
“Scheduled-Multicast” with Application in Multimedia Networks
�

Hossam El-Gindy
School of Computer Science and Engineering

University of New South Wales
elgindyh@cse.unsw.edu.au

Chi Nguyen
Department of Computer Science

University of Sydney
chi@cs.usyd.edu.au

Antonios Symvonis
Department of Computer Science

University of Sydney
symvonis@cs.usyd.edu.au

Abstract

We introduce a novel transmission technique, termed
“scheduled-multicast”. Scheduled-multicast uses existing
or additional memory at internal nodes in the transmission
paths from the server to the clients to buffer the data stream,
and effectively reduce the bandwidth requirements.

We designed a new protocol, Scheduled-Multicast Pro-
cotol (SMP), and implemented a prototype system employ-
ing SMP to test out the feasibility of scheduled-multicast.
The results from our experiments shows that SMP can
greatly increase the scalability of the system (i.e., the num-
ber of concurrent clients who can be serviced) at a very
small cost to the processor utilization. Given the positive
results from our prototype, we believe SMP can be used to
greatly enhance the scalability of large VoD systems at min-
imal infrastructure cost.

1 Introduction

Despite recent advances in processor speed, storage ca-
pacity and transmission bandwidth, building a cost-effective
and scalable continuous multimedia system still remains
a challenge. This is best seen in a common applica-
tion of multimedia systems which is to provide “video-on-
demand” (VoD). In such a system, a user can request a par-
ticular video clip and have it delivered to the user’s multime-
dia station. The user can perform VCR functions on the clip
such as fast-forward, rewind and pause. As a guide, using
the common compression standard, MPEG 1, a 90 minute
clip requires approximately 1GB of storage and needs to be
delivered at a rate of 1.5 Mbit/sec for TV quality playback.

�

Work partially supported by Australian Research Council Large Grant
A49906214 and an Institutional Grant

To meet the above requirements many technical prob-
lems must first be overcame. A common thread running
through these problems is the large amount of bandwidth
required, both from I/O and the network, and is a major ob-
stacle in building a scalable system.

In this paper we propose a novel technique, scheduled-
mulicast, to address the network bandwidth problem. The
motivation stems from the fact that processing power, disk
and memory storage are relatively cheap in comparison with
network bandwidth. We believe that by utilizing (and pos-
sibly increasing) existing computational resources such as
processing power, memory and disk at internal nodes in the
path from the server to the users, we can increase the level
of concurrency in the system, yet at the same time minimize
network traffic. We make an assumption of identical band-
width requirements for all transmitting streams, but this re-
striction will be removed in future work.

Our technique is similar to the idea of multicasting where
rather than sending the same information from the source to
each receiver, data packets are copied within the network
at fan-out points and sent to multiple receivers. This effec-
tively saves bandwidth in the transmission paths from the
source to the fan-out points. Where our technique differs
to the traditional multicast is the fact that we introduce a
buffer at fan-out points in the network to service requests
with different starting times. The scheduling of each trans-
mission is achieved by buffering for the required amount of
time such that each client receives its data at its scheduled
time (hence the name scheduled-multicast).

The idea behind the scheduled-multicast technique is il-
lustrated in Fig. 1 where four requests for the same movie
are made to the video server but with different starting
times. In the figure, the arrows represent the network
links and the label next to each arrow represents the band-
width requirement (expressed as the number of transmitting

streams on that particular link). Traditionally, the server
will need four transmission streams to service each request
as seen in Fig. 1(a). However, if the starting times are
known in advance, the bandwidth requirement from the
video server to the intermediate router can be reduced to
just one stream. This is achieved by buffering data packets
from the leading stream - the stream with the earliest start-
ing time - at the intermediate router and by forwarding them
on at the appropriate time. This is illustrated in Fig. 1(b).
The numbers above the slots represent the offsets from the
front of the buffer, measured in minutes for simplicity.

