
Dynamic Tree Routing under the "Matching
with Consumption" Model*

GRAMMATI E. PANTZIOU 1, ALAN ROBERTS 2 and ANTONIS SYMVONIS 2

1 Computer Technology Institute, P.O. Box 1122, 26110 Patras, Greece
2 Department of Computer Science, University of Sydney, N.S.W. 2006, Australia

A b s t r a c t . In this paper we present an extensive study of dynamic routing
on trees under the "matching with consumption" routing model. We present
an asymptotically optimal on-line algorithm which routes k packets to their
destination within d(k - 1) ~- d �9 dist routing steps, where d is the degree of
tree T on which the routing takes place and dist is the maximum distance
any packet has to travel. We also present an off-line algorithm that solves the
same problem within 2(k - 1) T dist steps. The analysis of our algorithms is
based on the establishment of a close relationship between the matching and
the hot-potato routing models.

1 I n t r o d u c t i o n

In a packet routing problem on a connected undi rec ted graph G we are given a collection
of packets, each packet having an origin and a des t inat ion node, and we axe asked to
route t h e m to their dest inat ions as fast as possible. Dur ing the routing, the movemen t
of the packets follows a set of rules. These rules specify the routing model. Rout ing
models might differ on the way edges are t reated, the number of packets each node
can r e c e i v e / t r a n s m i t / h o l d in a single step, the number of packets tha t are allowed to
queue in a node (queue-size), etc.

W h e n all packets axe available at the beginning of the routing, we have a static
rout ing problem, while, when it is possible to generate packets during the course of the
rou t ing we have a dynamic rout ing problem. W h e n each node is the origin of at most
hi packets and the dest inat ion of at most h2 packets, we have an (hi, h2)-routing (or
many-to-many) problem. In the case where hi = 1 and h2 :> 1 we have a many-to-one
rout ing problem (many nodes send packets to one node); when hi -- h2 -- 1 and the
number of packets is (less t han or) equal to the number of nodes of the graph we have
a (partial) permutation.

The matching model was defined by Alon, Chung and G r a h a m when they s tudied
the rout ing of pe rmuta t ions [1]. In the match ing model, each node initially holds ex-
actly one packet and the only opera t ion allowed dur ing the rout ing is the exchange of
the packets at the endpoints of an edge. The exchange of the packets at the endpoints
of a set of disjoint edges can occur in a single rou t ing step. These edges are said to
be active during the rou t ing step. W h e n a packet reaches its dest inat ion node it is
not consumed. Instead, it cont inues to par t ic ipa te in the rout ing unti l the t ime all the
packets in the graph s imul taneously reach their dest inat ion nodes.

* The work of Dr Pantziou was partly supported by the EEC ESPRIT Projects GEPPCOM (con-
tract No. 9072) and ALCOM IT. The work of Dr Symvonis is supported by an ARC Institutional
Grant. Email: pantziou@cti.gr, {alanr,symvonis}@cs.su.oz.au.

276

Alon, Chung and Graham [1] showed that any permutat ion on a tree of n nodes can
be routed in at most 3n steps. Roberts, Symvonis and Zhang [13] reduced the number
of steps to at most 2.3n. Furthermore, for the special cases of bounded degree trees and
complete d-ary trees of n nodes, they showed that routing terminates after 2n + o(n)
and n + o(n) steps, respectively. Zhang [14] and Hcyer and Larsen [8] subsequently
reduced the number of steps required to route a permutat ion on an arbi t rary tree to
2n. The only work related to on-line routing on trees consists of the study of sorting
on linear arrays based on the odd-even transposit ion method [6].

In this paper, we consider the natural extension of the original model which allows
for the consumption of packets. We refer to this routing model as the matching with
consumption model. Krizanc and Zhang [10] independently considered many-to-one
routing under the same model. For n-node trees, they showed that any many-to-one
routing pa t te rn can be routed in at most 9n steps and posed the question whether it
is possible to complete the routing for that type of pat tern in less than 4n steps. In
this paper we answer their question to the affirmative.

Consider any (hi -h2) - rou t ing problem which has to be routed under the matching
model. Even though at most hi packets originate from any given node v, initially at
most one of them participates in the routing. The remaining packets which originate
at node v are injected into the routing at t imes where v holds no other packet, i.e., at
t imes when either no packet entered v or t hepacke t which did so was consumed at v.

