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Abstract. A digraph D is unilateral if for every pair x, y of its ver-
tices there exists a directed path from x to y, or a directed path from y
to x, or both. A mixed graph M = (V, A,E) with arc-set A and edge-
set E accepts a unilateral orientation, if its edges can be oriented so
that the resulting digraph is unilateral. In this paper, we present the
first linear-time recognition algorithm for unilaterally orientable mixed
graphs. Based on this algorithm we derive a polynomial algorithm for
testing whether a unilaterally orientable mixed graph has a unique uni-
lateral orientation.

1 Introduction

A large body of literature has been devoted to the study of mixed graphs (see [1]
and the references therein). A mixed graph is strongly orientable when its undi-
rected edges can be oriented in such a way that the resulting directed graph is
strongly connected, while, it is unilaterally orientable when its undirected edges
can be oriented in such a way that for every pair of vertices x, y there exists
a path from x to y, or from y to x, or both.

Several problems related to the strong orientation of mixed graphs have been
studied. Among them are the problems of “recognition of strongly orientable
mixed graphs” [2] and “determining whether a mixed graph admits a unique
strong orientation” [3,5].

In this paper we answer the corresponding questions for unilateral orientations
of mixed graphs, that is, firstly we develop a linear-time algorithm for recogniz-
ing whether a mixed graph is unilaterally orientable and, secondly, we provide
a polynomial algorithm for testing whether a mixed graph accepts a unique
unilateral orientation.

1.1 Basic Definitions

We mostly follow the terminology of [1]. A graph G = (V, E) consists of a non-
empty finite set V of elements called vertices and a finite set E of unordered
pairs of vertices, called edges. A directed graph or digraph D = (V, A) consists
of a non-empty set of vertices V and a set A of ordered pairs of vertices called
arcs (or directed edges). We say that in (di)graph G vertex y is reachable from
vertex x if there is a (directed) path from vertex x to vertex y.
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A mixed graph M = (V, A, E) contains both arcs (ordered pairs of vertices
in A) and edges (unordered pairs of vertices in E). A path in a mixed graph
is a sequence of edges and arcs in which consecutive elements (i.e., edges or
arcs) are incident on the same vertex and all arcs are traversed in their forward
direction. Note that, since a graph (digraph) is a mixed graph having only edges
(resp. only arcs), any definition or property concerning mixed graphs also applies
to graphs (resp. digraphs).

A biorientation of a mixed graph M = (V, A, E) is obtained from M by
replacing every edge (x, y) ∈ E by either arc (x, y), or arc (y, x), or the pair of
arcs (x, y) and (y, x). If every edge is replaced by a single arc, we speak of an
orientation of a mixed graph M . The complete biorientation of a mixed graph
M = (V, A, E), denoted by

←→
M , is a biorientation of M such that every edge

(x, y) ∈ E is replaced in
←→
M by the pair of arcs (x, y) and (y, x).

An underlying graph UG(M) of a mixed graph M = (V, A, E) is the unique
undirected graph G resulting by “removing” the direction from each arc of M ,
i.e., by turning each arc of A into an edge. A mixed graph M is connected if
UG(M) is connected.

A digraph D is strongly connected (or, just strong) if, for every pair x, y of
distinct vertices in D, x and y are mutually reachable from each other. A strong
component of a digraph D is a maximal subdigraph of D which is strong. The
strong component digraph SC(D) of D is obtained by contracting strong com-
ponents of D and by identifying any parallel arcs obtained during this process
into a single arc. The digraph SC(D) for any digraph D is acyclic as any cycle
is fully contained within a single strongly connected component. A digraph D
is unilateral if, for every pair x, y of vertices of D, either x is reachable from y
or y is reachable from x (or both).

The definitions for the connectivity-related terms can be extended for the
case of mixed graphs. A mixed graph M is strongly connected (or strong) if its
complete biorientation

←→
M is strongly connected. A mixed graph M is unilaterally

connected (or unilateral) if its complete biorientation
←→
M is unilateral.

A mixed graph M is strongly (unilaterally) orientable (or, equivalently, M ad-
mits a strong (unilateral) orientation) if there is an orientation of M which is
strongly (resp. unilaterally) connected. A mixed graph M admits a hamilto-
nian orientation, if there is an orientation

−→
M of M which is hamiltonian. Note

that a graph that admits a hamiltonian orientation also admits a unilateral
orientation.

