
Refinement of Three-Dimensional
Orthogonal Graph Drawings

Benjamin Y. S. Lynn, Antonios Symvonis, and David R. Wood

Basser Department of Computer Science
The University of Sydney

Sydney NSW 2006, Australia
{ben,symvonis,davidw}@cs.usyd.edu.au

Abstract. In this paper we introduce a number of techniques for the
refinement of three-dimensional orthogonal drawings of maximum degree
six graphs. We have implemented several existing algorithms for three-
dimensional orthogonal graph drawing including a number of heuristics
to improve their performance. The performance of the refinements on
the produced drawings is then evaluated in an extensive experimental
study. We measure the aesthetic criteria of the bounding box volume,
the average and maximum number of bends per edge, and the average
and maximum edge length. On the same set of graphs used in Di Batti-
sta et al. [3], our main refinement algorithm improves the above aesthetic
criteria by 80%, 38%, 10%, 54% and 49%, respectively.

1 Introduction

The 3-D orthogonal grid consists of grid-points in 3-space with integer coordina-
tes, together with the axis-parallel grid-lines determined by these points. A 3-D
orthogonal drawing of a graph places the vertices at grid-points and routes the
edges along sequences of contiguous segments of grid-lines. Edges are allowed to
contain bends and can only intersect at a common vertex.

For brevity we say a 3-D orthogonal drawing of a graph G, denoted by D(G),
is a drawing. A drawing with no more than b bends per edge is called a b-
bend drawing. The graph-theoretic terms ‘vertex’ and ‘edge’ also refer to their
representation in a drawing. At a vertex v, the six directions the edges incident
with v can use are called ports. Clearly, orthogonal drawings can only exist for
graphs with maximum degree six. 3-D orthogonal graph drawings have been
studied in [1,2,3,4,5,7,9,10,13,14]. By representing a vertex by a grid-box, 3-D
orthogonal drawings of arbitrary degree graphs have also been considered (see
[14]).

The bounding box of a given drawing is the minimum axis-parallel box which
encloses the drawing. The following aesthetic criteria are the most commonly
proposed measures for the quality of a given drawing.

• minimise the bounding box volume.
• minimise the maximum or average number of bends per edge.
• minimise the maximum or average length of edges.

Using straightforward extensions of the corresponding 2-D NP-hardness re-
sults, optimising any of these criteria is NP-hard [4]. In the existing algorithms

J. Marks (Ed.): GD 2000, LNCS 1984, pp. 308–320, 2001.
c© Springer-Verlag Berlin Heidelberg 2001

Refinement of Three-Dimensional Orthogonal Graph Drawings 309

for 3-D orthogonal graph drawing there is an apparent tradeoff between these
aesthetic criteria, in particular, between the bounding box volume and the ma-
ximum number of bends per edge (see [5]).

Despite the fact that the drawings produced by the existing algorithms pos-
sess several desirable theoretical properties, they largely fail to communicate to
the user the semantic properties of the graph being visualised. The poor vi-
sual quality of drawings produced by current algorithms can be attributed to
the graph-theoretic methods which they employ. In their effort to guarantee
intersection-free drawings for worst-case input graphs, they produce worst-case
drawings even when the graph can be drawn in a much better way.

Post-processing refinement techniques can help rectify this situation. Here we
simplify the drawings, while maintaining desired theoretic properties such as the
maximum number of bends per edge route and the bounding box volume. In this
paper we introduce a number of techniques for the refinement of 3-D orthogonal
graph drawings. The performance of these refinements on drawings produced
by several existing algorithms is then evaluated in an extensive experimental
study. Refinement techniques for 2-D orthogonal drawings have been developed
by Fößmeier et al. [6] and Six et al. [11].