Server

(minutes)

Router
Intermediate

Starting
Times

1 11 1

Requests

4

= 9S 4S 1 S 2 = 8S 3

R R 2 R R 4 1 3

= 0 = 2

a)

1

S 4= 0S 1 = 2S 2 = 8S 3

R R 2 R R 4 1 3

= 9

b)

2
... 9 min buffer

98

Figure 1. a) Four requests of the same video clip but with

different starting times. b) An intermediate router em-

ploying a buffer requires only one transmission stream

from the server.

The scalability of scheduled-multicast is evident when
we extend the simple topology in Fig. 1 to a more realistic
topology consisting of many intermediate routers as shown
in Fig. 2. In such situations, the video server cannot possi-
bly service all requests individually and late requests must
be rejected or delayed until earlier requests have been ser-
viced. However by employing scheduled-multicast, only
one stream is needed from the server to the intermediate
router in order to service each client.

The idea of scheduled-multicast opens up many interest-
ing research directions. One of these is finding algorithms
to determine the best tradeoff for bandwidth and memory
utilization. As an example consider Fig. 1. If the bandwidth
from the server to the intermediate node is only sufficient
for one transmission stream then the only option available
is to maintain a buffer of size 9 minutes. However, if the
bandwidth available is sufficient for two streams then we
have the extra options demonstrated in Fig. 3. By utilizing
the extra bandwidth, one can minimize the memory require-
ment at the router to only 3 minutes (Fig. 3(c). An important
question is at what point this tradeoff would make the best
use of the system resources.

The other research direction deals with the establishment
of a protocol to handle the buffering of streams and their

S= 0

 1R

 1 = 9S 4S 2 = 8S 3

R 2 R R 4 3

= 2 S n

R n

= y

Intermediate
Routers

Starting
Times

Requests

Server

Figure 2. An extended example with a more realistic

topology for requests of the same video clip.

ServerServerServer

 1 S 4= 2S 2 = 8S 3

R R R R 4

= 0 = 9

b)

S

1

 2

1 1 1

76
... 7 min buffer

1

 1 3

1

1

S= 9= 0S 1 = 2S 2 = 8S 3

R R 2 R 1 3

a)

...8 min buffer

1 1

2

1 1 1

8

1

S 4= 0S 1 = 2S 2 = 8S 3

R R 2 R R 4 1 3

= 9

c)

2

1 1 1

1 1

1

 4R

 4

Figure 3. Alternative buffer utilization

transmission at specified times. The protocol must be flex-
ible enough to accommodate for the resource allocation al-
gorithm being employed. For example it must provide a
way to reserve a buffer of a specified size. To the best of
our knowledge no multicast protocol currently exists which
has provisions for the delay of the transmitted streams for
the specified amount of time.

In this paper, we focus on the design of the scheduled-
multicast protocol. Section 2 examines related work in
bandwidth utilization. Section 3 describes our VoD frame-
work and the scheduled-multicast protocol. In Section 4,
we describe our implementation of the prototype and pro-
vide an analysis of it. Section 5 presents the experimental
evaluation of our prototype which indicates that scheduled-
multicast greatly increases the number of concurrent users
of a VoD system at minimal cost to processor utilization.
Finally, Section 6 outlines the future work.

2 Related Work

Previous research into bandwidth management can be
separated into two areas: disk I/O bandwidth and network
bandwidth. Many of the proposed solutions can be applied
to both areas with slight modifications, or in conjunction

with each other.
An important consideration in systems which require a

high rate of transfer involving disks is the high latency from
disk I/O. By using a matrix-based allocation scheme, Özden
et al. [13] showed how to avoid the disk latency overhead
while minimizing memory buffer space requirements. Their
work was extended in [5] by Garofalakis et al. to handle
different display rates, retrieval rates and video clip lengths.
In addition, they looked at how the matrix-based allocation
scheme can be applied to different data layout schemes on
disk, namely: clustering where entire clip is stored on a
single disk, and striping where each clip is declustered over
all available disks (similar to a RAID file system [14]).

