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Abstract

In this paper we consider hot-potato packet routing on trees. As a lower
bound, for all sufficiently large n we construct a permutation routing problem
on an n-node treefor which an oblivious greedy hot-potato algorithm requires
at least 2n—o(n) time steps. Thislower bound isalso valid for the minimum-
distance heuristic. Applying the charging argument of Borodin et al. [8] we
establish that any greedy hot-potato algorithm routes a permutation on atree
within 2(n—1) steps.
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1 Introduction

In apacket routing problem we are given a synchronous network represented by a
connected undirected graph and a set of packets distributed over the nodes of the
graph. Each packet has an origin and a destination node, and the aim is to route
each packet to its destination in as few steps as possible, subject to each edge car-
rying at most one packet in each direction at each time step. The distribution of
packet origins and destinations specifies the routing pattern. In a many-to-many
pattern each node may be the origin and destination of more than one packet. If
each nodeisthe origin and destination of at most one packet the patterniscalled a
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one-to-onepattern. A one-to-one pattern with the same number of packetsasnodes
is called a permutation.

Packet routing algorithms fall into two main categories, namely on-line and
off-linealgorithms. In on-linerouting, routing decisionsare madein a*“ distributed
manner” by the nodes of the network. At each routing step, every node decides
which links to route the packets residing in it by, depending on local information
only, usually consisting of the origin and destination nodes of the packetsresiding
init, and knowledge regarding the topology of the network. In off-line routing, a
routing schedule which dictates how each packet moves during each step of the
routing is precomputed. A routing schedule can be thought of as a collection of
paths, each path corresponding to a particul ar packet and describing the route that
the packet follows from its origin to its destination node.

In this paper we examine on-line permutation routing on trees under the hot-
potato model. In a hot-potato (or deflection) routing agorithm there is no buffer-
ing of packets at nodes; i.e., each packet must traverse alink at every step until it
reachesits destination. Thisapproach, introduced some 35 yearsago by Baran [ 3],
has the advantage of potentially faster switching, while the elimination of buffer-
ing queues, which are used in store-and-forward algorithms, can reduce the cost
of switching hardware. This is particularly important for optical networks (e.g.,
[1, 11]), where buffering involves transforming the packets into electronic form.
In ahot-potato routing algorithm we must assume that for each nodev, the number
of packetswhich originate at v is at most the degree of v.

In this paper we concentrate on greedy hot-potato routing algorithmswhich at
each step attempt to advance each packet towards its destination. If, at sometime
step t, a packet p moves away from its destination then we say p is deflected. If
thereis a packet g which is at the same node as p before step t, and g is assigned
alink whose end-point is closer to the destination of p, we say that p is deflected
by q. We formalise the notion of a greedy hot-potato algorithm as follows.

Definition 1 A hot-potato routing algorithmis said to be greedy if, whenever a
packet p is deflected, all the links which would advance p towards its destination
are used by other advancing packets.

If at some time step, there is alink at some node which advances more than
one packet residing at this node towards their respective destinations, then we say
the packets are in conflict. We consider three types of greedy algorithms which
differ with regard to their methods for resolving conflicts. We say a greedy hot-
potato routing algorithmis obliviousif, for each conflict, the packet to traverse the
link is chosen arbitrarily from those packets which wish to do so. In the minimum-
distanceheuristic[14], apacket with minimum distanceto itsdestinationis chosen
to advance, and in the maximum-distance heuristic, a packet with maximum dis-
tance to its destination is chosen to advance.

Hot-potato routing has been observed in a number of experimentsto perform
exceptionaly well in practice (e.g., [1, 13]), however only recently hasthere been
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any precise analysis of the performance of hot-potato algorithms|[5, 6, 7, 8, 9, 10,
14, 15]. Lower bounds for hot-potato routing on meshes have been presented by
Ben-Aroyaet al. [4]. Borodin et al. [8] established an upper bound of dist(p) +
2(k — 1) for the number of steps required to route a packet p on a wide class of
networksincluding trees, wheredist(p) is the shortest distance from the origin to
the destination of p, and k is the number of packets participating in the routing.
However thisresult isnot tight for permutationsand for trees. The gap between the
known lower bounds, the experimental results and the recent upper bounds moti-
vate our analysis of the performance of greedy hot-potato algorithmson trees, and
in particular for permutations. With these simpler cases, we might expect to gain
tight bounds on the running time of a hot-potato algorithm.

