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Abstract

In this paper, we consider the de
ection worm

routing problem on two dimensional n�nmeshes.

Our results include: (i) an o�-line algorithm for

routing permutations in O(kn) steps, and (ii) a

general method to obtain de
ection worm routing

algorithms from packet routing algorithms.

1 Introduction

Message routing has been abstracted in several

ways. In packet routing it is assumed that a mes-

sage can be transmitted between two adjacent

processors in a single step as a packet. In worm

routing, the message is considered to be a worm;

a sequence of k 
its which, during the routing,

follow the head of the worm which knows the des-

tination address. If packets can be stored in in-

termediate nodes during the trip from their origin

to their destination, the routing model is referred

as store-and-forward. In a di�erent model known

as de
ection (or hot-potato) routing, packets can-

not be queued and are always moving until they

reaches their destination.

In this paper, we concentrate on de
ection

worm routing on n � n meshes. De
ection

worm routing on meshes was �rst examined by

Bar-Noy, Schieber, Raghavan and Tamaki [1].

They studied permutation routing and presented

O(k2:5n2O(
p

logn log log n))-step and O(kn1:5)-step

deterministic and O(kn)-step randomised algo-

rithms. Newman and Schuster [2] described a

method to obtain de
ection worm routing algo-

rithms based on store-and-forward packet rout-

ing algorithms. However, the packet routing algo-

rithms used in their method were restricted to use

queues of at most four packets per processor. By

employing the sorting algorithm of Schnorr and

Shamir [3] they obtained an O(k2:5n)-step de
ec-

tion worm routing algorithm for routing permuta-

tions. They also presented an O(k1:5n)-step o�-

line algorithm. Newman and Schuster also ob-

served that better results for routing permuta-

tions could be obtained if fast algorithms for 1�h

routing [4, 5], or h� h routing [5] were available.

Sibyen and Kaufmann [5] used such algorithms to

derive an O(k1:5n)-step de
ection worm routing

algorithm for permutations.

This paper contributes to the literature of o�-

line and on-line de
ection worm routing algo-

rithms. We present an O(kn)-step o�-line algo-

rithm for routing permutations. The existence

of such an algorithm was implied by the O(kn)-

step randomised algorithm of Bar-Noy et al [1]

through standard but not constructive arguments.

The best o�-line algorithm known till now was the

O(k1:5n)-step algorithm of Newman and Schus-

ter [2]. (Note that an O(kn)-step solution to

a permutation problem is asymptotically opti-

mal as a standard bisection argument reveals an


(kn)-step lower bound.) We also generalise the

method of Newman and Schuster [2] to allow it to

use packet routing algorithms of queue-size f(N),

where f(N) is a function of the side-length N of

the mesh in which the packet routing algorithm

is applied. The result dramatically increases the

number of candidate packet routing algorithms

that can be used in deriving de
ection worm rout-

ing algorithms. The results presented in this pa-

per appear in detail in [6].

2 Optimal O�-line De
ec-

tion Worm Routing

In our e�ort to derive an o�-line solution for rout-

ing permutations using the de
ection worm rout-

ing model, we use the multistage o�-line routing

method [7]. The method was originally used for



deriving o�-line solutions to packet routing prob-

lems on meshes and tori. It was also used suc-

cessfully in obtaining optimal o�-line solutions for

routing on trees [8].

A de
ection packet (worm) routing problem R

is de�ned by a tuple (G;P ) where G = (V;E)

is the directed graph representing the network

in which the routing will take place. The ele-

ments in set P represent the m packets (worms)

to be routed. Formally, P = fp1; p2; : : : ; pmj pi =
(origi; desti); origi; desti 2 V; 1 � i � mg.
Consider any routing problem R = (G;P ). As-

sume a upper bound of T routing steps for the

problem under consideration. We construct a

multistage directed graphG0 = (V 0; E0) as follows:

V 0 = f(v; t)j v 2 V and 0 � t � Tg and E0 =

f((v; t); (w; t + 1)) j w 2 neighbors(v;G) and 0 �
t < Tg: The edges in E0 represent the communi-

cation that can take place between adjacent ver-

tices of the interconnection network at any time.

