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Abstract. In this paper, we present a polynomial dynamic program-
ming algorithm that tests whether a n-vertex directed tree T has an up-
ward planar embedding into a convex point-set S of size n. We also note
that our approach can be extended to the class of outerplanar digraphs.
This nontrivial and surprising result implies that any given digraph can
be efficiently tested for an upward planar embedding into a given convex
point set.

1 Introduction

A planar straight-line embedding of a graph G into a point set S is a mapping of
each vertex of G to a distinct point of S and of each edge of G to the straight-
line segment between the corresponding end points so that no two edges cross
each other. Planar straight-line embeddings for outerplanar graphs and trees
were studied by Gritzmann et al. [11], Bose [4] and Bose et al. [5]. Cabello [6]
proved that the problem to decide whether a given planar graph admits a planar
straight-line embedding into a given point set is NP-hard. Planar graph embed-
dings into point sets, where edges are allowed to bend, have also been studied
(see, e.g., [2,7,12,14,17]).

An upward planar directed graph is a digraph that admits a planar drawing
such that each edge is represented by a curve monotonically increasing in the
y-direction. An upward straight-line embedding (UPSE for short) of an upward
planar digraph G into a point set S is a mapping of each vertex of G to a
distinct point of S and of each edge to the straight-line segment between its
corresponding end points such that no two edges cross and for each edge (u, v)
the condition y(u) < y(v) holds, for the y-coordinates y(u) and y(v). Upward
point set embeddability is the decision problem of whether a given digraph has
an UPSE into a given point set.
� This research has been co-financed by EUROGIGA project GraDR 10-EuroGIGA-

OP-003 and by the European Union (European Social Fund - ESF) and Greek na-
tional funds through the Operational Program “Education and Lifelong Learning” of
the National Strategic Reference Framework (NSRF) - Research Funding Program:
Heracleitus II. Investing in knowledge society through the European Social Fund.

M. van Kreveld and B. Speckmann (Eds.): GD 2011, LNCS 7034, pp. 403–414, 2012.
c© Springer-Verlag Berlin Heidelberg 2012



404 M. Kaufmann, T. Mchedlidze, and A. Symvonis

Upward point set embeddability was first studied by Giordano et al. [9]. The
authors studied the version of the problem where bends on edges are allowed
and showed that every planar st-digraph admits an upward point set embedding
with at most two bends per edge. Upward point set embeddability with a given
mapping, i.e., where a correspondence between the nodes and the point set is part
of the input, was studied in [10,16]. Recently, straight-line drawings were studied
in [1,3,8] and many interesting and partial results were presented. Among them
are several results concerning upward point set embeddability of a tree into
a convex point set. More specifically, several families of trees were presented,
which have an UPSE into every convex point set, i.e., caterpillars, switch-trees,
hourglass trees. On the other hand, it was demonstrated that the family of k-
switch trees (generalization of switch-trees) does not have an UPSE into all
convex point sets. An immediate question that arises from these facts is whether
the existence of an UPSE of a tree into a convex point set can be efficiently
tested. The contribution of this paper is an affirmative answer to this question.
More specifically, we show that, given a directed tree T and a convex point set
S, it can be tested in polynomial time whether T has an UPSE into S.

Recently, Geyer et al. [8] proved that the general upward point-set embeddabil-
ity problem is NP-complete even for m-convex point sets1. Thus one interesting
open problem regarding UPSE was whether there exists a class of upward planar
digraphs D for which the upward point set embeddability problem remains NP-
complete even for convex point sets. We answer this question in the negative
by extending our UPSE algorithm for trees to the class of outerplanar graphs.
Since any graph admitting a planar embedding into a convex point set is an
outerplanar digraph, our result implies that the upward point-set embeddability
can be efficiently solved for convex point sets and general digraphs.

For simplicity of presentation, we concentrate on the case of directed trees. In
Section 2, we present the necessary notation and some basic results on UPSE,
which are utilized by our tree algorithm. In Section 3, we study a restricted
version of the UPSE problem which fixes the point in which the root of the tree
is embedded and places restrictions on the drawing of subtrees. In Section 4, we
explore the result of Section 3 and present a dynamic programming algorithm
for deciding whether a directed tree has an UPSE into a convex point set. In
Section 5 we state the extended result for outerplanar digraphs. Due to space
constraints the proof of this result as well as some other proofs are presented in
the extended version of this paper [15].