We use the following definitions. A direction is an element of {±X,±Y,±Z}.
We speak of positive and negative directions in the obvious sense. For each
dimension I ∈ {X,Y, Z} and direction d = ±I, we say a <d b, for two grid-
points a and b if I(a) < I(b) and d is positive, or I(b) < I(a) and d is negative.
A k-bend edge route vw is represented by the list (v = b0, b1, b2, . . . , bk+1 = w),
where b1, b2, . . . , bk are the bends of vw. So that consecutive bends differ by at
most one coordinate and there are no redundant bends, it is necessary that (1)
bi+1 − bi, 0 ≤ i ≤ k, is an axis-parallel vector and (2) bi+1 − bi is in a different
direction to bi − bi−1, 1 ≤ i ≤ k. The length of a vector x is denoted by |x|.

2 Implementation of Algorithms

This section describes the algorithms which we use to construct 3-D orthogonal
drawings and particular aspects of the implementation of these algorithms which
are pertinent to our experiment. For many of these algorithms, the authors were
only interested in establishing asymptotic worst-case bounds for their perfor-
mance, and numerous obvious improvements can be made to the algorithms,
which in practice give a constant-factor improvement in some aesthetic criteria.
Wherever possible, our implementations have included such improvements. For
example, we remove grid-planes not containing a vertex or a bend from a given
drawing, thus reducing its volume and the length of edges.

The Compact Algorithms: We now describe the Compact family of algo-
rithms due to Eades et al. [5], and discuss issues relevant to their implementation.
The Compact-7 algorithm positions the vertices in a O(

√
n) × O(

√
n) grid in

the (Z = 0)-plane, and produces drawings with O(
√
n)×O(

√
n)×O(

√
n) volume

and at most seven bends per edge.
A critical component of the implementation of the algorithm is the construc-

tion of a graph H whose vertices correspond to the edges to be routed above

310 B.Y.S. Lynn, A. Symvonis, and D.R. Wood

the (Z = 0)-plane, and similarly for edges routed below the (Z = 0)-plane. In
[5] vertices are adjacent in H if the corresponding edges start in the same row
or end in the same column. A vertex-colouring of H determines the height at
which edges are routed. This ensures that edges routed at the same height do
not intersect. In our implementation, vertices are adjacent in H if the correspon-
ding edge routes will intersect if routed at the same height. In general, there are
less edges in H using this approach; hence in practice less colours and therefore
less volume is used. We use the sequential greedy algorithm to vertex colour the
graph H. Note that this method will in practice use less colours than the method
of Biedl and Chan [1] which necessarily assigns a different colour to edges which
start in the same row or end in the same column, even if they will not intersect
if routed at the same height.

We have also implemented the Compact-6 and Compact-5 variations of the
Compact algorithm, which produce drawings with at most six and five bends
per edge, respectively, and with O(

√
n)×O(

√
n)×O(n) and O(

√
n)×O(n)×O(n)

volume, respectively. As described above for the Compact-7 algorithm we again
employ an enhanced colouring method to determine the heights of edges.

Algorithms in the General Position Model: A 3-D orthogonal graph dra-
wing is said to be in general position if no two vertices are in the same grid-plane.
We have implemented the 3-Bends algorithm of Eades et al. [5] and the DLM
(Diagonal Layout plus Movement) algorithm of Wood [13], both of which pro-
duce general position drawings with O(n3) volume. Drawings produced by the
3-Bends algorithm have at most three bends per edge. Drawings produced by
the DLM algorithm have at most four bends per edge and an average of at most
2 1

3 bends per edge. For graphs with maximum degree at most five the DLM
algorithm produces drawings with two bends per edge.

Ad-Hoc Algorithms: We have implemented the Incremental algorithm
of Papakostas and Tollis [9] and the Reduce-Forks algorithm of Di Battista
et al. [3]. The Incremental algorithm, which supports the on-line insertion of
vertices, produces drawings with O(n3) volume and at most three bends per
edge. No bounds on the volume or the number of bends have been established
for the Reduce-Forks algorithm. Both of these algorithms involve a number
of arbitrary decisions, thus the drawings produced may differ from one imple-
mentation to another.

