at most 

j=l j = l  

f(n) 
= f(n) ~_, W: + f(n) 

n j = !  

f(n) un 
< " - -  + f ( n ) = u + f ( n )  
- n f ( n )  

white packets. Similarly, we can prove that the number of black packets in any column 
will be at most v + f (n). So, after the sorting, we will have a (u + f (n), v + f (n), w, x)- 
colouring. [] 

Corollary 1. Assume an arbitrary (u, v, w, x )-colouring. If, in each submesh, the num- 
ber of white and the number of black packets are multiples of n / f  (n), then, after the 
sorting, we still have a (u, v, w, x)-colouring. 

Proof We have that Wj is a multiple of n/ f (n ) .  This implies that Vf(n)Wj/n] = 
f (n)Wj/n.  We use this relation in the inequalities at the proof of Lemma 3, to prove the 
corollary. [] 

Lemma  4. Assume an initial (u, v, w, x)-colouring. Then, if Algorithm Route_on_a_ 
Square_Mesh is used, at most (1 + max(w, x) /n )  f (n) packets might be queued at any 
processor, waiting for the same channel. 

Proof. We use sorting in order to bound the queue size, as introduced by Kunde in 
[11], where according to our definitions, all packets have the same colour. We prove the 
lemma only for packets that can wait for a vertical channel, i.e., white packets. Consider 
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any processor P = (r, c). We compute the number of white packets that might be queued 
at processor P. We concentrate on the strip that contains processor P. Let ai denote the 
number of white packets after the sorting in the ith submesh of the strip, that are in the 
rth row and have destination in column c. We wish to compute 

f(n) 

~"~ ai. 
i=1 

In each submesh there are at least ( a i  - -  1)n/f(n)  + l white packets. So, 

zf(n) [ (ai -1)n +1] < ~ - 
i = l  

By simple calculations, we obtain 

f(n) 

 ai<_ 1+- 2 f(n . 
i=1 

A similar result can be obtained for black packets. Thus, no queue can have more than 
(1 + max(w, x ) /n ) f (n )  packets at any time. [] 

Theorem 4. Using an initial (u, v, w, x)-colouring, Algorithm Route_on_a_Square_ 
Mesh completes the routing after ( k -  1)[min(max(u+ f (n), v+ f (n) ), n)+max(w,  x ) ]+  
2n + O(kn / f  (n)) + tcolour steps, using queues of size at most (1 + max(w, x)/n)  f (n) 
packets each. 

Proof. Step 1 requires tcolour routing steps, tcolour depends on how complex the com- 
putations are which are needed to determine the colouring. Step 2 of the algorithm can 
be performed in O(kn/f(n))  routing steps, using any one of the algorithms for sorting 
in a square mesh given in [22] and [23]. Step 3 describes two many-to-one problems, 
one for black and one for white packets. By Theorem 2, we know that we can solve 
these problems in (k - 1)[min(max(u + f (n) ,  v + f (n) ) ,  n)] + n steps. Finally, step 
4 describes two one-to-many routing problems. From Theorem 3, we know that we 
can solve the one-to-many problems in (k - 1)[max(w, x)] + n steps. By summing 
the time required for each step of Algorithm Route_on_a_Square_Mesh, we obtain that 
( k -  1)[min(max(u+f(n), v+f (n) ) ,  n) +max(w,  x ) ]+2n  + O(kn/f(n))+tcolour steps 
are needed. The argument about the queue size being at most (1 + max(w, x ) / n ) f ( n )  
packets was proved in Lemma 4. [] 

Corollary 2. Assume an arbitrary colouring. If in each submesh the number of white 
and the number of black packets are multiples of n / f  (n), then Algorithm Route_on_a_ 
Square_Mesh completes the routing after (k - 1)[max(u, v) + max(w, x)] + 2n + 
0 (kn/f(n))  + tcolour steps, using queues of size at most (1 + max(w, x ) / n ) f ( n )  packets 
each. 
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Proof. By using Corollary 1 in the proof of Theorem 4. 
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[] 

3.2. Three Possible Colourings 

In the following we describe three possible colourings of the packets. The first two 
colourings are derived in a deterministic way. These colourings can be considered to be 
symmetric and result in the same routing time. The algorithm that uses the first colouring 
needs queues of size 2 f  (n) packets. We show that use of the second colouring can reduce 
the size of the queues to 3 f (n)/2 packets. The third colouring is a random one. All three 
colourings can be obtained in O(1) time. 

