
Optimal algorithms for the
many-to-one routing

problem on two-dimensional
meshes

Fillia Makedon* and Antonios Symvonis t

In this paper, we consider the many-to-one packet routing
problem on the mesh parallel architecture. This problem
has not been considered before. It models the communi-
cation pattern that occurs when many processors try to
write on the same memory location on a concurrent-read
concurrent-write shared memory parallel machine. We
show that there is an instance of the many-to-one packet
routing problem that requires n~-k/2 routing steps to be
solved, where k is the maximum number of packets a
processor can receive. We give an algorithm that solves the
problem in asymptotically optimal time. Furthermore, our
algorithm uses queues of small constant size. This queue
bound is very important since the ability to expand the
mesh is preserved. Finally, we consider two variations of
the many-to-one packet routing problem, namely, the case
where k is not known in advance, and the case where
combining the packets that are destined for the same
processor is allowed.

many-to-one routing mesh architectures packet routing algorithm

An important task in the design of parallel computers is the
development of efficient parallel data transfer algorithms.
It is known as the packet routing problem, i.e. how to
route messages (packets) from one processor to another.
The routing algorithm of a parallel machine, usually called
router, must be simple and fast. Another requirement is
that the number of buffers, which are used in each
processor to facilitate the routing, must be small and, if

*Department of Mathematics and Computer Science, Dartmouth
College, 6188 Bradley Hall, Room 305, Hanover, NH 03755-3551, USA.
E-mail: makedo n(adartmouth.ed u
t Basser Department of Computer Science, University of Sydney, Sydney,
NSW 2006, Australia. E-mail: symvonis(a cs.su.oz.au
Paper received: 12 June 1992. Revised: 6 November 1992

01 41-9331/93/060361-07 © 1 993

possible, independent of the size of the network. These
buffers are required because queues can be created if two
packets are competing for the same communication
channel.

In this paper we study the many-to-one packet routing
problem on the mesh architecture. We prove a lower
bound for this problem and present an algorithm that
is optimal in the worst case and uses small, constant size
queues. We have chosen the mesh architecture because
its simple and regular interconnection pattern makes it
especially suited for VLSI implementations. An n X n
mesh of processors is defined to be a graph G = (% E),
where V = {(i, j) l l < i, j < n} and an edge e = ((i, j), (k, I))
belongs to E i f l k - i l + l l - j l = l . The n X n mesh is
illustrated in Figure 1. At any one step, each processor can
communicate with all of its neighbours by the use of
bidirectional links (channels). We define the distance
between two processors /o 1 = (i, j) and P2 = (k,I) as
distance (P1, P2) = I k - it + I I - j I- If distance (Pl, P2) = 1
then P1 and P2 are neighbours. The processors are
assumed to work in a synchronous MIMD model.

Initially, in a many-to-one routing problem, each
processor has exactly one packet that must be routed to
another processor on the mesh. However, unlike the
permutation packet routing problem, more than one
packet might be destined for the same processor. A
typical problem that can be modelled as a many-to-one
routing problem is the process of writing on the same
memory location on a CRCW (concurrent-read concurrent-
write) parallel machine. In this problem, each processor
holds a portion of the shared memory. If more than one
processor wants to write on the same memory location L,
then these processors will all route their data to the
processor that holds memory location L. We can easily
see that the above situation on a CRCW parallel machine
corresponds to the many-to-one routing problem.