Note that, due to time constraints, we have not implemented a number of
algorithms in Wood [14] nor the Dynamic algorithm of Closson et al. [2] which
produces 6-bend drawings with O(n2) volume, and supports the on-line insertion
and deletion of vertices and edges.

3 Refinements

This section describes a number of techniques for the local refinement of 3-D or-
thogonal graph drawings. Each refinement, which can be applied to an arbitrary
drawing, is aimed at improving at least one of the aesthetic criteria; namely the
bounding box volume, number of bends, or the length of edges.

Refinement of Three-Dimensional Orthogonal Graph Drawings 311

The MoveVertex refinement attempts to remove a bend from a given dra-
wing by moving a vertex v to the first bend of an edge route incident to v. Applied
to a drawing D(G), MoveVertex(v,d) is applied for each vertex v ∈ V (G) and
direction d ∈ {±X,±Y,±Z}.

MoveVertex(vertex v, direction d)

Let (v = a0, a1, a2, . . .) be the edge route, if any, using the d-port v. Let d′ be
the direction of the edge segment (a1, a2). If there is no route at v using the d′

port, or if there is such an edge route (v = b0, b1, b2, . . .), and a1 <d b2, then as
long as doing so does not create any new edge route intersections, move v to a1
and reroute the edges incident to v as illustrated in Fig. 1.

d

d
0

v

b1 b2

a2

a1 =) v

b2

a2

Fig. 1. The MoveVertex refinement.

The PermutePorts refinement attempts to remove bends from a given
drawing by reassigning the ports at a given vertex to its incident edges. Applied
to a drawing D(G), PermutePorts is applied to each vertex v ∈ V (G).

PermutePorts (vertex v)

Let vw1, vw2, . . . , vwd be the edge routes incident to v, where d = deg(v). Split
each edge route vwi 1 ≤ i ≤ d, into components vxi and xiwi, where vxi is
the maximal subroute entirely contained in a grid-plane also containing v, as in
Fig. 2(c). Let S = {vxi : 1 ≤ i ≤ d}. Add to S any 0- or 1-bend edge route from
v to xi, 1 ≤ i ≤ d, which does not intersect the remainder of the graph, as in
Fig. 2(b). Find d pairwise non-intersecting edge routes in S, one for each vxi,
with the minimum total number of bends. (Such edge routes must exist since
the original edge routes are in S.) Concatenate each of these edge routes with
the appropriate xiw, as in Fig. 2(c).

The RemoveSegment refinement aims to remove a bend by removing a
given segment in an edge route. Applied to a drawing D(G), RemoveSegment
is applied for each edge vw ∈ E(G) and pair of parallel segments (bi, bi+1) and
(bj , bj+1) in vw.

RemoveSegment(edge vw, segment (bi, bi+1), segment (bj , bj+1))
Input Conditions: (bi, bi+1) and (bj , bj+1) are parallel segments of
vw = (b0, b1, . . . , bk+1) such that j > i.

Let x be the vector bi+1 − bi. Consider the edge route (b0, b1, . . . , bi, bi+2 −

312 B.Y.S. Lynn, A. Symvonis, and D.R. Wood

x1

x3

x6

x4

x2

x5

v

(a)

=)

x1

x3

x6

x4

x2

x5

v

(b)

=)

x1

x3

x6

x4

x2

x5

v

(c)

Fig. 2. Example of the PermutePorts refinement.

x, bi+3 − x, . . . , bj − x, bj+1, . . . , bk+1); that is, bi+1 is removed, and all grid
points from bi+2 to bj are translated by −x. If this edge route does not intersect
the remainder of the drawing, then replace vw by this route, and remove any
self-intersections and redundant bends from vw.

b

b

b

bi bi+1

bj bj+1

=)
b

b

b

bi

bj bj+1

Fig. 3. The RemoveSegment refinement.

