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Abstract. In this paper we study the problem of existence of a crossing-
free acyclic hamiltonian path completion (for short, HP-completion) set
for embedded upward planar digraphs. In the context of book embed-
dings, this question becomes: given an embedded upward planar digraph
G, determine whether there exists an upward 2-page book embedding of
G preserving the given planar embedding.

Given an embedded st-digraph G which has a crossing-free HP-
completion set, we show that there always exists a crossing-free HP-
completion set with at most two edges per face of G. For an embedded
N-free upward planar digraph G, we show that there always exists a
crossing-free acyclic HP-completion set for G which, moreover, can be
computed in linear time. For a width-k embedded planar st-digraph G,
we show that it can be efficiently tested whether G admits a crossing-free
acyclic HP-completion set.

1 Introduction

A k-page book is a structure consisting of a line, referred to as spine, and of k half-
planes, referred to as pages, that have the spine as their common boundary. A
book embedding of a graph G is a drawing of G on a book such that the vertices are
aligned along the spine, each edge is entirely drawn on a single page, and edges
do not cross each other. If we are interested only in two-dimensional structures
we have to concentrate on 2-page book embeddings and to allow spine crossings.
These embeddings are also referred to as 2-page topological book embeddings.

For acyclic digraphs, an upward book embedding can be considered to be a
book embedding in which the spine is vertical and all edges are drawn monoton-
ically increasing in the upward direction. As a consequence, in an upward book
embedding of an acyclic digraph G the vertices of G appear along the spine in
topological order. If G is planar upward digraph and an upward embedding of G
on the plane is given, we are interested to determine a 2-page upward topological
book embedding of G which preserves its plane embedding and has minimum
number of spine crossings. Giordano et al. [5] showed that an embedded upward
planar digraph always admits an upward topological 2-page book embedding
(which preserves its plane embedding) with at most one spine crossing per edge.
However, in their work no effort was made to minimize the total number of spine
crossings.
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The acyclic hamiltonian path completion with crossing minimization problem
(Acyclic-HPCCM ) was inspired by its equivalence with the problem of deter-
mining an upward 2-page topological book embedding with a minimum number
of spine crossings for an embedded planar st-digraph [8].

In the hamiltonian path completion problem (HPC ) we are given a graph1 G
and we are asked to identify a set of edges S (refereed to as an HP-completion
set) such that, when the edges of S are embedded on G they turn it to a hamil-
tonian graph, that is, a graph containing a hamiltonian path2. The resulting
hamiltonian graph GS is referred to as the HP-completed graph of G. When we
treat the HP-completion problem as an optimization problem, we are interested
in HP-completion sets of minimum size. When the input graph G is an embed-
ded planar digraph, an HP-completion set S for G must be naturally extended
to include an embedding of its edges on the plane, yielding to an embedded
HP-completed digraph GS . In general, GS is not planar, and thus, it is natu-
ral to attempt to minimize the number of edge crossings of the embedding of
the HP-completed digraph GS instead of the size of the HP-completion set S.
This problem is known as HP-completion with crossing minimization problem
(HPCCM ) and was first defined in [8]. When the input digraph G is acyclic, we
can insist on HP-completion sets which leave the HP-completed digraph G′ also
acyclic. We refer to this version of the problem as the Acyclic-HPC problem.
Analogously, we define the acyclic-HPCCM which, as stated above, is equiva-
lent to determining 2-page upward topological book embeddings with minimum
number of spine crossings for embedded upward planar digraphs. When deal-
ing with the acyclic-HPCCM problem, it is natural to first examine whether
there exists an acyclic HP-completion set for a digraph G of zero crossings, i.e.,
a crossing-free acyclic HP-completion set for G. In terms of an upward 2-page
topological book embedding, this question is formulated as follows: given an em-
bedded upward planar digraph G, determine whether there exists an upward
2-page book embedding of G without spine crossings preserving G’s embedding.

In this paper we focus on crossing-free hamiltonian path completion sets for
embedded upward planar digraphs. Our results include:

1. Given an embedded st-digraph G which has a crossing-free HP-completion
set, we show that there always exists a crossing-free HP-completion set with at
most two edges per face of G (Theorem 1).

