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In this paper, we consider the many-to-one packet routing 
problem on the mesh parallel architecture. This problem 
has not been considered before. It models the communi- 
cation pattern that occurs when many processors try to 
write on the same memory location on a concurrent-read 
concurrent-write shared memory parallel machine. We 
show that there is an instance of the many-to-one packet 
routing problem that requires n~-k/2 routing steps to be 
solved, where k is the maximum number of packets a 
processor can receive. We give an algorithm that solves the 
problem in asymptotically optimal time. Furthermore, our 
algorithm uses queues of small constant size. This queue 
bound is very important since the ability to expand the 
mesh is preserved. Finally, we consider two variations of 
the many-to-one packet routing problem, namely, the case 
where k is not known in advance, and the case where 
combining the packets that are destined for the same 
processor is allowed. 

many-to-one routing mesh architectures packet routing algorithm 

An important task in the design of parallel computers is the 
development of efficient parallel data transfer algorithms. 
It is known as the packet routing problem, i.e. how to 
route messages (packets) from one processor to another. 
The routing algorithm of a parallel machine, usually called 
router, must be simple and fast. Another requirement is 
that the number of buffers, which are used in each 
processor to facilitate the routing, must be small and, if 
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possible, independent of the size of the network. These 
buffers are required because queues can be created if two 
packets are competing for the same communication 
channel. 

In this paper we study the many-to-one packet routing 
problem on the mesh architecture. We prove a lower 
bound for this problem and present an algorithm that 
is optimal in the worst case and uses small, constant size 
queues. We have chosen the mesh architecture because 
its simple and regular interconnection pattern makes it 
especially suited for VLSI implementations. An n X n 
mesh of processors is defined to be a graph G = (% E), 
where V = {(i, j ) l l  < i, j < n} and an edge e = ((i, j), (k, I)) 
belongs to E i f l k - i l + l l - j l = l .  The n X n  mesh is 
illustrated in Figure 1. At any one step, each processor can 
communicate with all of its neighbours by the use of 
bidirectional links (channels). We define the distance 
between two processors /o 1 = (i, j) and P2 = (k,I) as 
distance (P1, P2) = I k - it + I I - j I- If distance (Pl, P2) = 1 
then P1 and P2 are neighbours. The processors are 
assumed to work in a synchronous MIMD model. 

Initially, in a many-to-one routing problem, each 
processor has exactly one packet that must be routed to 
another processor on the mesh. However, unlike the 
permutation packet routing problem, more than one 
packet might be destined for the same processor. A 
typical problem that can be modelled as a many-to-one 
routing problem is the process of writing on the same 
memory location on a CRCW (concurrent-read concurrent- 
write) parallel machine. In this problem, each processor 
holds a portion of the shared memory. If more than one 
processor wants to write on the same memory location L, 
then these processors will all route their data to the 
processor that holds memory location L. We can easily 
see that the above situation on a CRCW parallel machine 
corresponds to the many-to-one routing problem. 

To the best of our knowledge, no previous work exists 
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Figure 1. 
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on the many-to-one routing problem for the mesh 
connected array parallel architecture. On the other hand, 
the permutation routing problem has been studied. An 
optimal algorithm for the 1-1 packet routing problem on 
the mesh that takes 2n - 2 steps and uses queues of 1008 
was derived by Leighton et al." Later, the queue size was 
reduced to 112 by Rajasekaran and Overholt 2. The 
permutation routing problem can be used to model 
communication patterns that occur in EREW (exclusive- 
read exclusive-write) parallel machines. A modification of 
the permutation routing problem, called flit-serial routing, 
considers the case where the packets are broken into a 
string of subpackets, called 'flits'. The problem here is to 
route the 'snake' and flits quickly and with small queues. 
Also, the sequence of the flits that constitute a packet 
cannot be broken during the routing. The authors have 
studied this problem for the mesh and the torus 3 (a mesh 
with wrap-around connections). 

The remainder of the paper is divided into sections as 
follows: in the next section, we show a lower bound on 
the number of communication steps required to solve the 
many-to-one routing problem for the mesh-connected 
array parallel architecture. In the following section, we 
present an asymptotically optimal algorithm for the many- 
to-one routing problem that uses queues of size at most 
2n. We then bound the queue size to 16 packets per 
processor. Next, we consider two variations of the 
many-to-one routing problem. We conclude with open 
questions. 