Where multiple requests for the same clip differ by a
small time interval, memory can be used to buffer data read
from disk, saving subsequent disk accesses. This technique
was introduced by Kamath et al. [9] in conjunction with
a heuristic for determining when buffer sharing is benefi-
cial. In [15], Shi and Ghandeharizadeh showed that buffer
sharing can in fact degrade system performance by exhaust-
ing system memory. Instead they propose a more stringent
heuristic to calculate the threshold at which sharing is ben-
eficial. Their heuristic takes into consideration the costs of
bandwidth and memory, in addition to memory availability,
request interarrival times and data rate.

In minimizing network bandwidth consumption, re-
searchers have concentrated on using the multicast tech-
nique. The Multicast Backbone network or MBone built
on top of the Internet infrastructure is one such example.
A survey of IP multicasting and the MBone architecture is
presented by McCanne [12]. However, as pointed out by
Holbrook and Cheriton [8], current IP multicast has many
drawbacks for large scale broadcast of videos in that there
is a lack of support for billing, lack of control as to who can
send on the multicast channel, and limited IP address space.
Instead, they have proposed an extension to the current IP
multicast to better cater for multicast channels with multiple
subscribers but a single designated source.

The inherent problem of multicast is that all requests
must have the same starting time. A simple technique
known as batching (see [1, 4]) groups requests that have ar-
rived during an interval - called the batching interval - and
services them as a whole using a single I/O stream. How-
ever, for it to be effective a large batching interval is needed,
leading to unsuitable latency time.

A different approach is stream aggregation which sepa-
rates requests into groups by bridging the temporal skew be-
tween them. This is achieved through rate adaptation [10, 3]
where frames are selectively dropped from the transmitting
side and, at the receiver’s end, interpolation techniques are
used to compensate for the loss of frames. While this tech-
nique might be feasible for the image quality of the video
stream, the sound degradation is much more noticeable and

often beyond the tolerance level. A similar idea to stream
aggregation is adaptive piggybacking which was proposed
by Golubchik, Lui and Muntz [6] and later improved by Ag-
garwal et al. [2]. With adaptive piggybacking, the bridging
of the temporal skew is done by slightly speeding up the dis-
play rate of the later stream while at the same time slowing
down that for the earlier stream so that they will eventually
merge into one stream.

An important point to note is that in most of the work dis-
cussed above, the ideas and techniques proposed are orthog-
onal to our work and as such they can be used in conjunc-
tion. For example one can add buffer sharing [9, 15], and
rate adaptation [10, 3] to a system employing scheduled-
multicast to further enhance system performance.

3 The Scheduled-Multicast Framework

3.1 System Architecture

Our VoD architecture consists of a local server connected
to the user Set-Top Box (STB) via a local community net-
work. The local server is connected through the backbone
network to remote video servers. The role of the local server
is to act as the client’s gateway to the remote video servers
as well as maintaining bookkeeping information such as
costs for each user. It is assumed that the local server
has enough resources in terms of bandwidth and process-
ing power to service all the clients connected to it.

Remote Video
Server

Remote Video
Server

Backbone network

Local
Server

Set Top Box Set Top BoxSet Top Box

Local
Server

Remote Video
Server

Figure 4. A typical VoD architecture

The backbone network consists of high speed links in-
terconnecting different local servers with the remote video
servers. The whole system can be modeled by a connected
graph where the nodes represents the intermediate routers
and switches of the backbone network, the local servers
and the remote servers. The bandwidth on each individ-
ual link can be represented by the weight connecting two
nodes. For simplicity, bandwidth is measured in units of

number of video streams that can be concurrently transmit-
ted on the particular link. To send the requested clip to the
users, a path to each user must be established, resulting in
a tree rooted at the server as seen previously in Fig. 1 and
Fig. 2. For the rest of this paper the term parent and child
will refers to the parent and child nodes in such a tree.

The main system components in this architecture are the
video servers, the STBs, and the internal nodes (which in-
clude the local servers as well as the intermediate routers).
The architecture described here is similar to a typical VoD
architecture [11]. However, the main difference is that we
require the internal nodes to possess storage capability and
processing power.

The server’s basic task is to fetch requested clips and
send them over the network at the required rate for the dis-
play. The role of the STB is to request clips and perform
playbacks. It is assumed that each STB has a small buffer
to smooth out the incoming stream in order to minimize the
jitter due to network latency.

