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ABSTRACT

We consider a map labeling problem, where the sites to be labeled
are restricted on a line L. This is quite common e.g. in schematized
maps for road or subway networks. Each site si is associated with an
axis-parallel wi× hi label li, which can be placed anywhere on the
“boundary” of the input line L. The main task is to place the labels
in distinct positions, so that they do not overlap and do not obscure
the site set, and to connect each label with its associated site through
a leader, such that no two leaders intersect. We propose several
variations of this problem and we investigate their computational
complexity under certain optimization criteria.
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1 INTRODUCTION

Automated map labeling is a well-known problem, which has re-
ceived considerable attention due to the large number of appli-
cations in both Cartography and Graphical Information Systems.
Manual label placement is a time-consuming task, which is esti-
mated to take 50% of total map production. Apart from that, the
ACM Computational Geometry Impact Task Force report [8] de-
notes label placement as an important research area.

Recent research on map labeling has been primarily focussed
on labeling point-features. In order to ensure readability, unam-
biguity and legibility, cartographers suggest that the labels should
be pairwise disjoint and close to the point (also referred to as
site or anchor) to which they belong [18, 27]. Unfortunately, the
majority of map labeling problems are shown to be NP-complete
[1, 11, 19, 20, 24]. Due to this fact, the map labeling community
has suggested various approaches, among them expert systems [2],
gradient descent [16], approximation algorithms [11, 25], zero-one
integer programming [28] and simulated annealing [29]. An exten-
sive bibliography about label placement can be found at [26].

There are many variations of the point labeling problem, regard-
ing the shape of the labels, the location of the sites or some opti-
mization criterion, e.g. maximizing the size of labels. In this paper,
we consider the case where all sites lie on the same line and are
to be labeled with axis-parallel rectangular labels. This is a quite
common approach e.g. in schematized maps for road or subway

∗The work is co - funded by the European Social Fund (75%) and Na-
tional Resources (25%) - Operational Program for Educational and Voca-
tional Training II (EPEAEK II) and particularly the Program PYTHAGO-
RAS.

†e-mail: mikebekos@math.ntua.gr
‡e-mail: mk@informatik.uni-tuebingen.de
§e-mail: symvonis@math.ntua.gr

networks. Most of known labeling models for this problem pro-
duce quite legible labelings, when the input sites are sparsely dis-
tributed on the input line. However, when the site set contains a
dense 5-tuple of sites they fail to produce labelings. To address this
problem, we propose a more flexible labeling model, according to
which the labels are placed on the “boundary” of the input line and
are connected to their associated sites in a simple and elegant way
by using non-intersecting polygonal lines, called leaders.

1.1 Problem Definition
Our labeling model in its primitive form can be described as fol-
lows: We are given a straight line L and a set S of n sites si = (xi,yi)
on L. Each site si is associated with an axis-parallel rectangular la-
bel li of dimensions wi×hi. The “boundary of L” is defined by two
lines LT and LB (one on top and one bellow L), that are translations
of L by c0 towards to (0,∞) and (0,−∞), respectively, where c0 is
a fixed, predefined, positive constant (see Figures 1 and 2). Labels
have to be placed on the boundary of L, so that they do not over-
lap and do not obscure the site set, and, to be connected to their
associated sites by non-intersecting polygonal lines, called leaders.
Such labelings are referred to as legal or crossing-free labelings (for
brevity, they are simply referred to as labelings).
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Figure 1: Horizontal input line.
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Figure 2: Sloping input line.

Our labeling model consists of several parameters (sites, labels,
leaders, input line). So, it is reasonable to exist several variations
of the primitive form discussed above, each giving rise to different
labeling models.



Input line: The input line L may be horizontal (see Figure 1) or
may have a positive slope (see Figure 2).

Labels: In general, the labels are of arbitrary sizes, i.e. label li as-
sociated with site si has width wi and height hi (non-uniform
labels). However, in real applications labels usually contain
text of the same font size. So, it is reasonable to separately
consider the case, where the labels are of the same width
and/or height (uniform labels). In our model, we further as-
sume that each label can be placed anywhere on the boundary
of L, so that either its bottom right or top left corner coincides
with LT or LB, respectively. This implies that the labels do
not overlap the input line and therefore do not obscure the site
set.