Symvonis[16] developed an O(n?) time algorithm for determining a routing
schedulefor off-line permutation routing on trees. Therouting iscompleted within
n— 1steps, whichisclearly optimal. Alstrup et al. [2] presented an O(nlognloglogn)
time algorithm for the same problem which delays each packet at its origin for
some amount of time, and then moves the packet directly towards its destination.
Again the routing is completed within n — 1 steps.

This paper is organised asfollows. In Section 2 we provide some simple lower
bounds and observations which are used in the remainder of the paper. We aso
establish that any greedy hot-potato algorithm will route a permutation on an n-
node tree within 2(n — 1) steps. In Section 3 we present our main lower bound
of 2n— o(n) for hot-potato routing on trees with an oblivious greedy algorithm,
and with the minimum-distance heuristic. We concludein Section 4 by discussing
some open problems related to permutation routing on trees.

2 Preéliminaries

We now make some elementary observations about hot-potato routing on trees.

Observation 1 Supposethe packets pq, po, - - -, Pk are at theleaves of a subtree T
with k+ 1 nodes and each packet p;, 1 <i <k, hasa destination outside of T (see
Figure 1(a)). Any hot-potato algorithmwill take at least 2k stepsfor pq, pa, ..., Pk
toleaveT.

Proof. We proceed by induction on k. For k = 1 the sole packet will moveto the
non-leaf node in the first step and out of T in the second step. Assume the result
holdsfor k — 1 packets. In thefirst step all of pq, po,..., px Will move to the non-
leaf node, and in the second step all but one of these packetswill be defl ected back
to theleaf-nodes. By induction, for theremaining k — 1 packetsto leave T requires
2(k—1) steps, so for p1, p2, ..., P toleave T requires2(k— 1) + 2 = 2k steps. O

Lemma 1 Thereisa permutation routing problemon an n-nodetree for which the
minimum-distance heuristic takes 3n/2 steps, and the maximum-distance heuris-
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n/2

(b) n/2

Figure 1: () The subtree T, (b) The tree B,

tics takes n steps.

Proof. Consider the tree B,, with n/2 nodes forming a path and n/2 leaves at-
tached to one end of the path, as illustrated in Figure 1(b). We define a permu-
tation routing problem on B, as follows. The packets which originate in the path
have destinationsin the leaves and the packets which originate in the leaves have
destinationsin the path. By Observation 1 it will take 2(n/2) = n stepsfor al the
packetsin the leaves to enter the path. Under the minimum-distance heuristic the
packet destined for the end of the path will be the last packet to enter the path,
and will take afurther n/2 stepsto complete the routing, and hence atotal of 3n/2
steps. For the maximum-distance heuristic this packet will enter the path first and
thetotal time will ben. |

We now make an observation concerning hot-potato routing on bipartite net-
works (e.g., trees, meshes, hypercubes, etc.) which we shall exploit in the main
lower bound and in the analysis of the greedy hot-potato algorithm on trees. Sup-
pose the nodes are coloured black and white such that adjacent nodes receive dif-
ferent colours. We say packetswhich originate at nodeswith the same colour have
the same parity. Sincein ahot-potato algorithm each packet movesat every step, a
packet originating at a black/white nodewill be at awhite/black node after an odd
number of steps, and at a black/white node after an even number of steps. Hence
we have the following observation.

Observation 2 In a hot-potato routing algorithmon a bipartite network, conflict-
ing packets must have the same parity.

We now apply this observation in conjunction with the charging argument of
Borodin et al. [8] to analyse the greedy hot-potato routing algorithm. To aid un-
derstanding we repeat the important details from this paper. Suppose p is apacket
which is deflected at sometimet; by the packet p;. Follow packet p; until timet,
whereit reachesits destination or it is deflected by packet p,, whichever happens
first. In the latter case, follow packet p, until time t3 where it reaches its destina-
tion or it is deflected by packet ps, and so on. We continue in this manner until
we follow a packet p; which reachesits destination at timet, ;. The sequence of
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packets p1, P2, . .., Py is defined to be the deflection sequence corresponding to the
deflection of packet p at timet,. The path (starting from the deflection node and
ending at the destination of p;) which is defined by the deflection sequenceis said
to be the deflection path corresponding to the deflection of packet p at timet;.