Colouring A. Colour the processors in such a way that the mesh looks like a chessboard. 
A packet is coloured white (black), if it is initially at a white (black) processor. So, 
initially, there are exactly In/21 white packets in any row, and exactly [n/21 black 
packets in any column. Observe that it is possible that n white (black) packets have the 
same column (row) destination (Figure 4). Thus, colouring A is a (Fn/2], Fn/2], n, n)- 
colouring. Also observe that, for even n, the number of white (black) packets in each 
submesh is a multiple os n/ f (n) .  Thus, after the sorting, we still have a (n/2, n/2, n, n)- 
colouring (Corollary 1). For odd n, after the sorting, only one row in each submesh has an 
extra packet compared with the others. We can arrange that at the ith submesh the extra 
packet will be at the ith row. So, after the sorting, we will have an (In/21, [n/2q, n, n)- 
colouring. Thus, Corollary 2 is correct for even values of n, and gives an underestimate 

b y  k routing steps for odd values of n. So, at most 3nk/2 + n/2 + (k - 1)f(n)  + 
O(kn/ f (n))  + O ( 1 ) +  k = 3nk/2 + n/2 + o(n) steps are needed to complete the 
routing. The queues have size at most 2 f (n )  packets. A more careful analysis, one 
that takes into consideration that we never start the routing with any two adjacent black 
(white) packets, shows that we can save n/2 routing steps from the time required to solve 

1 2 3 4 5 6 7 8 1 2 3 4 5 6 

Fig. 4. 

I 
(a) (b) 

Colouring A is an (n/2, n/2, n, n) colouring. (a) Before routing and (b) after routing. 
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CD 
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CD 

(23 
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the many-to-one problem of step 3 in our algorithm. To see that, consider the worst-case 
scenario for the many-to-one problem, namely when all n/2 packets are destined for the 
rightmost processor. Exactly nk/2 flits want to enter that processor, and they start doing 
so immediately. Also observe that, at every step, one flit reaches its destination. So, the 
many-to-one routing is completed after nk/2 steps. This implies that the total number 
of steps needed to complete the routing is 3nk/2 + o(n). 

Colouring B. Colour the processors as before (chessboard). Now, colour a packet white 
(black), if it is destined for a white (black) processor. In this colouring exactly n/2 white 
(black) packets are destined for any column (row), but it is now possible that n white 
(black) packets are initially in the same row (column) (Figure 5). Thus, colouring B is an 
(n, n, n/2, n/2)-colouring. By Corollary 2, we have that routing can be completed after 
3nk/2 + n/2 + o(n) routing steps, using queues of size 3f(n)/2 packets. Again, a more 
careful analysis, one that takes into consideration that no two white (black) packets are 
destined for any two adjacent processors, shows that the one-to-many problem of step 4 
in our algorithm can be solved in nk/2 steps. Thus, again, n/2 steps can be saved, and 
3nk/2 + o(n) routing steps are enough to complete the routing. 

Colouring C. Each processor decides the colour (black or white) of the packet it has 
by flipping a fair coin. The probability that a given packet is black (white) is 1/2. We 
show that: 

Lemma 5. If we colour all packets randomly with Pr{P = White} = Pr{P = Black} 
= 1/2 for every packet P, then the resulting colouring will be an (n/2 + a, n/2 + 
a, n/2 + a, n/2 + a)-colouring with high probability, where a -- ~ In 2n. 

1 2 3 4 5 6 7 8 1 2" 3 4 5 6 7 8 

(a) (b) 

Fig. 5. Colouring B is an (n, n, n/2, n/2) eolouring. (a) Before routing and (b) after routing. 
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Proof. ConsiderasequenceofnBernoull i tr ialswhereintheithtrial ,  fori = 1, 2 . . . . .  n, 
success occurs with probability Pi -=- P and failure occurs with probability qi ----- 1 --  p. 
If  X is a random variable that describes the total number of suCcesses in this sequence 
of  n trials, then for 0 < a < np we have [5] 

Pr{X > n p  + a} < e -a2/3np.  

In our case, success is considered to be the event of colouring a packet black and failure 
the event of  colouring a packet white. For every packet Pi, i = 1, 2 . . . . .  n, we have that 
Pr{Pi = Black} = p = 1/2. 