The CombinePlanes refinement aims to reduce the volume of a given dra-
wing by combining adjacent planes. Applied to a drawing D(G), CombinePla-
nes is applied to each grid-plane in the drawing.

CombinePlanes(dimension I, integer x)

If the (I = x)-plane and the (I = x+ 1)-plane can be combined without invalid
edge or vertex intersections then do so.

The ShortenU-Turn refinement, which is somewhat similar to the Remo-
veSegment refinement, aims to reduce the length of a given edge by shortening
parallel segments in the edge route. Applied to a drawing D(G), ShortenU-
Turn(vw, (bi, bi+1), (bj , bj+1)) is applied for each edge vw ∈ E(G) and pair of
parallel segments (bi, bi+1) and (bj , bj+1) in vw satisfying the input conditions.

ShortenU-Turn(edge vw, segment (bi, bi+1), segment (bj , bj+1))
Input Conditions: (bi, bi+1) and (bj , bj+1) are parallel segments of
vw = (b0, b1, . . . , bk+1) such that j > i and the vectors p = bi+1 − bi and
q = bj − bj+1 are in the same direction.

Consider the route (b0, b1, . . . , bi, bi+2 − x, . . . , bj − x, bj+1, . . . , bk+1) (with re-
dundant bends also removed), where x is a vector pointing in the same direction
as p with length in the range {0, 1, . . . , |p| + |q| − 1}, Replace the edge route

Refinement of Three-Dimensional Orthogonal Graph Drawings 313

vw with the shortest of such routes (and then with the least bends) that do not
intersect the remainder of the drawing. Remove any self-intersections in vw.

b

b

b

bi bi+1

bjbj+1

~x
=) b

b

b

bi bi+1

bjbj+1

Fig. 4. An example of the ShortenU-Turn refinement.

Our final refinement, called DrawTrees&Chains, is different in nature to
the previous refinements. It consists of two phases. In the first phase certain ver-
tices are removed and certain paths are replaced by a single edge. In the second
phase, which is designed to occur after other refinements have been applied, the
removed vertices are reinserted, and the edge route for the single edges are re-
placed by paths (hopefully) with fewer edges. We now describe the first phase
of the refinement.

RemoveTrees&Chains(drawing D(G))

1. Repeatedly remove vertices with degree one (in the current drawing); that is,
remove ‘attached’ trees from the graph.
2. We say a chain is a maximal path (v1v2, v2v3, . . . , vk−1vk) where every vertex
vi, except possibly for v1 and vk, has degree two. Replace each chain
(v1v2, v2v3, . . . , vk−1vk) by the edge v1vk, as in Fig. 5(b).

The second phase of the refinement is as follows.

RedrawTrees&Chains(drawing D(G))

1. Insert each vertex v removed by RemoveTrees&Chains in the opposite
order to their removal as follows. Let w be the adjacent vertex to v. Choose a
free port at w, if any, such that vw can be routed as a unit-length segment. If
such a port exists then route vw as a unit-length segment. Otherwise choose an
arbitrary free port at w, insert a plane adjacent to w such that vw can be routed
as a unit-length segment.
2. For each chain (v1v2, v2v3, . . . , vk−1vk) replaced by the edge route v1vk in the
RemoveTrees&Chains phase, place the vertices v2, v3, . . . , vk−1 at the bends
of the edge route v1vk as evenly spaced as possible. If there are more vertices
than bends then position the remaining vertices arbitrarily on the edge route;
see Fig. 5(d). If the edge route has less grid points than vertices then insert
planes to accommodate the vertices.