Lemma 2 (Borodin et al. [8]) Supposethat for any deflection of a packet p from
nodev to node u the shortest path fromu to the destination of p; (thelast packetin
the deflection sequence) is at least as long as the deflection path. Then, p; cannot
be the last packet in any other deflection sequence of packet p. Consequently we
can“ charge” the deflection to packet p;.

Theorem 1 A greedy hot-potato algorithmwill route a permutation on an n-node
tree within 2(n — 1) steps.

Proof. Foranarbitrary packet p we denoteby defl( p) the number of timesthat pis
deflected before reaching its destination, and by dist(p) the distance from the ori-
ginof ptoitsdestination. Then p will reach its destination in exactly 2 - defl(p) +
dist(p) steps. We now establish abound on defl(p). Assume without loss of gener-
ality that theorigin of pisawhitenode. Clearly thereareat least [dist(p) /2] black
nodesinthetree. At each black nodev thereisapacket which originatesat v which
cannot deflect p (see Observation 2). According to Lemma 2, each deflection of p
can be charged to a distinct packet. Hence

defl(p) < n— 1 [dist(p)/2] -
Hence the number of stepsfor p to reach its destination is at most

2(n—1— [dist(p)/2]) +dist(p) < 2(n—1) .

Note that there is a well-known (non-greedy) hot-potato algorithm (see e.g.,
[12]) for many-to-many packet routing on an arbitrary network G, which in the
case of trees, also attains an upper bound of 2(n — 1). The directed graph with
two symmetric arcs for every edge of G has an Eulerian tour of length 2|E(G)].
By routing the packets by following such an Eulerian tour, each packet reachesits
destination within 2|E(G)| steps. So this agorithm on an n-node tree terminates
within 2(n— 1) time steps.

3 TheMain Lower Bound

We now describe an instance of the permutation routing problem on atree with n
nodes which will provide alower bound of 2n— o(n) for the number of routing
steps. A permutation routing problem on atree is described by (a) the tree, (b) the
routing pattern, and (c) a conflict resolution strategy.
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The Tree Construction
Thetree Ty (k > 2), illustrated in Figure 2 with black and white nodes, consists of :
¢ A path called the backbone consisting of the 4k — 1 nodes
(U Vi U1, Vi1, - -+ U, V3, U, v, U, VB U VE UL v ),

where ‘L’ and ‘R’ refer to the left- and right-hand sides of the tree respec-
tively. The node v is considered to be the root node.

e Setsof black nodesA- and AR, 2 < i < k, each with 4k nodes adjacent to one
white node attached to the backbone viaa 2-path at V- and VR respectively.

o Black nodesw- and wi, 2 < i < k, each connected viaa 3-path to the back-
bone at V- and VR respectively.

o Setsof black nodesBl and BR, 1 <i < k, eachwith 4k? nodesattached to one
white node, which is connected to the backbone at u- and uR respectively.

o Black nodesx- and xR, 1 < i < k— 1, each connected to the same white node
asthe B- and BR nodes respectively.

The number of nodesin Ty, denoted by ny, is 8k + O(k?).

The Routing Pattern

The routing of packets, illustrated in Figure 2 by directed arcs, is defined as fol-
lows.

o Packets originating in A- are destined for the nodesin AR, 2 <i < k.
o Packets originating in AR are destined for the nodesin AL, 3 <i <k.
e Packets originating in B- are destined for the nodes of BR, 1 <i < k.
e Packets originating in B are destined for the nodes of B ;, 2 <i < k.
e The packet originating at wR is destined for the node xR ;, 2 <i < k.
e The packet originating at wh is destined for the nodex- ;, 2 <i <k.

Clearly there is at most one packet originating and destined for each node.
A packet whose origin and destination is specified aboveis said to be dedicated.
Since a partial permutation can aways be extended to afull permutation, thereis
an assignment of destinationsto the so-called undedicated packetsto completethe
permutation. A dedicated packet which originatesin ablack nodein some subtree
B is called at various times a Bl--packet, a Bj-packet and a B-packet, and simi-
larly for packets originating in some B, A-, AR, w} or wR. We say a Bl--packet
departswhen it first passes v, and an A--packet departswhen it first passes u- ,,
and similarly for the right-hand side.
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Figure 2: Thetree Ty (k > 2) with routing pattern and phases indicated.
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The Conflict Resolution Strategy

Recall that an oblivious greedy hot-potato algorithm resolves conflicts arbitrarily.
Hence an adversary isfreeto substitute any conflict resolution strategy to produce
alower bound. Thefollowing strategy isdesigned so that, in general, those packets
originating at nodes closer to the root (as drawn in Figure 2) have priority over
packets originating at nodes further away, and that the w;-packets block the B;-
packets from departing until the B;_1-packets have been routed.

