
Multi-level Caching With Delayed-Multicast for Video-on-Demand
Chi Nguyen, Doan B. Hoang

Department of Computer Systems
University of Technology, Sydney, Australia�

chi,dhoang � @it.uts.edu.au

Antonios Symvonis
Department of Mathematics

University of Ioannina, Greece.
symvonis@cc.uoi.gr.

ABSTRACT
Delayed-Multicast is a novel transmission technique to
support Video-on-Demand. It introduces buffers within the
network to bridge the temporal delays between similar re-
quests thus minimizing the aggregate bandwidth and server
load. This paper introduces an improved online algorithm
for resource allocation with Delayed-Multicast by utilizing
prior knowledge of each clip’s popularity. The algorithm is
intended to be simple so as to allow for deployment at mul-
tiple levels in a distribution network. The result is greater
backbone traffic savings and a corresponding reduction in
the server load.

KEY WORDS
Video-on-Demand, Multimedia Networking

1 Introduction

As the level of broadband penetration increases, many ap-
plications which were limited by the “last-mile” bottleneck
are now becoming more accessible to the users. A large
proportion of these applications such as corporate webcast-
ing, and video-on-demand (VoD) for home entertainment
or distant learning, requires the ability to stream high vol-
ume of continuous media. Currently, a common technique
is to provide a dedicate unicast stream from the server to
the client. However, this solution pushes the bandwidth
bottleneck back into the network backbone and increases
the demands on the server. The result is a non-scalable sys-
tem both in terms of network bandwidth requirements and
server loads.

Many techniques have been proposed to overcome the
problem mentioned above. A common factor in many of
these techniques is the exploit of different clips’ popularity
in minimizing the resource requirement. Batching [1, 2] is
one such technique which groups requests into “batches”
and serves each batch through the use of a single multicast
stream. However, for effective resource savings, batching
requires a large time interval - to maximize the number of
users within each group - leading to potentially long wait
times for users.

To reduce the maximum wait-time to a small frac-
tion of the clip’s length, Viswanathan and Imielinski [3] in-
troduced “Pyramid Broadcasting” (PB) scheme. With PB,
videos are segmented in � segments of geometrically in-
creasing size and the broadcast bandwidth is evenly divided

into � logical channels, with the ����� channel being used to
broadcast the ����� segment of all the videos in a sequential
manner. PB also requires that the time to download any �����
segment must be less than the time to display the 	
����
�� ���
segment. To display a video, the client downloads and dis-
plays the first segment while at the same time buffers the
next segment from the second channel to disk. When it is
time to display the second segment, the client retrieves it
from disk and at the same time “tune” into the third chan-
nel to buffer the third segment on disk. This process con-
tinues until all segments have been downloaded and dis-
played. Since the size of the first segment is small, this
minimizes the wait time before a client can begin watching
a video. However, the drawbacks is that the disk bandwidth
and the buffering space at the client’s end can be very large.

To avoid the wait-time completely Hua et al. [4] intro-
duces a technique termed “patching”. It also utilizes disk
space at the client’s set-top box (STB) to minimize network
bandwidth. With patching, initial requests are serviced us-
ing a regular multicast. Subsequent requests for the same
clip are serviced immediately with a stream from the server
known as a “patching” stream. However, rather than sub-
scribing only to its patching channel, the later client also
subscribes to the nearest earlier regular multicast, using the
patching stream for immediate display while buffering the
data from the regular multicast on disk. Once the buffered
data is sufficient to bridge the temporal skew between the
two multicasts, the display data is fetched from the buffer
and the patching stream is terminated. Variations to the
patching scheme was introduced in [5] to reduce the re-
quired last mile bandwidth requirement to below twice the
bit rate of the video clip, and in [6] to address the issue of
packet loss recovery.

