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Abstract

In this paper we consider hot-potato packet routing on trees. As a lower
bound, for all sufficiently large n we construct a permutation routing problem
on an n-node tree for which an oblivious greedy hot-potato algorithm requires
at least 2n�o(n) time steps. This lower bound is also valid for the minimum-
distance heuristic. Applying the charging argument of Borodin et al. [8] we
establish that any greedy hot-potato algorithm routes a permutation on a tree
within 2(n�1) steps.
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1 Introduction

In a packet routing problem we are given a synchronous network represented by a
connected undirected graph and a set of packets distributed over the nodes of the
graph. Each packet has an origin and a destination node, and the aim is to route
each packet to its destination in as few steps as possible, subject to each edge car-
rying at most one packet in each direction at each time step. The distribution of
packet origins and destinations specifies the routing pattern. In a many-to-many
pattern each node may be the origin and destination of more than one packet. If
each node is the origin and destination of at most one packet the pattern is called a
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one-to-one pattern. A one-to-one pattern with the same number of packets as nodes
is called a permutation.

Packet routing algorithms fall into two main categories, namely on-line and
off-line algorithms. In on-line routing, routing decisions are made in a “distributed
manner” by the nodes of the network. At each routing step, every node decides
which links to route the packets residing in it by, depending on local information
only, usually consisting of the origin and destination nodes of the packets residing
in it, and knowledge regarding the topology of the network. In off-line routing, a
routing schedule which dictates how each packet moves during each step of the
routing is precomputed. A routing schedule can be thought of as a collection of
paths, each path corresponding to a particular packet and describing the route that
the packet follows from its origin to its destination node.

In this paper we examine on-line permutation routing on trees under the hot-
potato model. In a hot-potato (or deflection) routing algorithm there is no buffer-
ing of packets at nodes; i.e., each packet must traverse a link at every step until it
reaches its destination. This approach, introduced some 35 years ago by Baran [3],
has the advantage of potentially faster switching, while the elimination of buffer-
ing queues, which are used in store-and-forward algorithms, can reduce the cost
of switching hardware. This is particularly important for optical networks (e.g.,
[1, 11]), where buffering involves transforming the packets into electronic form.
In a hot-potato routing algorithm we must assume that for each nodev, the number
of packets which originate at v is at most the degree of v.

In this paper we concentrate on greedy hot-potato routing algorithms which at
each step attempt to advance each packet towards its destination. If, at some time
step t, a packet p moves away from its destination then we say p is deflected. If
there is a packet q which is at the same node as p before step t, and q is assigned
a link whose end-point is closer to the destination of p, we say that p is deflected
by q. We formalise the notion of a greedy hot-potato algorithm as follows.

Definition 1 A hot-potato routing algorithm is said to be greedy if, whenever a
packet p is deflected, all the links which would advance p towards its destination
are used by other advancing packets.

If at some time step, there is a link at some node which advances more than
one packet residing at this node towards their respective destinations, then we say
the packets are in conflict. We consider three types of greedy algorithms which
differ with regard to their methods for resolving conflicts. We say a greedy hot-
potato routing algorithm is oblivious if, for each conflict, the packet to traverse the
link is chosen arbitrarily from those packets which wish to do so. In the minimum-
distance heuristic [14], a packet with minimum distance to its destination is chosen
to advance, and in the maximum-distance heuristic, a packet with maximum dis-
tance to its destination is chosen to advance.

Hot-potato routing has been observed in a number of experiments to perform
exceptionally well in practice (e.g., [1, 13]), however only recently has there been
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any precise analysis of the performance of hot-potato algorithms [5, 6, 7, 8, 9, 10,
14, 15]. Lower bounds for hot-potato routing on meshes have been presented by
Ben-Aroya et al. [4]. Borodin et al. [8] established an upper bound of dist(p)+
2(k� 1) for the number of steps required to route a packet p on a wide class of
networks including trees, where dist(p) is the shortest distance from the origin to
the destination of p, and k is the number of packets participating in the routing.
However this result is not tight for permutations and for trees. The gap between the
known lower bounds, the experimental results and the recent upper bounds moti-
vate our analysis of the performance of greedy hot-potato algorithms on trees, and
in particular for permutations. With these simpler cases, we might expect to gain
tight bounds on the running time of a hot-potato algorithm.