To the best of our knowledge, no previous work exists

ButtenNorth-Heineman n Ltd

Vol 17 No 6 1993 361

Figure 1.

i

i

i

i

m Hmmm

m m m
m m _ m

m m m
m m m

The two-dimensional mesh

I

I

I

on the many-to-one routing problem for the mesh
connected array parallel architecture. On the other hand,
the permutation routing problem has been studied. An
optimal algorithm for the 1-1 packet routing problem on
the mesh that takes 2n - 2 steps and uses queues of 1008
was derived by Leighton et al." Later, the queue size was
reduced to 112 by Rajasekaran and Overholt 2. The
permutation routing problem can be used to model
communication patterns that occur in EREW (exclusive-
read exclusive-write) parallel machines. A modification of
the permutation routing problem, called flit-serial routing,
considers the case where the packets are broken into a
string of subpackets, called 'flits'. The problem here is to
route the 'snake' and flits quickly and with small queues.
Also, the sequence of the flits that constitute a packet
cannot be broken during the routing. The authors have
studied this problem for the mesh and the torus 3 (a mesh
with wrap-around connections).

The remainder of the paper is divided into sections as
follows: in the next section, we show a lower bound on
the number of communication steps required to solve the
many-to-one routing problem for the mesh-connected
array parallel architecture. In the following section, we
present an asymptotically optimal algorithm for the many-
to-one routing problem that uses queues of size at most
2n. We then bound the queue size to 16 packets per
processor. Next, we consider two variations of the
many-to-one routing problem. We conclude with open
questions.

THE LOWER BOUND

Theorem 1 Given an n × n mesh of processors, where
initially each processor holds exactly one packet, there is
a many-to-one routing problem that requires C~(nv'~)
routing steps to be solved, where k is the maximum
number of packets a processor can receive.

Proof To prove the lower bound, let us consider the
following situation. Assume that there exists a set of
processors such that all the processors in that set receive
exactly k packets. Since the total number of packets in the
mesh is n 2, there are exactly n2/k such processors.
Furthermore, assume that these processors are located at
the south-east corner of the mesh and, more specifically,
inside an (n / E) X (n/ ,~) south-east square submesh
M 1 (Figure 2). Note that submesh M1 contains exactly n2/k
processors. Assume that all packets in the network want
to enter into this submesh. There are a total ofn 2 - (n2/k)
such packets and these packets can enter into submesh

Figure 2.
submesh

l , l

All packets are destined for the south-east

M I only through 2n/vk channels. Thus, any solution to
this routing problem requires at least:

n! cn2/_ k =n2v~k(k-1)= n_~k_ n

2n/\-k 2nk 2 2\ k

routing steps in order to route all packets to their
destinations. This indicates that we need at least g(n/x/k)
routing steps.

AN OPTIMAL ALGORITHM

In this section we present an asymptotically optimal
algorithm that solves the many-to-one problem such that
each processor uses queues of size at most n packets. In
the next section we will modify the algorithm so that the
queue size is bounded by a constant. This is very
important since the algorithm can then be used for
networks of any size. If the queue size were a function of
n, then any attempt to expand the network would require
extra buffers to be added to all the processors of the
existing network. This is something to be avoided.

The algorithm

A high level description of the routing algorithm is given.
The algorithm consists of one colouring phase (step 1)
and two routing phases (steps 2 and 3). The colouring
phase will be refined later.

Algorithm "route"

1. Out of those packets that are destined for the same
row, colour (using algorithm Colour below) exactly
n/vk of them 'black' (if they exist) and the rest
'white'.

2. Route the black packets as follows:
(a) Route the black packets vertically (along the

columns) to the correct row.
(b) Route the black packets horizontally (along the

rows) to their destination.
3. Route the white packets as follows:

(a) Route the white packets horizontally (along the
rows) to the correct column.

(b) Route the white packets vertically (along the
columns) to their destination.

We say that a black (white) packet that is moving along
a column (row) during step 2 is executing its 'phase I

362 Microprocessors and Microsystems

routing'. Similarly, we say that a black (white) packet that is
moving along a row (column) during step 3 is executing its
'phase II routing'.

It is clear that the algorithm terminates and all packets
will reach their destination. The way steps 2 and 3 are
performed is also clear. At each time instance, each
processor advances one of the packets it has, out of those
that want to travel in a given direction, towards that
direction. If it has a packet to send, it always does so.