Recent works [7, 8, 9] introduce the concept of proxy
caching. A straight forward application of proxy caching is
to permanently cache portions of popular clips. The advan-
tage of this is that it can reduce latency, and mask network
jitters, in addition to reducing resource requirement. More
advanced forms of proxy caching make use of batching and
patching at the proxy to further reduce network bandwidth
requirement.

In this paper, we present our protocol, termed
“Delayed-Multicast”, which performs buffering of streams
within the distribution network, thus reducing the need
for large client-side buffers. Furthermore, the “last-mile”
bandwidth only needs to be as large as the clip’s play-

back rate. Accompanying the protocol is an online (request
times are not known a priori) distributed algorithm which
minimizes the aggregate backbone bandwidth requirement
and server load.

The outline for the rest of the paper is as follow: Sec-
tion 2 describes the operations of “Delayed-Multicast” and
our system architecture. Section 3 introduces the online
distributed algorithm. Section 4 discusses experimental re-
sults. Finally, we conclude in Section 5.

2 Delayed-Multicast Protocol

The “Delayed-Multicast” Protocol (DMP) employs circu-
lar buffers within the networks to allow the partial caching
of data streams. Later requests for the same data can be ser-
viced by the buffer rather than starting a new stream from
the server. Consequently, there is no need to have a large
buffer space at the client, and the “last-mile” bandwidth
does not need to be greater than the clip’s play back rate.

Server

(minutes)

Router
Intermediate

Starting
Times

1 11 1

Requests

4

= 9S 4S 1 S 2 = 8S 3

R R 2 R R 4 1 3

= 0 = 2

a)

1

S 4= 0S 1 = 2S 2 = 8S 3

R R 2 R R 4 1 3

= 9

b)

2
... 9 min buffer

98

Backbone
Network

Router
Gateway Controller

Video Gateway

Video Gateway

Video Gateway

c)

DMP−enabled Router

Fast Switch

Figure 1. a) Four requests requiring 4 streams from the server.
b) Employing Delayed-Multicast at the intermediate router can
reduce the required bandwidth from the server to just 1 stream. c)
A DMP-enabled router.

An illustration of Delayed-Multicast can be seen in
Figure 1 a) and b). Traditionally, servicing the four re-
quests requires four streams from the video server. If there
is a buffer in the intermediate node in the transmission path
sufficient to bridge the temporal differences, the required
bandwidth can be reduced to one stream.

DMP does not require special router hardware since
the work of buffering and scheduled transmission is han-
dled by dedicated machines (video gateways) placed phys-
ically close to the router. The whole set-up, shown in Fig-
ure 1 c), is referred to as a DMP-enabled router.

While advances in disk technology allow abundant
storage space at a very cheap price, utilizing disks as the
source of buffer space is still not feasible. The main ob-
stacle is the poor seek time of disks relative to memory
which severely restricts the number of concurrent streams.
Instead, our architecture relies on memory to perform the
buffering. In terms of costs, it is now quite feasible to build
a system with up to 1GB of memory for under $1000. Mul-
tiple video gateways can be easily added in future as the
demand increases to provide more buffer capacity.

An aim of DMP is to perform buffering at multi-
ple levels in the distribution tree since this would lead to
greater savings in terms of aggregate backbone traffic and
server load. As an example, one can place a DMP-enabled
router at each head-end in hybrid fibre cable (HFC) net-
works, or DSLAM Multiplexer for Digital Subscriber Line
(DSL) networks, as well as another DMP-enabled router
next to the video server. DMP then forms an overlay tree
network consisting of the DMP-enabled routers, shown in
Figure 2.

.

.

.

.

.

.

.

.

.

DMP Router

Router

Client

Video Server

a) b)

Figure 2. a) Placement positions for DMP-enabled routers in a
distribution network b) Resulting overlay tree network.

Techniques for building efficient overlay network is
outside the scope of this paper. For the moment we simply
assume each DMP-enabled router in the distribution tree
has a fixed knowledge about the location of its parent DMP-
enabled router. This is quite valid since DMP is to run on
a distribution network whose topology is not expected to
change greatly.