It is at the internal nodes where the scheduled-multicast
protocol (SMP) is employed. The next section describes
in details the operation of this protocol and the signaling it
offers to enable the interactions between the system compo-
nents. The service model currently does not support VCR
functions and we assume a uniform constant bit rate require-
ment for video transmission.

3.2 The Scheduled-Multicast Protocol (SMP)

The main goal of SMP is to facilitate the setup and tear
down of SMP sessions, and the scheduling of the transmis-
sions. An SMP session consists of the following:

� A buffer of a predefined size.

� A parent (the peer session which is sending the data),

� A list of children (peer sessions receiving data from
this SMP session) with their respective buffer offsets.

The basic operations are described in Fig. 5. They are
performed on a round basis and the time between rounds,
referred to as the round period, is determined by: a) the
message size being used and b) the bit rate requirement for
the stream. We examine these factors in Section 4.2.

It is important to note that SMP does not specify the re-
source scheduling algorithm being employed. Instead, that
task is left to a scheduling layer which determines the topol-
ogy for the transmissions, and the buffer space required for
each SMP session. Fig. 6 is a protocol graph which shows
the layering of the protocols in our system.

SMP layer sits above the network transport layer so that
it can make use of the services offered by the lower layers
without having to worry about issues such as fragmentation

Function: SMP Main Routine
� Loop forever:

– Service a signal from the scheduling layer if required.

– Call SMP Service-Round.

– Sleep for the remaining time in the round period

Function: SMP Service-Round
� For each SMP session:

– If the parent session has not finished sending the data:
� Read any data packets from the parent session which

have arrived since the last service-round and insert them
into the current session buffer.

� Read parent control information to see if it is the end
of the data stream. If it is the end, mark this session as
finishing.

– Call Service Children with current session as the argument.

– If the current session is finished then delete the session.

Function: Service Children (smp session)
� For each child of smp session:

– Determine the child’s offset in the buffer.

– If offset is at the end of the buffer (ie. no more data in the
buffer to send) and smp session is marked as finishing then
send control information to the child to indicate that it has
finished sending data, and delete the child.

– If offset is not at the end of the buffer, send to the child the
data packet at that offset.

� If smp session has no children and is marked as finishing then
mark it as finished.

Figure 5. The basic operations of SMP

SMP Layer

Network Transport Layer

Server Scheduling Layer Client STB

Figure 6. Our system protocol graph

and reassembly of messages. Furthermore, SMP can use a
different network transport protocol with minimal changes.

SMP is separated from the resource scheduling so that
it would be easy to install different scheduling algorithms
without the need to modify the underlying operations of
SMP. This gives rise to two sets of signaling messages:
one for the interaction between the scheduling layer and the
other for the peer-to-peer interactions of SMP. In SMP, the
servicing of signals from the upper scheduling layer takes
place between service-rounds while servicing peer-to-peer

signals is part of the service-round. Fig. 7 lists the message
formats for the main signals, and the responses.

NACK

NACKConnect SID PID PAddr Delay ACK

and session objects
Signals between peer SMP protocol

NACKConnect SID PID Delay ACK

Disconnect

Finish

SeqNum Data

Create Size

Signals from Scheduling Layer to SMP layer Success Reply

ACK SID

Failure Reply

Data Message Format

Figure 7. Signal and data message formats

The semantics of each message are described below:

� Create - The scheduling layer indicates to SMP to cre-
ate a new session with buffer of size Size. If successful,
a new session is created with a unique SID. SMP ref-
erences it via a hash-table mapping SID to the session.
The SID is returned to the scheduling layer.

� Connect - Can be sent from either the scheduling layer
to SMP or between peer SMP sessions. In the first
case, the scheduling layer is telling SMP session SID
to connect to the parent session identified PID and its
host address PAddr. The Delay is the offset required in
the parent’s buffer. After receiving this message from
the scheduler, SMP strips the PAddr field to determine
the parent host address. It then sends the same Con-
nect message to the parent session. The SID is used by
the parent session to identify the child session. If this
succeeds a direct link between the child and the parent
sessions would have been set up.