Step 1 needs further refinement. We have to specify
the way we colour the packets. Furthermore, we have to
colour them quickly so that the colouring phase adds to
the total routing time very small terms which can be
ignored from the overall time complexity. We use
algorithm Colour to do the colouring. This algorithm uses
a sorting algorithm as its first step, which sorts all the
packets of the mesh using a special indexing scheme
called row__major-snake__like-column__order indexing.
Before we describe algorithm Colour, however, we need
to explain how the packets are arranged after the sorting if
the row major-snake__like-column_order indexing
scheme is used.

Suppose that we start with a square mesh of processors,
where each processor holds a packet that is destined for
another processor on the mesh. Each packet has a
destination address that is a pair (row, column) of integers.
If the packets are sorted according to their destination
in a row__major-snake__like-column__order, then the
'smallest' packets will end up at processor (1, 1) while the
rest form a snake-like sequence positioned along the
columns. The term 'row__major' indicates that all packets
that are destined for the same row form a sequence
in the 'snake' denoted by Si. Similarly we define the
column__major-snake__like-row__order that we will use
later in the paper. Figure 3 shows a 5 X 5 mesh before and
after the sorting of its packets in row__major-snake like-
column__order. The figure also illustrates the notion of a
sequence.

Algor i thm "co/our" (step 1 o f algor i thm "route']

1. Sort the mesh in row~major-snake like-column
order.

2. In each sequence S;, where 1 < i < n , locate the
'first' packet, called the leader. Let this packet be Pi.

3. Colour all packets white.
4. For all sequences &, 1 < i < n, in parallel do: Starting

from Pi, colour n ~ packets (if they exist) of sequence
Si black.

Step 1 is the most critical step in algorithm Colour. After
the sorting has finished, the packets are partitioned into n

(2,5) (4,1)],1) (2,3) (l,l)

(2,5) (l,l) (2 ,3)(l , l) (2,5)

(1,2) (2,5) (2,5) (1,1) (1,1)

(2,5) (1,2) (4,1) (4.1) (1,2)

(I,I) (4,1) (I,I) (1,2) (I,I)

Figure 3. A 5 X 5 array

(l,l) (1,2) (1"2) (2,5) (2,5) ~

(l,l) (l,1) (1,2) (2,5) (4,1)

(l,1) (1,l) (1,2) (2,5) (4,1)

(1.1) (1,1) (2,3) (2,5) (4.1)

0,1) (]J) (2,3) (2,5) (4,1)

before and after sorting
in row__major-snake__Jike-column_order. The three
sequences destined for rows, 1, 2 and 4 are shown

consecutive sequences (some of which might be empty)
such that packets that are destined for the same row
belong to the same sequence. After the sorting and the
identification of the 'leader' in each sequence have taken
place, 'special' packets are allowed to travel along each
sequence and colour the first n~/k ordinary packets black
(step 4). We will see later how step 4 takes place.

T i m e a n a l y s i s

We first analyse algorithm Colour. The sorting step can be
performed in 3n + o(n) routing steps using the sorting
algorithm of Schnorr and Shami r 4. Let us now consider the
time it takes to locate the leader in each sequence.
Lemma 1 shows that finding the leader of a sequence
takes one routing step.

Lemma 1 In an n X n array that is sorted in row__major-
snake__like-column order, a processor can find out if it
is holding the leader of a sequence in one routing
step.

Proof The following strategy proves the lemma. Each
processor sends a copy of its packet to the processor
immediately after it in the 'snake' ordering. After this, each
processor compares the packet it received with its own
packet. If both packets are destined for the same row,
then the processor is not holding the leader of the
sequence to which it belongs. If the packets are destined
for different rows, then this processor is holdingthe leader
of the sequence. The processor at location (1,1) of the
mesh always holds a leader. From the above discussion, it
is obvious that a processor can find out if it holds a leader
in one routing step.