The distributed operations of DMP can be described
as follows. At the first internal node when a request arrives,
an algorithm is run to determine whether or not to service
the request from an existing buffer, or by requesting a new
stream from the parent. In the latter case, the node creates
a buffer whose size is determined by the employed algo-
rithm, and forwards a request for the same clip to its parent.
When the parent node starts sending the requested stream,
the buffering node places the incoming data into the appro-
priate buffer. At the same time, for all the clients being
serviced from the same buffer, it transmits data from that
buffer but at the appropriate offset for each client.

2.1 Resource Allocation

An important question which arises is how best to allocate
the limited buffer space to minimize the number of streams
required from the server above. We start with a simple

three-level overlay tree, as shown in Figure 1. In this case,
there is an optimal offline (request times are known a pri-
ori) algorithm termed “Chandelier Algorithm”. We assume
that all clips have the same bit rate. Let � denotes the
maximum bandwidth available from the server to the inter-
mediate node measured in number of streams, and � the
available buffer space at that node measured in number of
minutes. For each request, ����� , � 	�� � and 	 	
� � are the time
and clip id respectively of that request. There is a total of �
different videos. The input to algorithm Chandelier is a set,�

, of ordered sets. Each ordered sets,
���� �
, contains the

request times for the same clip, ordered in non-decreasing
sequence.

Algorithm Chandelier
Input: � where ������������������� �"!$#&%'�)(&!$#&%��*,+ #.-0/21 +43�5'*�5'6 1
#Total buffer required if only one stream
#is used per clip7989: (4; /<; =<>@?
for all �A-B� do7989: (4; /<; =<> 7989: ("; /<; =DCE!F�4G H�GJI��4KB% where �"G H�G + �LKM-M�
end forN :PO Q)RTSTS > 7989: (4; /<; =
for

* � 3
to U �2U do

Start a stream at �4K,-B� � for a buffer of
size �"G H,V,GAIW� K

end for
if

7989: (4; /<; = 5 7
then

return success
end if

X >Y�&1
for all �A-B� do
#Create the set of time gaps between
#each consecutive requests for a clipO � >Y�&1
for Z�>@[to U �9U doO �\> O �9]^�P!F�
_ ` K + �$_a%M1 where �
_ + �
_ ` K -M�
end forX > X]^� O � 1

end for

for
* >�U �2U C 3

to
Q

dob > largest c :�8 tuple in
X
, wherec :�8 ! : +ed %f� d I :

Remove tuple b from the respective
O - X

Assuming b � !F� _ ` K + � _ % , start a stream at� _
Deallocate buffer space allocated be-
tween �
_�` K and �
_7989: (4; /<; =<� 7989: (4; /<; =gI�c :�8 ! b %
if

7T8h: (4; /i;�= 5 7
then

return success
end if

end for
return failure

Intuitively, the algorithm minimizes the required up-
stream bandwidth by serving all requests for the same clip

from one buffer which requires only one stream. If there
is not enough buffer space, an extra stream is required and
that stream is chosen to start at the point where there is the
largest gap between consecutive requests for the same clip,
chosen amongst all the clips. This frees up the maximum
possible buffer space and the algorithm continues until the
required buffer space can be satisfied by the available buffer
space.

Lemma 1 For the chandelier, given � streams, the mini-
mum buffer space required is jlkhm �onqpqp �srut�vxw^y9k&z 	
{ �
where |~} � � �u� � � tuple with the largest gap in � � .

Theorem 1 Algorithm Chandelier finds the solution which
minimizes total upstream bandwidth required and that so-
lution uses the least amount of buffer space, or there is
insufficient bandwidth and buffer space to service all re-
quests.