2 Notation - Preliminaries

Point Sets. Let S be a set of points on the plane. We assume that the points of
S are in general position, i.e., no three of them lie on the same line. Moreover,
we also assume that no two points of S share the same y-coordinate; if they do,
a slight rotation of the coordinate axes can ensure that all points have distinct
1 An m-convex point set can be intuitively defined as a set of m shelled, one into

another, distinct convex point sets.
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y-coordinates. The convex hull CH(S) of S is the point set that is obtained as
a convex combination of the points of S. A point set such that no point is in
the convex hull of the others is called a point set in convex position, or a convex
point set. Given a point set S, by t(S) (resp., b(S)) we denote the top (bottom)
point of S i.e., the point with the largest (resp., smallest) y-coordinate.

A one-sided convex point set S is a convex point set in which b(S) and t(S)
are adjacent on the border of CH(S). If t(S) and b(S) appear adjacent and
in this order on the border of CH(S) as we traverse it in the clockwise (resp.,
counterclockwise) direction, then the one-sided convex point set is called a left-
sided convex point set (resp., right-sided convex point set). A point set consisting
of at most two points is considered to be either a left-sided or a right-sided convex
point set. A convex point set which is not one-sided, is called a two-sided convex
point set.

Each given convex point set S may be considered to be the union of two
specified (at the time S is given) one-sided convex point sets, one left-sided
which is denoted by L(S) and is referred to as the left-side of S, and one right-
sided which is denoted by R(S) and is referred to as the right-side of S. When
there is no confusion regarding the point set S we refer to, for simplicity, we use
the terms L and R instead of L(S) and R(S), respectively. Each of the points
b(S) and t(S) belongs to either L(S) or R(S) but not both.

A subset of points of a convex point set S is called consecutive if its points
appear consecutively as we traverse the convex hull of S in clockwise direction.
Given that all points of S have distinct y-coordinates, we can refer to the first,
the second, the third, etc., lowest point on the left (right) side of S. By pL

i , 1 ≤
i ≤ |L(S)|, we denote the i-th lowest point on the left side of S. Similarly, by
pR

i , 1 ≤ i ≤ |R(S)|, we denote the i-th lowest point on the right side of S.
Let Sa..b,c..d = {pL

i | a ≤ i ≤ b} ∪ {pR
i | c ≤ i ≤ d} denote the subset of S

consisting of b−a+1 consecutive points on the left side of S, starting from point
pL

a in the clockwise direction, and of d − c + 1 consecutive points on the right
side, starting from point pR

c in the counterclockwise direction. For simplicity, for
a one-sided point set S we use the notation Sa..b.

In this paper, we assume that queries of the form “Find the i-th point on the
left/right side of the convex point set S” can be answered in O(1) time, e.g.,
the points on each side of S are stored in an array in ascending order of their
y-coordinates.

Trees. Consider a directed tree T , i.e., a directed acyclic graph whose underlying
undirected structure is that of a tree. Tree T is rooted if one of its vertices,
denoted by r(T ), is designated as its root. We then say that T is rooted at
vertex r(T ). By d−(v) (resp., d+(v)) we denote the in-degree (resp., the out-
degree) of vertex v of T . By d(v) we denote the total degree of vertex v, i.e.,
d(v) = d−(v) + d+(v).

Let T be a rooted tree and let r = r(T ) be its root. Let T l
1, . . . , T

l
d−(r), T h

1 , . . . ,

T h
d+(r) be the rooted subtrees of T obtained by removing from T its root r and

r’s incident arcs and having as their roots the vertices that are incident to r
by either an incoming or an outgoing arc (see Figure 1.a). Trees T l

1, . . . , T
l
d−(r),
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Fig. 1. (a) A rooted at vertex r tree T and its subtrees T l
1, . . . , T

l
d−(r), T h

1 , . . . , T h
d+(r).

(b) The subtree lower(T ) of T . (c) The subtree upper(T ) of T .

T h
1 , . . . , T h

d+(r) are called the subtrees of T . Note that the superscripts “l” and
“h” indicate whether a particular subtree of T is connected to r by an incoming
to r or by an outgoing from r arc, respectively.