Another commonly used routing model is the hot-potato (or deflection) routing
model in which packets continuously move between nodes from the t ime they are
injected into the graph until they are consumed at their destination. This implies
that i) at any time instance the number of packets present at any node is bounded
by the out-degree of the node, and ii) at any routing step each node must t ransmit
the packets it received during the previous step (unless they were destined for it).
Because packets always move, it is not possible to always route all packets to nodes
closer to their destination. At any given routing step several packets might be derouted
away from their destination. This makes the analysis extremely difficult. Consequently,
even though hot-potato routing algorithms, have been around for several years [2], no
detailed and non-trivial analysis of their routing time was available until recently.

The work of Feige and Raghavan[5] which provided analysis for hot-pota to routing
algorithms for the torus and the hypercube renewed the interest in hot-potato routing.
As a result, several papers appeared with hot-pota to routing as their main theme
(see [9, 11] and the references therein). Borodin et al [3] formalised the notion of the
deflection sequence, a nice way to charge each deflection of an individual packet to
distinct packets part icipating in the routing. Among other results, they show that
routing k packets in a hot-potato manner can be completed within 2(k - 1) + dist
steps for trees where dist is the initial maximum distance a packet has to travel. A
similar result was proven earlier by Hajek [7] and Brassil and Cruz [4] for hypercubes.

Due to space limitations, it is not possible to provide complete proofs for most of
our results. Details can be found in [12].

2 P r e l i m i n a r i e s

A tree T = (V, E) is an undirected acyclic graph with node set V and edge set E. The
nodes of V are supposed to be ordered according to some ordering criteria. Throughout
the paper we assume n-node trees, i.e., IVI -= n. An undirected edge connecting nodes

277

u and v is denoted by {u, v}, while a directed edge from node u to node v is denoted
(u, v). The set of neighbours of node u is defined as Neighbours(u) = {v [{u, v} e E}.
The degree of node u is defined as degree(u) = [Neighbours(u)[. In a similar way we
define the in-degree and the out-degree of a directed graph. For a graph G = (V, E)
and two nodes u, v C V, we denote by distT(u, v) the distance (i.e., the length of the
shortest path) from u to v on G.

A static routing problem 7~ can be defined to be a tuple 7~ : (G, S) where G is
the graph on which the routing takes place and S is the set of packets to be routed.
Each packet p E S can be described by the tuple p = (orig, dest) where orig and dest
denote the origin and the destination of packet p, respectively. The notation orig(p)
and dest(p) is also used to denote the origin and the destination of packet p. For
simplicity, we assume that for every packet p E S it holds that orig(p) ~ dest(p).

In the analysis of our algorithms for the matching model we are going to use the
"charging argument" formulated by Borodin, Rabani, and Schieber [3] for the hot-
potato routing model. Consider an arbitrary packet p which, at time t, is located at
node v and, during the next routing step, moves away from its destination because all
edges incident to node v which lead to nodes closer to the destination of p are used
for the routing of other packets. In this case, we say that packet p suffers a deflection
at time t and that any of the packets which move closer to the destination of p is
responsible for (or caused) that deflection.

Borodin et al [3] defined the notions of the deflection sequence and the deflection
path for a particular deflection as follows: Consider a deflection of a packet p at time
tl and let pl be the packet which caused the deflection. Follow packet pl until time t2
where it reaches its destination or it is deflected by packet P2, whichever happens first.
In the latter case, follow packet p2 until time ta where it reaches its destination or it is
deflected by packet p3: and so on. We continue in this manner until we follow a packet
pz which reaches its destination at time tl+l. The sequence of packets pl , p2~. . . , pl
is defined to be the deflection sequence corresponding to the deflection of packet p at
time tl. The path (starting from the deflection node and ending at the destination
of pz) which is defined by the deflection sequence is said to be the deflection path
corresponding to the deflection of packet p at time tl.

L e m m a l . (B o r o d i n , R a b a n i , Sch i ebe r [3]) Suppose that for any deflection of
packet p from node v to node u the shortest path from node u to the destination of
pl (the last packet in the deflection sequence) is at least as long as the deflection
path. Then, pl cannot be the last packet in any other deflection sequence of packet p.
Consequently we can associate (or "charge") the deflection to packet pz.