Symvonis [16] developed an O(n2) time algorithm for determining a routing
schedule for off-line permutation routing on trees. The routing is completed within
n�1 steps, which is clearly optimal. Alstrup et al. [2] presented an O(n logn loglogn)
time algorithm for the same problem which delays each packet at its origin for
some amount of time, and then moves the packet directly towards its destination.
Again the routing is completed within n�1 steps.

This paper is organised as follows. In Section 2 we provide some simple lower
bounds and observations which are used in the remainder of the paper. We also
establish that any greedy hot-potato algorithm will route a permutation on an n-
node tree within 2(n� 1) steps. In Section 3 we present our main lower bound
of 2n� o(n) for hot-potato routing on trees with an oblivious greedy algorithm,
and with the minimum-distance heuristic. We conclude in Section 4 by discussing
some open problems related to permutation routing on trees.

2 Preliminaries

We now make some elementary observations about hot-potato routing on trees.

Observation 1 Suppose the packets p1; p2; : : : ; pk are at the leaves of a subtree T
with k+1 nodes and each packet pi, 1� i � k, has a destination outside of T (see
Figure 1(a)). Any hot-potato algorithm will take at least 2k steps for p1; p2; : : : ; pk

to leave T.

Proof. We proceed by induction on k. For k = 1 the sole packet will move to the
non-leaf node in the first step and out of T in the second step. Assume the result
holds for k�1 packets. In the first step all of p1; p2; : : : ; pk will move to the non-
leaf node, and in the second step all but one of these packets will be deflected back
to the leaf-nodes. By induction, for the remaining k�1 packets to leave T requires
2(k�1) steps, so for p1; p2; : : : ; pk to leave T requires 2(k�1)+2= 2k steps. 2

Lemma 1 There is a permutation routing problem on an n-node tree for which the
minimum-distance heuristic takes 3n=2 steps, and the maximum-distance heuris-
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Figure 1: (a) The subtree T , (b) The tree Bn.

tics takes n steps.

Proof. Consider the tree Bn with n=2 nodes forming a path and n=2 leaves at-
tached to one end of the path, as illustrated in Figure 1(b). We define a permu-
tation routing problem on Bn as follows. The packets which originate in the path
have destinations in the leaves and the packets which originate in the leaves have
destinations in the path. By Observation 1 it will take 2(n=2) = n steps for all the
packets in the leaves to enter the path. Under the minimum-distance heuristic the
packet destined for the end of the path will be the last packet to enter the path,
and will take a further n=2 steps to complete the routing, and hence a total of 3n=2
steps. For the maximum-distance heuristic this packet will enter the path first and
the total time will be n. 2

We now make an observation concerning hot-potato routing on bipartite net-
works (e.g., trees, meshes, hypercubes, etc.) which we shall exploit in the main
lower bound and in the analysis of the greedy hot-potato algorithm on trees. Sup-
pose the nodes are coloured black and white such that adjacent nodes receive dif-
ferent colours. We say packets which originate at nodes with the same colour have
the same parity. Since in a hot-potato algorithm each packet moves at every step, a
packet originating at a black/white node will be at a white/black node after an odd
number of steps, and at a black/white node after an even number of steps. Hence
we have the following observation.

Observation 2 In a hot-potato routing algorithm on a bipartite network, conflict-
ing packets must have the same parity.