We now describe how all the refinements are combined into one algorithm
which we call 3D-Refine. An important decision to be made is the order

314 B.Y.S. Lynn, A. Symvonis, and D.R. Wood

v1
v2

v3

v4

=)

remove
chain

(a)

v1

v4

=)

other
re�ne-
ments(b)

v1

v4

=)

replace
chain

(c)

v1

v2

v3

v4(d)

Fig. 5. An example of the RedrawTrees&Chains refinement.

of application of the individual refinements. To determine an optimal order,
we ran five different combinations of the refinements on 36 of the Degree-4
drawings (see Sect. 4). These drawings were determined by the Compact-7,
3-Bends, Incremental and Reduce-Forks algorithms applied to 9 graphs
with n = 15, 25, . . . , 95 vertices. The average percentage improvement in average
bounding box side length differed by at most 4% across the five orderings of the
refinements, and the average percentage improvement in average bends per edge
differed by at most 5% across the five orderings of the refinements. We conclude
that the ordering of the refinements is not ‘significant’. The arbitrary ordering
of the refinements which we chose is presented in the following algorithm.

3D-Refine(drawing D(G))
begin

RemoveTrees&Chains(D(G));
repeat

MoveVertex(D(G)); PermutePorts(D(G));
RemoveSegment(D(G)); CombinePlanes(D(G));
ShortenU-Turn(D(G));

until no changes;
RedrawTrees&Chains(D(G));

end

The only refinement which can possibly increase any of volume, total number
of bends or total edge length is MoveVertex, which can increase the total edge
length. Therefore the algorithm 3D-Refine will continue until the volume and
the number of bends cannot be reduced any further, and will then only reduce
the total edge length; hence the algorithm 3D-Refine will terminate.

4 The Experiment

The first set of input drawings which we use are those generated by each of the
seven algorithms applied to the same graphs used in the experiment of Di Bat-
tista et al. [3]. These randomly generated simple connected graphs have average
degree four. The authors argue that in practical graph drawing applications it
is unusual to have graphs with greater density than average degree four. We call
these graphs and the set of drawings produced by the algorithms applied to these
graphs the Degree-4 graphs and drawings. There are 20 graphs with n vertices
for each n = 5, 6, . . . , 100. Hence there are 1920 graphs and 13440 drawings.

Refinement of Three-Dimensional Orthogonal Graph Drawings 315

The second set of input drawings which we use consist of randomly generated
simple connected graphs which are ‘almost’ 6-regular. Note that this is the first
experiment measuring the performance of 3-D orthogonal graph drawing algo-
rithms on high degree graphs. The generator used here continues to add random
edges to the graph until there are no pairs of non-adjacent vertices both with
degree less than six. Again we have 20 graphs for each n = 5, 6, . . . , 100 verti-
ces. We call these graphs and the set of drawings produces by the algorithms
applied to these graphs the 6-Regular graphs and drawings. One would expect
that 6-regular graphs are the most difficult to draw, as all ports must be used.

Performance of Individual Refinements: We now report the effects of
each refinement on the input drawings. For each of the Degree-4 and 6-Regular
drawings, we repeatedly executed each individual refinement until it cannot be
applied to any portion of the drawing. This process is guaranteed to terminate
since each refinement, when applied, reduces the volume of the drawing. Ta-
ble 1 reports the percentage improvement of the aesthetic criteria under each
individual refinement and under the 3D-Refine algorithm, averaged over the
Degree-4 drawings and over the 6-Regular drawings.

Table 1. Average improvements for each refinement.

Degree-4 Drawings 6-Regular Drawings

Refinement
Vol.

Avg.
Bends

Max.
Bends

Avg.
Edge
Len.

Max.
Edge
Len.

Vol.
Avg.

Bends
Max.
Bends

Avg.
Edge
Len.

Max.
Edge
Len.