Next, we give a lemma that bounds the time it takes to
colour the first n~/k packets of each sequence black (step
4 of algorithm Colour). Let M be an n x n mesh such that
each processor holds a packet and the packets are sorted
in row__major-snake like-column order.

Lemma 2 Given a mesh M and k, the maximum number
of packets a processor can receive, we can colour black
the first n~/~ packets of each sequence Si in n + ~/k
steps, 1 < i < n.

Proof To prove Lemma 2, we must describe how to
colour the first n ~ k packets (if they exist) of any sequence
in n + ~ k steps. Let p0 be the processor that holds the
leader of sequence Si. We designate a special packet of
type 'searcher' to start moving from p0 to the right along
the row. Let P~ be the processor it meets at the next
position on the row. If P~ is also holding a packet destined
for row i, then all packets of the sequence that exist on the
processors between p0 and P~ are destined for the same
row and must be coloured black. We now let two special
packets of type 'painter' start, one from p0 along the
'snake' toward P~ and the other from P~ along the 'snake'
toward p0. During their trip, these two painters colour all
the packets on their route black. After this, the searcher
moves to the right again and the same procedure is
repeated. Since we want to colour up to nv'k packets, we
allow the searcher of each sequence to move up to ~/k
positions to the right. So, in the worst case, the movement
of the searcher takes x,Yk steps. The movements of the
painters that we initiated last will finish after at most n
steps. Thus the colouring of the packets can be done in
n + vJk steps.

Vol 77 No 6 7993 363

Note that we can omit using the second painter. The
result will be that the colouring finishes in at most
2n + ~/k steps. This does not affect the final complexity
of the algorithm by more that a constant factor.

From /emmas 1 and 2, we conclude that algorithm
Co/our takes 4n + ~/k + o(n) routing steps.

Now we analyse the routing phases (steps 2 and 3 of
algorithm Route). We obsewe that steps 2(a), 2(b), 3(a)
and 3(b) can be reformulated as special cases of the
following problem: given m packets that are distributed
along a chain of n processors and such that each one has a
destination in the chain associated with it, route the
packets as quickly as possible. This problem, as well as its
variants, is very well studied in several papers ~' s,6. An
optimal algorithm exists that completes the routing after
at most m + n steps. The worst case situation occurs
when all packets are initially located at the processor at
one end of the chain and are destined for the same
processor at the other end of the chain.

Let us now consider steps 2(a) and 3(a) of algorithm
Route. Since there are at most d < n packets in each
column and row respectively, at most n routing steps will
be needed in the worst case. (We might need more than d
because of the distance limit. A packet from one end of
the chain (row or colurhn of the mesh) might be destined
for the processor at the other end.)

In step 2(b) we have at most n~/k packets in each row.
This is because algorithm Route forces that many packets
to be in each row (if they exist) by colouring them black.
Let w be the maximum number of white packets in any
column at the beginning of step 3(b). Then the number of
routing steps needed for step 3 of algorithm Route is
max(n~/k', w) + n - ~/k. In the following lemmawe prove
that w < n~/-k.

Lemma 3 The number of white packets in every column
of the mesh at the beginning of step 3(b) of algorithm
Route is less than n ~ .

Proof Recall that algorithm Route initially colours all
packets white. Then it colours up to n~/k packets of each
sequence Si black. All the remaining packets of each
sequence are still coloured white. But how many
sequences still have white packets? Since we started with

2 exactly n packets in the mesh, there must be less than
n2/(n~/k) = n/~/k such sequences. Assume that there
exists a column such that k packets from each of these
sequences with white packets are destined for this
column. Since there are less than n/~/k such sequences,
the total number of white packets in any column is less
than (n / ~) k = n~/k.

From Lemma 3, we can conclude that each of steps 2
and 3 of algorithm Route takes at most n(~/-k + 1) - ~/k
routing steps. Thus, the total number of steps required by
algorithm Route is:

4n + ~/k + o(n) + 2(n + n(~/k + 1) - ~/k) = O(n,~/k)

routing steps. From Theorem 1, we conclude that the
algorithm is optimal.