This result finds application to upward 2-page book embeddings. The prob-
lem of spine crossing minimization in an upward topological book embedding is
defined with a scope to improve the visibility of such drawings. For the class of
upward planar digraphs that always admit an upward 2-page book embedding
(i.e. a topological book embedding without spine crossings) it make sense to
define an additional criterion of visibility. When a graph is embedded in a book,
its faces are split by the spine into several adjacent parts. It is clear that the

1 In this paper, we assume that G is directed.
2 In the literature, a hamiltonian graph is traditionally referred to as a graph contain-

ing a hamiltonian cycle. In this paper, we refer to a hamiltonian graph as a graph
containing a hamiltonian path.
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visibility of a drawing improves if each face is split into as few parts as possible.
This result implies that the upward planar digraphs which admit an upward 2-
page book embedding also admit one such embedding where each face is divided
to at most 3 parts by the spine.

2. Given an embedded N -free upward planar digraph G, we show how to con-
struct a crossing-free HP-completion set for G (Theorem 3). The class of em-
bedded N -free upward planar digraphs is the class of embedded upward planar
digraphs that does not contain as a subgraph the embedded N -graph of Fig-
ure 1.a. N -free upward planar digraphs have been studied in the context of par-
tially ordered sets (posets) and lattices [1]. The class of N -free upward planar
digraphs contains the class of series-parallel digraphs which has been thorough
studied in the context of book embeddings [4].

3. Given a width-k embedded planar st-digraph G, we show how to determine
whether G admits a crossing-free HP-completion set (Theorem 5). It follows that
for fixed-width embedded planar st-digraphs, it can be tested in polynomial
time whether there exists a crossing-free HP-completion set (and thus, a 2-page
upward book embedding). The result is based on a reduction to the minimum
setup scheduling problem.

For reasons of space, some proofs have been omitted and can be found in [7].

2 Terminology and Notation

Let G = (V, E) be a graph. Throughout the paper, we use the term “graph” to
refer to both directed and undirected graphs. We use the term “digraph” when
we want to restrict our attention to directed graphs. We assume familiarity
with basic graph theory [6,3]. A drawing Γ of graph G maps every vertex v
of G to a distinct point p(v) on the plane and each edge e = (u, v) of G to a
simple open curve joining p(u) with p(v). A drawing in which every edge (u, v)
is a a simple open curve monotonically increasing in the vertical direction is
an upward drawing. A drawing Γ of graph G is planar if no two distinct edges
intersect except at their end-vertices. Graph G is called planar if it admits a
planar drawing Γ . An embedding of a planar graph G is the equivalence class of
planar drawings of G that define the same set of faces or, equivalently, of face
boundaries. A planar graph together with the description of a set of faces F is
called an embedded planar graph. Let G = (V, E) be an embedded planar graph,
E′ be a superset of edges containing E, and Γ (G′) be a drawing of G′ = (V, E′).
When the deletion from Γ (G′) of the edges in E′ − E induces the embedded
planar graph G, we say that Γ (G′) preserves the embedded planar graph G. Let
G = (V, E) be a digraph. A vertex of G with in-degree (resp. out-degree) equal
to zero (0) is called a source (resp., sink). An st-digraph is an acyclic digraph
with exactly one source and exactly one sink. Traditionally, the source and the
sink of an st-digraph are denoted by s and t, respectively. An st-digraph which
is planar and, in addition, embedded on the plane so that both of its source and
sink appear on the boundary of its external face, is referred to as a planar st-
digraph. In a planar st-digraph G each face f is bounded by two directed paths
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Fig. 1. (a) Embedded N-digraph. (b) Embedded I -digraph. (c) Planar digraph that
is N-free if treated as an embedded planar digraph, but not N-free as a planar digraph.
(d) An embedded N-free planar st-digraph G1. (e)-(f) The construction for the proof
of Theorem 3.