� Finish - Control message sent from the parent session
to the child session to indicate the end of the stream.

� Disconnect - Sent from the child to the parent session
to indicate that it no longer wishes to receive data.

� Data - Data messages which are sent between SMP
sessions. The SeqNum field is a number which indi-
cates the position of this message with respect to the
video stream.

To illustrate how the signaling is used, we will use a
sample scenario. Requests for a particular movie session
are collected at the scheduling layer which uses that infor-
mation to determine an optimum schedule. The schedule
specifies the nodes where SMP sessions are needed (ie. the

topology for the transmission tree), and how much buffer
space each session requires.

The scheduling layer uses the CREATE signal to create
the required sessions according to the schedule. The cre-
ation time for the sessions will be different depending on
when each session is supposed to start receiving data, but
a parent session will always be created before its child ses-
sions. The scheduling layer follows the CREATE signal
with a CONNECT signal specifying the ID of the parent
session and the required delay. The actual connections are
made by the SMP sessions sending CONNECT signals to
their parents.

At each node where there is an active session, SMP per-
forms its service-rounds reading data from the parent ses-
sion and forwarding to its children the data at the required
offset. When the server has finished transmitting the re-
quired clip, it sends a FINISH signal to all of its children.
Each child session then goes into the finishing state sending
a FINISH signal to each of its children after they have been
sent all the data in the buffer destined for them. This contin-
ues down till it reaches the leaves of the tree, at which point
all clients should have received their requested clip.

4 Implementation and Analysis

4.1 Implementation Details

To illustrate the working of SMP, we have built a proto-
type using the TCP/IP protocol stack and the Linux system
socket interface. The Linux kernel was also modified using
a technique developed by Hill et al. [7] to allow for finer
time resolution (from 10ms down to

���������	�
)

SMP makes use of separate communication channels for
the transfer of control information (such as the FINISH and
DISCONNECT messages) and data. Each peer-to-peer ses-
sion connection involves a TCP channel for the exchange
of control information and a UDP channel for the transfer
of data. TCP is used for signaling because it has the ad-
vantage of reliable delivery. This ensures that signals are
never received out of order and it is possible to determine
whether or not a particular signal has been successfully re-
ceived. UDP was chosen as the protocol for data transport
due to the following reasons:

� There is a time constraint on the delivery of multime-
dia data. If a packet cannot be delivered before its
deadline, then there is no need to retransmit it.

� Ensuring that messages are sent in order has an impact
on the playback since subsequent messages have to be
delayed until the messages before them have been ac-
knowledged. More often it is desirable to drop a mes-
sage if later messages can be received in time and the

playback engine can employ various techniques avail-
able to compensate for that loss.

With regards to the implementation of the scheduling
layer, there are two options: as a centralized service or as a
distributed protocol with a complex set of signals for the ne-
gotiation of resource reservation and the associated routing.
Since we are focusing on the design and implementation of
SMP, we have decided to use the centralized approach.

A key aspect in implementing SMP is the data structure
for the buffer. A naive implementation would simply allo-
cate one block of memory for the buffer and then use it as
a circular array. However, this will create problems when
it comes to operations such as “resizing” or “splitting up”
the buffer which are anticipated for the dynamic allocation
of buffer space. At worst, this can involve copying large
chunks of memory from one area to another leading to un-
acceptably long delays between service-rounds.

To avoid the above problem, we adopt a paging scheme
similar to that found in common operating systems. Instead
of allocating a large block of memory, the buffer is allo-
cated many small fixed size blocks (referred to as pages)
which it references through an array. In this manner, the
memory can still be manipulated as a circular array, but to
resize a large buffer, one can simply reorder the references
to reduce or increase the number of pages referenced by the
array with very little copying of the actual data. Similarly
performing a “split” can be done efficiently by copying the
page references rather than the pages themselves.

4.2 System Analysis

In this section, we examine the system and state the con-
ditions which must hold for the timeliness delivery of data.
Our analysis is based on a dedicated system. We also as-
sumes that when a connection is setup there is sufficient
bandwidth for the transmission.