THE LOWER BOUND 

Theorem 1 Given an n × n mesh of processors, where 
initially each processor holds exactly one packet, there is 
a many-to-one routing problem that requires C~(nv'~) 
routing steps to be solved, where k is the maximum 
number of packets a processor can receive. 

Proof To prove the lower bound, let us consider the 
following situation. Assume that there exists a set of 
processors such that all the processors in that set receive 
exactly k packets. Since the total number of packets in the 
mesh is n 2, there are exactly n2/k such processors. 
Furthermore, assume that these processors are located at 
the south-east corner of the mesh and, more specifically, 
inside an ( n / E ) X  (n/ ,~)  south-east square submesh 
M 1 (Figure 2). Note that submesh M1 contains exactly n2/k 
processors. Assume that all packets in the network want 
to enter into this submesh. There are a total ofn 2 - (n2/k) 
such packets and these packets can enter into submesh 

Figure 2. 
submesh 

l , l  

All packets are destined for the south-east 

M I only through 2n/vk channels. Thus, any solution to 
this routing problem requires at least: 

n! cn2/_ k =n2v~k(k-1)= n\_~k_ n 

2n/\-k 2nk 2 2\ k 

routing steps in order to route all packets to their 
destinations. This indicates that we need at least g(n/x/k) 
routing steps. 

AN OPTIMAL ALGORITHM 

In this section we present an asymptotically optimal 
algorithm that solves the many-to-one problem such that 
each processor uses queues of size at most n packets. In 
the next section we will modify the algorithm so that the 
queue size is bounded by a constant. This is very 
important since the algorithm can then be used for 
networks of any size. If the queue size were a function of 
n, then any attempt to expand the network would require 
extra buffers to be added to all the processors of the 
existing network. This is something to be avoided. 

The algorithm 

A high level description of the routing algorithm is given. 
The algorithm consists of one colouring phase (step 1) 
and two routing phases (steps 2 and 3). The colouring 
phase will be refined later. 

Algorithm "route" 

1. Out of those packets that are destined for the same 
row, colour (using algorithm Colour below) exactly 
n/vk  of them 'black' (if they exist) and the rest 
'white'. 

2. Route the black packets as follows: 
(a) Route the black packets vertically (along the 

columns) to the correct row. 
(b) Route the black packets horizontally (along the 

rows) to their destination. 
3. Route the white packets as follows: 

(a) Route the white packets horizontally (along the 
rows) to the correct column. 

(b) Route the white packets vertically (along the 
columns) to their destination. 

We say that a black (white) packet that is moving along 
a column (row) during step 2 is executing its 'phase I 
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routing'. Similarly, we say that a black (white) packet that is 
moving along a row (column) during step 3 is executing its 
'phase II routing'. 

It is clear that the algorithm terminates and all packets 
will reach their destination. The way steps 2 and 3 are 
performed is also clear. At each time instance, each 
processor advances one of the packets it has, out of those 
that want to travel in a given direction, towards that 
direction. If it has a packet to send, it always does so. 

Step 1 needs further refinement. We have to specify 
the way we colour the packets. Furthermore, we have to 
colour them quickly so that the colouring phase adds to 
the total routing time very small terms which can be 
ignored from the overall time complexity. We use 
algorithm Colour to do the colouring. This algorithm uses 
a sorting algorithm as its first step, which sorts all the 
packets of the mesh using a special indexing scheme 
called row__major-snake__like-column__order indexing. 
Before we describe algorithm Colour, however, we need 
to explain how the packets are arranged after the sorting if 
the row major-snake__like-column_order indexing 
scheme is used. 

Suppose that we start with a square mesh of processors, 
where each processor holds a packet that is destined for 
another processor on the mesh. Each packet has a 
destination address that is a pair (row, column) of integers. 
If the packets are sorted according to their destination 
in a row__major-snake__like-column__order, then the 
'smallest' packets will end up at processor (1, 1) while the 
rest form a snake-like sequence positioned along the 
columns. The term 'row__major' indicates that all packets 
that are destined for the same row form a sequence 
in the 'snake' denoted by Si. Similarly we define the 
column__major-snake__like-row__order that we will use 
later in the paper. Figure 3 shows a 5 X 5 mesh before and 
after the sorting of its packets in row__major-snake like- 
column__order. The figure also illustrates the notion of a 
sequence. 

