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A b s t r a c t .  In this paper we present an extensive study of dynamic routing 
on trees under the "matching with consumption" routing model. We present 
an asymptotically optimal on-line algorithm which routes k packets to their 
destination within d(k - 1) ~- d �9 dist routing steps, where d is the degree of 
tree T on which the routing takes place and dist is the maximum distance 
any packet has to travel. We also present an off-line algorithm that solves the 
same problem within 2(k - 1) T dist steps. The analysis of our algorithms is 
based on the establishment of a close relationship between the matching and 
the hot-potato routing models. 

1 I n t r o d u c t i o n  

In a packet routing problem on a connected  undi rec ted  graph G we are given a collection 
of packets,  each packet  having an origin and a des t inat ion node, and we axe asked to 
route  t h e m  to their  dest inat ions  as fast as possible. Dur ing the  routing,  the  movemen t  
of the  packets follows a set of rules. These  rules specify the  routing model. Rout ing  
models  might  differ on the  way edges are t reated,  the  number  of packets each node 
can r e c e i v e / t r a n s m i t / h o l d  in a single step, the  number  of packets  tha t  are allowed to 
queue in a node (queue-size),  etc. 

W h e n  all packets axe available at the  beginning of the  routing,  we have a static 
rout ing  problem, while, when it is possible to generate  packets during the  course of the  
rou t ing  we have a dynamic rout ing  problem. W h e n  each node is the  origin of at most  
hi  packets and the  dest inat ion of at most  h2 packets,  we have an (hi, h2)-routing (or 
many-to-many ) problem. In the  case where hi = 1 and h2 :> 1 we have a many-to-one 
rout ing  problem (many nodes send packets to one node);  when hi  -- h2 -- 1 and the  
number  of packets is (less t han  or) equal  to the  number  of nodes of the  graph we have 
a (partial) permutation. 

The  matching model was defined by Alon, Chung and G r a h a m  when they  s tudied  
the  rout ing  of pe rmuta t ions  [1]. In the  match ing  model,  each node initially holds ex- 
actly one packet  and the  only opera t ion  allowed dur ing the  rout ing  is the  exchange of 
the  packets at the  endpoints  of an edge. The  exchange of the  packets at the  endpoints  
of a set of disjoint edges can occur in a single rou t ing  step. These edges are said to 
be active during the  rou t ing  step. W h e n  a packet  reaches its dest inat ion node  it is 
not  consumed.  Instead,  it cont inues to par t ic ipa te  in the  rout ing  unti l  the  t ime  all the  
packets  in the  graph s imul taneously  reach their  dest inat ion nodes. 
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tract No. 9072) and ALCOM IT. The work of Dr Symvonis is supported by an ARC Institutional 
Grant. Email: pantziou@cti.gr, {alanr,symvonis}@cs.su.oz.au. 



276 

Alon, Chung and Graham [1] showed that  any permutat ion on a tree of n nodes can 
be routed in at most 3n steps. Roberts,  Symvonis and Zhang [13] reduced the number 
of steps to at most 2.3n. Furthermore,  for the special cases of bounded degree trees and 
complete d-ary trees of n nodes, they showed that  routing terminates after 2n + o(n) 
and n + o(n) steps, respectively. Zhang [14] and Hcyer and Larsen [8] subsequently 
reduced the number of steps required to route a permutat ion on an arbi t rary tree to 
2n. The only work related to on-line routing on trees consists of the study of sorting 
on linear arrays based on the odd-even transposit ion method [6]. 

In this paper,  we consider the natural  extension of the original model which allows 
for the consumption of packets. We refer to this routing model as the matching with 
consumption model. Krizanc and Zhang [10] independently considered many-to-one 
routing under the same model. For n-node trees, they showed that  any many-to-one 
routing pa t te rn  can be routed in at most 9n steps and posed the question whether it 
is possible to complete the routing for that  type of pat tern  in less than 4n steps. In 
this paper  we answer their question to the affirmative. 

Consider any (hi -h2) - rou t ing  problem which has to be routed under the matching 
model. Even though at most hi packets originate from any given node v, initially at 
most one of them participates in the routing. The remaining packets which originate 
at node v are injected into the routing at t imes where v holds no other packet, i.e., at 
t imes when either no packet entered v or t hepacke t  which did so was consumed at v. 