Proofs for the above theorem and the associated
lemma can be found in [10]. While the Chandelier algo-
rithm has the nice property that it is optimal, it is quite lim-
ited. One problem is trying to generalize the algorithm to
a distribution tree with multiple buffering levels, but find-
ing an optimal solution here is NP-complete [10]. Another
problem is that the Chandelier algorithm is a centralized
one requiring global knowledge of resource availability.
This is not applicable in a distributed environment. How-
ever, the main drawback of the Chandelier algorithm is the
requirement of prior knowledge of request times, limiting
its applicability to only situations where users must place
their requests a long time in advance.

In the next section we present an online algorithm
which does not have the drawbacks mentioned above. Our
aim is to develop a simple, distributed algorithm which can
be applied at multiple levels within the distribution tree and
whose performance approaches the optimal offline Chan-
delier algorithm.

3 Online Algorithm

We first examine the algorithm for the online three-level
topology since that forms the basis of the distributed algo-
rithm. The idea behind the handling of online requests is
as follows. When the node receives the first request � � for
a particular clip, it creates a buffer of size � � and forwards
that request to the server. For subsequent requests � ����� of
the same clip, if � 	
� ����� �i��� 	
� � �\��� � then clearly, it can be
serviced from that buffer otherwise it needs a new buffer
with a corresponding stream from the server. The question
is what should �&� be to maximize the number of requests
that can be served from it given the limit of available buffer
space � at that node.

In an online scenario, while the exact request times
are not known a priori, one can assume the arrival times of
video requests to follow a Poisson distribution with an av-
erage number of requests � over a period � . Furthermore,

in the case of a video library rental, certain videos such as
new releases are more popular than others. If the videos are
ordered according to their popularity, the probability, z � ,
that a request selects a particular video, � , ��}
�� � ���������L� ,
follows the Zipf distribution given by:

z � }
����
	 ��� where ��� }
�

�����
����
	 (1)

The skew factor,
 , that has been found to closely match the
selection probability at a video library rental is 0.271[1].

It can be seen that as more buffer space is allocated
to a video, the aggregate bandwidth savings for that video
also increases because there is a greater likelihood that a
request will be serviced from the buffer space rather than by
a new stream from the server. Thus if more buffer space is
allocated to more frequent videos then more requests can be
served from the buffer space, resulting in greater bandwidth
savings. Similarly, allocating more buffer space to longer
videos also yield more saving.

Based on these observations, for each clip � with its
respective length � � , we partition the total space avail-
able � into � � �4�������������"��� where � � is the buffer space re-
served for video � and is given by �f��}�z ���g�x��� r �� ��� z � � � .
The partition of the buffer space has the advantage that
infrequent requests do not take up excessive buffer space
and starving more frequent requests. Compare this with
the Chandelier algorithm, we see that no differentiation is
made there in terms of a clip’s popularity. As a result, in-
frequent requests can lead to poor solutions since they will
exhaust all the available buffer space early on.

However, if we apply the partition technique, and
run the Chandelier algorithm separately for each clip, � ,
with the available buffer space set to the corresponding
� � , the resultant buffer allocation is the optimal for that
clip albeit only for the offline cases. In other words, this
is equivalent to running the Chandelier algorithm on each
group of requests where the input is � � �\}
 and � } ���
for each clip ���
�� �o� � . We refer to this algorithm as
the Partitioned Chandelier algorithm.

Notations used in Online DMP Algorithm
Total buffer space allocated to sessions

�����������
� ���! � buffering clip �
� ���#" � The previous request for clip �

The request at the start of the buffer
� "����%$ � serving � ���#"�� .� �,
�& 	
��' � Size of buffer with request ��' at the start.