Thus, we have that 

n } e_2a2/3 n Pr X > ~ + a  <_ 

For a = v / ~  In 2n we get: 

Pr X >  ~ + ~  < e x p  - 2 ( ~ ) 2  
- - 3n 

= exp ( - 2  �9 3n ln2n'~ 

3n / 

= e x p ( - 2  In 2n) 

___ (2n) -2 

1 

= 4n2. 

This means that, for any row, the probability of  having more than n /2  + a black packets is 
less than 1/4n 2. In a similar way, we can prove that fo r any row the probability of having 
less than n /2  - a black packets is less than 1/4n 2. Thus, for any row, the probability 
to fail to have X black packets, where n /2  - a <_ X <_ n /2  + a, is less than 1/2n 2, 
for a = ~ In 2n. Thus, the probability to fail to have at every row j ,  1 < j < n, 
Xj black packets, where n / 2  - a < Xj <_ n / 2  + a, is less than n(1/2n  2) = 1/2n, 

for a = ~ .  Similarly, we can prove that the probability to fail to have at every 
column j ,  1 _< j _< n, Xj white packets, where n /2  - a < Xj  < n /2  + a, is less 

than 1/2n, for a = ~ In 2n. Given that the above facts hold for both the origins of  
the packets as well as their destinations, we conclude that with probability 1 - 1/n the 
resulting colouring will be an (n /2  + a, n /2 + a, n /2  + a, n /2  + a)-colouring. [] 

From Theorem 4, we then conclude that the routing is completed with high proba- 
bility in nk + o(n) routing steps. Thus, we can now state the following theorem: 

T h e o r e m  5. Using the cut-through with partial cuts routing model, a permutation 
routing problem on an n x n mesh o f  processors can be solved deterministically after 
3nk /2  + o(n) routing steps, using queues o f  size at most 3 f (n) /2  packets. Furthermore, 
the problem can be solved in nk + o(n) routing steps with high probability if we colour 
the packets randomly. 
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3.3. Breaking Each Packet into Two Snakes Can Help 

If we insist that our algorithm has to be deterministic we can reduce the routing time by 
breaking each packet into two snakes. The main characteristic of the first two colourings 
of the previous section is that they do not result in an algorithm that has "balanced" 
performance. In other words, colouring A (B) achieves optimal routing time at step 
3 (step 4) of the routing algorithm, and performs badly at step 4 (step 3). The ideal 
colouring for our algorithm would be an (n/2, n/2, n/2, n/2)-colouring. This colouring 
results in an algorithm that completes routing after nk + o(n) steps. 

We can obtain a balanced colouring by breaking each packet into two snakes, each 
one consisting of k/2 flits. For every packet, we colour one of its two snakes white and 
the other black. Now, we have an (n, n, n, n)-colouring which is balanced. (Observe that 
there are 2n 2 snakes in the mesh). Using Corollary 2, since the number of black and 
white packets in each submesh is a multiple of n/ f (n ) ,  we conclude that routing can be 
completed after (k/2 - 1) (n + n) + 2n + o(n) = kn + o(n) steps, instead of 3nk/2 + o(n) 
steps without snake-splitting. Thus, we have: 

Theorem 6. Using the cut-through with partial cuts model, if we break each packet 
into two snakes and route them separately, a permutation routing problem in an n x n 
mesh of processors can be solved after nk § o(n) routing steps, using queues of size 
f (n) packets. 

4. Routing on the Torus 

In this section we show that the permutation routing problem on the torus can be solved 
deterministically after 3nk/4 + o(n) steps and with high probability after nk/2 + o(n) 
steps. We also show that the breaking of each packet into four snakes can reduce the 
number of steps of the deterministic algorithm to nk/2+o(n).  Since the basic components 
of our algorithm are routines that do the routing on rings, we analyse two special forms 
of such routing. 

4.1. Routing on a Ring 

Lemma 6. A many-to-one flit-serial routing problem on a ring of n processors that 
has the property that packets are initially distributed on nonadjacent processors, can be 
solved in kn/4 routing steps, where each packet consist of k flits. 

Proof. Consider the simple algorithm where each packet is routed using the shortest 
path to its destination and no over passing of packets that are routed in the same direction is 
allowed. The maximum distance that a packet has to travel is n/2. Since at the beginning 
no two packets are adjacent, in the worst case, at most nk/4  flits want to enter (and 
possibly exit from) any processor. Furthermore, they will start doing this immediately, 
and at every step one flit will enter any processor. This implies that after nk/4 steps the 
routing will be completed. [] 
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L e m m a  7. Any one-to-many flit-serial routing problem on a ring of n processors can 
be solved in kn/2 routing steps, where each packet consists of k flits. 