Another  commonly used routing model is the hot-potato (or deflection) routing 
model in which packets continuously move between nodes from the t ime they are 
injected into the graph until they are consumed at their destination. This implies 
that  i) at any time instance the number of packets present at any node is bounded 
by the out-degree of the node, and ii) at any routing step each node must t ransmit  
the packets it received during the previous step (unless they were destined for it). 
Because packets always move, it is not possible to always route all packets to nodes 
closer to their destination. At any given routing step several packets might be derouted 
away from their destination. This makes the analysis extremely difficult. Consequently, 
even though hot-potato routing algorithms, have been around for several years [2], no 
detailed and non-trivial analysis of their routing time was available until recently. 

The work of Feige and Raghavan[5] which provided analysis for hot-pota to  routing 
algorithms for the torus and the hypercube renewed the interest in hot-potato routing. 
As a result, several papers appeared with hot-pota to  routing as their main theme 
(see [9, 11] and the references therein). Borodin et al [3] formalised the notion of the 
deflection sequence, a nice way to charge each deflection of an individual packet to 
distinct packets part icipating in the routing. Among other results, they show that  
routing k packets in a hot-potato manner can be completed within 2(k - 1) + dist 
steps for trees where dist is the initial maximum distance a packet has to travel. A 
similar result was proven earlier by Hajek [7] and Brassil and Cruz [4] for hypercubes. 

Due to space limitations, it is not possible to provide complete proofs for most of 
our results. Details can be found in [12]. 

2 P r e l i m i n a r i e s  

A tree T = (V, E) is an undirected acyclic graph with node set V and edge set E. The 
nodes of V are supposed to be ordered according to some ordering criteria. Throughout 
the paper  we assume n-node trees, i.e., IVI -= n. An undirected edge connecting nodes 
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u and v is denoted by {u, v}, while a directed edge from node u to node v is denoted 
(u, v). The set of neighbours of node u is defined as Neighbours(u) = {v [ {u, v} e E}. 
The degree of node u is defined as degree(u) = [Neighbours(u)[. In a similar way we 
define the in-degree and the out-degree of a directed graph. For a graph G = (V, E) 
and two nodes u, v C V, we denote by distT(u, v) the distance (i.e., the length of the 
shortest path) from u to v on G. 

A static routing problem 7~ can be defined to be a tuple 7~ : (G, S) where G is 
the graph on which the routing takes place and S is the set of packets to be routed. 
Each packet p E S can be described by the tuple p = (orig, dest) where orig and dest 
denote the origin and the destination of packet p, respectively. The notation orig(p) 
and dest(p) is also used to denote the origin and the destination of packet p. For 
simplicity, we assume that  for every packet p E S it holds that orig(p) ~ dest(p). 

In the analysis of our algorithms for the matching model we are going to use the 
"charging argument" formulated by Borodin, Rabani, and Schieber [3] for the hot- 
potato routing model. Consider an arbitrary packet p which, at time t, is located at 
node v and, during the next routing step, moves away from its destination because all 
edges incident to node v which lead to nodes closer to the destination of p are used 
for the routing of other packets. In this case, we say that packet p suffers a deflection 
at time t and that any of the packets which move closer to the destination of p is 
responsible for (or caused) that  deflection. 

Borodin et al [3] defined the notions of the deflection sequence and the deflection 
path for a particular deflection as follows: Consider a deflection of a packet p at time 
tl  and let pl be the packet which caused the deflection. Follow packet pl until  time t2 
where it reaches its destination or it is deflected by packet P2, whichever happens first. 
In the latter case, follow packet p2 until  time ta where it reaches its destination or it is 
deflected by packet p3: and so on. We continue in this manner until we follow a packet 
pz which reaches its destination at time tl+l. The sequence of packets pl ,  p2~. . . ,  pl 
is defined to be the deflection sequence corresponding to the deflection of packet p at 
time tl. The path (starting from the deflection node and ending at the destination 
of pz) which is defined by the deflection sequence is said to be the deflection path 
corresponding to the deflection of packet p at time tl. 