Let us consider the queue size. The queue size
required at each processor of the mesh is of size at most n
packets per direction (horizontal or vertical). This is
because, at the end of step 2 of the algorithm, we might
have at some processor at position (i, j) of the mesh all
packets that were initially in column j. There are at most n
such packets. The same holds for the white packets that

were routed through the rows (actually, at most n - ~ k
packets are queued in any processor). Thus we have the
following theorem.

Theorem 2 Given an n X n mesh of processors, where
each processor has exactly one packet destined for
another processor of the mesh, and k, the maximum
number of packets a processor can receive, the many-to-
one routing problem can be solved in O(n~/k) routing
steps with the use of queues of size at most n
packets.

BOUNDING THE QUEUE SIZE

In this section, we describe how to modify algorithm
Route so that the size of the queues used will be bounded
by a constant. If we can bound the queue size by a
constant, then we are able to apply algorithm Route on
networks of any size.

Structure of each processor

Before we proceed to describe how to modify algorithm
Route in order to achieve constant size queues, we
present the structure that a processor must have in order
to be able to execute the modified algorithm. Of course,
since we are interested in the queue size, we show only
the structure of the buffer area of each processor.

Our routing algorithm will first route the black and then
the white packets. So the buffers that are used in the
routing of the black packets can be reused. Figure 4 shows
a processor with the buffers that are used in the routing of
black packets. (Remember that black packets are routed
vertically to the correct row, and then horizontally to their
destination.)

With each of the north and the south channels we
associate two buffers of each of the following three types:
TURN__L, TURN__R and STRAIGHT buffer types. Buffers
of type TURN__L accommodate only packets that want
to enter through the specific channel the buffers are
associated with, and want then to turn to the left.
Similarly, buffers of type TURN__R accommodate only
packets that want to enter through the specific channel

Figure 4. The buffers used in the routing of black packets.
Dashed lines indicate the path that a packet in a particular
type of buffer will follow

364 Microprocessors and Microsystems

the buffers are associated with, and want then to turn to
the right. Observe that at the time a packet enters a buffer
of type TURN_L or TURN_R, it starts to execute its
phase II routing. Buffers of type STRAIGHT hold packets
that want to exit the processor through the opposite
channel. With each of the east and the west channels, we
associate two buffers of type STRAIGHT. In total, each
processor has 16 buffers, each capable of storing one
packet. It is obvious that these buffers can be reused for
the routing of the white packets. The corresponding figure
can be obtained by rotating Figure 4 by 90 °. In the
following section, it will be clear why we need two buffers
of each buffer type.

Queueing strategy

In order to maintain constant queues we use the
following strategy: a packet will be transmitted to the next
processor on its route only if there is enough space to
accommodate the packet at the next processor. Depending
on the fact that the given packet might want to turn at the
next processor, it will be placed on a buffer of the
appropriate type. So, a buffer of a particular type must be
free when the packet arrives.

Let us now explain why we use two buffers of each
buffer type. Without loss of generality, concentrate on a
particular channel that connects processors A and B, and
the queues of a particular type created at processor B
because of packets it receives from processor A. Our
general queueing strategy will be the following. Processor
B examines the information it received at step t - 1 from
its neighbours and decides what packets it will transmit
during step t. It then removes these packets from its
queues. Then it checks its queues and, if there is space
available, sends a signal to processor A requesting a
packet. The natural questions now are, how large a queue
needs to be and how much space in the queue of B must
be available in order for it to send a signal. To clarify why
we need two buffers, assume that processor A always has
a packet to transmit. Also observe that, if processor B
sends a signal at step t, then it will receive the packet at the
end of stept + 1,and soit will be able to transmit it at step
t + 2. If we want to have processor B always transmitting,
then it must have one packet to transmit during step t + 1.
So, processor 8 must have had one packet in its queue (if
possible) when it sent the signal to processor A at step t.
Thus, a signal will be sent if there is at most one packet in
the queue.