Proof We can achieve this routing time by using the store-and-forward model and the 
following method. Each processor computes, for each of the packets it holds, the direction 
of the shortest path to its destination. Consider any packet that has to travel a distance 
/z along the shortest path. Then the routing of the packet starts at time (n/2 - Iz - 1)k. 
By observing that no packets can compete for the same channel, we conclude that each 
packet will reach its destination at step nk/2. (Remember that the store-and-forward 
model is used.) [] 

4.2. Extending Algorithm Route_on_a_Square_Mesh to Work on Tori 

Theorem 7. Using the cut-through with partial cuts model, a permutation routing 
problem on an n x n torus can be solved deterministically after 3nk/4 + o(n) routing 
steps, using queues of size 2f (n )  packets. Furthermore, the problem can be solved in 
nk /2 + o(n) routing steps with high probability if we colour the packets randomly. 

Proof. For the deterministic part of the theorem we use colouring A. For the proba- 
bilistic part we colour the packets randomly. We then modify steps 3 and 4 of Algorithm 
Route_on_a~Square_Mesh so that packets are routed using the methods described in 
Lemmata 6 and 7. So, step 3 and step 4 of the deterministic algorithm require nk/4  
and nk/2 routing steps, respectively. Thus, in total, we need 3nk/4 + o(n) routing 
steps. Again, the size of queues is at most 2 f (n )  packets, since colouring A is an 
(n/2, n/2, n, n)-colouring. The proof for the probabilistic part of the theorem uses the 
result of Lemma 5. [] 

4.3. Breaking Each Packet into Four Snakes Can Help 

We show that if we break each packet into four snakes of equal size, we can reduce the 
routing time of the deterministic algorithm from 3nk/4 + o(n) to nk/2 + o(n) steps. We 
colour each snake of a packet using four different colours, say, black, white, red, and 
green. Let the black and green snakes of a given packet i together form a new snake B Gi. 
Similarly, let the white and red snakes of a given packet i form the snake WRi. In the 
sorting stage of the routing algorithm (step 2), we sort the WR snakes of each submesh 
in column-wise column-major order, and the BG snakes of each submesh in row-wise 
row-major order. In step 3 we route the snakes as follows: 

�9 White snakes: Horizontally, with direction to the east, until they reach their column 
destination. 

�9 Redsnakes: Horizontally, with direction to the west, until they reach their column 
destination. 

�9 Black snakes: Vertically, with direction to the south, until they reach their row 
destination. 

�9 Green snakes: Vertically, with direction to the north, until they reach their row 
destination. 
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Fig. 6. The directions of the snakes. 

In step 4 we route the snakes as follows: 

�9 White snakes: Vertically, with direction to the north, until they reach their final 
destination. 

�9 Red snakes: Vertically, with direction to the south, until they reach their final 
destination. 

�9 Black snakes: Horizontally, with direction to the east, until they reach their final 
destination. 

�9 Green snakes: Horizontally, with direction to the west, until they reach their final 
destination. 

The moves that the snakes with different colours make are illustrated in Figure 6. Observe 
that at steps 3 and 4, one direction is dedicated to all snakes with the same colour. Step 3 
will take nk/4  steps, since n snakes of  length k/4  each want to move to a given direction. 
For the same reason, step 4 will take at most nk/4  steps also. The queue size of  any 
processor at each of the four channels is at most f ( n ) / 2  packets. So, we have: 

Theorem 8. Using the cut-through with partial cuts model, i f  we break each packet 
into four snakes and route them separately, the permutation routing problem on an n • n 
torus, can be solved after nk /2 + o(n ) routing steps, using queues of  size at most f (n ) /2 
packets. 

5. Conclusions 

In this paper we studied the flit-serial routing problem on two-dimensional meshes 
and tori under the cut-through with partial cuts routing model. We presented the first 
deterministic and probabilistic algorithms for permutation routing. Since the submission 
of the original manuscript, several papers related to packet routing on meshes have 
appeared. A selective sample of  the most important ones (in our opinion) includes [2], 
[6]-[8], and [12]. 
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