L e m m a l .  ( B o r o d i n ,  R a b a n i ,  Sch i ebe r  [3]) Suppose that for any deflection of 
packet p from node v to node u the shortest path from node u to the destination of 
pl (the last packet in the deflection sequence) is at least as long as the deflection 
path. Then, pl cannot be the last packet in any other deflection sequence of packet p. 
Consequently we can associate (or "charge") the deflection to packet pz. 

Lemma 1 is quite useful in the analysis of hot-potato algorithms. Consider for 
example the case where the routing takes place on an undirected graph and the hot- 
potato algorithm sends a packet away from its destination only if all edges which 
lead closer to its destination are used by other packets which advance closer to their 
destinations. Let p be an arbitrary packet which initially is dist steps away from 
its destination and assume that  k packets participate in the routing (including p). 
According to Lemma 1, each deflection of p can be associated (or charged to) with a 
distinct packet which also participates in the routing. Therefore, given that the total 
number of packets is k, packet p can be deflected at most k - 1 times. So, in the worst 
case, packet p spends k - 1 steps moving away from its destination, k -  1 steps negating 
the result of the deflections (recall that  the graph in this example is undirected), and 
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dist  steps moving towards its destination. Thus, packet p reaches its destination within 
at most 2(k - 1) + dist  routing steps. 

3 On-line Routing 

In this section we consider on-line routing on n-node trees of maximum degree d. We 
prove a lower bound which applies to a natural class of algorithms and we provide an 
algorithm which matches it (asymptotically). 

3.1 A L o w e r  B o u n d  

<d-3> 

<d-l> 

(a) 

T d-2 

(b) 

Fig. 1. Worst case permutations for (a) an n-node star of degree d = n - 1, and (b) a tree of 
maximum degree d, for some constant d > 2. The numbers in the nodes are node labels, the 
numbers attached to edges denote the order in which edges are activated and the numbers 
between angle brackets denote packets with a given destination. 

In order to route a pattern under the matching model an on-line algorithm must on 
each step choose a matching. Once this matching has been chosen for a given step, the 
packets at the endpoints of each edge of the matching are compared and the decision 
to swap them is made depending on some rule. The on-line algorithms to which our 
bound applies are the ones in which the edges of each node are considered in a fixed 
order throughout the course of the routing. These algorithms repeatedly cycle through 
a fixed sequence of matchings making swapping decisions based on a deterministic rule. 

Consider the permutation shown in Figure l(a) for a star of degree d. We assume 
that  the edges become active in increasing order of the labels attached to the edges 
of the star. Consider an arbitrary packet which originates at a node other than the 
centre of the star. Observe that  any such packet has to spend at least d -  1 steps at the 
centre of the star waiting for the edge that  leads to its destination to become active. 
This is because the edge which leads to its destination is activated d -  1 steps after the 
time th e edge through which the packet arrived at the centre of the star was active. 
So, each of the d = n - 1 packets occupies the centre of the star for at least d - 1 steps 
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and thus, [2(dn) steps are required for the routing of this permutation on the star of 
degree d. 

In the above routing problem the maximum degree of the tree is a function of the 
number of nodes in the tree. It is not difficult to construct a tree of constant degree 
d and a permutation for which the same bound applies. This is shown in Figure l(b).  
Each subtree Ti , 0 < i < d -  1, has (n - 1)/d nodes and the packets in subtree Ti have 
destinations in subtree T(i--1)modd, 0 < i < d - 1. 

3.2 T h e  O n - l i n e  A l g o r i t h m  

In the description of the algorithm we assume that,  at the end of each routing step, 
each node examines the packet it holds and if the packet was destined for that node it 
is consumed. Following, the consumption of the packet, if any, each node might inject 
a new packet into the routing. 

Let T be an n-node tree of maximum degree d. The many-to-many on-line Mgo- 
r i thm is as follows: 

A l g o r i t h m  On-Line- Tree-Routing(T, M)  
/* M is the set of packets to be routed on tree T = (V, E) */ 

1. [Preprocessing] For each node v C V label the edges incident on v with labels 
in {0, �9 �9 �9 d - 1}, so that no two edges incident on v have the same label. 