which have two common end-vertices. The common origin (resp., destination) of
these paths is called the source (resp., sink) of f and is denoted by source(f)
(resp., sink(f)). The leftmost (resp., rightmost) of these two paths is called a
left border (resp., right border) of face f . The bottom-left (rest., bottom-right)
edge of a face f is the first edge on its left(resp., right) border. Similarly we
define the top-left and the top-right edge of a face border. The right(left) border
of an st-digraph is the rightmost(leftmost) path from its source s to its sink
t. A new edge e that is inserted to a face f of a planar st-digraph G, with
its origin and destination on the the left and right border of f , respectively, is
called a left-to-right oriented edge. Analogously, we define a right-to-left oriented
edge. Following the terminology of posets, the digraph GN = (VN , EN ), where
VN = {a, b, c, d} and EN = {(a, b), (c, b), (c, d)} is called an N -digraph. Then, any
digraph that does not contain GN as a subgraph is called an N -free digraph.
This definition can be extended to embedded planar digraphs by insisting on
a specific embedding. If we adopt the embedding of Figure 1.a. we refer to an
embedded N -digraph while, if we adopt the embedding Figure 1.b. we refer to an
embedded I-digraph. An embedded planar digraph G is then called N -free (I -
free) if it does not contain any embedded N -digraph (I -digraph) as a subgraph.
Figure 1.c shows an embedded N -free digraph. However, when its embedding is
ignored, the digraph is not N -free since vertices a, b, c, d comprise a N -digraph.

Let G = (V, E) be an embedded planar st-digraph. The external face is split
into two faces, s∗ and t∗. s∗ is the face to the left of the left border of G while
t∗ is the face to the right of the right border of G. For each e = (u, v) ∈ E, we
denote by left(e) (resp. right(e)) the face to the left (resp. right) of edge e as we
move from u to v. The dual of an st-digraph G, denoted by G∗, is a digraph such
that: (i) there is a vertex in G∗ for each face of G; (ii) for every edge e �= (s, t)
of G, there is an edge e∗ = (f, g) in G∗, where f = left(e) and g = right(e).
If G∗ after this construction contains multiply edges, we substitute them by
single edges. It is a well known fact that the dual graph G∗ of any planar st-
digraph G, is also a planar st-digraph with source s∗ and sink t∗. The following
definitions were given in [5] for maximal planar st-digraph. Here we extend them
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for planar st-digraphs. Let G = (V, E) be a planar st-digraph and G∗ be the
dual digraph of G. Let v∗1 = s∗, v∗2 , . . . , v∗m = t∗ be the set of vertices of G∗ where
the indices are given according to an st-numbering of G∗. By the definition of
the dual st-digraph, a vertex v∗i of G∗ (1 ≤ i ≤ m) corresponds to a face of G.
In the following we denote by v∗i both the vertex of the dual digraph G∗ and
its corresponding face in digraph G. Face v∗k is called the k-th face of G. Let
Vk be the subset of the vertices of G that belong to faces v∗1 , v∗2 , . . . , v∗k. The
subgraph of G induced by vertices in Vk is called the k-facial subgraph of G and
is denoted by Gk. The next lemma describes how, given an st-digraph G and
an st-numbering of its dual, G can be incrementally constructed from its faces.
The proof is identical to the proof given in [5] for maximal planar st-digraphs.

Lemma 1. Assume a planar st-digraph G and let v∗1 = s∗, v∗2 , . . . , v∗m = t∗

an st-numbering of its dual G∗. Consider the kth-facial subgraph Gk and the
k + 1-th face v∗k+1 of G, (1 ≤ k < m). Let sk+1 be the source of v∗k+1 ,
tk+1 be the sink of v∗k+1, sk+1, ul

1, ul
2, . . . , ul

i, tk+1 be its left border, and
sk+1, ur

1, ur
2, . . . , ur

j , tk+1 be its right border. Then:
a. Gk is a planar st-digraph.
b. The vertices sk+1, u

l
1, u

l
2, . . . , u

l
i, tk+1 are vertices of the right border of Gk.

c. Gk+1 can be built from Gk by an addition of a single directed path sk+1, u
r
1,

ur
2, . . . , ur

j , tk+1. ��
Let G = (V, E) be an embedded planar st-digraph which has an acyclic crossing-
free HP-completion set S. By GS = (V, E

⋃
S) we denote the HP-completed

acyclic digraph and by PGS the resulting hamiltonian path. Note that, as S
creates zero crossings with G, each edge of S is drawn within a face of G and,
therefore, GS is a planar st-digraph.