Algor i thm "co/our" (step 1 o f  algor i thm "route'] 

1. Sort the mesh in row~major-snake like-column 
order. 

2. In each sequence S;, where 1 < i < n ,  locate the 
'first' packet, called the leader. Let this packet be Pi. 

3. Colour all packets white. 
4. For all sequences &, 1 < i < n, in parallel do: Starting 

from Pi, colour n ~  packets (if they exist) of sequence 
Si black. 

Step 1 is the most critical step in algorithm Colour. After 
the sorting has finished, the packets are partitioned into n 

(2,5) (4,1) ],1) (2,3) (l,l) 

(2,5) (l,l) (2 ,3)( l , l )  (2,5) 

(1,2) (2,5) (2,5) (1,1) (1,1) 

(2,5) (1,2) (4,1) (4.1) (1,2) 

(I,I) (4,1) (I,I) (1,2) (I,I) 

Figure 3. A 5 X 5  array 

(l,l) (1,2) (1"2) (2,5) (2,5) ~ 

(l,l) (l,1) (1,2) (2,5) (4,1) 

(l,1) (1,l) (1,2) (2,5) (4,1) 

(1.1) (1,1) (2,3) (2,5) (4.1) 

0,1) (]J) (2,3) (2,5) (4,1) 

before and after sorting 
in row__major-snake__Jike-column_order. The three 
sequences destined for rows, 1, 2 and 4 are shown 

consecutive sequences (some of which might be empty) 
such that packets that are destined for the same row 
belong to the same sequence. After the sorting and the 
identification of the 'leader' in each sequence have taken 
place, 'special' packets are allowed to travel along each 
sequence and colour the first n~/k ordinary packets black 
(step 4). We will see later how step 4 takes place. 

T i m e  a n a l y s i s  

We first analyse algorithm Colour. The sorting step can be 
performed in 3n + o(n) routing steps using the sorting 
algorithm of Schnorr and Shami r 4. Let us now consider the 
time it takes to locate the leader in each sequence. 
Lemma 1 shows that finding the leader of a sequence 
takes one routing step. 

Lemma 1 In an n X n array that is sorted in row__major- 
snake__like-column order, a processor can find out if it 
is holding the leader of a sequence in one routing 
step. 

Proof The following strategy proves the lemma. Each 
processor sends a copy of its packet to the processor 
immediately after it in the 'snake' ordering. After this, each 
processor compares the packet it received with its own 
packet. If both packets are destined for the same row, 
then the processor is not holding the leader of the 
sequence to which it belongs. If the packets are destined 
for different rows, then this processor is holdingthe leader 
of the sequence. The processor at location (1,1) of the 
mesh always holds a leader. From the above discussion, it 
is obvious that a processor can find out if it holds a leader 
in one routing step. 

Next, we give a lemma that bounds the time it takes to 
colour the first n~/k packets of each sequence black (step 
4 of algorithm Colour). Let M be an n x n mesh such that 
each processor holds a packet and the packets are sorted 
in row__major-snake like-column order. 

Lemma 2 Given a mesh M and k, the maximum number 
of packets a processor can receive, we can colour black 
the first n~/~ packets of each sequence Si in n + ~/k 
steps, 1 < i < n. 

Proof To prove Lemma 2, we must describe how to 
colour the first n ~ k  packets (if they exist) of any sequence 
in n + ~ k  steps. Let p0 be the processor that holds the 
leader of sequence Si. We designate a special packet of 
type 'searcher' to start moving from p0 to the right along 
the row. Let P~ be the processor it meets at the next 
position on the row. If P~ is also holding a packet destined 
for row i, then all packets of the sequence that exist on the 
processors between p0 and P~ are destined for the same 
row and must be coloured black. We now let two special 
packets of type 'painter' start, one from p0 along the 
'snake' toward P~ and the other from P~ along the 'snake' 
toward p0. During their trip, these two painters colour all 
the packets on their route black. After this, the searcher 
moves to the right again and the same procedure is 
repeated. Since we want to colour up to nv'k packets, we 
allow the searcher of each sequence to move up to ~/k 
positions to the right. So, in the worst case, the movement 
of the searcher takes x,Yk steps. The movements of the 
painters that we initiated last will finish after at most n 
steps. Thus the colouring of the packets can be done in 
n + vJk steps. 
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Note that we can omit using the second painter. The 
result will be that the colouring finishes in at most 
2n + ~/k steps. This does not affect the final complexity 
of the algorithm by more that a constant factor. 