. A dedicated packet has priority over an undedicated packet.
. A BR-packet has priority over the wh-packet.
. A Bl-packet has priority over the wf ;-packet.

. An A;-packet has priority over aw;-packet and over a Bj-packet.

. The wR-packet has priority over a BR-packet.

1

2

3

4

5. Thewt-packet has priority over a Bl-packet.

6

7. An Aj-, B;- or w;-packet has priority over an A, 1-, Bj.1- Or wi, 1-packet.
8

. Westipulatethat adeflected packet returnsto the nodethat it just camefrom.

It istempting to define rulesto govern potentia conflicts between the remain-
ing packetsoriginating at black nodes, however inthefollowing Lemma, we prove
that such packets do not come into conflict.

Lemma 3 If at sometime point, for some j, 2 < j <k, no BJ-L—packet has departed
then for every i, j <i <k, no Bf-packet will have departed. Similarly, if no B?-
packet has departed then for every i, j < i <k, no BR-packet will have departed.

Proof. Whenever an At ;-packet reaches uf therewill be a B -packet in conflict

with it, and by rule 7 the B'-packet has priority, so no Af, ;-packet will pass u'.

Similarly, whenever a BY, ,-packet reaches \t, ; there will be an A, -packet in
conflict withit, and by rule 4 the A, -packet has priority, so no Bf ;-packet will
pass v'J- 1- By induction, theresult followsfor theleft-hand side. The proof for the

right-hand side is identical. O
Thisresult saysthat the B--packets are blocked behind V-, at least until all the

packetsin B}; , depart, and similarly for theright-hand side. We now statethe main
lower bound.

Theorem 2 A greedy hot-potato routing algorithm applied to the above routing
pattern on the tree Ty, with the above conflict resolution strategy, requires at least
2n, — o(ny) time steps.
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Proof. We establish this result by defining phases for the routing corresponding
to the movement of each set of B;-packets. Since each subtree B; has 4k? nodes
and each subtree A; has only 4k nodes, the most significant part of the routing is
the time taken to route the B-packets. We then show that these phases are digoint.
Applying Observation 1, we concludethat each phase corresponding to therouting
of aset of Bj-packets takes twice as many steps as there are nodesin B;. Therole
of the A-packetsisto ‘fill-up’ the backbone during the transition between phases.

We define phase-1 to be the time frame consisting of the start of the routing
throughtowhenthelast B -packetisconsumed. For all j, 2 < j <k, phase-(2j —2)
isthetimeframe starting when thefirst BJR—packet departsthroughto when the last
BJR-packet is consumed. Similarly, phase-(2j — 1) commences when the first BJ-L-
packet departs through to when the last BJ-L-packet is consumed. Phase-i is indi-
cated by ‘#i’ in Figure 2. Each phaseis further sub-divided into time frames, asil-
lustrated in Figure 3, defined by when thefirst packet departs, when thefirst packet
is consumed, when the last packet departs, and when the last packet is consumed.

First . Last
packet jLixst Last_| acket
A T L o
eparts consumed departs consumed
BL By
1 1 1 1
T T ' T T
Lol AL Ay
}*'—'—{i 5 IEERIE |
- — - —
| ] | ]
B; B3
phase-1 phase-2 phase-3 phase-4

Figure 3: Thetimeline for the routing.

We proceed by induction on j = 2,3,...,k with the following induction
hypothesis.

(1) Phase-(2j — 3) is completed before the start of phase-(2j — 2).

(2) In phase-(2] — 2), the first BR-packet is consumed before the last Al-packet
departs.

(3) Phase-(2j — 2) is completed before the start of phase-(2j — 1).

(4) In phase-(2j — 1), thefirst B}-packet is consumed before the last AR, ;-packet
departs.
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The Induction Basis. Consider the case of | = 2. The tree T, is inside the
dashed linein Figure 2.