MoveVertex 35 18 0.6 20 15 5.1 1.1 0.0 2.3 2.0

PermutePorts 4.1 4.6 1.0 1.3 1.1 1.5 3.6 0.6 0.5 0.5

RemoveSegment 20 18 7.3 11 9.3 11 13 6.2 6.9 6.0

CombinePlanes 64 4.4 0.7 31 32 50 0.9 0.3 23 24

ShortenU-Turn 36 11 2.0 20 20 30 6.7 1.8 18 18

3D-Refine 80 38 10 53 49 57 15 7.0 32 32

The results in Table 1 show that the refinements are considerably more ef-
fective when applied to the Degree-4 drawings than to the 6-Regular drawings.
This is expected since the Degree-4 graphs have average degree four, whereas
the 6-Regular graphs have high degree, and therefore the free ports at each ver-
tex allow the refinements to be applied more often. Perhaps a more surprising
observation is that the CombinePlanes refinement is the most successful of the
refinements in terms of reducing the volume and the length of edges.

Performance of Combined Refinements: We now report the improve-
ment in the aesthetic criteria gained by applying the 3D-Refine algorithm to
the input drawings. We firstly consider the number of bends. For most of the
algorithms the number of bends (both average and maximum) per edge is consi-
stent across all values of n — for the Reduce-Forks algorithm we found that

316 B.Y.S. Lynn, A. Symvonis, and D.R. Wood

the number of bends gradually increases with n. We therefore describe our re-
sults in the following manner. Table 2 reports: (1) the average and maximum
number of bends per edge in drawings produced by each algorithm (averaged
over the Degree-4 graphs and the 6-Regular graphs); (2) the average and ma-
ximum number of bends per edge in drawings obtained after applying the 3D-
Refine algorithm to the drawings produced by each algorithm (averaged over
the Degree-4 graphs and the 6-Regular graphs); (3) the percentage improvement
in the average and maximum number of bends per edge gained by applying the
3D-Refine algorithm to drawings produced by each algorithm (averaged over
the Degree-4 graphs and the 6-Regular graphs). Note that (3) is not simply the
percentage improvement in (2) from (1).

Table 2. Improvements in the number of bends before and after 3D-Refine.

Degree-4 Graphs 6-Regular Graphs
Avg. Bends Max. Bends Avg. Bends Max. Bends

Compact-7 5.0→2.4 (52 %) 7.0→5.7 (19 %) 4.8→3.3 (32 %) 7.0→6.5 (7.0 %)

Compact-6 4.3→2.3 (46 %) 6.0→5.4 (10 %) 4.2→3.3 (22 %) 6.0→5.9 (2.0 %)

Compact-5 3.6→2.3 (36 %) 5.0→4.9 (1.3 %) 3.5→3.1 (9.8 %) 5.0→5.0 (0.2 %)

3-Bends 2.7→1.8 (31 %) 3.0→3.0 (0.2 %) 2.6→2.6 (1.2 %) 3.0→3.0 (0.1 %)

DLM 2.1→1.5 (25 %) 3.0→3.0 (1.0 %) 2.2→2.1 (4.0 %) 3.7→3.7 (0.0 %)

Incremental 2.1→1.6 (27 %) 3.0→3.0 (0.4 %) 2.2→2.1 (3.1 %) 3.0→3.0 (0.0 %)

Reduce-Forks 4.2→2.0 (48 %) 10→5.7 (41 %) 4.8→3.1 (33 %) 11→6.3 (37 %)

Average 3.4→2.0 (38 %) 5.3→4.4 (10 %) 3.5→2.8 (15 %) 5.5→4.8 (7.0 %)

The results in Table 2 show that the 3D-Refine algorithm considerably
reduces the average number of bends in all of the Degree-4 drawings and to a
lesser extent in the 6-Regular drawings. There is a significant improvement in
the maximum number of bends per edge only in the drawings with relatively
many bends prior to the application of the refinement algorithm.

Fig. 6 and Fig. 7 presents, for each algorithm, the average side length of the
bounding box and the average edge length before and after the application of the
3D-Refine algorithm (averaged over the Degree-4 and the 6-Regular graphs, for
each value of n). We chart the data for the average side length of the bounding
box rather than the bounding box volume for ease of presentation — of course the
average side length is the cube root of the volume. The results for the maximum
edge length have been omitted; these closely resemble the analogous results for
the average edge length. For each algorithm, Fig. 6 and Fig. 7 also show (next
to the algorithm’s name) the average percentage improvement over all graphs.
This provides a measure of the susceptibility of the drawings produced by that
algorithm to improvement by the 3D-Refine algorithm.