3 Two Edges Per Face Are Enough

In this Section, we prove that an embedded planar st-digraph G which has
a crossing-free acyclic HP-completion set, always admits a crossing-free HP-
completion set with at most two edges per face of G. This result implies that
the upward planar st-digraphs which admit an upward 2-page book embedding
also admit one such embedding where each face is divided to at most 3 parts by
the spine. This improves the quality of the book embedding drawing.

Theorem 1. Assume an embedded planar st-digraph G which has an acyclic
crossing-free HP-completion set S. Then, there exists another acyclic crossing-
free HP-completion set S′ for G containing at most two edges per face of G.

Sketch of proof: The proof is based on the fact that any three consecutive edges
of the HP-completion set drawn on the same face can be substituted by a single
HP-completion edge (see Figure 2). ��
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Fig. 2. (a) A crossing-free acyclic HP-completion set S which places at least three
edges to a face of an st-digraph. (b) An equivalent crossing-free acyclic HP-completion
set S′ where the three edges (vl

i, v
r
1), (vr

j , vl
i+1), (v

l
k, vr

j+1) were substituted by a single
edge (vl

k, vr
1).

4 Embedded N -Free Upward Planar Digraphs Always
Have Crossing-Free Acyclic HP-Completion Sets

In this Section, we study embedded N -free upward planar digraphs. We establish
that any embedded N -free upward planar digraph G has a crossing-free acyclic
HP-completion set with at most one edge per face of G. Recall that the class
of embedded N -free upward planar digraphs is the class of embedded upward
planar digraphs that does not contain as a subgraph the embedded N -graph of
Figure 1.a. For the class of N -free upward planar embedded digraphs, which is
substantially larger than the class of N -free upward planar digraphs, we show
that there is always a crossing-free acyclic HP-completion set that can be com-
puted in linear time, thus improving the results given in [1,4]

Theorem 2. Any embedded N -free planar st-digraph G = (V, E) has an acyclic
crossing-free HP-completion set S which contains exactly one edge per face of
G. Moreover, S can be computed in O(V ) time.

Proof. Let G∗ be the dual graph of G and let s∗ = v∗1 , . . . , v∗m = t∗ be the vertices
of G∗ ordered according to an st-numbering of G∗. Let Gk−1 be the (k−1)-facial
subgraph of G. By Lemma 1, Gk can be constructed from Gk−1 by adding to
the right border of Gk−1 the directed path forming the right border of v∗k.

We prove the following stronger statement than the one in the theorem:

Statement 1. For any Gk (1 ≤ k < m) there exists an acyclic crossing-free HP-
completion set Sk such that the following holds: Let Pk be the resulting hamilto-
nian paht and let e be an edge of the right border of Gk that is also the bottom-left
edge of a face f ∈ {v∗k+1, . . . v

∗
m}. Then, edge e is traversed by Pk.
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Proof of Statement 1. If k = 1, G1 consist of a single path, that is the left border
of G (Figure 3.a). We let S1 = {∅} and set P1 to G1. As all the edges of G1

are traversed by P1 it is clear that, any edge e on the right border of G1 that
is also a bottom-left edge of any other face t is traversed by P1. Assume now
that the statement is true for any Gk−1, k < m. We will show that it is true for
Gk. Denote by Sk−1 a crossing-free acyclic HP-completion set of Gk−1 and by
Pk−1 the produced hamiltonian path. Let e be an edge on the right border of
Gk−1 that is also the bottom-left edge of v∗k. By the induction hypothesis, Pk−1

passes through e = (sk, v) (see Figure 3.b). Denote by sk and tk the source and
the sink of v∗k respectively, and by vr

1 , . . . , v
r
mk

the vertices of the right border
of v∗k. By Lemma 1, sk and tk are vertices of the right border of Gk−1 and Gk

can be built from Gk−1 by adding the path sk, vr
1 , . . . , v

r
mk

, tk to it. Suppose
first that mk �= 0 (i.e., the right border of v∗k contains at least one vertex). Set
Sk = Sk−1