1.2 Problem Definition and Related Work

Given a mixed graph M , it is natural to examine whether M is strongly or
unilaterally orientable. The mixed graph M1 of Figure 1a, is strongly orientable
as it is demonstarted by digraph D1 (Fig. 1b). The directed graphs D2 and D3

(Fig. 1c and Fig. 1d) show two unilateral orientations of M , non of which is
strong. Robbins [9] proved that an undirected graph is strongly orientable if
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Fig. 1. (a) A mixed graph M1. (b) A strong orientation of M1. (c) & (d) Unilateral
orientations of M1 that are not strong, as there is no path from v3 to v1.

and only if it is connected and has no bridge1. Boesch and Tindel [2] general-
ized Robbins’ result, showing that a mixed multigraph is strongly orientable if
and only if it is strongly connected and has no bridges. Given that a digraph
with n vertices and m arcs can be tested for strong connectivity and for being
bridgeless in O(m + n) time, the characterization given by Boesch and Tindel
immediately leads to a polynomial time recognition algorithm of strongly ori-
entable mixed graphs. Chung et al [4] presented an algorithm that computes
a strong orientation of a mixed multigraph in linear time. Chartrand et al. [3]
provided a characterization of unilaterally orientable graphs by showing that:

Theorem 1 (Chartrand et al., [3]). A connected graph G has a unilateral
orientation if and only if all of the bridges of G lie on a common path.

As the unilateral orientation presents a different notion of connectivity, it is nat-
ural to ask wether a mixed graph admits a unilateral orientation. Even though
unilateral orientation is a weaker notion of connectivity, not all mixed graphs
admit a unilateral orientation. For example, the mixed graph M2 in Fig. 2a does
not admit a unilateral orientation since there is no directed path between ver-
tices v2 and v3 in either direction. In this paper, we present a characterization
of unilaterally orientable mixed graphs that leads to a linear-time recognition
algorithm. Our characterization can be considered to be a generalization of The-
orem 1 for mixed graphs.

Observe that not all mixed graphs admit more than one distinct orienta-
tion (strong or unilateral). For example, the mixed graph M3 of Fig. 2b ad-
mits a unique unilateral orientation (given in Fig. 2c). Consider a mixed graph
M = (V, A, E) which has a unique strong (unilateral) orientation D. Then, we
say that D is a forced strong (resp. unilateral) orientation for M .

Let G = (V, E1 ∪ E2) be a graph, let A be an arc-set obtained from an
orientation of the edges in E1, and let M = (V, A, E2) be the resulting mixed
graph. If M has a forced strong (unilateral) orientation then we say that A is
a forcing set for a strong (resp. unilateral) orientation of G, or simply a strong
(resp. unilateral) forcing set.

1 An edge e of a connected mixed graph M is a bridge if M \ {e} is not connected.
A mixed graph containing no bridge is called bridgeless.
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Fig. 2. (a) A mixed graph M2 which does not admit any unilateral orientation.
(b) A mixed graph M3 which has a forced unilateral orientation. (c) The unique uni-
lateral orientation of M3. (d) A bridgeless unilateral mixed graph that does not admit
a unilateral orientation.

The concept of forced strong (unilateral) orientation of graphs was first in-
troduced by Chartrand et al [3] who defined the forced strong (resp. unilateral)
orientation number of an undirected graph G to be the cardinality of the minimal
forcing set for a strong (resp. unilateral) orientation of G. Strong orientations
of graphs were later studied by Farzad et et al [5]. Forced unilateral orienta-
tions were studied by Pascovici [8]. In her work, she mentions that finding an
efficient algorithm for calculating the forced unilateral orientation number of
a graph is an open question which, to the best of our knowledge, has not been
answered yet. In this paper, we partially resolve this question. Given a mixed
graph M = (V, A, E), we provide an algorithm which tests in polynomial time
whether A is a forcing set for a unilateral orientation of M (i.e., it tests whether
M has a unique unilateral orientation).

The paper is organized as follows: In Section 2 we develop a linear-time al-
gorithm for recognizing whether a mixed graph accepts a unilateral orientation
and, in the case it does, we produce such an orientation. In Section 3, we give
a lemma which implies a polynomial algorithm for testing whether a mixed graph
accepts a unique unilateral orientation. We conclude in Section 4.

2 Recognition of Unilaterally Orientable Mixed Graphs

2.1 Preliminaries

The following theorem, due to Boesch and Tindell, gives necessary and sufficient
conditions for a mixed graph to have a strongly connected orientation.