The rooted subtree of T consisting of T ’s root, r, together with T l
1, . . . , T

l
d−(r)

is called the lower subtree of T and is also rooted at r. The lower subtree of T is
denoted by lower(T ) (Figure 1.b). Similarly, the rooted subtree of T consisting
of T ’s root, r, together with T h

1 , . . . , T h
d+(r) is called the upper subtree of T and

is also rooted at r. The upper subtree of T is denoted by upper(T ) (Figure 1.c).
In this paper, we use the notation {u, v} to denote arc (u, v) if (u, v) ∈ T or

arc (v, u) if (v, u) ∈ T . If u is mapped to point p and v is mapped to point q
that is located below p, then we say that {u, v} is drawn upward (downward) if
(v, u) ∈ T ((u, v) ∈ T ).

2.1 Some known Results on UPSE of Rooted Directed Trees

We present some known results on UPSE of rooted directed trees that will be uti-
lized by our algorithms. Binucci et al.[3] proved the following lemma concerning
the placement of the subtrees of T in an UPSE of T on a convex point set.

Lemma 1 (Binucci et al. [3]). Let T be a n-vertex directed tree rooted at r
and let S be any convex point set of size n. Let T1, T2, . . . , Td(r) be the subtrees
of T . Then, in any UPSE of T into S, the vertices of subtree Ti are mapped to
a set of consecutive points of S, 1 ≤ i ≤ d(r). ��
The following lemma concerns the UPSE of a rooted tree into a one-sided convex
point set. It can be considered to be a simple restatement of a result by Heath
et al. [13] (Theorem 2.1).

Lemma 2. Let T be a n-vertex directed tree rooted at r and S be a one-sided
convex point set of size n. Let T1, T2, . . . , Td(r) be the subtrees of T . Then, T
admits an UPSE into S so that the following are true:

i) Each Ti, 1 ≤ i ≤ d(r), is drawn on consecutive points of S.
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ii) If the root r of T is mapped to point pr then there is no arc connecting a
point of S below pr to a point of S above pr.

By utilizing Lemma 2, we prove the following.

Lemma 3. Let T be a n-vertex directed tree rooted at r and S be a one-sided
convex point set of size n. Then, an UPSE of T into S satisfying the properties of
Lemma 2 can be obtained in O(n) time. Moreover, after O(n) time preprocessing,
the point pr that hosts the root r of T can be determined in O(1) time (i.e.,
without determining the complete UPSE of T into S).

Proof. Let k = |lower(T )| be the size of subtree lower(T ) (rooted at r). Assum-
ing that T was preprocessed in O(n) time, k can be retrieved in constant time.
It immediately follows that in an UPSE of T into S satisfying the properties
of Lemma 2 there are k − 1 vertices of T (all belonging to lower(T )) that are
placed below r. Thus, r is mapped to the k-th lowest point of S. This point,
say pr, can be computed in O(1) time. Having decided where to place the root
r, the UPSE of T can be completed in O(n) time by recursively embedding the
vertices of lower(T ) (upper(T )) to the points of S below (above) pr. ��

3 A Restricted UPSE Problem for Rooted Directed Trees

In this section, we study a restricted UPSE problem that will be later on used
by our main algorithm which decides whether there exists an UPSE of a given
directed tree into a given convex point set.

Definition 1. In a restricted UPSE problem for trees we are given a directed
tree T rooted at r, a convex point set S, and a point pr ∈ S. We are asked to
decide whether there exists an UPSE of T into S such that (i) the root r of
T is mapped to point pr and, (ii) each subtree of T (rooted at r) is mapped to
consecutive points on the same side (either L or R) of S.

The following observation follows directly from the above definition.

Observation 1. In a restricted UPSE of a directed tree T rooted at r into a
convex point set S = L∪R, where the root r of T is mapped to point pr ∈ S, no
edge enters the triangles �(t(L), t(R), pr) and �(b(L), b(R), pr).

Figure 2.a shows a tree T rooted at vertex r, a convex point set S consisting
of a left-sided convex point set L and a right-sided convex point set R. Tree T
has a restricted UPSE only if its root r is mapped to point pr ∈ L (Figure 2.b).
Mapping r to any other point p ∈ S makes it impossible to map each subtree of
T to consecutive points on the same side of S.