Consider the movement of dedicated packets in the left-hand side of T, after
three steps. (We can ignore the undedi cated packets since they will losein all con-
flicts and will return to the nodes that they came from.)

B} -packetswill moveto uf, As-packetswill move down to thewhite node, the
wh-packet will move down to the white node, and the B -packetswill moveto us.
After the second step, one B} -packet will be at v, while one As-packet, one BS-
packet and the wh-packet will bein conflict at v5. (The remaining B}, A5 and Bj-
packetswill have been deflected back to their origins.) By rule4, theA'é—packet has
priority over the other packetsin this conflict, so it proceedsto U'i inthethird step,
where it will in turn be in conflict with a B}-packet. By rule 7, B;-packets have
priority over A-packets, so no As-packet can depart until al of the BY-packets
have passed u}. Thisimpliesin turn that the wh- and Bb-packets will not pass v5
until all of the AS-packets have departed.

Now consider the movement of dedicated packetsin the right-hand side of T,
after two steps. One BR-packet will bein conflict at v} with the wS-packet. By rule
6, the wi-packet has priority, so it will advanceto uff on thethird step. At the same
time the first B}-packet to depart will arrive at uf and will be in conflict with the
w5-packet. By rule 3, the B}-packet has priority, so it will enter BR first and will
be consumed, followed by the remainder of the B'i—packets.

So during phase-1, i.e., whilethe B} -packetsmoveto B, all other packetscan-
not depart. Once the last B -packet passes uf, the As-packetswill be free to move
along the backbone from left to right. Similarly, once this last packet from B is
consumed, thus marking the end of phase-1, the wi-packet will move to x? and
will be consumed, thus freeing the B?—packets to move along the backbone from
right to left. This initiates the start of phase-2. Thus induction hypothesis (1) is
satisfied for j = 2.

Since there are 4k > 8 packetsin A5, and the distance from u} to AR (the des-
tination of As-packets) is 5, the first BY-packet to depart will reach u} before the
last A'i-packet has departed, hence induction hypothesis (2) is satisfied for j = 2.
Once the last AS-packet has passed ut, the wh-packet will still not be able to enter
B} as, by rule 2, the BR-packets have priority over the wh-packet in a conflict at
u;. Only onceall of the BR-packets have been consumed (i.e., the end of phase-2)
will thews-packet be freeto moveinto x;. The packetsin B are now freeto move
along the backbone from left to right, thus marking the beginning of phase-3, so
induction hypothesis (3) holdsfor j = 2.

The AR-packets start to depart once the last BS-packet has departed. The
distance from uf to A} (the destination of AR-packets) is 9, so less than 2k of the
packets from AS will have departed when the last BR-packet is consumed (i.e.,
the end of phase-2). As described above this initiates the start of phase-3. While
packets in B5 move left-to-right along the backbone, AR-packets continue to
move in the opposite direction. Since there are more than 2k remaining packetsin
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AR, thefirst packet of B is consumed before the last AR-packet passes uf. Hence
induction hypothesis (4) holdsfor j = 2.

The Induction Step: We now show that the induction hypothesis holds for
j = i assuming that it holds for j = i — 1. By induction hypothesis (4) for j =
i —1,thefirst B}, -packet to departis consumed beforethe last AR-packet departs.
Hence while Bf_,-packets move into BY ; (phase-(2] — 3)), the wi-packet does
not depart, which, by rule 6, in turn blocks the BJR—packets from departing. Once
phase-(2j — 3) is completed, the wi-packet movesinto BY ;, and Bf-packets are
freeto move across the backbone, thus beginning phase-(2j — 2). Henceinduction
hypothesis (1) holdsfor j = .

When the last Bf_;-packet departs, the A*-packets are free to cross the back-
bone. Sincethe distance from AjL to AJR isat most 4k, by parity (see Observation 2)
at most 2k packets from A will have departed when the last packet from Bf_, is
consumed. At least another 2k packets|eave At while the Bf-packetsmove across
the backbone at the start of phase-(2j — 2), so when the first packet from B is
consumed, A’ -packets till block the wy-packet from passing vi'. Henceinduction
hypothesis (2) holds j = i.

Once the last Bf-packet is consumed (i.e., the end of phase-(2] — 2)), the wj -
packet moves down to its destination in BJ-L_l, and Bt-packets are free to move
across the backbone, thus beginning phase-(2j — 1). Hence induction hypothesis
(3) holdsfor j = 1.