2. t = O  

3. For each node v E V select a packet p E M (if any) with orig(p) = v and inject 
it into the routing. 

4. While there are packets that haven't reached their destination do 

(a) For each edge {u, v} with a label l = t mod d 
do Update(u, v). 

(b) Consume packets that  reached their destination. 

(c) Inject new packets (if there are any to be injected). 

(d) t = t + l  

Procedure Update(u, v) performs a swap of the packets at the endpoints of edge 
(u, v} if and only if both packets will move closer to their destinations. In the descrip- 
tion of the procedure, we assume that  one packet is present at each endpoint. The 
procedure can be trivially extended to cover the case where none or only one packet 
is present at the endpoints of edge {u, v}. Consider any node v E V at time t. Then, 
by packet(v) we denote the packet p C M (if any) which resides in node v at time t. 

P r o c e d u r e  Update(u, v) 

1. u' = destT(packet(u)) 

2. v' = destT(packet(v)) 

3. if  distT(U, v') + distT(V, u') < distT(U, u') + distT(v, v') t h e n  
swap the packets at the endpoints of {u, v}. 
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3.3 A n a l y s i s  o f  A l g o r i t h m  On-Line- Tree-Routing 

The analysis of our on-line algorithm is based on reducing matching routing to hot- 
potato routing and then applying the general charging scheme that is used for the 
analysis of hot-potato routing algorithms. Consider the routing problem T~ = (T, M) 
which is routed by algorithm On-Line-Tree-Routing. Based on T~ = (T, M) and al- 
gorithm On-Line-Tree-Routing, we define a routing problem T~' = (GT,H) and the 
hot-potato Algorithm On-Line-Simulation such that, the number of steps required for 
the routing of problem ~ = (T, M) by algorithm On-Line-Tree-Routing is a function 
of the number of steps required for the routing of problem ~ '  = (GT, H) by Algorithm 
On-Line-Simulation. 

Consider a tree T of maximum degree d and let each edge in T be labelled with 
an integer i E {0,. �9 d - 1}, so that no two edges incident to the same node have the 
same label. We use T and the labels of its edges to construct a directed graph GT as 
follows: For each node v o fT ,  we create d nodes vj, j E {0, . . .  ,d - 1}, in GT, and we 
say that these nodes of GT correspond to node v of T. For each edge {u, v} of T we 
create a node {u, v} i in GT, where i is the label of {u, v} in T. We say that this node 
of GT corresponds to edge {u, v} of T. For each edge {u, v} in T with label i, we add 
the following four directed edges in GT: (ui, {u, v}i), ( {u, v} i, U(i+l)modd) , (Vi, (U, v)i), 
({U,V}i,v(i+l)modd). Note that, if a node v in T has degree d' <~ d, not all labels in 
{0,- .-, d - 1} appear at the edges incident to it. Consider such a node v and let l be 
a label that does not appear in an edge incident to v. Then we create a node {v} t in 
in GT and we add the directed edges (vt, {v)l), ({v} L, V(l+l)modd)- For an example of 
the construction of a graph GT corresponding to a labelled tree T, see Figure 2. 

3.3.1 Many-to-One Routing 

For simplicity, we first analyse Algorithm On-Line-Tree-Routin 9 for many-to-one rout- 
ing problems. In the next section, we extend the analysis to many-to-many routing. So, 
assume that problem 7~ = (T, M) is a many-to-one routing problem, that  is, IMI _< n 
and for every pair of distinct packets p and q C M it holds that orig(p) ~ orig(q ). 

We complete the construction of routing problem 7~ J = (GT, H) by describing how 
to construct the set of packets H based on the packets of set M. For each packet 
p~ E M, we create a packet ph in H and we set its origin and destination nodes as 
follows: Let u = origin(pro), v = dest(pm) and I be the label of the edge that is last 
in the shortest path from u to v in T (assume that orig(pm) ~ dest(pm)). Then, for 
packet Ph we set origin(ph ) = Uo and dest(ph) = V(l+l)modd. 