Leaders: The leaders which connect the sites to their correspond-
ing labels can also be of several types. In our approach, we
focus on leaders of type-opo, which result in simple and easy
to visualize labelings. Leaders of type-opo consist of three
line segments. The first and third ones are orthogonal (o) to
x-axis, whereas the second one is parallel (p) to the input
line (see Figures 1 and 2). Degenerated case of a type-opo
leader is a leader of type-o, which consists of only one line
segment orthogonal to x-axis (i.e. the length if the p-segment
is zero). Additionally, for each type-opo leader, we insist
that its p-segment is located inbetween LT and LB (in the
so-called track routing area) and does not intersect L. We
further assume that the thickness 2c0 of the track routing area
is large enough to accommodate all leaders.

Ports: The point where each leader touches its corresponding label
is referred to as port. We assume either fixed ports, where
each leader is only allowed to use a fixed set of ports on some
label side (e.g. the middle point of a label side or some corner
of the label; see Figure 2) or sliding ports, where the leader
can touch any point of the label’s side (see Figure 1).

Under a labeling model, one can define several optimization
problems, adopting one of the following optimization criteria:

Minimize the total number of bends: Find a labeling, such that
the total number of bends is minimum.

Minimize the total leader length: Find a labeling, such that the
total leader length is minimum. Note that only the p-segments
of the leaders contribute to the total leader length, since we
assume that the thickness 2c0 of the track routing area is fixed.

1.2 Related Literature
The problem of labeling points on a single line has so far been stud-
ied by Garrido et al. [14] and Chen et al. [9], along two different
labeling models, 4P and 4S. In the fixed-position model 4P a label
must be placed, so that the site to be labeled coincides with one
of its four corners (see Figure 3), whereas in the sliding model 4S
a label can be placed so that the site lies on one of the boundary
edges of the label (see Figure 4). One can also use prefixes 1d−
and SLOPE- combined with each model to denote the type of the
input line; 1d denotes a horizontal or vertical line, whereas SLOPE
denotes a sloping line.

Garrido et al. showed that the 1d-4S problem is NP-complete
and they presented a pseudo-polynomial time algorithm to solve it.
They also showed that several simplifications, e.g. square labels
or no sliding, all have efficient algorithms. Chen et al. showed
that the SLOPE-4P problem with rectangular labels of fixed-height
can be solved in linear time, when the order of the input sites is
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Figure 3: Illustration of 4P model. Figure 4: Illustration of 4S model.

given. They also showed that the problem of maximizing the size
of the rectangular equal-width labels of the points on a horizontal
line whose top or bottom edge coincide with the input line under
the 4S model can be solved in O(n2 logn) time.

Labeling where the labels are connected to their associated fea-
tures by leaders has so far been studied in the map labeling liter-
ature by Bekos et al. [4, 5, 7], Fekete and Plaisant [10], Freeman
et al. [12], Müller and Schödl [23] and Zoraster [29]. Our label-
ing model is quite similar to the boundary labeling model proposed
by Bekos et al. [7] (see also [6]). In boundary labeling, the labels
are placed on the boundary of a rectangle R (referred to as enclos-
ing rectangle), which encloses the set of sites, and are connected to
their associated sites by non-intersecting leaders. In most of the al-
gorithms presented for boundary labeling, the labels are considered
to be placed in predefined positions and their sizes are bounded by
the dimensions of R. In this paper, we tackle both restrictions, since
we do not assume the existence of the enclosing rectangle.

The paper is structured as follows: Section 2 reviews preliminary
results required for the development of our algorithms. In Section 3,
we consider the problem of labeling points on a horizontal line with
axis-parallel rectangular labels. We propose efficient algorithms
to determine labelings of either minimum total leader length or of
minimum number of bends for the case, where the labels are placed
above the input line. For the general case, where the labels can be
placed on both sides of the input line we show that both problems
are NP-complete. In Section 4, we extend the results of Section 3
to the case, where the input line has a positive slope. We conclude
in Section 5 with open problems and future work.