We now apply this observation in conjunction with the charging argument of
Borodin et al. [8] to analyse the greedy hot-potato routing algorithm. To aid un-
derstanding we repeat the important details from this paper. Suppose p is a packet
which is deflected at some time t1 by the packet p1. Follow packet p1 until time t2
where it reaches its destination or it is deflected by packet p2, whichever happens
first. In the latter case, follow packet p2 until time t3 where it reaches its destina-
tion or it is deflected by packet p3, and so on. We continue in this manner until
we follow a packet pl which reaches its destination at time tl+1. The sequence of



Roberts et al.: Lower Bounds for Hot-Potato Permutation Routing on Trees 5

packets p1; p2; : : : ; pl is defined to be the deflection sequence corresponding to the
deflection of packet p at time t1. The path (starting from the deflection node and
ending at the destination of pl) which is defined by the deflection sequence is said
to be the deflection path corresponding to the deflection of packet p at time t1.

Lemma 2 (Borodin et al. [8]) Suppose that for any deflection of a packet p from
node v to node u the shortest path from u to the destination of pl (the last packet in
the deflection sequence) is at least as long as the deflection path. Then, pl cannot
be the last packet in any other deflection sequence of packet p. Consequently we
can “charge” the deflection to packet pl .

Theorem 1 A greedy hot-potato algorithm will route a permutation on an n-node
tree within 2(n�1) steps.

Proof. For an arbitrary packet p we denote by defl(p) the number of times that p is
deflected before reaching its destination, and by dist(p) the distance from the ori-
gin of p to its destination. Then p will reach its destination in exactly 2 �defl(p)+
dist(p) steps. We now establish a bound on defl(p). Assume without loss of gener-
ality that the origin of p is a white node. Clearly there are at least ddist(p)=2e black
nodes in the tree. At each black node v there is a packet which originates at v which
cannot deflect p (see Observation 2). According to Lemma 2, each deflection of p
can be charged to a distinct packet. Hence

defl(p) � n�1�ddist(p)=2e :

Hence the number of steps for p to reach its destination is at most

2(n�1�ddist(p)=2e)+dist(p) � 2(n�1) : 2

Note that there is a well-known (non-greedy) hot-potato algorithm (see e.g.,
[12]) for many-to-many packet routing on an arbitrary network G, which in the
case of trees, also attains an upper bound of 2(n� 1). The directed graph with
two symmetric arcs for every edge of G has an Eulerian tour of length 2jE(G)j.
By routing the packets by following such an Eulerian tour, each packet reaches its
destination within 2jE(G)j steps. So this algorithm on an n-node tree terminates
within 2(n�1) time steps.

3 The Main Lower Bound

We now describe an instance of the permutation routing problem on a tree with n
nodes which will provide a lower bound of 2n� o(n) for the number of routing
steps. A permutation routing problem on a tree is described by (a) the tree, (b) the
routing pattern, and (c) a conflict resolution strategy.
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The Tree Construction

The tree Tk (k � 2), illustrated in Figure 2 with black and white nodes, consists of:

� A path called the backbone consisting of the 4k�1 nodes

(uL
k ;v

L
k ;u

L
k�1;v

L
k�1; : : : ;u

L
2 ;v

L
2 ;u

L
1 ;v1;u

R
1 ;v

R
2 ;u

R
2 ;v

R
3 ;u

R
3 ; : : : ;v

R
k ;u

R
k );

where ‘L’ and ‘R’ refer to the left- and right-hand sides of the tree respec-
tively. The node v1 is considered to be the root node.

� Sets of black nodes AL
i and AR

i , 2� i� k, each with 4k nodes adjacent to one
white node attached to the backbone via a 2-path at vL

i and vR
i respectively.

� Black nodes wL
i and wR

i , 2 � i � k, each connected via a 3-path to the back-
bone at vL

i and vR
i respectively.

� Sets of black nodes BL
i and BR

i , 1� i� k, each with 4k2 nodes attached to one
white node, which is connected to the backbone at uL

i and uR
i respectively.

� Black nodes xL
i and xR

i , 1� i� k�1, each connected to the same white node
as the BL

i and BR
i nodes respectively.

The number of nodes in Tk, denoted by nk, is 8k3 +O(k2).