Lemma 1 is quite useful in the analysis of hot-potato algorithms. Consider for
example the case where the routing takes place on an undirected graph and the hot-
potato algorithm sends a packet away from its destination only if all edges which
lead closer to its destination are used by other packets which advance closer to their
destinations. Let p be an arbitrary packet which initially is dist steps away from
its destination and assume that k packets participate in the routing (including p).
According to Lemma 1, each deflection of p can be associated (or charged to) with a
distinct packet which also participates in the routing. Therefore, given that the total
number of packets is k, packet p can be deflected at most k - 1 times. So, in the worst
case, packet p spends k - 1 steps moving away from its destination, k - 1 steps negating
the result of the deflections (recall that the graph in this example is undirected), and

278

dist steps moving towards its destination. Thus, packet p reaches its destination within
at most 2(k - 1) + dist routing steps.

3 On-line Routing

In this section we consider on-line routing on n-node trees of maximum degree d. We
prove a lower bound which applies to a natural class of algorithms and we provide an
algorithm which matches it (asymptotically).

3.1 A L o w e r B o u n d

<d-3>

<d-l>

(a)

T d-2

(b)

Fig. 1. Worst case permutations for (a) an n-node star of degree d = n - 1, and (b) a tree of
maximum degree d, for some constant d > 2. The numbers in the nodes are node labels, the
numbers attached to edges denote the order in which edges are activated and the numbers
between angle brackets denote packets with a given destination.

In order to route a pattern under the matching model an on-line algorithm must on
each step choose a matching. Once this matching has been chosen for a given step, the
packets at the endpoints of each edge of the matching are compared and the decision
to swap them is made depending on some rule. The on-line algorithms to which our
bound applies are the ones in which the edges of each node are considered in a fixed
order throughout the course of the routing. These algorithms repeatedly cycle through
a fixed sequence of matchings making swapping decisions based on a deterministic rule.

Consider the permutation shown in Figure l(a) for a star of degree d. We assume
that the edges become active in increasing order of the labels attached to the edges
of the star. Consider an arbitrary packet which originates at a node other than the
centre of the star. Observe that any such packet has to spend at least d - 1 steps at the
centre of the star waiting for the edge that leads to its destination to become active.
This is because the edge which leads to its destination is activated d - 1 steps after the
time th e edge through which the packet arrived at the centre of the star was active.
So, each of the d = n - 1 packets occupies the centre of the star for at least d - 1 steps

279

and thus, [2(dn) steps are required for the routing of this permutation on the star of
degree d.

In the above routing problem the maximum degree of the tree is a function of the
number of nodes in the tree. It is not difficult to construct a tree of constant degree
d and a permutation for which the same bound applies. This is shown in Figure l(b).
Each subtree Ti , 0 < i < d - 1, has (n - 1)/d nodes and the packets in subtree Ti have
destinations in subtree T(i--1)modd, 0 < i < d - 1.

3.2 T h e O n - l i n e A l g o r i t h m

In the description of the algorithm we assume that, at the end of each routing step,
each node examines the packet it holds and if the packet was destined for that node it
is consumed. Following, the consumption of the packet, if any, each node might inject
a new packet into the routing.

Let T be an n-node tree of maximum degree d. The many-to-many on-line Mgo-
r i thm is as follows:

A l g o r i t h m On-Line- Tree-Routing(T, M)
/* M is the set of packets to be routed on tree T = (V, E) */

1. [Preprocessing] For each node v C V label the edges incident on v with labels
in {0, �9 �9 �9 d - 1}, so that no two edges incident on v have the same label.

2. t = O

3. For each node v E V select a packet p E M (if any) with orig(p) = v and inject
it into the routing.

4. While there are packets that haven't reached their destination do

(a) For each edge {u, v} with a label l = t mod d
do Update(u, v).

(b) Consume packets that reached their destination.

(c) Inject new packets (if there are any to be injected).

(d) t = t + l

Procedure Update(u, v) performs a swap of the packets at the endpoints of edge
(u, v} if and only if both packets will move closer to their destinations. In the descrip-
tion of the procedure, we assume that one packet is present at each endpoint. The
procedure can be trivially extended to cover the case where none or only one packet
is present at the endpoints of edge {u, v}. Consider any node v E V at time t. Then,
by packet(v) we denote the packet p C M (if any) which resides in node v at time t.

P r o c e d u r e Update(u, v)

1. u' = destT(packet(u))

2. v' = destT(packet(v))

3. if distT(U, v') + distT(V, u') < distT(U, u') + distT(v, v') t h e n
swap the packets at the endpoints of {u, v}.