The aim of “Online DMP” algorithm is to try and
achieve the same result as the Partitioned Chandelier Al-
gorithm over the same time period � . The algorithm is
run every time a new request arrives, at the granularity of
1 minute. The basic idea of the algorithm can be explained
as follows. When the first request arrives for a video, � , it
creates a new session whose buffer size is the whole buffer
space allocated to video � , namely ��� . For subsequent re-
quests, it simply checks whether or not to serve the request

Online DMP Algorithm
Input: request # where (a!$#A%f� *
begin
if ##()%*,+q� # *,+�)�-.+ � 6�/1020

then
Create a new session with buffer size �"!$#&%LC 7 �BI 7)%(3(4!56)�+8769�
for request # .7)%(3(4!5:)%+8769� � 7)%(3(4!56)%+87:9� C<; * �&;P!$#&% .
return

end ifc :�8 � �4!$#A% IE�"!$##()%*,+e% .
if c :�8>=<?

then
Perform #&;@; * �A; from the back of buffer of # *6+�)%-!+ where
; * �A;�!$# *,+�)�-.+ %f� �"!$# ()%*6+ %\I��4!$# *,+�)%-!+ % .
Let A = space freed from resizing buffer of # *,+�)%-!+7)%(3(4!5:)%+8769� � 7)%(3(4!56)%+87:9� IBA .
Create a new session for # with a buffer starting from�4!$#A% to �"!$#&%DC 7 � I 7)�(3(4.5:)%+8769� .7)%(3(4!5:)%+8769� � 7)%(3(4!56)%+87:9� C<; * �&;P!$#&% .

else
if �"!$# *,+�)�-.+ %DCC; * �A;�!$# *,+�)�-.+ %ED0�"!$#&% then# can be serviced by # *,+�)%-!+ buffer so append it to that

session.
else

Create a new session with buffer size �"!$#&%<C 7 �<I7)�(3(4.5:)%+8769� for # .7)�(3(4.5:)%+8769� � 7)%(3(4!56)%+87:9� C<; * �&;P!$#&% .
end if

end if
end

from the buffer or create a new session. The decision is
based on a threshold F . If the inter-arrival time between the
new request, � , and the last request for the same clip, � ���@" � ,
is less than the threshold, F , the request can be serviced
from the existing buffer if one exist. Otherwise the buffer
of the previous request is re-sized to stop at the last request,
� ���#" � , while the new request is assigned to a new session
whose buffer size is equal to all the free buffer space avail-
able to clip � at that point in time. This operation is illus-
trated in Figure 3. It is important to note that our scheme is
unlike other techniques which fix the sizes of the buffers at
the time they are created. Instead, we try to allocate as large
a buffer as possible and then later “trim” the buffer from
the back, depending on the inter-arrival threshold F . In a
later section we will analyze how to determine the thresh-
old value F .

For requests which have finished, the space allo-
cated to the buffers servicing those requests are freed, and
�����������
� ���! � is decremented accordingly at those times. This
is run in a separate process and is not shown in the algo-
rithm.

The rationale behind using a threshold based on the
inter-arrival time, rather than a fixed buffer size allocated
at the start of the buffer creation, is because we want to
approximate the optimal offline Partitioned Chandelier Al-
gorithm. To see this, consider a period � �G� � , and a given
set of request � of the same clip � which arrived during this
time. If we put it through the Partitioned Chandelier Algo-

startt(r)

Buffer of r start

Buffer of r startBuffer of r startt(r)

kt(r)

last t(r)

T

gap

Timeline

Before

After

New buffer for r

Filled portion

d

Figure 3. The results when a new request # arrives at �4!$#A% whose
inter-arrival time c :�8 D ?

.

rithm with the available buffer space set to the correspond-
ing � � , we get back a series of buffer allocations ordered in
increasing request times, which guarantees the minimum
upstream bandwidth required. Let � be the smallest “gap”
(i.e. the time difference from the start of a buffer to the end
of the previous buffer) amongst all the buffers. By setting
the threshold F�} � , we get the same buffer allocation
when running the Online DMP algorithm on this set of re-
quests.

3.1 Determining Threshold Value, �
The performance of the Online DMP algorithm is based
on correctly choosing the threshold value F�� for each clip
� . Too large a value will cause initial requests to greedily
consume all the available buffer space, preventing subse-
quent ones to form buffers even though they may be closer
together. On the other hand, if F is too small with respect
to the average inter-arrival time, requests will also not be
able to form buffers. In the following section, we present
an approximation algorithm for the threshold F � . We as-
sume request arrival times follow a Poisson process with
� � average rate of arrivals per minute.