The Routing Pattern

The routing of packets, illustrated in Figure 2 by directed arcs, is defined as fol-
lows.

� Packets originating in AL
i are destined for the nodes in AR

i , 2 � i � k.

� Packets originating in AR
i are destined for the nodes in AL

i , 3 � i � k.

� Packets originating in BL
i are destined for the nodes of BR

i , 1 � i � k.

� Packets originating in BR
i are destined for the nodes of BL

i�1, 2 � i � k.

� The packet originating at wR
i is destined for the node xR

i�1, 2 � i � k.

� The packet originating at wL
i is destined for the node xL

i�1, 2 � i � k.

Clearly there is at most one packet originating and destined for each node.
A packet whose origin and destination is specified above is said to be dedicated.
Since a partial permutation can always be extended to a full permutation, there is
an assignment of destinations to the so-called undedicated packets to complete the
permutation. A dedicated packet which originates in a black node in some subtree
BL

i is called at various times a BL
i -packet, a Bi-packet and a B-packet, and simi-

larly for packets originating in some BR
i , AL

i , AR
i , wL

i or wR
i . We say a BL

i -packet
departs when it first passes vL

i , and an AL
i -packet departs when it first passes uL

i�1,
and similarly for the right-hand side.
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Figure 2: The tree Tk (k � 2) with routing pattern and phases indicated.
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The Conflict Resolution Strategy

Recall that an oblivious greedy hot-potato algorithm resolves conflicts arbitrarily.
Hence an adversary is free to substitute any conflict resolution strategy to produce
a lower bound. The following strategy is designed so that, in general, those packets
originating at nodes closer to the root (as drawn in Figure 2) have priority over
packets originating at nodes further away, and that the wi-packets block the Bi-
packets from departing until the Bi�1-packets have been routed.

1. A dedicated packet has priority over an undedicated packet.

2. A BR
i -packet has priority over the wL

i -packet.

3. A BL
i -packet has priority over the wR

i+1-packet.

4. An Ai-packet has priority over a wi-packet and over a Bi-packet.

5. The wL
i -packet has priority over a BL

i -packet.

6. The wR
i -packet has priority over a BR

i -packet.

7. An Ai-, Bi- or wi-packet has priority over an Ai+1-, Bi+1- or wi+1-packet.

8. We stipulate that a deflected packet returns to the node that it just came from.

It is tempting to define rules to govern potential conflicts between the remain-
ing packets originating at black nodes, however in the following Lemma, we prove
that such packets do not come into conflict.

Lemma 3 If at some time point, for some j, 2� j � k, no BL
j -packet has departed

then for every i, j < i � k, no BL
i -packet will have departed. Similarly, if no BR

j -

packet has departed then for every i, j < i � k, no BR
i -packet will have departed.

Proof. Whenever an AL
j+1-packet reaches uL

j there will be a BL
j -packet in conflict

with it, and by rule 7 the BL
j -packet has priority, so no AL

j+1-packet will pass uL
j .

Similarly, whenever a BL
j+1-packet reaches vL

j+1 there will be an AL
j+1-packet in

conflict with it, and by rule 4 the AL
j+1-packet has priority, so no BL

j+1-packet will

pass vL
j+1. By induction, the result follows for the left-hand side. The proof for the

right-hand side is identical. 2

This result says that the BL
i -packets are blocked behind vL

i , at least until all the
packets in BL

i�1 depart, and similarly for the right-hand side. We now state the main
lower bound.

Theorem 2 A greedy hot-potato routing algorithm applied to the above routing
pattern on the tree Tk, with the above conflict resolution strategy, requires at least
2nk �o(nk) time steps.
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Proof. We establish this result by defining phases for the routing corresponding
to the movement of each set of Bi-packets. Since each subtree Bi has 4k2 nodes
and each subtree Ai has only 4k nodes, the most significant part of the routing is
the time taken to route the B-packets. We then show that these phases are disjoint.
Applying Observation 1, we conclude that each phase corresponding to the routing
of a set of Bi-packets takes twice as many steps as there are nodes in Bi. The role
of the A-packets is to ‘fill-up’ the backbone during the transition between phases.