As was the case with the number of bends, the results in Fig. 6 and Fig. 7
show that the 3D-Refine algorithm considerably reduces the bounding box
volume and the length of edges in all of the Degree-4 drawings and to a lesser

Refinement of Three-Dimensional Orthogonal Graph Drawings 317

Average Side Length: Degree-4 Graphs

A
vg

.s
id

e
le

ng
th

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
0

50

100

150

200
COMPACT-7 (28%) COMPACT-6 (27%) COMPACT-5 (43%) INCREMENTAL (51%)

Number of vertices

A
vg

.s
id

e
le

ng
th

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
0

50

100

150

200
DLM (45%) 3-BENDS (56%) REDUCE-FORKS (55%) Average (42%)

Number of vertices

Average Side Length: 6-Regular Graphs

A
vg

.s
id

e
le

ng
th

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
0

50

100

150

200
COMPACT-7 (18%) COMPACT-6 (15%) COMPACT-5 (36%) INCREMENTAL (24%)

Number of vertices

A
vg

.s
id

e
le

ng
th

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
0

100

200

300
DLM (16%) 3-BENDS (22%) REDUCE-FORKS (54%) Average (24%)

Number of vertices

Fig. 6. Average bounding box side length before and after 3D-Refine.

extent in the 6-Regular drawings. Note that the average improvement of 42%
for the average bounding box side length obtained for the Degree-4 drawings
corresponds to an improvement of 80% in the bounding box volume.

Comparison of Algorithms: We now compare the performance of the dra-
wing algorithms, firstly without refinements and then following the application
of the 3D-Refine algorithm; see Table 2, Fig. 6 and Fig. 7. Our results generally

318 B.Y.S. Lynn, A. Symvonis, and D.R. Wood

Average Edge Length: Degree-4 Graphs

A
vg

.e
dg

e
le

ng
th

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
0

50

100

150

200
COMPACT-7 (41%) COMPACT-6 (39%) COMPACT-5 (57%) INCREMENTAL (56%)

Number of vertices

A
vg

.e
dg

e
le

ng
th

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
0

50

100

150

200
DLM (47%) 3-BENDS (63%) REDUCE-FORKS (73%) Average (54%)

Number of vertices

Average Edge Length: 6-Regular Graphs

A
vg

.e
dg

e
le

ng
th

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
0

50

100

150

200
COMPACT-7 (25%) COMPACT-6 (19%) COMPACT-5 (48%) INCREMENTAL (23%)

Number of vertices

A
vg

.e
dg

e
le

ng
th

0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100 0 20 40 60 80 100
0

100

200

300

400
DLM (17%) 3-BENDS (22%) REDUCE-FORKS (73%) Average (32%)

Number of vertices

Fig. 7. Average edge length before and after 3D-Refine.

confirm the worst case upper bounds established for each algorithm, and con-
firm the results in [3] for the Degree-4 graphs. The performance of the algorithms
on the 6-Regular graphs continue the trends observed for the Degree-4 graphs
with one marked exception. The Reduce-Forks algorithm performs noticeably
worse on the 6-Regular graphs relative to the other algorithms compared with
the Degree-4 graphs.

Refinement of Three-Dimensional Orthogonal Graph Drawings 319

In terms of volume and edge lengths the best algorithms (without refine-
ments) are Compact7, Compact6 and Compact5. Note that the worst-case
volume bounds for Compact7 and Compact6 are O(n3/2) and O(n2), respec-
tively. That in practice the difference in their performance is negligible is due to
the enhanced colouring method discussed in Sect. 2. DLM and Incremental
are the next best performing algorithms, followed by 3-Bends and Reduce-
Forks. A similar pattern emerges when comparing the algorithms after refine-
ments, except that Reduce-Forks performs almost as well as the Compact
algorithms; that is, the drawings produced by the Reduce-Forks algorithm
are highly susceptible to improvements by 3D-Refine.