A boundary case is when �f�����
��P� � , Online DMP
algorithm will have no effect here because there is insuf-
ficient buffer space to bridge the temporal differences be-
tween rare requests. In this situation, it is better not to per-
form DMP on clip � and instead reserve space for more
popular clips. This is done using the “eighty-twenty” rule,
i.e. we only perform DMP on the most popular

�����
of the

clips.
To approximate F � , we consider a period equivalent

to the length of the movie � � . The expected number of
arrivals during this period is � � � � . Assuming all the buffer
space � � is to be used during this period, then the average
buffer space allocated per request is given by ���,�P� �:� � .

Let � � be the number of actual requests for clip �
which has arrived up to this point, � , � � � � � � . We
denote �
	 ��� �. � to be the sum of all the buffer space allo-
cated to clip � excluding the buffer space from � 	�� ���#" � � to
the end of that buffer. To ensure that Ff� is not set to large
so as to “hog” the buffer space, we use the condition below

to determine whether or not the current request � should be
part the existing buffer or start a new one:

if �q�,�P� �:� � � 	e� 	 ��� �! � ��yTkaz ���
� then
Create a new buffer

else
Continue as part of the existing buffer

end if

Or to put it another way, the threshold F�� is given by

F � }�� ���
�

	x� � �2� � � � � � � ��	 ��� �! �� 	�� " ���%$ � ���.� �J
 & 	
� " ���%$ � � � � 	
� ���#" � � �
(2)

Thus the threshold value Ff� is not fixed but varies at
each processing of new requests.

3.2 Applying Online DMP Algorithm on
General Tree Network

The job of each node in the overlay tree is to receive in-
coming requests from registered children nodes immedi-
ately below it. To service them, each node runs the Online
DMP algorithm based on the requests it receives from the
children nodes. If in order to satisfy the requests, new ses-
sions are needed, it will forward a request for the required
clip to its parent. The same process occurs again in the
parent node. Thus, an initial request for a clip will be for-
warded hop by hop in the overlay tree with a new session
created at each point.

It is important to note that for the Online DMP al-
gorithm, it does not require complex signalling between
the parent and the child node. All that is needed is the
initial request from the child to the parent node. Further-
more, the only changes that can occur to the buffer is done
through the resize operation which occurs from the back
of the buffer. As a result, the request times of the streams
coming from the parent node to feed into the front of that
buffer does not need to change (assuming users do not quit
midway through the video). The local nature of changes
makes it ideal for employing Online DMP algorithm at
multiple levels in the distribution tree. If they were allowed
to change frequently, any optimization done at higher levels
would need to be updated frequently as well. The “local”
nature of any changes is ideal for employing Online DMP
algorithm at multiple levels in the distribution tree.

4 Experimental Results

In this section we evaluate Online DMP through simula-
tions. We assume that there is no defection - users do
not quit midway through viewing the video clips. We also
assume that there is no blocking, i.e. all requests can be
satisfied. The performance metric we are interested in is
the average transmission cost from the server to the DMP-
enabled per client, measured in terms of clip minutes trans-
mitted, normalized over the clip’s length �i� denoted as � .

We compare “Online DMP” algorithm against three
base cases: no caching or batching, batching (at 1 minute
interval), and batching with traditional caching. Note that
our algorithm can be described as batching with “Online
DMP” since the algorithm is run at the time granularity
of
 minute. We compare these schemes in a three level
topology, since that is the basis of the distributed algorithm.