280

3.3 A n a l y s i s o f A l g o r i t h m On-Line- Tree-Routing

The analysis of our on-line algorithm is based on reducing matching routing to hot-
potato routing and then applying the general charging scheme that is used for the
analysis of hot-potato routing algorithms. Consider the routing problem T~ = (T, M)
which is routed by algorithm On-Line-Tree-Routing. Based on T~ = (T, M) and al-
gorithm On-Line-Tree-Routing, we define a routing problem T~' = (GT,H) and the
hot-potato Algorithm On-Line-Simulation such that, the number of steps required for
the routing of problem ~ = (T, M) by algorithm On-Line-Tree-Routing is a function
of the number of steps required for the routing of problem ~ ' = (GT, H) by Algorithm
On-Line-Simulation.

Consider a tree T of maximum degree d and let each edge in T be labelled with
an integer i E {0,. �9 d - 1}, so that no two edges incident to the same node have the
same label. We use T and the labels of its edges to construct a directed graph GT as
follows: For each node v o fT , we create d nodes vj, j E {0, . . . ,d - 1}, in GT, and we
say that these nodes of GT correspond to node v of T. For each edge {u, v} of T we
create a node {u, v} i in GT, where i is the label of {u, v} in T. We say that this node
of GT corresponds to edge {u, v} of T. For each edge {u, v} in T with label i, we add
the following four directed edges in GT: (ui, {u, v}i), ({u, v} i, U(i+l)modd) , (Vi, (U, v)i),
({U,V}i,v(i+l)modd). Note that, if a node v in T has degree d' <~ d, not all labels in
{0,- .-, d - 1} appear at the edges incident to it. Consider such a node v and let l be
a label that does not appear in an edge incident to v. Then we create a node {v} t in
in GT and we add the directed edges (vt, {v)l), ({v} L, V(l+l)modd)- For an example of
the construction of a graph GT corresponding to a labelled tree T, see Figure 2.

3.3.1 Many-to-One Routing

For simplicity, we first analyse Algorithm On-Line-Tree-Routin 9 for many-to-one rout-
ing problems. In the next section, we extend the analysis to many-to-many routing. So,
assume that problem 7~ = (T, M) is a many-to-one routing problem, that is, IMI _< n
and for every pair of distinct packets p and q C M it holds that orig(p) ~ orig(q).

We complete the construction of routing problem 7~ J = (GT, H) by describing how
to construct the set of packets H based on the packets of set M. For each packet
p~ E M, we create a packet ph in H and we set its origin and destination nodes as
follows: Let u = origin(pro), v = dest(pm) and I be the label of the edge that is last
in the shortest path from u to v in T (assume that orig(pm) ~ dest(pm)). Then, for
packet Ph we set origin(ph) = Uo and dest(ph) = V(l+l)modd.

Algorithm On-Line-Simulation is the hot-potato algorithm which we use for the
routing of problem T~' - (GT, H). It specifies the rules that each of the nodes of graph
GT uses when it decides which packet to forward (if any) to each of its outgoing edges.

Algorithm On-Line-Simulation
Rules for nodes of GT that correspond to nodes of T
[On-line-node-I] If the packet received in the previous step reached its destination it
is consumed; otherwise, it is forwarded through the only out-going edge.
Rulesfor nodes of GT that correspond to unused labels around nodes of T
IOn-line-label-i] The packet received in the previous step is forwarded through the
only out-going edge.
Rules for nodes of GT that correspond to edges of T

281

* { w ~ w2

Fig. 2. Tree T and the corresponding graph GT used in the analysis of Algorithm
On-Line- Tree-Routing.

[On-line-edge-If If there is only one packet at the node, the packet is forwarded to the
edge that brings it closer to its destination.
IOn-line-edge-2] In the case that there are two packets in the node, the decision is
made as follows: Let {u, v} ~, i E {0 . . . d - 1}, be the node under consideration. Let
Ph be the packet that arrived from ui and qh be the packet that arrived from vi.
Moreover, let u I and v' be the nodes of T which correspond to dest(ph) and dest(qh),
respectively. If distT(u, v') + distT(v, u') < distT(u, u') + distT(v, v') then we forward
Ph to V(i+l)modd and qh to U(i+l)modd; Otherwise, Ph is forwarded to U(i+l)mod d and
qh is forwarded to V(i+l)mod d.

L e m m a 2. Let the many-to-one routing problem T~ = (T, M) be routed by Algorithm
On-Line-Tree-Routing and the many-to-one routing problem 7~ I ---- (GT ,H) by Al-
gorithm On-Line-Simulation. Consider an arbitrary packet pm E M and let packet
Ph E H be the packet which corresponds to it. Then,
(i) packet Pm is consumed at time c iff packet Ph is consumed at time 2c, and
(ii) at time t packet Pm is at node u iff at time 2t packet Ph is at node Utmodd, t ~ C.