For a given clip with bit rate
�

, and fixed message size,����� ���
, the message period 	�
 ������� (the time difference be-

tween sending one message and the next) is:

	�
 ��������������� �������
(1)

Let 	 ��������� represents the time each service-round takes
to run. Then to prevent congestion it must hold:

	 ����������� 	�
 ������� (2)

Thus for a 1.5Mb/sec bit rate requirement and a message
size of 8KB, 	 ��������� must be less than 44ms. Hence the
resolution of 10ms for the old Linux kernel is too large.

At this point, we make the assumption that the time it
takes to service an incoming stream is equivalent to that of
servicing a child. For an incoming stream, processing is
needed to receive the data from the lower network, copy

it into the socket buffer, determine where to insert it into
the SMP-session buffer and finally copy it from the socket
buffer to the SMP-session buffer. On the other hand to ser-
vice the child, processing is required to determine the off-
set in the SMP-session buffer to retrieve the data from, to
copy it into the socket buffer, and finally copy it from the
socket buffer into the physical network. The two services
have similar overheads and the only difference is that one
copies from the socket buffer to the network while the other
copies from the network to the socket buffer. The differ-
ence here is negligible so the assumption we make is quite
valid. We denote the overhead of working out the offsets to
be 	 �� !����"��$#!� and the time to perform the copy from network
to the buffer socket and later from the socket to the session
buffer to be 	&% �(' . If there are) sessions and * children
belonging to the sessions, 	 ��������� can be expressed as:

	 �����������,+).-/*10 � + 	 �� !����"��$#!� -/	&% �(' 0 (3)

By using Equations 1 and 3, we rewrite Inequality 2 as:

����� �������324+).-/*10 � + 	 �� !����"��$#!� -/	&% �(' 0 (4)

It is important to note that 	5% �(' is not a constant, but de-
pends on

����� ���
itself. A large

����� ���
leads to a large 	5% �('

since it would take longer to copy the message from the
network. The problem then lies in deciding what is the op-
timum message size such that the largest number of clients
can be supported while Inequality 4 still holds. A large����� ���

will give us a longer 	�
 ������� but the disadvantage
is that it can introduce latency due to the increase in 	1% �(' ,
thus overloading the underlying transport layer by writing
a large amount of data within a short period of time. On
the other hand, a small

�6��� ���
results in a smaller period.

For sessions with a large number of children, 	 �� !����"��$#!� and
	&% �(' will then be too large to satisfy Inequality 4. We will
try to determine the optimum message size experimentally.

Another aspect of the system which needs to be looked at
is whether the extra processing at each intermediate router
will result in a greater variance in the packet arrival times.
Furthermore, it is necessary to show that the above variance
will not be magnified as the number of hops in the transmis-
sion path grows. This can lead to prolonged periods where
there are too many packets arriving followed with too few,
leading to buffer overflow or underflow at the client STB.
However, an examination of the operations within a service-
round shows that employing a session buffer at each inter-
mediate node has quite the opposite effect. It smoothes out
the stream delivery rate. This is because during each ser-
vice round at most one message will be sent to each child
session despite the fact that it may receive more than one
message or no message during that round. To handle small
bursts of data, the size of the SMP session buffers is set to
be slightly larger than that specified by the scheduling layer

at creation time. Large bursts of data, which overflow the
buffer, will result in packets being dropped. However, it is
expected that there is sufficient bandwidth for all the trans-
missions, and therefore there should not be long periods of
delays or bursts of messages.

5 Experimental Results

In our experiments, unless otherwise specified, the topol-
ogy used is a simple three-level tree as shown in Fig. 1
with the clients connected to the intermediate router via a
100Mbit Ethernet LAN. From the intermediate router to the
server is a 10Mb Ethernet link. The clip we use for testing
has a bit rate requirement of 4Mbit/sec which is compara-
ble with the bit rate requirement of a high quality MPEG
2 stream. The router is a Pentium Celeron 500 processor
with 192MB of memory. In all the experiments involving
SMP, two SMP sessions running on the router are used to
service all the clients. This is chosen based on the fact that
the network link from the server to the intermediate router is
limited to 10Mbit/sec and therefore can only handle a max-
imum of two concurrent 4Mbit/sec streams.