TheAR, ;-packetsstart to depart oncethe last Bf-packet has departed. Sincethe

distanceapacketin AJR+1 hasto travel islessthan 4k, by parity (see Observation 2)

at most 2k of the packetsfrom A, ; will have departed when the last B}-packet is
consumed (i.e., the end of phase-(2j — 2)). Thisinitiatesthe start of phase-(2j — 1).
While packetsin BjL moveleft-to-right along the backbone, AJR '+ 1-Packets continue
to movein the opposite direction. Since there are at least 2k remaining packetsin
AR, the first packet of BY is consumed before the last AT, ;-packet passes u®.
Hence induction hypothesis (4) holdsfor j =i.

By the induction principle, the induction hypothesisholdsfor all j < k. Inthe
phase corresponding to the routing of, say B--packets, by Observation 1, at least
twice as many steps are needed for the BH--packetsto depart as there are packetsin
B-. Similarly for aset of BR-packets. Hence each phase takes at least 2(4k?) = 8k2
steps. Since there are 2k — 1 phases, the total number of stepsis at least 16k3 —
O(k?). Since the number of nodes n = 8k3 4 O(k?), the total number of stepsis
at least 2n, — o(ny). |

Corollary 1 For every n > ny, there exists an instance of the permutation rout-
ing problem on an n-node tree such that the oblivious greedy hot-potato routing
algorithmrequires at least 2n — o(n) steps.
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Proof. Choose k such that ng < n < n, ;. Consider the n-node tree constructed
from Ty by appending a path of n— n, nodes to the backbone. Construct a routing
pattern as described above for Ty and extend this to a complete permutation. By
Theorem 2, at least 2n, — o(nk) steps are needed to complete the routing on this
tree. Since n < N1 = 8(k+ 1)+ O((k+ 1)) = 8k® + O(k?) we have n— ny <
O(K?), and hence the number of steps required 2n, — o(n,) = 2n— o(n). O

3.1 Lower Bound for the Minimum-Distance Heuristic

In this section we prove a lower bound of 2n — o(n) for the minimum-distance
heuristic. To do so, we modify the construction described in the previous section
so that essentially the same routing occurs when conflicts are resolved using the
minimum-distance heuristic. Of course, alower bound for the minimum-distance
heuristic implies alower bound for an oblivious algorithm. We describe separate
lower boundsfor ease of presentation.

Firstly, we construct atree T, from thetree Ty by alocal replacement technique
illustrated in Figure 4. In particular, for each i, 1 <i < k, a path of length two is
inserted between u- and thewhite node connecting to the nodesin BF, and thenode
x- isplaced at the end of apath of length 4i — 2. A similar local replacement isused
for the right-hand side.

To obtain alower bound for the minimum-distance heurigtic, it isimportant to
specify the destination of all packetsin the permutation, instead of simply extend-
ing apartial permutationto afull permutation, as otherwisetheintroduced packets
may interfere with the desired routing. We employ the same routing pattern used
in the previous section for the A-, B- and w-packets. The routing of other packets
isillustrated in Figure 4 by a directed arc from the origin to the destination of each
packet. These additional packets will be immediately consumed or will be con-
sumed after the first step of the routing. Also, we specify that the BT—packets are
destined for the Bi-nodes, and the AR-packets are destined for the A5-nodes, thus
specifying a destination for all packetsin the routing.

Theorem 3 For sufficiently large n, there exists a permutation routing problem
on an n-nodetree, such that the minimum-distance heuristic requires at least 2n—

o(n) steps.

Proof. We now show that for each conflict occurringin thetree T, the minimum-
distance heuristic gives the same priority as the conflict resolution strategy em-
ployed for the oblivious algorithm in the previous section. We denote the shortest

distance between two nodesss, t by dist(s,t). Note that dist(uiL/R,vl) =2i—-1,and
dist(viL/R,vl) = 2i — 2. Asweshall prove, anumber of conflictswill arise between
packetswhich have equal distanceto their respective destinations. In this case, the
same conflict resolution strategy is employed as was used by the oblivious algo-

rithm in the previous section.
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L R R
Wit A Ay Wit

Figure 4: Modifying the tree Ty to produce Ty,.