We define phase-1 to be the time frame consisting of the start of the routing
through to when the last BL

1-packet is consumed. For all j, 2� j � k, phase-(2 j�2)
is the time frame starting when the first BR

j -packet departs through to when the last

BR
j -packet is consumed. Similarly, phase-(2 j� 1) commences when the first BL

j -
packet departs through to when the last BL

j -packet is consumed. Phase-i is indi-
cated by ‘#i’ in Figure 2. Each phase is further sub-divided into time frames, as il-
lustrated in Figure 3, defined by when the first packet departs, when the first packet
is consumed, when the last packet departs, and when the last packet is consumed.

First

packet

departs

First

packet

consumed

Last

packet

departs

Last

packet

consumed

BL
1

BL
2

BR
2

BR
3

AL
2

A
R
3

AL
3

� � �

8 > > > > > > > < > > > > > > > :
phase-1

8 > > > > > > > < > > > > > > > :
phase-2

8 > > > > > > > < > > > > > > > :
phase-3

8 > > > > > > > < > > > > > > > :
phase-4

Figure 3: The time line for the routing.

We proceed by induction on j = 2;3; : : : ;k with the following induction
hypothesis.

(1) Phase-(2 j�3) is completed before the start of phase-(2 j�2).

(2) In phase-(2 j � 2), the first BR
j -packet is consumed before the last AL

j -packet
departs.

(3) Phase-(2 j�2) is completed before the start of phase-(2 j�1).

(4) In phase-(2 j�1), the first BL
j -packet is consumed before the last AR

j+1-packet
departs.
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The Induction Basis: Consider the case of j = 2. The tree T2 is inside the
dashed line in Figure 2.

Consider the movement of dedicated packets in the left-hand side of T2 after
three steps. (We can ignore the undedicated packets since they will lose in all con-
flicts and will return to the nodes that they came from.)

BL
1-packets will move to uL

1, AL
2-packets will move down to the white node, the

wL
2-packet will move down to the white node, and the BL

2-packets will move to uL
2.

After the second step, one BL
1-packet will be at v1, while one AL

2-packet, one BL
2-

packet and the wL
2-packet will be in conflict at vL

2. (The remaining BL
1, AL

2 and BL
2-

packets will have been deflected back to their origins.) By rule 4, the AL
2-packet has

priority over the other packets in this conflict, so it proceeds to uL
1 in the third step,

where it will in turn be in conflict with a BL
1-packet. By rule 7, BL

1-packets have
priority over AL

2-packets, so no AL
2-packet can depart until all of the BL

1-packets
have passed uL

1. This implies in turn that the wL
2- and BL

2-packets will not pass vL
2

until all of the AL
2-packets have departed.

Now consider the movement of dedicated packets in the right-hand side of T2
after two steps. One BR

2 -packet will be in conflict at vR
2 with the wR

2 -packet. By rule
6, the wR

2 -packet has priority, so it will advance to uR
1 on the third step. At the same

time the first BL
1-packet to depart will arrive at uR

1 and will be in conflict with the
wR

2 -packet. By rule 3, the BL
1-packet has priority, so it will enter BR

1 first and will
be consumed, followed by the remainder of the BL

1-packets.
So during phase-1, i.e., while the BL

1-packets move to BR
1 , all other packets can-

not depart. Once the last BL
1-packet passes uL

1, the AL
2-packets will be free to move

along the backbone from left to right. Similarly, once this last packet from BL
1 is

consumed, thus marking the end of phase-1, the wR
2 -packet will move to xR

1 and
will be consumed, thus freeing the BR

2 -packets to move along the backbone from
right to left. This initiates the start of phase-2. Thus induction hypothesis (1) is
satisfied for j = 2.