To determine the optimal message size, the percentage
of messages successfully received for varying numbers of
concurrent clients is measured. Fig. 8 shows that for a small
message size of 512 bytes, the overhead becomes significant
as the number of concurrent clients grows. In this situation,
we have 	 ����������2 	�
 ������� , leading to a large percentage
of messages being dropped. A similar result is also evident
for message sizes greater than 8192 bytes. However, the
reason in this case is due to the overloading of the socket
send-buffers when writing large-size messages to the net-
work in a short period of time. The optimal message size
shown in Fig. 8 ranges from 1024 to 4096 bytes. Messages
in this range exhibit no message loss for up to 24 concurrent
clients, and, moreover, they also exhibit identical percent-
age of message losses when the 100Mbit/sec bandwidth is
exceeded at 25 or more concurrent clients. As a compar-
ison, Fig. 8 also shows the results when SMP is not em-
ployed. Due to the 10Mbit bandwidth limitation from the
server to the intermediate router, only two concurrent clients
can be serviced without messages being dropped.

Another measure to determine the optimal message size
is the CPU utilization of SMP at the router. This can be
determined from the ratio 	 ��������� � 	�
 ������� . Low CPU uti-
lization means that the system is less susceptible to delays
due to CPU contention. Fig. 9 shows the CPU utilization of
SMP for increasing number of clients and for varying mes-
sage sizes. As expected, the CPU utilization for small mes-
sage sizes is very high due to the large overhead of process-
ing more messages. However, for message sizes of 4096
bytes or greater, the CPU utilization is quite low at around
10%. Thus, from the data plotted in Fig. 8 and Fig. 9, we

0

20

40

60

80

100

120

0 5 10 15 20 25

Number of Concurrent Clients

%
 o

f T
o

ta
l M

es
sa

g
es

SMP - 512 bytes SMP - 1024, 2048, 4096 bytes

SMP - 8192 bytes SMP - 16384 bytes

No SMP - 4096 bytes

Figure 8. Percentage of messages received for increasing

number of concurrent clients

conclude that the optimal message size is 4096 bytes.

0

5

10

15

20

25

30

0 5 10 15 20 25

Number of Concurrent Clients

%
 S

M
P

 C
P

U
 U

ti
liz

at
io

n
512 bytes 1024 bytes 2048 bytes

4096 bytes 8192 bytes 16384

Figure 9. CPU utilization for increasing number of con-

current clients

At the client end, it is important to measure the rate at
which data is received to determine whether or not SMP in-
troduces additional delays that can cause a client’s buffer to
overflow or underflow, leading to jittery presentation of the
clip. This can be measured by having the client reporting
how much data it receives for each second duration. Fig. 10
is a portion of the trace which shows the average amount of

data received per second for a client. There are three traces:
one for a system not employing SMP serving 2 concurrent
clients, one using SMP servicing 24 concurrent clients, and
one with 5 intermediate SMP sessions in the transmission
path (instead of just one as in the simple three-level tree
topology), again servicing 24 clients. The message size of
4096 bytes is chosen for all tests and during every one

���	�

interval the server is sending out 121 messages (
���

depend-
ing on the accuracy of the system timer) giving an expected
data rate of 495000 bytes/sec.

491000

492000

493000

494000

495000

496000

497000

0 5 10 15 20

Time (sec)

B
yt

es

Expected Value - 495KB/sec No SMP (2 concurrent clients)

1 Intermediate SMP session 5 Intermediate SMP sessions

Figure 10. Average data rate received per client.

Fig. 10 shows that SMP introduces small variations in
the incoming data rate compared with a system not employ-
ing SMP. However, this variation is very small, consisting
of less than 1% of the expected received data rate. Further
more, despite serving many more concurrent clients, and
having more intermediate SMP sessions in the transmission
path, this does not lead to long period of delays or long
bursts of data. This is indicated by the fact that each peak in
the trace is followed by a trough and vice versa. Thus em-
ploying a small buffer at the client will effectively smooth
out the stream removing the observed peaks and troughs.