Theorem 2 (Boesch and Tindell [2]). A mixed multigraph M admits a strong
orientation if and only if M is strong and the underlying multigraph of M is
bridgeless.

Note that, a corresponding theorem for unilaterally orientable graphs (i.e., "a
mixed multigraph M has a unilateral orientation if and only if M is unilateral
and the underlying multigraph of M is bridgeless") does not hold. This is demon-
strated by the mixed graph M4 in Fig. 2d which is unilateral and bridgeless, but,
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it does not have a unilateral orientation. To see that, observe that if edge (v3, v6)
is oriented towards v6, then vertices v4 and v6 are not connected by a directed
path in either direction, while, if edge (v3, v6) is directed towards v3 then vertices
v2 and v6 are not connected by a directed path in either direction.

Lemma 1 ([6], pp. 66). Digraph D is unilateral if and only if D has a spanning
directed walk2.

Lemma 2 ([3]). A tree T admits a unilateral orientation if and only if T is
a path.

A vertex of a directed graph having in-degree (out-degree) equal to zero is re-
ferred to as a source (resp. sink). An st-digraph is a directed acyclic digraph
having a single source (denoted by s) and a single sink (denoted by t).

Lemma 3 ([7]). Let D be an st-digraph that does not have a hamiltonian path.
Then, there exist two vertices in D that are not connected by a directed path in
either direction.

2.2 A Characterization for Unilaterally Orientable Mixed Graphs

Consider a mixed graph M = (V, A, E) and let V ′ ⊆ V . The mixed subgraph
of M induced by V ′, denoted by M(V ′), is defined as M(V ′) = (V ′, A′, E′) where,
A′ = {(u, v) | (u, v) ∈ A and u, v ∈ V ′} and E′ = {(u, v) | (u, v) ∈ E and u,
v ∈ V ′}.

Let M be a mixed graph, let Di = (Vi, Ei), 1 ≤ i ≤ k, be the strong com-
ponents of the complete biorientation

←→
M of M . The strong components Mi,

1 ≤ i ≤ k, of mixed graph M are defined as: Mi = M(Vi), 1 ≤ i ≤ k, that is, Mi

is the mixed subgraph of M induced by Vi. Note that each Mi is strong since,
by definition, Di is its complete biorientation.

The strong component digraph of a mixed graph M , denoted by SC(M), is
obtained by contracting each strong component of M into a single vertex and by
identifying all parallel arcs that are created during this process into a single arc.
Fig. 3a shows a mixed graph having three strong components and Fig. 3b shows
its corresponding strong component digraph. Note that the strong component
digraph of any mixed graph is acyclic.

The next lemma gives the first necessary condition for a mixed graph M to
have a unilateral orientation.

Lemma 4. If a mixed graph M admits a unilateral orientation then its strong
component digraph SC(M) has a hamiltonian path.

Proof. For the sake of contradiction, assume that SC(M) has no hamiltonian
path. Since SC(M) is an acyclic digraph, it has at least one source and at least
2 A spanning directed walk of a digraph is a directed path that visits all the vertices

of the digraph, some possibly more than once.
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Fig. 3. (a) A mixed graph M . M1, M2 and M3 are the three strong components of
M . Dashed edges connect Mi with Mj , i, j ∈ {1, 2, 3}, i �= j. The bold edges are the
bridges of each Mi. (b) The strong component digraph SC(M) of M . (c) The bridgeless-
component mixed graph BC(M) of M . (d) The simplified bridgeless-component mixed
graph for mixed graph M , where the vertices ai, bi denote the endpoints of a bridge
path B(Mi).

one sink. If there are two or more sources (sinks) then it is clear that any two
of the sources (sinks) are not connected by a directed path in either direction.
If there is exactly one source and exactly one sink in SC(M) then SC(M)
is an st-digraph and, by Lemma 3, there are two vertices of SC(M) that are
not connected by a directed path in either direction. So, in either case, we can
identify two vertices of SC(M), call them mi and mj , that are not connected
by a directed path in either direction.

By the definition of the strong component digraph SC(M), mi and mj corre-
spond to contracted strong components of M . Let these strong components be
Mi and Mj , respectively. Since mi and mj are not connected by a directed path
in either direction, then for each vertex u of Mi and for each vertex v of Mj

there is no directed path in the complete biorientation digraph
←→
M connecting u

with v. Therefore, there is no path in the mixed graph M connecting u and v in
either direction, and thus, there can be no orientation of M that creates a di-
rected path connecting u with v in either direction. This is a clear contradiction
of the assumption that M admits a unilateral orientation. �	
Let M = (V, A, E) be a strong mixed graph and B ⊆ E be the bridges of M .
Note that B might be empty. Then, all components of graph M \B are strong
and bridgeless.