2 PRELIMINARIES

A key component, that is heavily used in the description of our
algorithms, is a formulation of our problem as a Single Machine
Scheduling problem1 with due windows and symmetric earliness
and tardiness penalties, according to which: We are given a set of n
jobs J1,J2, . . . ,Jn, which are to be executed on one machine. Each
job Ji is associated with a processing time pi and a time window
(bi,di). If a job Ji is processed entirely within its time window,
it occurs no penalty. On the other hand, if the starting time σi of
Ji commences prior to bi (or the completion time ci = σi + pi of
Ji exceeds di), an earliness (tardiness) penalty Ei (Ti) incurs equal
to the corresponding deviation. Thus, Ei = max{bi − σi,0} and
Ti = max{ci − di,0}. There are no restrictions on time windows,
preemption is not allowed and the machine is continuously avail-
able. The objective is to determine a schedule, so that either the
total earliness-tardiness penalty ∑n

j=1(E j + Tj) or the number of
penalized jobs is minimized.

Scheduling to minimize the total-earliness tardiness penalty:
The general case of the problem of determining a schedule,
so that the total earliness-tardiness penalty is minimized, is
shown to be NP-hard, since it can be viewed as a general-
ization of the single-machine earliness-tardiness problem
with distinct due dates, which is a well-known NP-complete

1Extensive surveys on the most important aspects of scheduling research
are given at [3, 15, 17].



problem [13]. However, for the special case, in which the
jobs are to be scheduled in a fixed predefined order, Koulamas
[21] has proposed an efficient algorithm, which determines
an optimal schedule in O(n logn) time by inserting idle time
between jobs.

Scheduling to minimize the number of penalized jobs: In gen-
eral, the problem of determining a schedule, so that the total
number of penalized jobs is minimized can be solved in O(n2)
time by employing a greedy algorithm of Lann and Mosheiov
[22]. If the jobs are required to be scheduled in a predefined
order, Lann and Mosheiov [22] have also proposed a dynamic
programming based algorithm, which determines an optimal
schedule in O(n2) time, only for the case of distinct due dates
(i.e. time windows of zero length). In the following Theorem,
we generalize their algorithm to support time windows.

Theorem 1 Given a set of n jobs J1,J2, . . . ,Jn, which are to be exe-
cuted on one machine in this order, a processing time pi and a time
window (bi,di) for each job Ji, we can compute in O(n2) time a
schedule, so that the number of penalized jobs is minimized.

Proof: Our dynamic programming algorithm employs a table T of
size (n + 1)× (n + 1). For 0 ≤ k ≤ i ≤ n, entry T [i,k] contains the
minimum completion time for the subproblem consisting only of
the first i jobs, such that at least k out of them are scheduled on
time (i.e. they do not incur a penalty). If it is impossible to obtain
a schedule for this setting, we set T [i,k] to ∞. Therefore, all table
entries T [i,k], with i < k are ∞.

As usual, the table entries are computed in a bottom-up fash-
ion. Assuming that we have scheduled the first i−1 jobs, we try to
schedule the i-th job Ji. We distinguish two cases based on whether
Ji is scheduled on time or not. From the two alternatives, we se-
lect the one, which minimizes the total completion time. Thus, for
computing entry T [i,k] we only need to know entries T [i−1,k−1]
and T [i−1,k].
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Figure 5: Different schedules obtained for the i-th job Ji.

Case 1: di ≤ T [i−1,k−1]+ pi.
Refer to Figure 5a. In this case, it is obvious that Ji cannot be

scheduled on time. Therefore, T [i,k] can have a finite value
only if T [i−1,k] is finite. In this subcase, we simply schedule
job Ji exactly after the i−1 already scheduled jobs, and obtain
a schedule of total completion time T [i− 1,k]+ pi. If on the
other hand, T [i− 1,k] = ∞, no solution with k on time jobs
exists and thus T [i−1,k] = ∞. Both subcases can be described
by the equation:

T [i,k] = T [i−1,k]+ pi

Case 2: di > T [i−1,k−1]+ pi.
Consider first the subcase where bi ≤ T [i− 1,k− 1] (refer
to Figure 5b). In this subcase, the total completion time is
T [i− 1,k− 1]+ pi. In the subcase where bi > T [i− 1,k− 1]
(refer to Figure 5c), we can schedule Ji, so that σi = bi.
Both subcases can be described by the equation: T [i,k] =
max{T [i− 1,k− 1],bi}+ pi. However, if T [i− 1,k] is finite,
then a different solution is also possible. The total completion
time of this solution is T [i− 1,k] + pi. The above subcases
can be expressed by the equation:

T [i,k] = min{T [i−1,k], max{T [i−1,k−1],bi}}+ pi

Based on the above cases, we conclude that T [i,k] can be com-
puted by using the following recurrence relation:

T [i,k] =
{

T [i−1,k]+ pi, if di ≤ T [i−1,k−1]+ pi

min{T [i−1,k],max{T [i−1,k−1],bi}}+ pi, if di > T [i−1,k−1]+ pi

Algorithm 1 outputs the maximum possible number of non-
penalized jobs and it is directly based on the above recurrence re-
lation (see block 1 of the algorithm). Block 2 of Algorithm 1 com-
putes the maximum possible number of non-penalized jobs by iden-
tifying the largest j with 0≤ j ≤ n such that T [n, j] < ∞.

Algorithm 1 needs O(n2) time and space, since it maintains a
(n+1)× (n+1) table and each entry of this table needs a constant
effort to be computed. By using an extra table of the same size as
T , the algorithm can easily be modified, such that it also computes
the starting times σ1,σ2, . . .σn of jobs J1,J2, . . .Jn, respectively in
the optimal solution.

1: MINPENALIZEDJOBS

input : A set of n jobs J1,J2, . . . ,Jn, which are to be
executed on one machine, a deterministic
processing time pi and a time window (bi,di) for
each job si.

output : The maximum number of non-penalized jobs.
require: Job Ji should be executed before J j , if i < j.

{Fill dynamic programming table T}1
T [0,0] = 0
for i = 1 to n do

T [i,0] = T [i−1,0]+ pi
T [i−1, i] = ∞
for k = 1 to i do

if di > T [i−1,k−1]+ pi then
T [i,k] = T [i−1,k]+ pi

else
T [i,k] = min{T [i−1,k], max{T [i−1,k−1],bi}}+ pi

{Compute maximum possible number of non-penalized jobs}2
for j = n down to 0 do

if T [n, j] < ∞ then
return j

tu



3 SITES ON A HORIZONTAL LINE

In this section, we consider the case, where the sites to be labeled
are restricted on a horizontal line2. W.l.o.g. we assume that L is the
x-axis, i.e. L : y = 0. We want to obtain legal type-opo labelings
either of minimum total leader length or of minimum number of
bends. Recall that in the case of a horizontal line, the boundary of
L is defined by lines LT : y = c0 and LB : y = −c0. This implies
that either the bottom or the top boundary edge of each label should
coincide with either LT or LB, respectively. Moreover, each type-
opo leader should have its p-segment either between LT and L or
between L and LB (see Figure 1).

Before we proceed with the description of our algorithms, we
make some observations regarding opo-labelings. It is easy to see
that the problem of determining a labeling of minimum total leader
length is equivalent to the problem of determining a labeling, so that
the sum of the lengths of the p-segments of all leaders is minimum.
This is because we assumed that the thickness 2c0 of the track rout-
ing area is fixed and large enough to accommodate all leaders. We
can also observe that in any legal opo-labeling, the horizontal order
of the sites with labels positioned above (or below) the input line is
identical to the horizontal order of their corresponding labels.

3.1 Labels above the input line
We first consider the case where the labels are restricted on the same
side of the input line L. W.l.o.g. we assume that all labels will be
placed above L. This implies that the bottom boundary edge of each
label should coincide with LT (see figure 6). We consider the more
general case of labels with sliding ports, i.e. the leader connecting
the site to the label has simply to touch some point in the perimeter
of the label.

3.1.1 Total leader length minimization:
We describe how to compute in O(n logn) time a labeling with lead-
ers of type-opo, so that the total leader length is minimum. To solve
this problem, we will reduce it to the single-machine scheduling
problem with due windows and symmetric earliness and tardiness
penalties. The reduction we propose can be achieved in linear time.
For each site si = (xi,0), we introduce a job Ji. The processing time
pi of job Ji is equal to the width wi of label li. The corresponding
due window (bi,di) of job Ji is (xi −wi,xi + wi) and its length is
equal to 2wi (see Figure 6).