In the case of no batching or caching, the average
transmission cost � from the parent node over a period �<�
is simply � �6���� . In the second case, we have:

�l}
� � �6���� if � �

� �� if � �
 (3)

The result arises from the fact that when � �
 , batch-
ing takes effect and so there is an upper limit on the num-
ber of streams required from the server. For batching with
caching of size �f� (i.e. a prefix of the clip of size �f� is
always kept at the intermediate node) the cost over the du-
ration �g� minutes is

� }
�� � �g� if � � ���q��} �

�D�6�g� 	�� � � �f� �f�.�q� if � �
 and �g� ���q��� �
�g� 	��g� � �q� �f�.�q� if � �
 and �g� ���q��� �

(4)
since for every stream coming from the server, only � � �^� �
portion needs to be streamed plus the initial cost of sending
the cache portion, � � . The comparisons of these schemes
with Online DMP are presented in Figure 4. The threshold
values, F � , used were dynamically determined using the ap-
proximation technique mentioned earlier.

The results for Batching & Caching are shown as
straight linear line because the same requests set, generated
at the start of the simulation, is reused for each ��� value. As
a result, there is a linear relationship as more buffer space
becomes available.

Figure 4 shows that for all � � and �f� , the savings
achieved by Online DMP algorithm is greater than the tra-
ditional caching with batching. The only exception is when
�q�	� � � , where it is obvious that the better solution is the
caching of the entire clip.

Another point of interest is the performance of our
buffer space partitioning scheme. As mentioned earlier we
adopt the “eighty-twenty” rule do decide which clips to per-
form DMP on. In addition we then partition based on the
popularity of the clip (i.e. using the Zipf distribution). In
the simulation, we have a library of 50 different clips of dif-
ferent lengths, uniformly distributed between
 � � min and

 � � min. The Zipf skew factor of 0.271 is used.

Figure 5 shows the results of our partitioning scheme
against the naive equal partition scheme (where the avail-
able buffer space is equally shared amongst all the clips),
and one which simply uses the “eighty-twenty” rule (i.e.
the buffer space is equally shared amongst the

� � �
most

popular clips). The effects of the “eighty-twenty” rule
clearly has the most effect with a large amount of savings
achieved. Our scheme with further partitions the space for

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

N
or

m
al

iz
ed

 A
ve

ra
ge

 T
ra

ns
m

is
si

on
 C

os
t P

er
 C

lie
nt

Buffer Space, S (in minutes)

a) λ = 0.1

Online DMP
No Batching

Batching
Batching & Caching

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

N
or

m
al

iz
ed

 A
ve

ra
ge

 T
ra

ns
m

is
si

on
 C

os
t P

er
 C

lie
nt

Buffer Space, S (in minutes)

b) λ = 0.3

Online DMP
No Batching

Batching
Batching & Caching

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

N
or

m
al

iz
ed

 A
ve

ra
ge

 T
ra

ns
m

is
si

on
 C

os
t P

er
 C

lie
nt

Buffer Space, S (in minutes)

c) λ = 0.5

Online DMP
No Batching

Batching
Batching & Caching

 0

 0.2

 0.4

 0.6

 0.8

 1

 0 20 40 60 80 100 120

N
or

m
al

iz
ed

 A
ve

ra
ge

 T
ra

ns
m

is
si

on
 C

os
t P

er
 C

lie
nt

Buffer Space, S (in minutes)

d) λ = 0.7

Online DMP
No Batching

Batching
Batching & Caching

Figure 4. Comparisons of required bandwidth savings for “On-
line DMP” versus other transmission schemes with different ar-
rival rates,
9� , and available buffer space,

7 � .

 60

 65

 70

 75

 80

 85

 90

 95

 100

 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

A
ve

ra
ge

 T
ra

ns
m

is
si

on
 C

os
t P

er
 C

lie
nt

Buffer Space/Lengths of All Movies

a) λ = 5.00

80-20 Rule and Zipf Proportional
80-20 Rule

Equal Parition

 60

 65

 70

 75

 80

 85

 90

 95

 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1 0.11

A
ve

ra
ge

 T
ra

ns
m

is
si

on
 C

os
t P

er
 C

lie
nt

Buffer Space/Lengths of All Movies

b) λ = 10.00

80-20 Rule and Zipf Proportional
80-20 Rule

Equal Parition

Figure 5. Comparison of different buffer allocation schemes.

each popular clip based on its popularity ranking achieves
slightly more bandwidth savings.