Figure 1 shows the resulting graph when the in-

terconnection network is a chain of length 5.
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Figure 1: A chain of 5 vertices and its correspond-

ing multistage graph.

Let tower(G0; v) be the set of vertices of

graph G0 (the constructed multistage graph)

which correspond to vertex v in G. Formally,

tower(G0; v) = f(v; t)j v 2 V; (v; t) 2 V 0; 0 � t �
Tg:
We can think the stages of the multistage graph

G0 as representing time. In that sense, the route

of any 
it will be a directed path from a vertex

in the 
it's origin-tower to a vertex in the 
it's

destination-tower. So, an o�-line solution to a de-


ection worm routing problem can be seen as a

collection of paths.

De�nition A valid o�-line solution of length L

for the de
ection worm routing problem R =

(G;P ) is a set of directed paths, one path for each


it of each worm, in the multistage graph G0 of G,

such that:

i) the head of worm pi = (origi; desti) 2 P trav-

els from a vertex (origi; t
0) in tower(G0 ; origi) to

vertex (desti; t
00) in tower(G0; desti); t0 � t00 �

L�k+1, where k is the number of 
its in a worm

ii) if the j-th 
it of a worm, 1 � j < k, trav-

els from vertex (v; t) to vertex (w; t + 1), then

the (j +1)-th 
it of the worm travels from vertex

(v; t+ 1) to vertex (w; t + 2),

iii) all paths are edge disjoint.

Given the above de�nition, the goal of an o�-

line de
ection worm routing algorithm will be to

derive a collection of paths, one for each 
it of each

worm, such that they form a valid o�-line solution

of the smallest possible length L. In the descrip-

tion of the algorithm, variable start[p] contains

the routing step in which worm p starts moving.

Algorithm O�-line mesh routing

1. Construct a multistage graph G0 of 4kn stages

for an n� n mesh as described above.

2. G0

current = G0

3. while there are more worms to be routed do

(a) Let p = (orig; dest) be the next worm to be

routed.

(b) stage = 1

(c) routed = false /* routed will become true

when a set of paths has been assigned to p

*/

(d) while (not routed ) do

i. Let S be the set of edges of G0 which

are required in order to route worm p

in such a way that the head departs

from node (orig; stage) and moves hor-

izontally to the column destination and

then vertically to dest.

ii. if S � G0

current

then

E(G0

current) = E(G0

current)� S

start[p] = stage

routed = true

else stage = stage+ 1

Theorem 1 ([6]) Given an n � n mesh and a

permutation � of its vertices that has to be routed

using the de
ection worm routing model where

each worm consists of k 
its, Algorithm O�-

line mesh routing produces in O(kn4) time an op-

timal routing schedule of O(kn)-steps. More-

over, the routing schedule can be described with

O(n2 log(kn)) bits.



3 Routing on a Two-

Dimensional n� n Mesh

We construct an e�cient k-worm routing algo-

rithm by treating each worm as though it were

a packet and simulating the operation of a packet

routing algorithm. Let A(N) be the packet rout-

ing algorithm (operating on an N �N mesh MN )

of which the operations we intent to simulate. We

assume that A(N) completes the routing within

tA(N) steps and uses queues of size f(N) packets.

Algorithm A(N) is suitable for our method if the

following assumption regarding the routing model

is satis�ed.

Assumption 1: On any given step all decisions

made about the movement of any packet will be

made locally by the node that currently stores the

packets without considering the contents of any

other node.

In the original work of Newman and Schus-

ter [2], any suitable for simulation packet routing

algorithm A(N) had to also satisfy:

Assumption 2: A(N) uses a queue-size of at most

4 packets.

Relaxing Assumption 2 results in an increase in

the number of packet routing algorithms which

are suitable for simulation. As we show, an

O((f(N)k)2:5n)-step algorithm can be derived

from an O(N)-step packet routing algorithm

which requires queue size of at most f(N) packets

and satis�es Assumption 1.

Let A(N) be a permutation packet routing al-

gorithm which satis�es Assumption 1 and uses

queues of size at most f(N) < n packets. Choose

N such that satis�es N = n=(
p
(f(N) + 4)k+1).