T h e o r e m 3. Algorithm On-Line-Tree-Routing routes any many-to-one routing prob-
lem Tr ---- (T, M) in at most d(k - 1) + d. dist routing steps, where d is the maximum
degree of tree T, k = IMI is the number of packets to be routed, and dist is the maxi-
mum distance that any packet in M has to travel in order to reach its destination.

Proof. Based on Lemmata 1 and 2. D

282

3.3.2 Many-to-Many Routing

For the purposes of the analysis, we first route problem 7~ = (T, M) by Algori thm
On-Line-Tree-Routing and we observe for each individual packet the t ime at which it
is injected into the routing. When the routing of 7~ = (T, M) terminates, we are ready
to fully specify problem 7~' = (GT, H). For each packet Pm E M which was injected
into the matching routing at t ime t, we create a packet Ph in H with birth(ph) = 2t.
The origin and the destination nodes ofph are set as in the analysis of the many-to-one
routing.

L e m m a 4 . Consider the many-to-many routing problem ~ = (T, M) which is routed
by Algorithm On-Line-Tree-Routing and the constructed dynamic routing problem T~' =
(GT, H) which is routed by Algorithm On-Line-Simulation. Let pm be an arbitrary
packet in M and let Ph be its corresponding packet in H. I f Algorithm On-Line-Tree-
Routing injects packet pm at time t then Algorithm On-Line-Simulation can inject
packet Ph at time 2t.

T h e o r e m 5. Algorithm On-Line-Tree-Routing routes any many-to*many routing prob-
lem 7~ = (T, M) in at most d(k - 1) + d. dist routing steps, where d is the maximum
degree of tree T, k = IMI is the number of packets to be routed, and dist is the maxi-
mum distance that any packet in M has to travel in order to reach its destination.

4 Off-line Routing

For our off-line routing algorithms we use some special forms of directed graphs whose
underlying undirected structure is that of a tree. More specifically,~by in-tree we refer
to the directed graph that satisfies the following properties: i) its undirected version
is a tree, ii) there is a single node of out-degree 0 that is designated as the root of the
in-tree, iii) all other nodes have out-degree 1. By 1-loop in-tree we refer to the directed
graph tha t satisfies the following properties: i) its undirected version is a tree, ii) all
nodes have out-degree 1, iii) there is a pair of adjacent nodes the outgoing edges of
which form a loop, referred as the l-loop of the tree. Finally, a node with no incoming
and no outgoing edges is referred to as an isolated node. Graph G(T, t) in Figure 3
consists of two in-trees rooted at nodes e and f , respectively, one l- loop in-tree with
nodes a and b forming the l-loop, and one isolated node i.e., node g.

Consider tree T at t ime t of the matching routing. Each node of the tree contains
at most 1 packet which currently part icipates in the routing. We construct an auxiliary
directed graph G(T, t) = (V, E ~) which is used by our off-line algorithm to determine
the set of edges tha t swap the packets at their endpoints during the next routing step.
The directed edge (u, v) is in E t if and only if at t ime t there is a packet p at node u
and v is the first node in the shortest path from u to dest(p) (of course, u and v are

i

neighbours in T). Figure 3 shows the auxiliary graph obtained from tree T at t ime t,
assuming that the location of each packet is as described in the figure. The out-degree
of each node in graph G(T, t) is at most 1 and thus G(T, t) is a collection of isolated
nodes, in-trees, and l- loop in-trees.

A l g o r i t h m Off-Line- Tree-Routing(T, M)
/* M is the set of packets to be routed on tree T = (V, E) */

1. t = O

283

<h>
T,"

G (T ~

Fig. 3. Tree T at step t and the corresponding auxiliary graph G(T, t).

2. For each node v E V select a packet p E M (if any) with orig(p) = v and inject
it into the routing.

3. While there are packets that haven't reached their destination do

(a) Construct the auxiliary graph G(T, t).

(b) Denote by 8 be the set of tree edges which swap the packets at their
endpoints during the next routing step. Insert into set 8:
-One edge for each l- loop in-tree. The edge is the one that corresponds to
the l-loop.
-One edge for each in-tree. Out of the edges which enter the root of the
in-tree, select the one which is emanating from the node of lowest order.
The tree edge tha t is inserted in 8 is the one which corresponds to the
selected edge of the in-tree.

(c) Swap the packets at the endpoints of edges in S.

(d) Consume packets tha t have reached their destination.

(e) Inject new packets whenever possible (if any are still to be injected into
the routing).