Before we proceed to describe a decision algorithm for the restricted UPSE
problem, we need some more notation. Let T be a directed tree rooted at vertex
r and let λ = (T1, . . . , Td(r)) be an ordering of the subtrees of T . Let S be a
convex point set and let Γ be an UPSE of T into S. We say that UPSE Γ
respects ordering λ if for any two subtrees Ti and Tj, 1 ≤ i ≤ j ≤ d(r), that are
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Fig. 2. (a) A tree T rooted at vertex r and a convex point set S = L ∪ R. (b) A
restricted UPSE of T into S so that r is mapped to point pr. No restricted UPSE of T
exists when r is mapped to any point other than pr.

both mapped on the same side of S, Ti is mapped to a point set that is entirely
below the point set Tj is mapped to.

Consider a tree T rooted at vertex r and let λ=(T l
1, . . . , T

l
d−(r), T h

1 , . . . , T h
d+(r))

be an ordering of the subtrees of T . Ordering λ is called a proper ordering of
the subtrees of T if it satisfies the following properties:

(i) |upper(T l
i )| ≤ |upper(T l

j)|, 1 ≤ i ≤ j ≤ d−(r), and
(ii) |lower(T h

i )| ≥ |lower(T h
j )|, 1 ≤ i ≤ j ≤ d+(r).

In Figure 2.a, ordering λ1 = (T2, T1, T4, T3) is a proper ordering of the subtrees of
T , while ordering λ2 = (T1, T2, T3, T4) is not. Observe that in a proper ordering
λ of T , the subtrees in the lower subtree of T appear before the subtrees in the
upper subtree of T . The following lemma can be proved by reconstruction.

Lemma 4. Let T be a n-vertex directed tree rooted at vertex r, λ be a proper
ordering of the subtrees of T , and S be a convex point set of size n. Then, if
there exists a restricted UPSE of T into S, there also exists a restricted UPSE
of T into S that respects λ. ��
Theorem 1. Let T be a n-vertex directed tree rooted at vertex r, L and R be
left-sided and right-sided convex point sets, resp., such that S = L∪R is a convex
point set of size n, and pr a point of S. The restricted UPSE problem with input
T , S and pr can be decided in O(d(r)n) time. Moreover, if a restricted UPSE
for T , S and pr exists, it can also be constructed in O(d(r)n) time.

Proof. Let λ = (T1, T2, . . . , Td(r)) be a proper ordering of the subtrees of T .
Proper ordering λ can be computed in O(n) time by a simple tree traversal that
computes at the root of T the number of vertices in each subtree of T \ {v}
followed by a bucket sort of the sizes of the subtrees rooted at r. Since the
restricted UPSE problem will be repeatedly solved on subtrees of T , we assume
that T has been appropriately preprocessed in O(n) time and, thus, a proper
ordering of these subtrees can be then computed in O(d(r)) time. By Lemma 4,
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it is enough to test whether there exists a restricted UPSE that respects λ.
Thus, we will describe a dynamic programming algorithm that tests whether
there exists a restricted UPSE on input T , L, R and pr.

Our dynamic programming algorithm uses a two-dimensional d(r)×|L| matrix
M . Value M [i, j] is TRUE if and only if there exists a restricted UPSE of the
subtree of T induced by r and T1, . . . , Ti that uses all the j lowest points of the
left-sided point set L and as many consecutive points as required in the lowest
part of the right-sided convex point set R. Recall that {u, v} denotes arc (u, v)
if (u, v) ∈ T ; arc (v, u) if (v, u) ∈ T ; otherwise it is undefined.

For the boundary conditions of our dynamic programming we have that:

M [0, 0] = TRUE

M [1, j] =

⎧
⎨

⎩

TRUE, if j = 0 and pr 	∈ R1..|T1| and {r(T1), pr} is upward
TRUE, if j = |T1| and pr 	∈ L1..|T1| and {r(T1), pr} is upward
FALSE, otherwise

Let σ = |T1| + . . . + |Ti|. Value M [i, j], 1 < i ≤ d(r) and 0 ≤ j ≤ |L|, is set to
TRUE if any of the following conditions is true; otherwise it is set to FALSE.

c-1: M [i, j − 1] = TRUE and pr = Lj..j .
This is the case where point pr happens to be the j-th point of L. There is
no need to test for upwardness of {r(Ti), pr} since it has been already tested
when entry M [i, j − 1] was filled in.