So far, we have answered the second question. Now
that we have established that at least queues of size one
are needed, let us justify why we must have space for an
extra packet. We considered before the case where, at
step t, processor B sends a signal to processor A and it also
transmits a packet from its queue at step t + 1. What if it
cannot transmit at step t + 1 (because it did not receive a
signal from its neighbours)? Obviously, at the end of step
t + 1, two packets will be at processor B (if processor A
responds): the packet that already existed and the packet
just received from processorA. From the above discussion
it is clear that two packets of each buffer type are needed
for every channel.

Resolving conflicts

The queueing strategy described in the previous section is
not enough to guarantee constant size queues. Duringthe

routing we may face the following situation. A processor
receives a signal from one of its neighbours that allows it
to transmit a packet. What if there is more than one
packet waiting to be transmitted to that neighbour?
Obviously, we have to assign priorities. There are two
kinds of conflict that we have to resolve:

1. Conflicts between packets that are in buffers of type
TURN__L (or T U R N R) and of type STRAIGHT. Both
packets, at the next processor, will use buffers of type
STRAIGHT. We give priority to the packets that are in
buffers of type TURN_L (or TURN__R). If there are
packets in buffers of both of these types, the decision
is taken arbitrarily. The reason we give priority to
packets that are in buffers of type TURN_L (or
T U R N R) is that we want to make the packets that are
on the front or the end columns of a sequence (relative
to the destination processor) move faster.

2. Conflicts between packets that are executing phases I or
II and want to move straight. We use a FIFO policy here.
The packet that enters first will exit first. This is done in
order to forbid 'overpassing' between packets. One
reason for the sorting of packets is that we want them
to flow in a regular manner. If 'overpassing' is allowed,
we will have problems in analysing the time required
for the algorithm.

Routing algorithm

We now give avery high-level description of the algorithm
that solves the many-to-one routing problem and uses
constant queues.

Algorithm "route with__constant queues"

1. Colour the packets black and white as in algorithm
Route.

2. For each processor, repeat until the routing of black
packets is completed:
(a) From the information it received in the previous

routing step and, using the methods to resolve
conflicts described in the previous section, the
processor decides which packets to transmit.

(b) Using the criteria in the previous section, the
processor determines which of its queues can
receive packets at the next routing step. During the
next routing step, the processor will send signals to
its neighbours that allow or forbid them to transmit
packets destined for its queues.

(c) The processor transmits the packets from step 2(a)
concatenated with the signals it decided to send at
step 2(b).

3. Sort the white packets in column__major-snakelike-
row_order.

4. Route the white packets as in step 2.

While it is clear why we need steps 1, 2 and 4, some
justification is required for the use of step 3. We need it in
order to make the packets flow regularly. If we do not
perform it, we might face the situation where packets that
are waiting to turn left or right delay packets behind them
that want to go straight on. Moreover, when this happens,
the destinations of the packets that want to go straight on
will not follow any pattern. This will complicate our
analysis. After sorting the white packets, the analysis of
their routing is identical to that of the black packets.

Vol 17 No 6 1993 365

A C T U A L M E S S A G E B ~ R S T A T U S

,,,] m e s s a g e - ",

Figure 5. The structure of a packet

3 bits-

Observe that the information concerning the buffers
that must be transmitted consists of only three bits. Figure
5 shows the structure of a packet transmitted during step
2(c). If a particular bit of the signal segment is set to '1',
then this is interpreted as an invitation for packets.

We prove the following theorem.

Theorem 3 Given an n × n mesh of processors, where
each processor has exactly one packet destined for
another processor of the mesh, and k, the maximum
number of packets a processor can receive, themany-to-
one routing problem can be solved in O(nx/k) routing
steps with the use of a buffer area of 16 packets per
processor.