From /emmas 1 and 2, we conclude that algorithm 
Co/our takes 4n + ~/k + o(n) routing steps. 

Now we analyse the routing phases (steps 2 and 3 of 
algorithm Route). We obsewe that steps 2(a), 2(b), 3(a) 
and 3(b) can be reformulated as special cases of the 
following problem: given m packets that are distributed 
along a chain of n processors and such that each one has a 
destination in the chain associated with it, route the 
packets as quickly as possible. This problem, as well as its 
variants, is very well studied in several papers ~' s,6. An 
optimal algorithm exists that completes the routing after 
at most m + n steps. The worst case situation occurs 
when all packets are initially located at the processor at 
one end of the chain and are destined for the same 
processor at the other end of the chain. 

Let us now consider steps 2(a) and 3(a) of algorithm 
Route. Since there are at most d < n packets in each 
column and row respectively, at most n routing steps will 
be needed in the worst case. (We might need more than d 
because of the distance limit. A packet from one end of 
the chain (row or colurhn of the mesh) might be destined 
for the processor at the other end.) 

In step 2(b) we have at most n~/k packets in each row. 
This is because algorithm Route forces that many packets 
to be in each row (if they exist) by colouring them black. 
Let w be the maximum number of white packets in any 
column at the beginning of step 3(b). Then the number of 
routing steps needed for step 3 of algorithm Route is 
max(n~/k', w) + n - ~/k. In the following lemmawe prove 
that w < n~/-k. 

Lemma 3 The number of white packets in every column 
of the mesh at the beginning of step 3(b) of algorithm 
Route is less than n ~ .  

Proof Recall that algorithm Route initially colours all 
packets white. Then it colours up to n~/k packets of each 
sequence Si black. All the remaining packets of each 
sequence are still coloured white. But how many 
sequences still have white packets? Since we started with 

2 exactly n packets in the mesh, there must be less than 
n2/(n~/k) = n/~/k such sequences. Assume that there 
exists a column such that k packets from each of these 
sequences with white packets are destined for this 
column. Since there are less than n/~/k such sequences, 
the total number of white packets in any column is less 
than ( n / ~ ) k  = n~/k. 

From Lemma 3, we can conclude that each of steps 2 
and 3 of algorithm Route takes at most n(~/-k + 1) - ~/k 
routing steps. Thus, the total number of steps required by 
algorithm Route is: 

4n + ~/k + o(n) + 2(n + n(~/k + 1) - ~/k) = O(n,~/k) 

routing steps. From Theorem 1, we conclude that the 
algorithm is optimal. 

Let us consider the queue size. The queue size 
required at each processor of the mesh is of size at most n 
packets per direction (horizontal or vertical). This is 
because, at the end of step 2 of the algorithm, we might 
have at some processor at position (i, j) of the mesh all 
packets that were initially in column j. There are at most n 
such packets. The same holds for the white packets that 

were routed through the rows (actually, at most n - ~ k  
packets are queued in any processor). Thus we have the 
following theorem. 

Theorem 2 Given an n X n mesh of processors, where 
each processor has exactly one packet destined for 
another processor of the mesh, and k, the maximum 
number of packets a processor can receive, the many-to- 
one routing problem can be solved in O(n~/k) routing 
steps with the use of queues of size at most n 
packets. 

BOUNDING THE QUEUE SIZE 

In this section, we describe how to modify algorithm 
Route so that the size of the queues used will be bounded 
by a constant. If we can bound the queue size by a 
constant, then we are able to apply algorithm Route on 
networks of any size. 

Structure of each processor 

Before we proceed to describe how to modify algorithm 
Route in order to achieve constant size queues, we 
present the structure that a processor must have in order 
to be able to execute the modified algorithm. Of course, 
since we are interested in the queue size, we show only 
the structure of the buffer area of each processor. 