Since there are 4k � 8 packets in AL
2, and the distance from uL

1 to AR
2 (the des-

tination of AL
2-packets) is 5, the first BR

2 -packet to depart will reach uL
1 before the

last AL
2-packet has departed, hence induction hypothesis (2) is satisfied for j = 2.

Once the last AL
2-packet has passed uL

1, the wL
2-packet will still not be able to enter

BL
1 as, by rule 2, the BR

2 -packets have priority over the wL
2-packet in a conflict at

uL
1. Only once all of the BR

2 -packets have been consumed (i.e., the end of phase-2)
will the wL

2-packet be free to move into xL
1 . The packets in BL

2 are now free to move
along the backbone from left to right, thus marking the beginning of phase-3, so
induction hypothesis (3) holds for j = 2.

The AR
3 -packets start to depart once the last BR

2 -packet has departed. The
distance from uR

2 to AL
3 (the destination of AR

3 -packets) is 9, so less than 2k of the
packets from AR

3 will have departed when the last BR
2 -packet is consumed (i.e.,

the end of phase-2). As described above this initiates the start of phase-3. While
packets in BL

2 move left-to-right along the backbone, AR
3 -packets continue to

move in the opposite direction. Since there are more than 2k remaining packets in
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AR
3 , the first packet of BL

2 is consumed before the last AR
3 -packet passes uR

2 . Hence
induction hypothesis (4) holds for j = 2.

The Induction Step: We now show that the induction hypothesis holds for
j = i assuming that it holds for j = i � 1. By induction hypothesis (4) for j =
i�1, the first BL

j�1-packet to depart is consumed before the last AR
j -packet departs.

Hence while BL
j�1-packets move into BR

j�1 (phase-(2 j� 3)), the wR
j -packet does

not depart, which, by rule 6, in turn blocks the BR
j -packets from departing. Once

phase-(2 j� 3) is completed, the wR
j -packet moves into BR

j�1, and BR
j -packets are

free to move across the backbone, thus beginning phase-(2 j�2). Hence induction
hypothesis (1) holds for j = i.

When the last BL
j�1-packet departs, the AL

j -packets are free to cross the back-

bone. Since the distance from AL
j to AR

j is at most 4k, by parity (see Observation 2)
at most 2k packets from AL

j will have departed when the last packet from BL
j�1 is

consumed. At least another 2k packets leave AL
j while the BR

j -packets move across

the backbone at the start of phase-(2 j � 2), so when the first packet from BR
j is

consumed, AL
j -packets still block the wL

j -packet from passing vL
j . Hence induction

hypothesis (2) holds j = i.
Once the last BR

j -packet is consumed (i.e., the end of phase-(2 j�2)), the wL
k -

packet moves down to its destination in BL
j�1, and BL

j -packets are free to move
across the backbone, thus beginning phase-(2 j� 1). Hence induction hypothesis
(3) holds for j = i.

The AR
j+1-packets start to depart once the last BR

j -packet has departed. Since the

distance a packet in AR
j+1 has to travel is less than 4k, by parity (see Observation 2)

at most 2k of the packets from AR
j+1 will have departed when the last BR

j -packet is
consumed (i.e., the end of phase-(2 j�2)). This initiates the start of phase-(2 j�1).
While packets in BL

j move left-to-right along the backbone, AR
j+1-packets continue

to move in the opposite direction. Since there are at least 2k remaining packets in
AR

j+1, the first packet of BL
j is consumed before the last AR

j+1-packet passes uR
j .