c-2: M [i − 1, j − |Ti|] = TRUE and pr 	∈ Lj−|Ti|+1..j and {r(Ti), pr} is up-
ward.
In this case, Ti is placed on L. We know that Ti fits on L since j < |L|,
however, we must make sure that it also holds that pr is not one of the |Ti|
topmost points of L1..j.

c-3: M [i − 1, j] = TRUE and pr ∈ R1..σ−j−|Ti|+1 and σ − j + 1 ≤ |R| and
{r(Ti), pr} is upward.
In this case, Ti is placed to R. If pr is one of the points in R1..σ−j−|Ti|+1

then we have to make sure that at least σ − j + 1 points exist in |R|.
c-4: M [i − 1, j] = TRUE and pr 	∈ R1..σ−j and σ − j ≤ |R| and {r(Ti), pr}

is upward.
In this case, Ti is also placed to R. However, in contrast to case c-3, pr is
not one of the points in R1..σ−j . Thus, we only need to make sure that at
least σ − j points exist in |R|.

When determining the value of an entry M [i, j] we need to decide whether arc
{r(Ti), pr} is upward. In order to do that, we need to know the point to which
r(Ti) is mapped. By Lemma 3, this point can be computed in O(1) time since
Ti is mapped to |Ti| consecutive points forming a one-sided convex point set.

It can be easily verified that entry M [d(r), |L|] = TRUE if and only if there
is a restricted UPSE of T into L ∪ R such that r(T ) is mapped to pr.

Each entry of matrix M can be filled in O(1) time. Thus, all entries of matrix
M are filled in O(d(r)|L|) time. The embedding, if exists, can be constructed by
storing in each entry M [i, j] (that was set to TRUE) the side (“L” or “R”) in
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Fig. 3. (a) The decomposition of tree T based on a path between a source s and a sink
t of T . (b) The structure of an UPSE of the tree T into point set S.

which Ti was placed. This information, together with the fact that the restricted
UPSE respects ordering λ is sufficient to construct the embedding. ��
Denote by L(T, L, R) the set of points p ∈ L∪R such that there exists a restricted
UPSE of T into L ∪ R where the root of T is mapped to p. The next theorem
follows from Theorem 1, testing each point of L∪R as a candidate host for r(T ).

Theorem 2. Let T be an n-vertex directed tree rooted at vertex r and L and R
be left-sided and right-sided convex point sets, resp., such that S = L ∪ R is a
convex point set of size n. Set L(T, L, R) can be computed in O(d(r)n2) time. ��

4 The Testing Algorithm for Directed Trees

Let T be a directed tree and let S be a convex point set. In any UPSE of T into
S, a source node s and a sink node t of T will be mapped to points b(S) and t(S),
respectively. In this section, we present a dynamic programming algorithm that
decides in polynomial time whether, given a n-vertex directed tree T , a source s
and a sink t of T , and a convex point set S of size n, T has an UPSE into S so
that s and t are mapped to b(S) and t(S), respectively. Applying this algorithm
on all 〈source, sink〉 pairs of T , yields a polynomial time algorithm for deciding
whether T has an UPSE into S.

Let s and t be a source and a sink vertex of T , respectively. Denote by Ps,t =
{s = w1, w2, . . . , wm = t} the (undirected) path connecting s and t in T , see
Figure 3.a. By Ts,wi , 1 ≤ i < m, we denote the subtree of T that contains source
s and is formed by the removal of edge {wi, wi+1}. By definition, Ts,wm = T . Let
Twi = Ts,wi \ Ts,wi−1 , 1 < i ≤ m. By definition, Tw1 = Ts,w1 . By Lemma 1, we
know that Ts,wi is drawn on consecutive points of S, call this point set Si (see also
Figure 3.b). Since s is mapped to b(S), we infer that b(S) ∈ Si. Similarly, in any
UPSE of T into S, Ts,wi+1 is also drawn on consecutive points of S that contain
b(S), call this point set Si+1. Hence, Twi+1 is drawn on a set Swi+1 = Si+1 \ Si,
that is, a subset of S comprised by two consecutive point sets of S, one on its
left and one on its right side.
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Our dynamic programming algorithm maintains a list of points P(a, b, k), 0 ≤
a ≤ |L|, 0 ≤ b ≤ |R|, 1 ≤ k ≤ m, such that:

p ∈ P(a, b, k) ⇐⇒
{

Ts,wk
has an UPSE into point set S1..a,1..b with

vertex wk mapped to point p.
(1)

For the boundary conditions of our dynamic programming we have that
P(a, b, 1) = L(Tw1 , L1..a, R1..b) where a + b = |Tw1 |. Note that since w1 is a
source, P(a, b, 1) is either {b(s)} or ∅.