L

xi − wi xi + wi

wi

si = (xi, 0)

Ji

L
T

Figure 6: For each site si, a job Ji of processing times wi is introduced.

We proceed by applying Koulamas [21] algorithm to obtain
a schedule σopt , which minimizes the total earliness-tardiness
penalty. The exact positions of labels are then determined based on
the starting times σ1,σ2, . . . ,σn of jobs J1,J2, . . . ,Jn, respectively,
under schedule σopt . More precisely, the x-coordinate of the lower
left corner of label li is σi, and since, the y-coordinate of each of the
lower left corners is equal to c0, the exact positions of all labels are
well-specified.

If a job Ji is placed entirely within its time window, the corre-
sponding leader ci, which connects label li with site si, is of type-o,
which implies that leader ci does not contribute to the total leader
length. On the other hand, if job Ji deviates its time window, then
leader ci contributes to the total leader length a penalty equal to the

2Sites positioned on a vertical line are treated similarly.

corresponding deviation. So, the total leader length is equal to the
total earliness-tardiness penalty of the implied scheduling problem.
The above result is summarized in Theorem 2.

Theorem 2 Given a set S of n sites on a horizontal line L, each
associated with a rectangular wi × hi label li that can be placed
above L, we can compute in O(n logn) time a legal opo-labeling of
minimum total leader length.

3.1.2 Leader bend minimization:
We use the same reduction to obtain a labeling of minimum num-
ber of bends. In this case, we proceed by applying the algorithm of
Theorem 1 to obtain a schedule of minimum number of penalized
jobs. Observe that if a job Ji is on time (i.e. it does not incur a
penalty), the corresponding leader ci, which connects label li with
site si, is of type-o, which implies that leader ci does not contribute
to the total number of bends. On the other hand, if job Ji is ei-
ther early or tardy, then leader ci contributes two bends to the total
number of bends. So, the total number of leader bends is equal to
twice the total number of penalized jobs of the implied scheduling
problem. The above result is summarized in Theorem 3.

Theorem 3 Given a set S of n sites on a horizontal line L, each
associated with a rectangular wi × hi label li that can be placed
above L, we can compute in O(n2) time a legal opo-labeling of
minimum number of bends.

3.2 Labels on both sides of the line
In this section, we show that when non-uniform labels can be placed
on both sides of L the problem of determining a legal labeling of
either minimum total leader length or of minimum number of bends
is NP-hard.

3.2.1 Total leader length minimization:
We will show that the decision problem “Is there a labeling with
total leader length no more than k?” is NP-complete and hence the
corresponding optimization problem is at least as hard. We also do
give a pseudo-polynomial time algorithm for that problem, estab-
lishing that the problem is NP-hard in the ordinary sense.

Theorem 4 Given k ∈Z+ and a set S of n sites on a horizontal line
L, each associated with a rectangular label li of dimensions wi×hi,
it is NP-complete to determine if there exists a legal opo-labeling
with labels on both sides of L, such that the total leader length is at
most k.

Proof: The reduction we propose is by restriction, since our prob-
lem can be viewed as a generalization of the 1d-4S sliding model,
which is shown to be NP-complete [14]. Recall that in 1d-4S, all
sites lie on a horizontal line and each label must be placed, so that
the site lies on one of the boundary edges of the label. Simply ob-
serve that in the case where k = nc0 (i.e. the total length of all
p-segments is equal to zero) the problem is restricted to the 1d-4S
problem. tu

Theorem 4 implies that we can not expect to find an algorithm,
which runs in polynomial time with respect to the number of sites,
unless P = NP. So, we assume that the input consists exclusively of
integers and propose a pseudo-polynomial time algorithm, which
runs in polynomial time to both the number of sites n and W =
2∑n

i=1 wi + xn− x1, where xi is the x-coordinate of site si.