Our routing algorithm will first route the black and then 
the white packets. So the buffers that are used in the 
routing of the black packets can be reused. Figure 4 shows 
a processor with the buffers that are used in the routing of 
black packets. (Remember that black packets are routed 
vertically to the correct row, and then horizontally to their 
destination.) 

With each of the north and the south channels we 
associate two buffers of each of the following three types: 
TURN__L, TURN__R and STRAIGHT buffer types. Buffers 
of type TURN__L accommodate only packets that want 
to enter through the specific channel the buffers are 
associated with, and want then to turn to the left. 
Similarly, buffers of type TURN__R accommodate only 
packets that want to enter through the specific channel 

Figure 4. The buffers used in the routing of black packets. 
Dashed lines indicate the path that a packet in a particular 
type of buffer will follow 
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the buffers are associated with, and want then to turn to 
the right. Observe that at the time a packet enters a buffer 
of type TURN_L or TURN_R, it starts to execute its 
phase II routing. Buffers of type STRAIGHT hold packets 
that want to exit the processor through the opposite 
channel. With each of the east and the west channels, we 
associate two buffers of type STRAIGHT. In total, each 
processor has 16 buffers, each capable of storing one 
packet. It is obvious that these buffers can be reused for 
the routing of the white packets. The corresponding figure 
can be obtained by rotating Figure 4 by 90 °. In the 
following section, it will be clear why we need two buffers 
of each buffer type. 

Queueing strategy 

In order to maintain constant queues we use the 
following strategy: a packet will be transmitted to the next 
processor on its route only if there is enough space to 
accommodate the packet at the next processor. Depending 
on the fact that the given packet might want to turn at the 
next processor, it will be placed on a buffer of the 
appropriate type. So, a buffer of a particular type must be 
free when the packet arrives. 

Let us now explain why we use two buffers of each 
buffer type. Without loss of generality, concentrate on a 
particular channel that connects processors A and B, and 
the queues of a particular type created at processor B 
because of packets it receives from processor A. Our 
general queueing strategy will be the following. Processor 
B examines the information it received at step t - 1 from 
its neighbours and decides what packets it will transmit 
during step t. It then removes these packets from its 
queues. Then it checks its queues and, if there is space 
available, sends a signal to processor A requesting a 
packet. The natural questions now are, how large a queue 
needs to be and how much space in the queue of B must 
be available in order for it to send a signal. To clarify why 
we need two buffers, assume that processor A always has 
a packet to transmit. Also observe that, if processor B 
sends a signal at step t, then it will receive the packet at the 
end of stept + 1,and soit will be able to transmit it at step 
t + 2. If we want to have processor B always transmitting, 
then it must have one packet to transmit during step t + 1. 
So, processor 8 must have had one packet in its queue (if 
possible) when it sent the signal to processor A at step t. 
Thus, a signal will be sent if there is at most one packet in 
the queue. 

So far, we have answered the second question. Now 
that we have established that at least queues of size one 
are needed, let us justify why we must have space for an 
extra packet. We considered before the case where, at 
step t, processor B sends a signal to processor A and it also 
transmits a packet from its queue at step t + 1. What if it 
cannot transmit at step t + 1 (because it did not receive a 
signal from its neighbours)? Obviously, at the end of step 
t + 1, two packets will be at processor B (if processor A 
responds): the packet that already existed and the packet 
just received from processorA. From the above discussion 
it is clear that two packets of each buffer type are needed 
for every channel. 

Resolving conflicts 

The queueing strategy described in the previous section is 
not enough to guarantee constant size queues. Duringthe 

routing we may face the following situation. A processor 
receives a signal from one of its neighbours that allows it 
to transmit a packet. What if there is more than one 
packet waiting to be transmitted to that neighbour? 
Obviously, we have to assign priorities. There are two 
kinds of conflict that we have to resolve: 

1. Conflicts between packets that are in buffers of type 
TURN__L (or T U R N R )  and of type STRAIGHT. Both 
packets, at the next processor, will use buffers of type 
STRAIGHT. We give priority to the packets that are in 
buffers of type TURN_L (or TURN__R). If there are 
packets in buffers of both of these types, the decision 
is taken arbitrarily. The reason we give priority to 
packets that are in buffers of type TURN_L (or 
T U R N R )  is that we want to make the packets that are 
on the front or the end columns of a sequence (relative 
to the destination processor) move faster. 