Our dynamic programming is based on the following recurrence relation,
which allows us to add points in P(a, b, i). For any 1 < i ≤ m we set:

P(a, b, i) = {p | ∃a1, b1 ∈ Z : a1 + b1 = |Twi |
and p ∈ L(Twi , La−a1+1..a, Rb−b1+1..b)
and ∃q ∈ P(a − a1, b − b1, i − 1)
and {p, q} is upward }

(2)

Next we prove that the recurrence relation (2) satisfies the property described
by equivalence (1). We start with the forward direction. From the boundary
conditions it is true for i = 1. Assume that if q ∈ P(a−a1, b−b1, i−1) then Ts,wi−1

has an UPSE into S1..a−a1,1..b−b1 with vertex wi−1 mapped to point q. Let now
p ∈ P(a, b, i). By the definition of the recurrence relation we infer that: (1) there
exist a1, b1 ∈ Z so that a1 + b1 = |Twi |, (2) p ∈ L(Twi , La−a1+1..a, Rb−b1+1..b),
which by definition of L, means that there is a restricted UPSE of Twi into
La−a1+1..a, Rb−b1+1..b with wi mapped to p, (3) ∃q ∈ P(a − a1, b − b1, i − 1),
thus, by induction hypothesis, Ts,wi−1 has an UPSE into S1..a−a1,1..b−b1 , and,
finally, (4) edge {p, q} is upward. Then we combine the UPSE for Ts,wi−1 with
the restricted UPSE for Twi in order to get an UPSE of Ts,wi on point set
S1..a,1..b. By Observation 1, we have that the combined drawing is planar.

For the reversed statement we also work by induction. From the boundary
conditions we know that if Ts,w1 = Tw1 has an UPSE into a point set S1..a,1..b

then b(S) ∈ P(a, b, 1), where a + b = |Tw1 |. Assume that the statement is true
for Ts,wi−1 , i.e., if Ts,wi−1 has an UPSE into a point set S1..a,1..b with vertex
wi−1 mapped to q then q ∈ P(a, b, i − 1). Assume also that Ts,wi has an UPSE
into a point set S1..a,1..b with vertices s and wi mapped to points b(S) and
p, respectively. By the discussion above we know that in every such embedding
Ts,wi−1 is mapped to consecutive points of S1..a,1..b that contains b(S). Therefore
there exist two numbers a1 and b1, so that a1 + b1 = |Twi | and subtree Twi is
mapped to the point set Sa−a1+1..a,b−b1+1..b, with vertex wi mapped to some
point p, p ∈ Sa−a1+1..a,b−b1+1..b. Moreover, by induction hypothesis, there exists
q ∈ P(a − a1, b − b1, i − 1). So, since the edge connecting p and q is upward, by
the definition of recurrence relation we infer that p ∈ P(a, b, i).

Finally we note that, an UPSE of T into S such that source s and sink t are
mapped to b(S) and t(S), respectively, exists if and only if P(|L|, |R|, m) is non-
empty. Note that if P(|L|, |R|, m) 	= ∅, then it must hold that P(|L|, |R|, m) =
{t(S)}. The values P(a, b, k), when 0 ≤ a ≤ |L|, 0 ≤ b ≤ |R|, 1 ≤ k ≤ m are
calculated by Algorithm 1.
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Algorithm 1. Tree-UPSE(T,S, s, t)

input : A directed tree T , a point set S, a source s and a sink t of T . Path
(s = w1, . . . , wm = t) is used to progressively build tree T from subtrees
Twi , 1 ≤ i ≤ m.

output : “YES” if T has an UPSE into S with s mapped to b(S) and t mapped
to t(S), “NO” otherwise.