Hence induction hypothesis (4) holds for j = i.
By the induction principle, the induction hypothesis holds for all j � k. In the

phase corresponding to the routing of, say BL
i -packets, by Observation 1, at least

twice as many steps are needed for the BL
i -packets to depart as there are packets in

BL
i . Similarly for a set of BR

i -packets. Hence each phase takes at least 2(4k2) = 8k2

steps. Since there are 2k� 1 phases, the total number of steps is at least 16k3 �

O(k2). Since the number of nodes nk = 8k3 +O(k2), the total number of steps is
at least 2nk �o(nk). 2

Corollary 1 For every n � n2, there exists an instance of the permutation rout-
ing problem on an n-node tree such that the oblivious greedy hot-potato routing
algorithm requires at least 2n�o(n) steps.
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Proof. Choose k such that nk � n < nk+1. Consider the n-node tree constructed
from Tk by appending a path of n�nk nodes to the backbone. Construct a routing
pattern as described above for Tk and extend this to a complete permutation. By
Theorem 2, at least 2nk � o(nk) steps are needed to complete the routing on this
tree. Since n < nk+1 = 8(k+ 1)3+O((k+ 1)2) = 8k3 +O(k2) we have n� nk �

O(k2), and hence the number of steps required 2nk �o(nk) = 2n�o(n). 2

3.1 Lower Bound for the Minimum-Distance Heuristic

In this section we prove a lower bound of 2n� o(n) for the minimum-distance
heuristic. To do so, we modify the construction described in the previous section
so that essentially the same routing occurs when conflicts are resolved using the
minimum-distance heuristic. Of course, a lower bound for the minimum-distance
heuristic implies a lower bound for an oblivious algorithm. We describe separate
lower bounds for ease of presentation.

Firstly, we construct a tree T 0

k from the tree Tk by a local replacement technique
illustrated in Figure 4. In particular, for each i, 1 � i < k, a path of length two is
inserted between uL

i and the white node connecting to the nodes in BL
i , and the node

xL
i is placed at the end of a path of length 4i�2. A similar local replacement is used

for the right-hand side.
To obtain a lower bound for the minimum-distance heuristic, it is important to

specify the destination of all packets in the permutation, instead of simply extend-
ing a partial permutation to a full permutation, as otherwise the introduced packets
may interfere with the desired routing. We employ the same routing pattern used
in the previous section for the A-, B- and w-packets. The routing of other packets
is illustrated in Figure 4 by a directed arc from the origin to the destination of each
packet. These additional packets will be immediately consumed or will be con-
sumed after the first step of the routing. Also, we specify that the BR

1 -packets are
destined for the BL

k -nodes, and the AR
2 -packets are destined for the AL

2-nodes, thus
specifying a destination for all packets in the routing.

Theorem 3 For sufficiently large n, there exists a permutation routing problem
on an n-node tree, such that the minimum-distance heuristic requires at least 2n�
o(n) steps.

Proof. We now show that for each conflict occurring in the tree T 0

k , the minimum-
distance heuristic gives the same priority as the conflict resolution strategy em-
ployed for the oblivious algorithm in the previous section. We denote the shortest
distance between two nodes s, t by dist(s; t). Note that dist(uL=R

i ;v1) = 2i�1, and

dist(vL=R
i ;v1) = 2i�2. As we shall prove, a number of conflicts will arise between

packets which have equal distance to their respective destinations. In this case, the
same conflict resolution strategy is employed as was used by the oblivious algo-
rithm in the previous section.
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i+1
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>>>>>>>:
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Figure 4: Modifying the tree Tk to produce T 0

k .

Consider a conflict at uL
i between a BL

i -packet (destined for a BR
i -node) and

an AL
i+1-packet (destined for an AR

i+1-node). The distances in T 0

k for both of these
packets to their respective destinations is equal to dist(uL

i ;v1)+dist(v1;uR
i )+3=

(2i�1)+(2i�1)+3= 4i+1, so in this conflict we apply the same conflict res-
olution strategy as was employed for Tk.