2. Conflicts between packets that are executing phases I or 
II and want to move straight. We use a FIFO policy here. 
The packet that enters first will exit first. This is done in 
order to forbid 'overpassing' between packets. One 
reason for the sorting of packets is that we want them 
to flow in a regular manner. If 'overpassing' is allowed, 
we will have problems in analysing the time required 
for the algorithm. 

Routing algorithm 

We now give avery high-level description of the algorithm 
that solves the many-to-one routing problem and uses 
constant queues. 

Algorithm "route with__constant queues" 

1. Colour the packets black and white as in algorithm 
Route. 

2. For each processor, repeat until the routing of black 
packets is completed: 
(a) From the information it received in the previous 

routing step and, using the methods to resolve 
conflicts described in the previous section, the 
processor decides which packets to transmit. 

(b) Using the criteria in the previous section, the 
processor determines which of its queues can 
receive packets at the next routing step. During the 
next routing step, the processor will send signals to 
its neighbours that allow or forbid them to transmit 
packets destined for its queues. 

(c) The processor transmits the packets from step 2(a) 
concatenated with the signals it decided to send at 
step 2(b). 

3. Sort the white packets in column__major-snakelike- 
row_order. 

4. Route the white packets as in step 2. 

While it is clear why we need steps 1, 2 and 4, some 
justification is required for the use of step 3. We need it in 
order to make the packets flow regularly. If we do not 
perform it, we might face the situation where packets that 
are waiting to turn left or right delay packets behind them 
that want to go straight on. Moreover, when this happens, 
the destinations of the packets that want to go straight on 
will not follow any pattern. This will complicate our 
analysis. After sorting the white packets, the analysis of 
their routing is identical to that of the black packets. 
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Figure 5. The structure of a packet 

3 bits- 

Observe that the information concerning the buffers 
that must be transmitted consists of only three bits. Figure 
5 shows the structure of a packet transmitted during step 
2(c). If a particular bit of the signal segment is set to '1', 
then this is interpreted as an invitation for packets. 

We prove the following theorem. 

Theorem 3 Given an n × n mesh of processors, where 
each processor has exactly one packet destined for 
another processor of the mesh, and k, the maximum 
number of packets a processor can receive, themany-to- 
one routing problem can be solved in O(nx/k) routing 
steps with the use of a buffer area of 16 packets per 
processor. 

Proof Since nothing changes duringthe colouringstrategy, 
we still have that at most nv'~ packets will be routed 
during their phase II routing in any row or column. 
Without loss of generality, we concentrate on black 
packets of some sequence Si. Generally, this sequence 
forms a 'snake' that occupies several columns. If the first 
and the last colum,, are not completely occupied by 
sequence Si, we ignore them for the moment and we say 
that these columns are not 'complete'. Consider the rest 
of the packets. All of them are destined for row i. Since 
their movement does not interfere with the movement of 
white packets, the routing can be completed in at most 
n~/~k + n steps. 

Consider now the packets that occupy the first and the 
last column of the sequence Si which we ignored before. 
These packets might be waiting behind packets of other 
sequences, as a consequence of our FIFO policy, and thus 
they might reach their row destination later than the 
packets in 'complete' columns. However, they will all 
reach their row destination after nvJ~ + 2n steps. To see 
why we need so many steps, observe that after nv/k + n 
steps the packets that were in front of them are all in their 
row destination. Now, the packets in the first and last 
column of sequence Si can move towards their row 
destination. They need at most n steps to reach their row. 
From this point on, n more steps are enough for these 
packets to reach their destination. 

By summing the number of routing steps required for 
routing, sorting and colouring, we conclude that algorithm 
Route withConstant___Queues will complete the routing 
of the black packets in O(nv:k) routing steps. The same 
amount of time is needed for the routing of the white 
packets. From the discussion in the previous section, we 
know that a buffer area of 16 packets per processor is 
used. This completes the proof. 