Proof Since nothing changes duringthe colouringstrategy,
we still have that at most nv'~ packets will be routed
during their phase II routing in any row or column.
Without loss of generality, we concentrate on black
packets of some sequence Si. Generally, this sequence
forms a 'snake' that occupies several columns. If the first
and the last colum,, are not completely occupied by
sequence Si, we ignore them for the moment and we say
that these columns are not 'complete'. Consider the rest
of the packets. All of them are destined for row i. Since
their movement does not interfere with the movement of
white packets, the routing can be completed in at most
n~/~k + n steps.

Consider now the packets that occupy the first and the
last column of the sequence Si which we ignored before.
These packets might be waiting behind packets of other
sequences, as a consequence of our FIFO policy, and thus
they might reach their row destination later than the
packets in 'complete' columns. However, they will all
reach their row destination after nvJ~ + 2n steps. To see
why we need so many steps, observe that after nv/k + n
steps the packets that were in front of them are all in their
row destination. Now, the packets in the first and last
column of sequence Si can move towards their row
destination. They need at most n steps to reach their row.
From this point on, n more steps are enough for these
packets to reach their destination.

By summing the number of routing steps required for
routing, sorting and colouring, we conclude that algorithm
Route withConstant___Queues will complete the routing
of the black packets in O(nv:k) routing steps. The same
amount of time is needed for the routing of the white
packets. From the discussion in the previous section, we
know that a buffer area of 16 packets per processor is
used. This completes the proof.

VARIATIONS OF THE PROBLEM

In this section we study two variations of the many-to-one
packet routing problem. In the first variation we assume
that k, the maximum number of packets a processor can
receive, is not known ahead of time. In the second
variation, we consider the many-to-one routing problem

when packets going to the same processor are allowed to
combine before they reach that processoL

When k is not known in advance

In the many-to-one routing problem we have considered
so far, the maximum number of packets k a processor can
receive is known in advance. What if it is not? The
obvious solution is to compute k. This can be done by first
computing the maximum length out of all of the
sequences which are created after sorting. We already
know, from Lemma 1, that the leader of each sequence
can be identified in only one routing step. Furthermore,
with a procedure similar to that described in Lemma 2, we
can count the number of packets in each sequence and
store this number in the processor holding the last packet
of the sequence. This task takes at most 2n steps.

We then perform a Maximum operation over all such
values of the n × n array. This can be done as follows.
Route all computed maximum values horizontally to the
middle column of the mesh. The processors there select
the maximum of the incoming values. This takes exactly
n/2 steps. Then a Maximum operation is performed again
among the values of the middle column. This also takes
n/2 steps and the maximum value is stored at the
processor located at the centre of the mesh. We now use
the reverse procedure to broadcast the computed
maximum value to all processors of the mesh, and thus to
the leader of each sequence. Following this, algorithm
Route proceeds with its colouring phase. So, in order to
compute k, we used 4n extra routing steps. By summing
all the above terms we find that after O(n\ k) steps the
routing is completed. Thus, we can conclude with
Theorem 4.

Theorem 4 Given an n X n mesh of processors where
each processor has a packet destined for another
processor of the mesh, the many-to-one routing problem
can be solved in O(nv~) routing steps with a buffer area of
16 packets per processor, where k is the maximum
number of packets a processor can receive and is
determined during the course of the routing algorithm.

Many-to-one packet routing with combining

In this section we consider again the many-to-one packet
routing problem. However, instead of routing all the
packets independently, we now study a way to combine
the packets destined for the same processor and then
route the remaining packets. We define a subsequence sii
to be a list of all packets that are destined for the
processor at location (i, j). In total, there are n 2 sub-
sequences (some of which might be empty). Observe that
each sequence that was created by the sorting phase of
the algorithm consists of at most n consecutive sub-
sequences. We can solve the routing problem by simply
routing the leaders of each subsequence of the sorted
array. We observe that we may have up to n 2 such leaders.
With this formulation, our problem is no longer a many-
to-one packet routing problem: it is a permutation
problem. We can still apply our algorithm to solve the
problem. However, we can skip the colouring phase since
we have already performed the sorting, and, since k = 1,
all packets are coloured black. An alternative solution is to