6 Future Work

Our future work concentrates on improving SMP and
providing algorithmic support to it. In the first instance, we
are looking at using ATM as the underlying transmission
protocol which has the advantages of offering guarantees
on different“Quality of Services”. For the latter, scheduling
decisions made at the scheduling layer requires designing
algorithms for optimal resource utilization. We will also
extend the scope to on-line algorithms since our goal is to
develop a VoD system that is capable of handling dynamic

situations where requests are not known in advance.

References

[1] C. Aggarwal, J. Wolf, and P. Yu. On Optimal Batching Poli-
cies for Video-on-Demand Servers. In IEEE Multimedia
Computing and Systems Conference, pages 253–258, 1996.

[2] C. Aggarwal, J. Wolf, and P. S. Yu. On Optimal Piggyback
Merging Policies for Video-On-Demand Systems. In Con-
ference on Measurement and Modeling of Computer Systems
(SIGMETRICS ’96), pages 200–209, 1996.

[3] P. Basy, A. Narayanan, R. Krishnan, and T. Little. An Im-
plementation of Dynamic Service Aggregation for Interac-
tive Video Delivery. In Proc. SPIE – Multimedia Computing
and Networking, January 1998.

[4] A. Dan, D. Sitaram, and P. Shahabuddin. Scheduling Poli-
cies for an On-Demand Video Server with batching. In ACM
Multimedia Conference, pages 15–23, 1994.

[5] M. Garofalakis, B. Özden, and A. Silberschatz. On periodic
resource scheduling for continuous media databases. The
VLDB Journal 7, 4:206–225, 1998.

[6] L. Golubchik, J. C. Lu, and R. Muntz. Reducing I/0 De-
mand in Video-On-Demand Storage Servers. In Conference
on Measurement and Modeling of Computer Systems (SIG-
METRICS ’95), pages 25–36, 1995.

[7] R. Hill, Balaji, S. Pather, and D. Niehaus. Temporal Res-
olution and Real-Time Extension to Linux. Technical Re-
port ITTC-FY98-TR-11510-03, University of Kansas, June
1998.

[8] H. W. Holbrook and D. R. Cheriton. IP Multicast Channels:
EXPRESS Support for Large-scale Single-source Applica-
tions. In Proceedings of ACM SIGCOMM’99, pages 65–78,
1999.

[9] M. Kamath, K. Ramamritham, and D. Towsley. Con-
tinuous Media Sharing in Multimedia Database Systems.
In Proceedings of the Fourth International Conference on
Database Systems for Advanced Applications (DASFAA
’95), pages 79–86, 1995.

[10] R. Krishnan and T. D. C. Little. Service Aggregation
Through Rate Adaptation Using a Single Storage Format. In
Proc. 7th Intl. Workshop on Network and Operating System
Support for Digital Audio and Video, May 1997.

[11] T. D. C. Little and D. Venkatesh. Propects for interactive
video-on-demand. IEEE Multimedia, 1(3):14–24, 1994.

[12] S. McCanne. Scalable Multimedia Communication: Using
IP Multicast and Lightweight Sessions. IEEE Internet Com-
puting, 3(2):33–45, March/April 1999.

[13] B. Özden, R. Rastogi, and A. Silberschatz. On the Storage
and Retrieval of Continuous Media Data. In 3rd Interna-
tional Conference on Knowledge Management, pages 322–
328, 1994.

[14] D. A. Patterson, G. A. Gibson, and R. H. Katz. A case for
Redundant Arrays of Inexpensive Disks(RAID). In Proceed-
ings of the Conference on Management of Data, pages 109–
116, 1988.

[15] W. Shi and S. Ghandeharizadeh. Buffer Sharing in Video-
On-Demand Servers. In Conference on Measurement and
Modeling of Computer Systems (SIGMETRICS ’97), pages
13–20, 1997.