⋃{(vr
mk

, v)}, and Pk = Pk−1[s . . . sk], vr
1 , . . . , v

r
mk

, Pk−1[v . . . t] (see
Figure 3.c). It is clear that Pk is a hamiltonian path of Gk. This is because
Pk−1 is hamiltonian path of Gk−1 and Pk traverses all newly added vertices. It
is also easy to see that Sk is acyclic: the edge (vr

mk
, v) which was added to Sk−1

creates a single directed path: from vertex sk to the vertex v, which were already
connected by the directed edge (sk, v) in Gk−1. We now show that the bottom-
left edge e of any f ∈ {v∗k+1 . . . v∗m}, where e is also on the right border of Gk, is
traversed by Pk. The only edge that was added to Gk−1 to create Gk and is not
traversed by Pk, is e′ = (vr

mk
, tk), that is, e′ is the last edge of the right border

of v∗k. If e′ is also the left bottom edge of a f then the graph has an embedded
N -digraph as a subgraph (see the subgraph induced by the vertices u, tk, vr

mk
, w

in Figure 3.c), a contradiction. Otherwise, if the bottom-left edge of f coincides
with any other edge of the right border of v∗k, then the statement holds. If f
has its bottom-left edge on the right border of Gk−1 then, by the induction, a
bottom left edge of f is traversed by Pk−1 and, thus, by Pk. Consider now the
case where mk = 0, that is, the right border of v∗k is a single, transitive edge (see
Figure 3.d). In this case, no new vertex is added to Gk, so we set Sk+1 = Sk and
Pk+1 = Pk. Consider now a face f ∈ {v∗k+1 . . . v∗m}. If the bottom-left edge e of f
is on the right border of Gk and coincides with the transitive edge (sk, tk), then
u, tk, sk, w form an embedded N -digraph (see Figure 3.d), a contradiction. So e
is not (sk, tk) and, hence, it is an edge of the right border of Gk−1. So, by the
induction hypothesis, e is traversed by Pk−1 and hence by Pk. This completes
the proof of the statement. Having proved Statement 1, the theorem follows from
the observation that Gm = G. The bound on the time needed to compute the
crossing-free HP-completion set easily follows from the incremental nature of the
described constructive proof. ��
Corollary 1. Any I-free embedded planar st-digraph G = (V, E) has an acyclic
crossing-free HP-completion set S which contains exactly one edge per face of
G. Moreover, S can be computed in O(V ) time.

Proof. Reverse the edges of G∗ and repeat the proof of Theorem 2.
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Fig. 3. (a) G1 = P1 and a face f . The bottom left edge of f is traversed by P1. (b)
Gk−1 and v∗

k. Pk−1 is denoted by solid line. (c) A graph Gk for the case that the right
border of v∗

k contains at least one vertex. The newly constructed Pk is denoted by solid
line. (d) A graph Gk for the case that the right border of v∗

k is a transitive edge.

Theorem 3. Any embedded N -free upward planar digraph G = (V, E) has an
acyclic crossing-free HP-completion set that can be computed in O(V ) time.

Proof. We just prove that, any embedded N -free upward planar digraph G can
be transformed to an embedded N -free upward planar st-digraph G′ by the
addition of few edges. Then, the result follows from Theorem 2. Consider an
upward planar embedding Γ of G = (V, E) that is N -free. If the outer face of
G contains more than one sink (source), then we add a new super-sink (super-
source) vertex. Let t1, . . . , tk be the sinks of G in the outer face. By adding a
new vertex t and by joining each ti to t by an edge, the embedding Γ of G is
preserved and remains N -free, because each ti 1 ≤ i ≤ k has out-degree zero
(see Figure 1.e). Let now some sink t1 be placed in a inner face of G. Let t2
be the sink of that face. We add edge (t1, t2). The addition of the edge (t1, t2)
creates an embedded N -digraph only if there are edges (v, t2) and (v, w) in G
with (v, w) is the edge following (v, t2) (in counter clockwise order), out of v.
But then, there is already an embedded N -digraph in G (the digraph induced
by the vertices u, t2, v, w in Figure 1.f). A clear contradiction, so (t1, t2) can
be added to G without creating any embedded N -digraph as a subgraph. The
sources are treated similarly. The transformation of G into an st-digraph can be
easily completed in linear time. ��

5 Crossing-Free Acyclic HP-Completion Sets for Fixed
Width st-Digraphs

In this section we establish that for any embedded planar st-digraph G of
bounded width, there is a polynomial time algorithm determining whether there
exists a crossing-free HP-completion set for G. In the case that such an HP-
completion set exists, we can easily construct it. A set Q of vertices of G
is called independent if the graph incident to Q has no edges. Following the
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terminology of partially ordered sets, we call width of G, and denote it by
width(G), the maximum integer r such that G has an independent set of car-
dinality r. In Minimum Setup Scheduling (MSS) we are given a number of jobs
that are to be executed in sequence by a single processor. There are constraints
which require that certain jobs be completed before another may start; these
constraints are given in the form of precedence dag. In addition, for each pair i, j
of jobs there is a setup cost representing the cost of performing job j immediately
after job i, denoted by cost(i, j). The objective is to find a one-processor sched-
ule for all jobs which satisfies all the precedence constraints and minimizes the
total setup cost incurred. The main idea of the result presented in this section
is a simple application of an algorithm solving the minimum setup scheduling
problem . Given a precedence dag D and a matrix C of costs, s(D, C) denotes
the total setup cost of a minimum cost schedule satisfying the constraints given
by D. The next theorem follows from the complexity analysis given in [2].

Theorem 4 ([2]). Given an n-vertex precedence dag D of width k and a ma-
trix C of setup costs, we can compute in O(nkk2) time a setup cost s(P, C) of
minimum cost schedule, satisfying the constraints given by P .

In the rest of this section, we show that given a planar st-digraph G the problem
of determining whether there is a crossing-free acyclic HP-completion set for
G can be presented as an instance of MSS. Let G = (V, E) is an embedded
planar st-digraph. We define the setup cost matrix as follows. Set CG[i, j] = 0 if
(vi, vj) ∈ E or vi and vj belong to the opposite borders of the same face of G,
otherwise set CG[i, j] = 1.

Lemma 2. Let G = (V, E) be an embedded planar st-digraph. Let also s(G, CG)
be a setup cost of minimum cost schedule satisfying the constraints given by G
and setup costs given by CG. G has an acyclic crossing-free HP-completion set
iff s(G, CG) = 0.

Proof. (⇒) Assume that G has a crossing-free acyclic HP-completion set S and
the vertices in the sequence v1, v2, . . . , vn are enumerated as they appear in the
hamiltonian path which is created when S is embedded on G. Then, the sequence
v1, v2, . . . , vn presents a schedule satisfying constraints given by G, otherwise an
embedding of S in G would create a cycle. The setup cost for this schedule
is

∑n−1
i=1 CG[i, i + 1]. We know that S does not create any crossing with G.

Therefore, any two successive vertices vi and vi+1 of the resulting hamiltonian
path are either connected by an edge of the graph or belong to the opposite
borders of the same face, and thus, CG[i, i + 1] = 0. So, we have shown that
there is a schedule of setup cost zero and, thus, s(G, CG) = 0.

(⇐) Assume now that s(G, CG) = 0, i.e., there exists a one-processor schedule
for the jobs represented by the vertices of G which has total setup cost zero and
satisfies the precedence constraints given by G. Let v1, v2, . . . , vn be the jobs
as they appear in this schedule. We construct the set of edges S as follows:
Consider any two successive jobs vi and vi+1. If they are not connected by an
edge (vi, vi+1) of G, then we add this edge to S. All the edges added to S
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correspond to two jobs with setup cost zero, and hence represent edges which
connect two vertices of the opposite borders of the same face. So we have that
S creates in G a hamiltonian path which does not cross any edge of G. Finally
we note that (i) there can be no crossings among the edges of S and, (ii) the
addition of S to G does not create any cycle. ��
Theorem 5. Let G be a planar st-digraph of width k ∈ N. Then, in O(k2nk)
time we can decide whether G has an crossing-free HP-completion set. In the
event that such a set exists, it can be easily computed in the same time bounds.
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