366 Microprocessors and Microsystems

use the algorithm of Rajasekaran and Overholt 2 to route
the leaders in 2n steps with constant queues. In any case,
we need 5n + o(n) steps, 3n + o(n) steps for sorting and
2n steps for routing. Note that this method of combining
is very important in the case where 'write-conflicts' in a
CRCW parallel machine are resolved in an arbitrary
manner, i.e. among all processors that want to write in a
common memory location, one processor is arbitrary
chosen to do so. This result is reflected in Theorem 5.

Theorem 5 Any routing problem on an n X n mesh of
processors where initially each processor has at most one
packet destined for another processor on the mesh can
be solved within 5n + o(n) routing steps and constant
queues, provided that combining of packets destined for
the same processor is allowed.

CONCLUSION

In this paper, we have presented an asymptotically
optimal algorithm for the many-to-one packet routing
problem on a mesh connected parallel computer that
uses queues of 16 packets per processor. The importance
of the problem comes from its ability to model the
communication patterns that occur in a CRCW parallel
machine. An interesting open problem is to derive an
algorithm that matches exactly the lower bound obtained
in the second section (our algorithm is optimal within a
factor of 4 and can be modified to be within a factor of 2 if
the routing of the black and white packets is done
simultaneously) or to improve the lower bound to n~/k
routing steps.

REFERENCES

1 Leighton, F T, Makedon, F and Tollis, I G 'A 2n-2
algorithm for routing in an n X n array with constant
size queues' Proceedings of A C M Sympos ium on
Parallel A lgor i thms and Architectures, SPAA '89 (June
1989) pp 328-335

2 Rajasekaran, S and Overholt, R 'Constant queue

routing on a mesh' J. ParatL Distrib. CompuL Vol 15
(1992) pp 160-164

3 Makedon, F and Simvonis, A 'On bit-serial packet
routing for the mesh and the toms' Proceedings of the
3rd Sympos ium on the Frontiers o f Massively Parallel
Computa t ion IEEE Computer Society Press (1990) pp
294-302

4 Schnorr, C P and Shamir, A 'An optimal sorting
algorithm for mesh connected computers' in Proceed-
ings 18th A C M Sympos ium on Theory of Comput ing
(1986) pp 255-263

5 Krizanc, D, Rajasekaran, S and Tsantilas, Th 'Optimal
routing algorithms for mesh-connected processor
arrays' in Reif, J (Ed) VLSI Algori thms and Architectures
(AWOC '88) Lecture Notes in Computer Science 319
Springer-Verlag, Berlin (1988) pp 411-422

6 Kunde, M 'Routing and sorting on mesh-connected
arrays' in Reif, J (Ed) VLSIAIgorithms and Architectures
(AWOC '88) Lecture Notes in Computer Science 319
Springer-Verlag, Berlin (1988) pp 423-433

Fillia Makedon received her PhD in computer
science at Northwestern University in Evanston,
Illinois in 1982. Following this, she served on the
faculty of the lUinois Institute of Technology in
Chicago and at the University of Texas at Dallas.
She is currently Associate Professor in the
Department of Mathematics and Computer
Science at Dartmouth College. Her main
research interests are in algorithm optimization,
CAD heuristics, parallel computation and

algorithm visualization.

Antonios Symvonis finished his undergraduate
study in computer engineering and information
sciences in 1987 at the University of Patras,
Greece. He received MSc and PhD degrees from
the University of Texas at Dallas in 1989 and
1991. His PhD dissertation was on packet
routing algorithms. Since September 1997, he
has been a Lecturer at the Basset Department of
Computer Science at the University of Sydney.
His principal research interests are packet

routing algorithms, interconnection networks, parallel processing and
graph theory.

Vol 17 No 6 7993 367