Consider a conflict at u- between a B--packet (destined for a BR-node) and
an AL ;-packet (destined for an AR ;-node). The distancesin T, for both of these
packetsto their respective destinationsis equal to dist(uf,vy) + dist(vq, UR) + 3 =
(2l = 1)+ (2i — 1) + 3=4i + 1, so in this conflict we apply the same conflict res-
olution strategy as was employed for Ty.

Consider aconflict at V- between a B--packet (destined for aBR-node), an A--
packet (destined for an AR-node), and the wi--packet (destined for the X ;-node).
The distance for the B--packet is dist(V-,vq) + dist(vy, uR) +3 = (2i — 2) + (2i —
1) + 3 = 4i, the distance for the AL-packet is dist(v-, vy ) + dist(vy,VR) +2 = (2i —
2) + (2i — 2) + 2 = 4i — 2, and the distance for w--packet is dist(v-,x- ;) = 4(i —
1) — 2+ 4 = 4i — 2. Hence, using the minimum-distance heuristic, the A}-—packet
and the x--packet has priority over the B--packet, which was the case in conflict
resolution strategy employed in the previous section.

Consider aconflict at ulX between a BR-packet (destined for aB-_;-node) and
an AR ;-packet (destined for an A-, ;-node). The distance for the BR-packet is
dist(uR,vy) +dist(vy,ub 1) +3=(2i—1)+2(i — 1) — 1+ 3= 4i — 1, and the dis-
tance for the AR ;-packetisdist(uR, v;) + dist(vy, Vi, ;) +2=(2i = 1)+ 2(i + 1) —
2+ 2= 4i + 1. Hence, using the minimum-distance heuristic, the AR ; -packet has
priority over the BR-packet, which was the case in conflict resolution strategy em-
ployed in the previous section.

Consider a conflict at VR between a BR-packet (destined for a Bl ;-node), an
AR-packet (destined for an A--node), and the wR-packet (destined for the x® ;-
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node). The distance for the BR-packet is dist(VR,vy) + dist(vq, U ;) +3 = (2i —
2)+2(i — 1) — 1+ 3 = 4i — 2, the distance for the AR-packet is dist(VR,vy) +
dist(vq, V) +2 = (2i —2) +(2i — 2) + 2= 4i — 2, and the distancefor thewR-packet
isdist(V},xR ;) = 4+ 4(i — 1) — 2= 4i — 2. Since al the respective distance for
the conflicting packets are equal the same conflict resolution strategy employedin
the previous section is used by the minimum-distance heuristic.

After three steps of therouting, an AR-packet (destined for A5) and a BR-packet
(destined for BE) will bein conflict at uf. Clearly the AR-packet hasless distanceto
itsdestination so it will advance, followed by all of theA§—packets. These packets
will reach their destination during the first phase of the routing. In any conflict at
u between a BR-packet and a packet p passing through uf, the distanceto the des-
tination of pwill belessthan thedistanceto BL, so the BY-packetswill only passuff
ina‘gap’ inthe movement of packetsfrom right to left along the backbone. (Such
agap will occur whenever a wR-packet crosses the backbone). Regardless, a Bf-
packet travelling from right to left along the backbone will not affect the routing
of any other packets.

No other conflicts occur in the routing on Ty or in T, so essentialy the same
routing of packetswill occur on Ty under the specified conflict resolution strategy,
ason Ty with the minimum-distance heuristic. In particular, the phases, as defined
in the previous section, will be disjoint. It is easily seen that the tree T, till has
8k3 + O(k?) nodes, so if T, has n nodes, by Theorem 2, at least 2nj, — o(n;) steps
are required to route the specified permutation.

For an arbitrary n >, asin Corollary 1, we choosek suchthat mi <n<nj_ 4,
and add a path with n — n_nodes to the end of the backbone of T). We route the
packets at these nodes to themselves. Applying the same argument as in Corol-
lary 1it followsthat the the minimum-distance heuristic requiresat least 2n— o(n)
steps to route the permutation. O

4 Conclusion and Open Problems

Inthis paper we have established atight bound of 2n— o(n) for the number of steps
required for permutation routing on trees using an oblivious hot-potato algorithm
and using the minimum-distance heuristic. For the maximum-distance heuristic
we havealower bound of n and an upper bound of 2(n— 1). Itisan open problemto
closethisgap in the boundson the performance of the maximum-distanceheuristic
for permutation routing on trees.
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