Algorithm On-Line-Simulation is the hot-potato algorithm which we use for the 
routing of problem T~' - (GT, H). It specifies the rules that each of the nodes of graph 
GT uses when it decides which packet to forward (if any) to each of its outgoing edges. 

Algorithm On-Line-Simulation 
Rules for nodes of GT that correspond to nodes of T 
[On-line-node-I] If the packet received in the previous step reached its destination it 
is consumed; otherwise, it is forwarded through the only out-going edge. 
Rulesfor nodes of GT that correspond to unused labels around nodes of T 
IOn-line-label-i] The packet received in the previous step is forwarded through the 
only out-going edge. 
Rules for nodes of GT that correspond to edges of T 
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* { w ~  w2 

Fig. 2. Tree T and the corresponding graph GT used in the analysis of Algorithm 
On-Line- Tree-Routing. 

[On-line-edge-If If there is only one packet at the node, the packet is forwarded to the 
edge that brings it closer to its destination. 
IOn-line-edge-2] In the case that  there are two packets in the node, the decision is 
made as follows: Let {u, v} ~, i E {0 . . .  d -  1}, be the node under consideration. Let 
Ph be the packet that  arrived from ui and qh be the packet that  arrived from vi. 
Moreover, let u I and v' be the nodes of T which correspond to dest(ph) and dest(qh), 
respectively. If distT(u, v') + distT(v, u') < distT(u, u') + distT(v, v') then we forward 
Ph to V(i+l)modd and qh to U(i+l)modd; Otherwise, Ph is forwarded to U(i+l)mod d and 
qh is forwarded to V(i+l)mod d. 

L e m m a  2. Let the many-to-one routing problem T~ = (T, M)  be routed by Algorithm 
On-Line-Tree-Routing and the many-to-one routing problem 7~ I ---- (GT ,H)  by Al- 
gorithm On-Line-Simulation. Consider an arbitrary packet pm E M and let packet 
Ph E H be the packet which corresponds to it. Then, 
(i) packet Pm is consumed at time c iff packet Ph is consumed at time 2c, and 
(ii) at time t packet Pm is at node u iff at time 2t packet Ph is at node Utmodd, t ~ C. 

T h e o r e m  3. Algorithm On-Line-Tree-Routing routes any many-to-one routing prob- 
lem Tr ---- (T, M)  in at most d(k - 1) + d. dist routing steps, where d is the maximum 
degree of tree T, k = IMI is the number of packets to be routed, and dist is the maxi- 
mum distance that any packet in M has to travel in order to reach its destination. 

Proof. Based on Lemmata 1 and 2. D 
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3.3.2 Many-to-Many Routing 

For the purposes of the analysis, we first route problem 7~ = (T, M) by Algori thm 
On-Line-Tree-Routing and we observe for each individual packet the t ime at which it 
is injected into the routing. When the routing of 7~ = (T, M)  terminates,  we are ready 
to fully specify problem 7~' = (GT, H). For each packet Pm E M which was injected 
into the matching routing at t ime t, we create a packet Ph in H with birth(ph) = 2t. 
The origin and the destination nodes ofph are set as in the analysis of the many-to-one 
routing. 

L e m m a 4 .  Consider the many-to-many routing problem ~ = (T, M)  which is routed 
by Algorithm On-Line-Tree-Routing and the constructed dynamic routing problem T~' = 
(GT, H)  which is routed by Algorithm On-Line-Simulation. Let pm be an arbitrary 
packet in M and let Ph be its corresponding packet in H.  I f  Algorithm On-Line-Tree- 
Routing injects packet pm at time t then Algorithm On-Line-Simulation can inject 
packet Ph at time 2t. 

T h e o r e m  5. Algorithm On-Line-Tree-Routing routes any many-to*many routing prob- 
lem 7~ = (T, M)  in at most d(k - 1) + d.  dist routing steps, where d is the maximum 
degree of tree T,  k = IMI is the number of packets to be routed, and dist is the maxi- 
mum distance that any packet in M has to travel in order to reach its destination. 