1. For a = 0 . . . |L|
2. For b = 0 . . . |R|
3. P(a, b, 1) = L(Tw1 , L1..a, R1..b)
4. For k = 2 . . . m //Consider tree Twk

5. P(a, b, k) = ∅
6. For i = 0 . . . |Twk | //We consider the case where i vertices of Twk

are placed to the left side of S
7. if (a − i ≥ 0) and (b − (|Twk | − i) ≥ 0)
8. Let L = L(Twk , La−i+1..a, Rb−(|Twk

|−i)+1..b)
9. //We consider all possible placements of wk−1

10. For each q in P(a − i, b − (|Twk | − i), k − 1)
11. //We consider all the possible placements of vertex wk

12. For each p in L
13. if ( {wi−1, wi} drawn on line-segment (q, p) is upward)
14. then add p to P(a, b, k).
15. if P(|L|, |R|, m) is empty then return(“NO”);
16. return(“YES”);

Theorem 3. Let T be a n-vertex rooted directed tree, S be a convex point set of
size n, s be a source of T and t be a sink of T . It can be decided in time O(n5)
whether T has an UPSE on S such that s is mapped to b(S) and t is mapped to
t(S). If such an UPSE exists, it can be constructed within the same time bound.

Proof. A naive analysis of Algorithm 1 yields an O(n7) time complexity. The
analysis assumes that (i) the left and the right side of S have both size O(n),
(ii) the path from s to t has length O(n), (iii) each tree Twi has size O(n) and
(iv) each L-list containing the solution of a restricted UPSE problem is computed
in O(n3) time. However, based on the following two observations, the total time
complexity can be reduced to O(n5).

A factor of n can be saved by realizing that in our dynamic programming we
can maintain a list P ′(a, i) which uses only one parameter for the left side of the
convex set (in contrast with P(a, b, i) which uses a parameter for each side of S).
The number of points on the right side ofS is implied since the size of each tree Ts,wi

is fixed. For simplicity, we have decided to use notation P(a, b, i). Another factor
of n can be saved by observing that the solution of a restricted UPSE is actually
O(deg(wi)n2). Thus, summing over all i gives O(n3) in total, and not O(n4).

The UPSE of T into S can be recovered easily by modifying Algorithm 1
so that it stores for each point p ∈ P(a, b, k) the point q where vertex wi−1 is
mapped to as well as the point set that hosts tree Ts,wi−1 (i.e., its top point on
the left and the right side of S). ��
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By applying Algorithm 1 on all 〈source, sink〉 pairs of T we can decide whether
tree T has an UPSE on a convex point set S, as the main next theorem indicates.

Theorem 4. Let T be a n-vertex rooted directed tree and S be a convex point
set of size n. It can be decided in time O(n6) whether T has an UPSE into S.
If such an UPSE exists, it can also be constructed within the same time bound.

Proof. Note that a naive application of the idea leads to the algorithm with time
complexity O(n7), since there are O(n2) distinct pairs of sources and sinks. Next
we explain how the overall time complexity can be reduced to O(n6). Let Ps,t be
a path from s to t, passing through m vertices, and let t′ be the j-th vertex of
Ps,t that is also a sink of G. During the computation of P(a, b, m) corresponding
to path Ps,t we also compute P(a, b, j) and thus we can immediately answer
whether there exists an UPSE of G into S so that s and t′ is mapped to b(S)
and t(S), respectively. Next consider a sink t̃ that does not belong to path Ps,t.
Consider the path Ps,t̃. Assume that the last common vertex of Ps,t and Ps,t̃ is
the j-th vertex of Ps,t. In order to compute whether there is an UPSE of G into
S so that s and t̃ are mapped to b(S) and t(S), respectively, we can start the
computations of Algorithm 1 determined by variable k from the j + 1-th step
(see line 4 of the algorithm). Thus, for a single source s and all possible sinks
variable k changes at most n times. Since the number of different sources is O(n)
we conclude that the whole algorithm runs in time O(n6). ��

5 Conclusions

In this paper we presented a polynomial dynamic programming algorithm that
tests whether a n-vertex directed tree T has an upward planar embedding into a
convex point-set S of size n. In the long version of this paper [15] we explain how
our approach can be extended to the class of outerplanar digraphs, obtaining
the following theorem.

Theorem 5. Let G be a n-vertex digraph and S be a convex point set of size n.
It can be decided in polynomial time whether G has an UPSE into S. Moreover,
if such an UPSE exists, it can also be constructed in polynomial time. ��
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