Theorem 5 Given a set P of n sites on a horizontal line L, each
associated with a rectangular wi× hi label li, there is an O(nW 2)
time algorithm that places all labels on both sides of L and attaches
each point to its label with non-intersecting type-opo leaders, such
that the total leader length is minimum, where W = 2∑n

i=1 wi +xn−
x1.



Proof: We can observe that in an optimal solution, the lower left
(right) corner of the leftmost (rightmost) label can not commence
prior to W1 = x1 −∑n

i=1 wi (exceed W2 = xn + ∑n
i=1 wi). So, our

problem can be easily formulated as a boundary labeling problem
of minimum total leader length with non uniform sliding labels [7].
The total time needed to compute a legal labeling of minimum total
leader length is equal to O(nW 2). tu

3.2.2 Leader bend minimization:
Following similar arguments as in proof of Theorem 4, we will
show that the decision problem “Is there a labeling with total num-
ber of bends no more than k?” is NP-complete and hence the cor-
responding optimization problem is at least as hard.

Theorem 6 Given k ∈Z+ and a set S of n sites on a horizontal line
L, each associated with a rectangular label li of dimensions wi×hi,
it is NP-complete to determine whether there exists a legal opo-
labeling with labels on both sides of L, such that the total number
of bends is at most k.

Proof: By restriction. Simply observe that in the case where k = 0
(i.e. all leaders are of type-o) the problem is restricted to the 1d-4S
problem. tu

4 SITES ON A SLOPING LINE

In this section, we extend the results of Section 3.1 to the case,
where the input line has a positive slope φ (i.e. 0 < φ < 90). We
assume that each label can be placed anywhere on the boundary of
L, so that its bottom right corner coincides with LT (recall that LT is
a translation of L by c0 towards to (0,∞); see Figure 2). We further
assume that each leader can touch its label only at the bottom right
corner of the label (i.e. the point which slides along LT ). We want
to obtain legal opo-labelings of either minimum number of bends
or of minimum total leader length. We first consider the case of
unit height labels and later on we will describe how to extend our
approach to support non-uniform labels in general.

4.1 Labels of unit height
4.1.1 Total leader length minimization:
We describe how to compute in O(n logn) time a labeling with lead-
ers of type-opo, so that the total leader length is minimum. Our
approach is quite similar to the one presented for the case of a hor-
izontal line in Section 3.1. In this case, we will reduce our problem
to the single-machine scheduling problem with distinct due dates
and symmetric earliness and tardiness penalties. Note that since we
assume fixed ports the time windows have distinct due dates. The
reduction we propose can be achieved in linear time. For each site
si = (xi,yi), we introduce a job Ji. The due date di of job Ji is xi.
The processing time pi of job Ji is equal to the minimum Euclidean
distance between the bottom right corner vi−1 of label li−1 and the
bottom right corner vi of label li, when the y coordinate of vi−1 is
less than the y coordinate of vi and labels li−1 and li do not over-
lap (see Figures 7a and 7b). We will refer to corners vi−1 and vi as
sliding corners of labels li−1 and li, respectively. Since we assumed
that all labels are of unit height, the computation of the minimum
Euclidean distance between the sliding corners of labels li−1 and
li demands only a geometric analysis of the possible positions of
labels li−1 and li. It is easy to see that cotφ is equal to the corre-
sponding horizontal distance between the sliding corners of labels
li−1 and li (in Figure 7a, cotφ is the length of the line segment ab).
We distinguish two cases based on whether the width wi of label li
is greater than cotφ or not.

Case 1 (wi > cotφ ): Refer to Figure 7a. In this case, the minimum
Euclidean distance between the sliding corners of labels li−1

and li can be computed by placing label li on top of label li−1

and is equal to hi−1
sinφ or equivalently equal to 1

sinφ , since we
assumed that all labels are of unit height.

Case 2 (wi ≤ cotφ ): Refer to Figure 7b. In this case, the minimum
Euclidean distance between the sliding corners of labels li−1
and li can be computed by placing label li next to label li−1
and is equal to wi

cosφ .

L
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1

pi

wi > cot φ

φ

a b

li

li−1

(a) wi > cotφ

L
T

L

1

pi

wi ≤ cot φ

φ

li−1

li

(b) wi ≤ cotφ

Figure 7: Processing time pi of job Ji.