The bridge graph of a strong mixed graph M , denoted by B(M), is obtained
by contracting in M the vertices of each strong component of M \B. Note that
a bridge graph of any strong mixed graph is a tree. Fig. 4 shows a strong mixed
graph and its bridge graph.
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Fig. 4. (a) A strong mixed graph M . (b) The bridge graph B(M) of M .

The following lemma gives the second necessary condition for the mixed graph
to have a unilateral orientations.

Lemma 5. If a mixed graph M admits a unilateral orientation then the bridge
graph of each of its strong components is a path.

Proof. Consider a unilateral orientation D of M . By Lemma 1, D has a spanning
walk. This spanning walk of D induces an orientation of the bridges of M and,
thus, an orientation of B(M) which is unilateral. Recall that B(M) is a tree.
Then, by Lemma 2 we conclude that the bridge graph B(M) of M is a path. �	

Let M = (V, A, E) be a mixed graph and let Mi, 1 ≤ i ≤ k, be its strong com-
ponents. Moreover, let Bi be the bridges of Mi, 1 ≤ i ≤ k, and let B =

⋃i=k
i=1 Bi.

Then, the set of strong components of the mixed graph M \B is the union of the
strong components of each Mi \Bi, 1 ≤ i ≤ k. The bridgeless-component mixed
graph of a mixed graph M , denoted by BC(M), is obtained by contracting in M
the vertices of each strong component of M \B into a single vertex and by identi-
fying any parallel arcs created during this process into a single arc. Fig. 3c shows
the bridgeless-component mixed graph for the mixed graph of Fig. 3a. Note that
the edge set of the bridgeless-component mixed graph BC(M) is exactly set B.
Moreover, BC(M) can be considered to consist of a set of (undirected) trees
(the bridge graph B(Mi) of each strong component Mi of M) connected by arcs
which do not create any cycle. Also observe that the strong component digraph
SC(M) of M can be obtained from BC(M) by contracting all bridgeless com-
ponents of Mi into a single vertex and by identifying all parallel edges created
by this process into a single arc.

Observation 1. Let M be a mixed graph. Then any orientation of BC(M) is
acyclic.

Proof. It follows from the facts that (i) the strong component digraph SC(M)
is acyclic and (ii) the bridge graph B(M ′) of any strong component M ′ of M is
a tree. �	
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The following theorem provides a characterization of unilaterally orientable
mixed graphs.

Theorem 3. A mixed graph M admits a unilateral orientation if and only if the
bridgeless-component mixed graph BC(M) admits a hamiltonian orientation.

Proof. (⇒) We assume that a mixed graph M admits a unilateral orientation
and we show that BC(M) admits a hamiltonian orientation. Consider a unilat-
eral orientation of M . By Lemma 1, the unilateral orientation of M has a span-
ning walk. That spanning walk induces a spanning walk on BC(M). Since any
orientation of BC(M) is acyclic (Observation 1) the induced spanning walk on
BC(M) is a hamiltonian path. Thus, BC(M) admits a hamiltonian orientation.

(⇐) We assume now that BC(M) admits a hamiltonian orientation and we
show that M admits a unilateral orientation. Recall that the vertices of BC(M)
correspond to the bridgeless strong components of M . By Theorem 2, it follows
that each of these components admits a strong orientation. This strong orienta-
tion implies a spanning walk between any pair of vertices of the strong bridgeless
component. The hamiltonian orientation of BC(M) implies an orientation of the
bridges of the strong components of M . The strong orientation of the strong and
bridgeless components of M together with the orientation of the bridges of the
strong components of M , result to orientation D of M .

The hamiltonian orientation of BC(M) implies a hamiltonian path and, in
turn, an ordering of the strong bridgeless components of M . Based on this order-
ing, we can easily construct a spanning walk on orientation D. Thus, based on
Lemma 1, D is a unilateral orientation. We conclude that M admits a unilateral
orientation. �	

2.3 The Algorithm

Based on the the characterization of Section 2.2, Algorithm 1 decides whether
a mixed graph that is given to its input is unilaterally orientable. In the first step
of Algorithm 1, we construct the strong connected digraph SC(M) of M . In order
to do so, we have to compute the strongly connected components of the complete
biorientation

←→
M of M . This can be easily accomplished in O(V + A + E) time.