4 Off-line Routing 

For our off-line routing algorithms we use some special forms of directed graphs whose 
underlying undirected structure is that  of a tree. More specifically,~by in-tree we refer 
to the directed graph that  satisfies the following properties: i) its undirected version 
is a tree, ii) there is a single node of out-degree 0 that  is designated as the root of the 
in-tree, iii) all other nodes have out-degree 1. By 1-loop in-tree we refer to the directed 
graph tha t  satisfies the following properties: i) its undirected version is a tree, ii) all 
nodes have out-degree 1, iii) there is a pair of adjacent nodes the outgoing edges of 
which form a loop, referred as the l-loop of the tree. Finally, a node with no incoming 
and no outgoing edges is referred to as an isolated node. Graph G(T, t) in Figure 3 
consists of two in-trees rooted at nodes e and f ,  respectively, one l- loop in-tree with 
nodes a and b forming the l-loop, and one isolated node i.e., node g. 

Consider tree T at t ime t of the matching routing. Each node of the tree contains 
at most 1 packet which currently part icipates in the routing. We construct an auxiliary 
directed graph G(T, t) = (V, E ~) which is used by our off-line algorithm to determine 
the set of edges tha t  swap the packets at their endpoints during the next routing step. 
The directed edge (u, v) is in E t if and only if at t ime t there is a packet p at  node u 
and v is the first node in the shortest path  from u to dest(p) (of course, u and v are 

i 

neighbours in T). Figure 3 shows the auxiliary graph obtained from tree T at t ime t, 
assuming that  the  location of each packet is as described in the figure. The out-degree 
of each node in graph G(T, t) is at most 1 and thus G(T, t) is a collection of isolated 
nodes, in-trees, and l- loop in-trees. 

A l g o r i t h m  Off-Line- Tree-Routing(T, M)  
/* M is the set of packets to be routed on tree T = (V, E) */  

1. t = O  
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<h> 
T," 

G ( T ~  

Fig. 3. Tree T at step t and the corresponding auxiliary graph G(T, t). 

2. For each node v E V select a packet p E M (if any) with orig(p) = v and inject 
it into the routing. 

3. While there are packets that haven't reached their destination do 

(a) Construct the auxiliary graph G(T, t). 

(b) Denote by 8 be the set of tree edges which swap the packets at their 
endpoints during the next routing step. Insert into set 8:  
-One  edge for each l- loop in-tree. The edge is the one that  corresponds to 
the l-loop. 
-One  edge for each in-tree. Out of the edges which enter the root of the 
in-tree, select the one which is emanating from the node of lowest order. 
The tree edge tha t  is inserted in 8 is the one which corresponds to the 
selected edge of the in-tree. 

(c) Swap the packets at the endpoints of edges in S. 

(d) Consume packets tha t  have reached their destination. 

(e) Inject new packets whenever possible (if any are still to be injected into 
the routing). 

(f) t = t + l  

For example, based on the tree G(T, t) of Figure 3 and assuming that  the nodes 
of T are ordered lexicographicMly, the active edges which swap the packets at their 
endpoints are {a, b}, {e, j},  and {f, 1}. 

For the analysis of Algori thm Off-Line-Tree-Routing we again employ elements of 
hot-pota to  routing. For details see [12]. 

T h e o r e m  6. Algorithm Off-Line-Tree-Routing routes any many-to-one routing prob- 
lem T~ = (T, M) in at most 2(k - 1) + dist routing steps, where k = IMI is the number 
of packets to be routed, and dist is the maximum distance that any packet in M has 
to travel in order to reach its destination. 

Krizanc and Zhang [10] independently showed tha t  any many-to-one problem on 
an n-node tree can be solved under the matching routing model in at most 9n steps and 
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they posed the question whether it is possible to complete the routing of any many- 
to-one pattern in less than 4n steps. Algorithm Off-Line-Tree-Routing dramatically 
improves upon the result of Krizanc and Zhang and answers their question to the 
affirmative. 

T h e o r e m  7. Algorithm Off-Line-Tree-Routing routes any many-to-many routing prob- 
lem T~ = (T, M)  in at most 2 ( k -  1) + dist routing steps, where k = IMI is the number 
of packets to be routed, and dist is the maximum distance that any packet in M has 
to travel in order to reach its destination. 
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