VARIATIONS OF THE PROBLEM 

In this section we study two variations of the many-to-one 
packet routing problem. In the first variation we assume 
that k, the maximum number of packets a processor can 
receive, is not known ahead of time. In the second 
variation, we consider the many-to-one routing problem 

when packets going to the same processor are allowed to 
combine before they reach that processoL 

When k is not known in advance 

In the many-to-one routing problem we have considered 
so far, the maximum number of packets k a processor can 
receive is known in advance. What if it is not? The 
obvious solution is to compute k. This can be done by first 
computing the maximum length out of all of the 
sequences which are created after sorting. We already 
know, from Lemma 1, that the leader of each sequence 
can be identified in only one routing step. Furthermore, 
with a procedure similar to that described in Lemma 2, we 
can count the number of packets in each sequence and 
store this number in the processor holding the last packet 
of the sequence. This task takes at most 2n steps. 

We then perform a Maximum operation over all such 
values of the n × n array. This can be done as follows. 
Route all computed maximum values horizontally to the 
middle column of the mesh. The processors there select 
the maximum of the incoming values. This takes exactly 
n/2 steps. Then a Maximum operation is performed again 
among the values of the middle column. This also takes 
n/2 steps and the maximum value is stored at the 
processor located at the centre of the mesh. We now use 
the reverse procedure to broadcast the computed 
maximum value to all processors of the mesh, and thus to 
the leader of each sequence. Following this, algorithm 
Route proceeds with its colouring phase. So, in order to 
compute k, we used 4n extra routing steps. By summing 
all the above terms we find that after O(n\ k) steps the 
routing is completed. Thus, we can conclude with 
Theorem 4. 

Theorem 4 Given an n X n mesh of processors where 
each processor has a packet destined for another 
processor of the mesh, the many-to-one routing problem 
can be solved in O(nv~) routing steps with a buffer area of 
16 packets per processor, where k is the maximum 
number of packets a processor can receive and is 
determined during the course of the routing algorithm. 

Many-to-one packet routing with combining 

In this section we consider again the many-to-one packet 
routing problem. However, instead of routing all the 
packets independently, we now study a way to combine 
the packets destined for the same processor and then 
route the remaining packets. We define a subsequence sii 
to be a list of all packets that are destined for the 
processor at location (i, j). In total, there are n 2 sub- 
sequences (some of which might be empty). Observe that 
each sequence that was created by the sorting phase of 
the algorithm consists of at most n consecutive sub- 
sequences. We can solve the routing problem by simply 
routing the leaders of each subsequence of the sorted 
array. We observe that we may have up to n 2 such leaders. 
With this formulation, our problem is no longer a many- 
to-one packet routing problem: it is a permutation 
problem. We can still apply our algorithm to solve the 
problem. However, we can skip the colouring phase since 
we have already performed the sorting, and, since k = 1, 
all packets are coloured black. An alternative solution is to 
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use the algorithm of Rajasekaran and Overholt 2 to route 
the leaders in 2n steps with constant queues. In any case, 
we need 5n + o(n) steps, 3n + o(n) steps for sorting and 
2n steps for routing. Note that this method of combining 
is very important in the case where 'write-conflicts' in a 
CRCW parallel machine are resolved in an arbitrary 
manner, i.e. among all processors that want to write in a 
common memory location, one processor is arbitrary 
chosen to do so. This result is reflected in Theorem 5. 

Theorem 5 Any routing problem on an n X n mesh of 
processors where initially each processor has at most one 
packet destined for another processor on the mesh can 
be solved within 5n + o(n) routing steps and constant 
queues, provided that combining of packets destined for 
the same processor is allowed. 

CONCLUSION 

In this paper, we have presented an asymptotically 
optimal algorithm for the many-to-one packet routing 
problem on a mesh connected parallel computer that 
uses queues of 16 packets per processor. The importance 
of the problem comes from its ability to model the 
communication patterns that occur in a CRCW parallel 
machine. An interesting open problem is to derive an 
algorithm that matches exactly the lower bound obtained 
in the second section (our algorithm is optimal within a 
factor of 4 and can be modified to be within a factor of 2 if 
the routing of the black and white packets is done 
simultaneously) or to improve the lower bound to n~/k 
routing steps. 
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