(f) t = t + l

For example, based on the tree G(T, t) of Figure 3 and assuming that the nodes
of T are ordered lexicographicMly, the active edges which swap the packets at their
endpoints are {a, b}, {e, j}, and {f, 1}.

For the analysis of Algori thm Off-Line-Tree-Routing we again employ elements of
hot-pota to routing. For details see [12].

T h e o r e m 6. Algorithm Off-Line-Tree-Routing routes any many-to-one routing prob-
lem T~ = (T, M) in at most 2(k - 1) + dist routing steps, where k = IMI is the number
of packets to be routed, and dist is the maximum distance that any packet in M has
to travel in order to reach its destination.

Krizanc and Zhang [10] independently showed tha t any many-to-one problem on
an n-node tree can be solved under the matching routing model in at most 9n steps and

284

they posed the question whether it is possible to complete the routing of any many-
to-one pattern in less than 4n steps. Algorithm Off-Line-Tree-Routing dramatically
improves upon the result of Krizanc and Zhang and answers their question to the
affirmative.

T h e o r e m 7. Algorithm Off-Line-Tree-Routing routes any many-to-many routing prob-
lem T~ = (T, M) in at most 2 (k - 1) + dist routing steps, where k = IMI is the number
of packets to be routed, and dist is the maximum distance that any packet in M has
to travel in order to reach its destination.

References

1. Alon, Chung, and Graham. Routing permutations on graphs via matchings. SIAM Jour-
nal on Discrete Mathematics, 7:513-530, 1994.

2. P. Baran. On distributed communication networks. IEEE Trans. on Commun. Systems,
CS-12:1-9, 1964.

3. A. Borodin, Y. Rabani, and B. Schieber. Deterministic many-to-many hot potato rout-
ing. Technical Report RC 20107 (6/19/95), IBM Research Division, T.J. Watson Research
Center, Yorktown Heights, NY 10598, June 1995.

4. J.T. Brassil and R.L. Cruz. Bounds on maximum delay in networks with deflection
routing. In Proceedings of the 2gth AUerton Conference on Communication, Control and
Computing, pages 571-580, 1991.

5. U. Feige and P. Raghavan. Exact analysis of hot-potato routing. In Proceedings of the
33rd Annual Symposium on Foundations of Computer Science (Pittsburgh, Pennsylvania,
October 24-27 , 1992), pages 553-562, Los Alamitos-Washington-Brnssels-Tokyo, 1992.
IEEE Computer Society Press.

6. N. Haberman. Parallel neighbor-sort (or the glory of the induction principle). Technical
Report AD-759 248, National Technical Information Service, US Department of Com-
merce, 5285 Port Royal Road, Springfieldn VA 22151, 1972.

7. B. Hajek. Bounds on evacuation time for deflection routing. Distributed Computing,
5(1):1-6, 1991.

8. P. Hcyer and K.S. Larsen. Permutation routing via matchings. Technical Report 16,
Dept of Mathematics and Computer Science, Odense University, June 1996.

9. C. Kaklamanis, D. Krizanc, and S. Rao. Hot-potato routing on processor arrays. In Pro-
ceedings of the 5th Annual A CM Symposium on Parallel Algorithms and Architectures,
SPAA '93 (Velen, Germany, June 30 - July 2, 1993), pages 273-282, New York, 1993.
ACM SIGACT, ACM SIGARCH, ACM Press.

10. D. Krizanc and L. Zhang. Packet routing via matchings. Unpublished manuscript, 1996.

11. Newman and Schuster. Hot-potato algorithms for permutation routing. IEEE Transac-
tions on Parallel and Distributed Systems, 6(11):1168-1176, November 1995.

12. G. Pantziou, A. Roberts, and A. Symvonis. Many-to-many routing on trees via match-
ings. Technical Report TR-507, Basser Dept of Computer Science, University of Sydney,
July 1996. Available from ftp://ftp.cs.su.oz.au/pub/tr/TR96_507.ps.Z.

13. A. Roberts, A. Symvonis, and L. Zhang. Routing on trees via matchings. In Proceed-
ings of the Fourth Workshop on Algorithms and Data Structures (WADS'95), Kingston,
Ontario, Canada, pages 251-262. Springer-Verlag, LNCS 955, aug 1995. Also TR 494,
January 1995, Basser Dept of Computer Science, University of Sydney. Available from
ftp://ftp.cs.su.oz.au/pub/tr/TR95_494.ps.Z.

14. L. Zhang. Personal communication, 1996.