5 Conclusion

In this paper we have described a number of post-processing techniques for
the refinement of 3-D orthogonal graph drawings. Our main algorithm makes
substantial improvements to all of the aesthetic criteria measured, especially
when applied to relatively low degree graphs. This experiment has contributed
to the ongoing research efforts to make 3-D orthogonal graph drawings more
appropriate for visualisation purposes. An important future step toward this
goal is the development of efficient data structures for the implementation of
algorithms and refinements for 3-D orthogonal graph drawing.

Acknowledgements. Thanks to Chi Nguyen for technical support, and to
Maurizio Patrignani for kindly supplying the code from the 3DCube implemen-
tations of the Incremental and Reduce-Forks algorithms.

References

1. T. Biedl and T. Chan. Cross-coloring: improving the technique by Kolmogorov
and Barzdin. Technical Report CS-2000-13, University of Waterloo, Canada, 2000.

2. M. Closson, S. Gartshore, J. Johansen, and S. K. Wismath. Fully dynamic 3-
dimensional orthogonal graph drawing. In Kratochvil [8], pages 49–58.

3. G. Di Battista, M. Patrignani, and F. Vargiu. A split&push approach to 3D
orthogonal drawing. In Whitesides [12], pages 87–101.

4. P. Eades, C. Stirk, and S. Whitesides. The techniques of Komolgorov and Bardzin
for three dimensional orthogonal graph drawings. Inform. Proc. Lett., 60(2):97–
103, 1996.

5. P. Eades, A. Symvonis, and S. Whitesides. Three dimensional orthogonal graph
drawing algorithms. Discrete Applied Math., 103:55–87, 2000.

6. U. Fößmeier, C. Heß, and M. Kaufmann. On improving orthogonal drawings: the
4M -algorithm. In Whitesides [12], pages 125–137.

7. A. N. Kolmogorov and Ya. M. Barzdin. On the realization of nets in 3-dimensional
space. Problems in Cybernetics, 8:261–268, March 1967.

8. J. Kratochvil, editor. Proc. Graph Drawing: 7th International Symp. (GD’99),
volume 1731 of Lecture Notes in Comput. Sci., Springer, 1999.

9. A. Papakostas and I. G. Tollis. Algorithms for incremental orthogonal graph dra-
wing in three dimensions. J. Graph Algorithms Appl., 3(4):81–115, 1999.

320 B.Y.S. Lynn, A. Symvonis, and D.R. Wood

10. M. Patrignani and F. Vargiu. 3DCube: a tool for three dimensional graph drawing.
In G. Di Battista, editor, Proc. Graph Drawing: 5th International Symp. (GD’97),
volume 1353 of Lecture Notes in Comput. Sci., pages 284–290, Springer, 1998.

11. J. M. Six, K. G. Kakoulis, and I. G. Tollis. Refinement of orthogonal graph dra-
wings. In Whitesides [12], pages 302–315.

12. S. Whitesides, editor. Proc. Graph Drawing: 6th International Symp. (GD’98),
volume 1547 of Lecture Notes in Comput. Sci., Springer, 1998.

13. D. R. Wood. An algorithm for three-dimensional orthogonal graph drawing. In
Whitesides [12], pages 332–346.

14. D. R. Wood. Three-Dimensional Orthogonal Graph Drawing. PhD thesis, School of
Computer Science and Software Engineering, Monash University, Australia, 2000.

	Refinement of Three-Dimensional Orthogonal Graph Drawings
	Introduction
	Implementation of Algorithms
	Refinements
	The Experiment
	Conclusion
	Acknowledgements.
	References