We assume for simplicity that n, f(N) and k are

integers such thatN ,
p
k and

p
f(N) + 4 are inte-

gers. In addition, we assume that k is even. Note

that this immediately implies that
p
(f(N) + 4)k

is even.

For the purposes of the algorithm, we divide

the mesh up into an N � N mesh of supern-

odes; each supernode being a sub-mesh of size

(
p
(f(N) + 4)k + 1) � (

p
(f(N) + 4)k + 1). The

rows and columns inside each supernode are num-

bered from 0 to
p
(f(N) + 4)k in the same way

that the overall mesh is.

The algorithm is achieved in (
p
(f(N) + 4)k +

1)4 rounds. During the (i; j; k; l)-th round we

route all worms that originate at the (i; j) point

of a supernode and are destined for point (k; l)

of some supernode. Accordingly, at the beginning

of each round, there is one worm generated in-

side each supernode. Each worm is then treated

as though it were a packet. Decisions on sending

worms from one supernode to another are made

using a packet routing algorithm. The supernodes

act like an N �N mesh of nodes with respect to

this packet routing algorithm. Each supernode

has a queue size of at most f(N) packets. Each

step of the packet routing algorithm is simulated

by an underlying algorithm that determines the

way in which the worms are moved about. We

refer to a step of the packet routing algorithm as

a superstep. Each round proceeds \superstep" by

\superstep" until all worms have arrived at their

destinations. The algorithm proceeds \round" by

\round" until the whole permutation has been

routed.

The high level description of the algorithm is

identical to that of Newman and Schuster [2].

However, since we allow the use of a larger class

of packet routing algorithms, we have to modify

the structure of the supernode and to drastically

re�ne the simulation of the superstep.

3.1 The Structure of Each Supern-

ode

The layout of the sub-meshes that are used to sim-

ulate supernodes participating in the packet rout-

ing algorithms is shown in Figure 2. Each sub-

mesh contains several regions of importance. The

regions include:

i) A vertical and a horizontal lane. The lanes

are used as communication avenues between the

supernode and its neighbores (supernodes).

ii) 4 bu�ers Each bu�er is associated with one

of the neighbores of the supernode. It is used to

store the worm that is transmitted out of (received

from) the (associated neighbor) supernode.

iii) 2 storage areas The storage areas are used to

implement the queuesize that the packet routing

algorithm uses. Note that the total size of the two

storage areas is enough to store f(N) worms, each

consisting of k 
its.

iv) 2 command processors north and south of the

center of the supernode During the simulation,

the worms that are stored in the supernode go

through these two processors. Since the proces-

sors \see" all worms they can decide which of them

will be transmitted during the next step.

See [6] for more details about the role of each

region and for a justi�cation for the use of two

storage areas and two command processors.
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Figure 2: The sub-mesh that is used to simulate

a supernode with respect to the packet routing

algorithm A(n). Each bu�er stores a single worm

of length k.

3.2 The Simulation of a Superstep

Each superstep simulates the operation of a pro-

cessor in the packet routing algorithm. An in-

variant of the simulation is that at the beginning

of each superstep the bu�ers of a supernode are

empty. This simply means that all packets cur-

rently at the supernode are held in the storage

areas. Assuming that the precondition holds, a

superstep can be considered to be a sequence of

the phases:

A Superstep

� Output selection phase

� Extraction phase

� Transmission phase

� Queueing phase

At the beginning of each round, the worms that

will be routed must be generated and placed in the

storage snakes. This gives rise to another phase,

the creation phase. See [6] for the speci�cs of the

simulation of each phase. As a result of the simu-

lation, we can state the following theorem:

Theorem 2 Let A(N) be an O(N)-step permu-

tation packet routing algorithm for MN which

uses queues of size f(N) and satis�es Assump-

tion 1. Then there is a hot-potato worm permuta-

tion routing algorithm dA(n) for Mn, which routes

k-worms in O((f(N)k)2:5n) steps, where N satis-

�es N = np
(f(N)+4)k+1

.
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