In the second step of Algorithm 1, we test whether SC(M) has a hamiltonian
path. Note that since SC(M) is an acyclic digraph, it has a hamiltonian path
if and only if it has a unique topological ordering. This can be easily tested in
linear time to the size of SC(M). In the third step of Algorithm 1, we construct
the bridge graph BM(Mi) for each strong component Mi of M . Identifying all
bridges can be trivially done by testing whether the removal of each individual
edge disconnects the component. By using a depth-first-search based method,
the identification of all bridges and the construction of all bridge graphs can be
completed in O(V + A + E) time. Testing whether each bridge graph is a path
is trivial and can be completed in linear time to the size of the bridge graph.

By utilizing the already constructed bridge graphs of step 3 of the algorithm,
we can construct the bridgeless-component mixed graph BC(M) of M in time
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proportional to its size. Now, it remains to test whether BC(M) is hamiltonian.
Note that, since we have reached the fourth step of Algorithm 1, it holds that
our graph satisfies two properties. Firstly, all of its bridge graphs are paths
(thus, we refer to them as bridge paths) and, secondly, its strong component
digraph SC(M) is hamiltonian. We will exploit these properties in order to
decide whether BC(M) is hamiltonian in linear time.

Let Mi, 1 ≤ i ≤ k, be the strong components of M and assume without loss
of generality that they appear on the hamiltonian path of SC(M) in this order.
Firstly observe that in a hamiltonian path of BC(M), if one exists, all vertices of
the bridge path B(Mi) are visited before the vertices of the bridge path B(Mj),
for all i < j. Since the graph SC(M) is acyclic, if we leave component Mi before
visiting all of its vertices there is no way to return to it and, thus, no hamiltonian
path exists. Also observe that, in a hamiltonian path of BC(M) each bridge
path is traversed from one of its endpoint to the other and, thus, there are two
possible orientation of the bridge path. As a consequence, the hamiltonian path
of BC(M), if any, only uses arcs which leave from the endpoints of a bridge
path B(Mi) and enter the endpoints of a bridge path B(Mj), i < j. In addition,
these arcs connect consecutive bridge paths. Thus, when testing whether the
bridgeless-component mixed graph BC(M) has a hamiltonian path, we can use
a simplified leveled mixed graph, denoted by s-BC(M), resulting by eliminating
all vertices which are not endpoints of a bridge graph and all arcs that enter
or leave them, as well as all arcs connecting vertices on non consecutive bridge
pahts. Thus, each level of the graph is either an edge or a single vertex, and the
levels which correspond to the strong components of M appear in the order of
their corresponding strong component. Fig. 3d shows the simplified bridgeless-
component mixed graph for mixed graph M , where the vertices ai, bi denote the
endpoints of a bridge path B(Mi).

We can decide whether the s-BC(M) has a hamiltonian path by using a sim-
ple dynamic programming algorithm. Let pa

i be a boolean variable which takes
the value true if and only if there is a hamiltonian path that traverses all ver-
tices of the first i levels of s-BC(M) and terminates at vertex ai, 1 ≤ i ≤ k.
Similarly we define pb

i . It is easy to see that the following recursive relations hold:

pa
1 = pb

1 = true
pa

i =
(
pa

i−1 = true ∧ ∃(ai−1, bi) ∈ A′) ∨ (
pb

i−1 = true ∧ ∃(bi−1, bi) ∈ A′)

pb
i =

(
pb

i−1 = true ∧ ∃(bi−1, ai) ∈ A′) ∨ (
pa

i−1 = true ∧ ∃(ai−1, ai) ∈ A′)

(for 1 < i ≤ k)

Based on the above equations, we can decide whether there is a hamiltonian
path in s-BC(M) (and, as a consequence in BC(M)) in O(k) time.

Observation 2. The bridgeless-component mixed graph BC(M) of a mixed
graph M has exactly one hamiltonian path if and only if pa

i ⊕ pb
i =

true, 1 ≤ i ≤ k, where k is the number of strong components of M .

We also note that, in the case where a unilateral orientation exists, we can
compute one in linear time. This can be achieved by orienting the bridges of
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Algorithm 1. Unilateral-Orientation(M)

input : A Mixed graph M = (V, A, E).
output : “YES” if M has a unilateral orientation, “NO” otherwise.
1. Construct the strong connected digraph SC(M) of M .