Based on the above cases, the processing time pi of Job Ji is
computed by using the following relation:

pi =

{
1

sinφ , if wi ≤ cotφ
wi

cosφ , if wi > cotφ

We proceed by applying Garey et. al [13] algorithm to
obtain a schedule σopt , which minimizes the total earliness-
tardiness penalty. The exact positions of labels l1, l2, . . . , ln are
then determined based on the starting times σ1,σ2, . . . ,σn of jobs
J1,J2, . . . ,Jn, respectively, under schedule σopt . More precisely, the
x-coordinate of the sliding corner vi of label li is σi, and since, the
y-coordinate of vi is implied by the slope of LT which is given, the
exact positions of all labels are well-specified.

Next we show that the total earliness-tardiness penalty of the
scheduling problem is equal to the total leader length of our labeling
problem. Observe that if a job Ji is on time (i.e. it does not incur a
penalty), the corresponding leader ci, which connects label li with
site si, is of type-o, which implies that leader ci does not contribute
to the total leader length. On the other hand, if job Ji is either
early or tardy, then leader ci contributes to the total leader length a
penalty equal to the corresponding deviation. The processing times
pi of jobs Ji, i = 1,2, . . . ,n ensure that in an optimal solution no two
labels overlap and hence the implied labeling is legal. The above
result is summarized in Theorem 7.

Theorem 7 Given a set S of n sites on a sloping line L, each asso-
ciated with a rectangular wi×1 label li that can be placed above L,
we can compute in O(n logn) time a legal opo-labeling of minimum
total leader length.



4.1.2 Leader bend minimization:
We use the same reduction to obtain a labeling of minimum num-
ber of bends. In this case, we proceed by applying the algorithm of
Lann and Mosheiov [22] to obtain a schedule of minimum number
of penalized jobs. Observe that if a job Ji is on time, the corre-
sponding leader ci, which connects label li with site si, is of type-o,
which implies that leader ci does not contribute to the total number
of bends. On the other hand, if job Ji is either early or tardy, then
leader ci contributes two bends to the total number of bends. So,
the total number of leader bends is equal to twice the total number
of penalized jobs of the implied scheduling problem. Moreover, the
processing times pi of jobs Ji, i = 1,2, . . . ,n ensure that in an opti-
mal solution no two labels overlap and hence the implied labeling
is legal. The above result is summarized in Theorem 8.

Theorem 8 Given a set S of n sites on a sloping line L, each asso-
ciated with a rectangular wi× 1 label li that can be placed above
L, we can compute in O(n2) time a legal opo-labeling of minimum
number of bends.

4.2 Non-uniform labels
As already mentioned both algorithms can be extended to support
non-uniform labels. In this case, a label of large height can effect
the placement of a label later on the order (see Figure 8). Thus, the
processing time pi of job Ji can not be computed based only on the
previous label li−1.

L
T

L

pi

Figure 8: A label of large height effects the placement of a label later on the order

A straightforward computation of the processing time pi corre-
sponding to label li can be done in O(i) time by considering all
previous labels l1, l2, . . . , li−1. Thus, the computation of all process-
ing times requires O(n2) time and therefore the complexity of al-
gorithm of Theorem 7 becomes O(n2), instead of O(n logn). The
following Theorems summarize our results.

Theorem 9 Given a set S of n sites on a sloping line L, each asso-
ciated with a rectangular wi× hi label li that can be placed above
L, we can compute in O(n2) time a legal opo-labeling of minimum
total leader length.

Theorem 10 Given a set S of n sites on a sloping line L, each asso-
ciated with a rectangular wi× hi label li that can be placed above
L, we can compute in O(n2) time a legal opo-labeling of minimum
number of bends.

5 OPEN PROBLEMS AND FUTURE WORK

1. In this paper, we presented results only for leaders of type-
opo. No results are known regarding straight line leaders.

2. Another line of research is to design good approximation al-
gorithms that solve the problems, that are proved to be NP-
hard.

3. It is also intuitive that the quality of the labelings can be im-
proved by allowing the labels to be placed anywhere on the
boundary of L, without restricting them to slide along the lines
LT and LB. No algorithms exist for this model.
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