5 Conclusion

In this paper we present an overview of the Delayed-
Multicast Protocol. This is a novel protocol which re-
lies on an overlay tree network for distributing Video-on-
Demand. Its aim is to reduce the aggregate backbone traf-
fic by buffering streams within the network. We present an
optimal offline algorithm, Chandelier Algorithm, for sim-
ple three-level tree topology, which given a set of request
times, allocates buffer space so that the total transmission
cost from the server to the intermediate node is minimal.

To convert the Chandelier Algorithm to an online
solution, we introduce a new online algorithm, “Online
DMP”. Our algorithm relies on a threshold value F for the
inter-arrival time to determine whether or not to start a new
stream or service the new request from an existing prefix
cache. The simplicity of the algorithm enables it to be de-
ployed at multiple levels in the distribution tree, thus fur-
ther improving bandwidth utilization. To further improve
bandwidth savings, we utilize a buffer space partitioning
scheme that exploits different clip’s popularity to optimize
buffer allocation which in turns leads to better buffer uti-
lization.

As on going work, we are looking at providing a DMP

implementation that is compliant with RTP. Many practi-
cal issues such as start-up latency, QoS provisioning and
packet loss recovery which have not been dealt with in this
paper will be the focus of our future work.

References

[1] Charu Aggarwal, Joel Wolf, and Philip S. Yu, “On
Optimal Piggyback Merging Policies for Video-On-
Demand Systems,” in Conference on Measurement
and Modeling of Computer Systems (SIGMETRICS
’96), Philadelphia, PA, 1996, pp. 200–209.

[2] A. Dan, D. Sitaram, and P. Shahabuddin, “Scheduling
Policies for an On-Demand Video Server with batch-
ing,” in ACM Multimedia Conference, San Francisco,
CA, 1994, pp. 15–23.

[3] S. Viswanathan and T. Imielinski, “Metropolitan Area
Video-on-Demand Service Using Pyramid Broadcast-
ing,” Multimedia Systems, vol. 4, no. 4, pp. 197–208,
1996.

[4] Kien A. Hua, Ying Cai, and Simon Sheu, “Patching:
A multicast technique for true video-on-demand ser-
vices,” in ACM Multimedia Conference, Bristol, UK,
1998, pp. 191–200.

[5] Derek Eager, Mary Vernon, and John Zahorjan,
“Bandwidth Skimming: A Technique for Cost-
Effective Video-on-Demand,” in Proc. SPIE – Mul-
timedia Computing and Networking, Santa Jose, CA,
January 2000, pp. 206–215.

[6] Anirban Mahanti, Derek L. Eager, Mary K. Vernon,
and David Sundaram-Stukel, “Scalable On-Demand
Media Streaming with Packet Loss Recovery,” in
Proceedings of ACM SIGCOMM’01, New York, NY,
2001, pp. 97–108.

[7] S. H. Gary Chan and Fouad Tobagi, “Distributed
Servers Architecture for Networked Video Services,”
IEEE/ACM Transaction on Networking, vol. 9, no. 2,
2001.

[8] B. Wang, S. Sen, M. Adler, and D. Towsley, “Optimal
proxy cache allocation for efficient streaming media
distribution,” in IEEE INFOCOM, New York, NY,
2002.

[9] Subhabrata Sen, Jennifer Rexford, and Don Towsley,
“Proxy prefix caching for multimedia streams,” in
IEEE INFOCOM, New York, NY, 1999.

[10] Nikolaos Glinos, Doan B. Hoang, Chi Nguyen, and
Antonios Symvonis, “Algorithmic support for video-
on-demand based on the delayed-multicast protocol,”
in 9th International Colloquium on Structural In-
formation and Communication Complexity, Andros,
Greece, 2002.