{Denote the strong components of SC(M) by M1, . . . , Mk.}
2. if SC(M) has no hamiltonian path then return(“NO”)

else
3. For each strong component Mi of M , 1 ≤ i ≤ k,

Construct the bridge graph B(Mi);
if BMi is not a simple path then return(“NO”);

{ All bridge graphs BMi are paths. }
4. Construct the bridgeless-component mixed graph BC(M) of M
5. if BC(M) has no hamiltonian path then return(“NO”);
6. return(“YES”);

BC(M) according to the hamiltonian path of BC(M) and by using a strong
orientation for each bridgeless strong component of the bridge graphs.

From the above description, we can state the following theorem:

Theorem 4. Given a mixed graph M = (V, A, E) , we can decide whether M ad-
mits a unilateral orientation in O(V +A+E) time. Moreover, if M is unilaterally
orientable, a unilateral orientation can be computed in O(V + A + E) time.

We also note that we can prove an additional characterization for unilaterally
orientable mixed graphs that can be considered to be a counterpart of Theorem 1
given by Chartrand et al [3]. The proof of the following theorem is based on
the properties of the strong component digraph SC(M), and the bridgeless-
component mixed graph BC(M) for a mixed graph M .

Theorem 5. A mixed graph admits a unilateral orientation if and only if all
the bridges of its strong components lie on a common path.

3 Recognition of Unilateral Forcing Sets

Let M = (V, E, A) be a mixed graph. In this section we present a simple lemma
stating whether M has a forced unilateral orientation or, equivalently, whether
A is a unilateral forcing set for M . Based on this lemma and Algorithm 1, we
infer a polynomial algorithm for testing whether A is a unilateral forcing set
for M or, equivalently, G has a unique unilateral orientation.

Forced unilateral orientations were studied by Pascovici in [8], where she gave
a general lower bound for the forced unilateral orientation number and showed
that the unilateral orientation number of a graph G having edge connectivity 1
is equal to m−n+2, where m and n are the numbers of edges and vertices of G,
respectively.
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Lemma 6. A mixed graph M = (V, A, E) admits a unique unilateral orientation
if and only if for each edge e = (u, v) ∈ E either (V, A∪{(u, v)}, E \ {(u, v)}) or
(V, A ∪ {(v, u)}, E \ {(u, v)}) has a unilateral orientation, but not both.

Proof. (⇒) Let M admit a unique unilateral orientation and assume, for the sake
of contradiction, that both (V, A∪{(u, v)}, E \ {(u, v)}) and (V, A∪{(v, u)}, E \
{(u, v)}) have a unilateral orientation. Then these unilateral orientations differ
in at least one edge and hence are distinct. A clear contradiction. Otherwise,
if we assume that neither (V, A ∪ {(u, v)}, E \ {(u, v)}) nor (V, A ∪ {(v, u)}, E \
{(u, v)}) has a unilateral orientation, then we have a contradiction again, as M
was supposed to have at least one unilateral orientation.

(⇐) Assume now that for each edge e = (u, v) ∈ E either (V, A∪{(u, v)}, E \
{(u, v)}) or (V, A ∪ {(v, u)}, E \ {(u, v)}) has a unilateral orientation, but not
both of them. It is clear that M has at least one unilateral orientation. Assume,
for the sake of contradiction, that M has more than one unilateral orientations.
Consider any two arbitrary unilateral orientations of M . As these orientations are
distinct they differ in at least one edge, say e′ = (u′, v′) ∈ E. So we conclude that
both (V, A∪{(u′, v′)}, E \ {e′}) and (V, A∪{(v′, u′)}, E \ {e′}) have a unilateral
orientation, a clear contradiction. �	
Theorem 6. Given a mixed graph M = (V, A, E), we can decide whether A is
a unilateral forcing set for M in O(E(V + A + E)) time.

Proof. Follows directly from Theorem 4 and Lemma 6. �	

4 Conclusion

For a mixed graph M = (V, A, E), we presented a linear-time algorithm that
recognizes whether M is unilaterally orientable, and in the case where it is, we
also presented a characterization leading to a polynomial algorithm for deter-
mining whether A is a unilateral forcing set for M . Future research includes the
study of the number of unilateral orientations of a mixed graph, as well as the
complexity of the problem of finding a unilateral forcing set of minimum size.
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