Consider a conflict at vL
i between a BL

i -packet (destined for a BR
i -node), an AL

i -
packet (destined for an AR

i -node), and the wL
i -packet (destined for the xL

i�1-node).
The distance for the BL

i -packet is dist(vL
i ;v1)+dist(v1;uR

i )+3 = (2i�2)+(2i�
1)+3= 4i, the distance for the AL

i -packet is dist(vL
i ;v1)+dist(v1;vR

i )+2 = (2i�
2)+(2i�2)+2= 4i�2, and the distance for wL

i -packet is dist(vL
i ;x

L
i�1) = 4(i�

1)�2+4 = 4i�2. Hence, using the minimum-distance heuristic, the AL
i -packet

and the xL
i -packet has priority over the BL

i -packet, which was the case in conflict
resolution strategy employed in the previous section.

Consider a conflict at uR
i between a BR

i -packet (destined for a BL
i�1-node) and

an AR
i+1-packet (destined for an AL

i+1-node). The distance for the BR
i -packet is

dist(uR
i ;v1)+dist(v1;u

L
i�1)+3= (2i�1)+2(i�1)�1+3= 4i�1, and the dis-

tance for the AR
i+1-packet is dist(uR

i ;v1)+dist(v1;vL
i+1)+2= (2i�1)+2(i+1)�

2+2= 4i+1. Hence, using the minimum-distance heuristic, the AR
i+1-packet has

priority over the BR
i -packet, which was the case in conflict resolution strategy em-

ployed in the previous section.
Consider a conflict at vR

i between a BR
i -packet (destined for a BL

i�1-node), an
AR

i -packet (destined for an AL
i -node), and the wR

i -packet (destined for the xR
i�1-
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node). The distance for the BR
i -packet is dist(vR

i ;v1)+ dist(v1;uL
i�1) + 3 = (2i�

2) + 2(i � 1)� 1+ 3 = 4i � 2, the distance for the AR
i -packet is dist(vR

i ;v1) +
dist(v1;vL

i )+2=(2i�2)+(2i�2)+2= 4i�2, and the distance for the wR
i -packet

is dist(vR
1 ;x

R
i�1) = 4+ 4(i� 1)� 2= 4i� 2. Since all the respective distance for

the conflicting packets are equal the same conflict resolution strategy employed in
the previous section is used by the minimum-distance heuristic.

After three steps of the routing, an AR
2 -packet (destined for AL

2) and a BR
1 -packet

(destined for BL
k ) will be in conflict at uR

1 . Clearly the AR
2 -packet has less distance to

its destination so it will advance, followed by all of the AR
2 -packets. These packets

will reach their destination during the first phase of the routing. In any conflict at
uR

1 between a BR
1 -packet and a packet p passing through uR

1 , the distance to the des-
tination of p will be less than the distance to BL

k , so the BR
1 -packets will only pass uR

1
in a ‘gap’ in the movement of packets from right to left along the backbone. (Such
a gap will occur whenever a wR

i -packet crosses the backbone). Regardless, a BR
1 -

packet travelling from right to left along the backbone will not affect the routing
of any other packets.

No other conflicts occur in the routing on Tk or in T 0

k so essentially the same
routing of packets will occur on Tk under the specified conflict resolution strategy,
as on T 0

k with the minimum-distance heuristic. In particular, the phases, as defined
in the previous section, will be disjoint. It is easily seen that the tree T 0

k still has
8k3+O(k2) nodes, so if T 0

k has n0k nodes, by Theorem 2, at least 2n0k�o(n0k) steps
are required to route the specified permutation.

For an arbitrary n� n02, as in Corollary 1, we choose k such that n0k � n < n0k+1,
and add a path with n� n0k nodes to the end of the backbone of T 0

k . We route the
packets at these nodes to themselves. Applying the same argument as in Corol-
lary 1 it follows that the the minimum-distance heuristic requires at least 2n�o(n)
steps to route the permutation. 2

4 Conclusion and Open Problems

In this paper we have established a tight bound of 2n�o(n) for the number of steps
required for permutation routing on trees using an oblivious hot-potato algorithm
and using the minimum-distance heuristic. For the maximum-distance heuristic
we have a lower bound of n and an upper bound of 2(n�1). It is an open problem to
close this gap in the bounds on the performance of the maximum-distance heuristic
for permutation routing on trees.
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