Optimal Stable Merging

Antonios Symvonis
Basser Department of Computer Science
University of Sydney
Sydney, N.S.W. 2006
Australia
symvonis@cs.su.oz.au

Abstract

In this paper we show how to stably merge two sequences A and B of sizes
m and n, m < n, respectively, with O(m +n) assignments, O(mlog(n/m +1))
comparisons and using only a constant amount of additional space. This result
matches all known lower bounds and closes an open problem posed by Dudzinski
and Dydek [2] in 1981. Our algorithm is based on the unstable algorithm of
Mannila and Ukkonen. All techniques we use have appeared in the literature in
more complicated forms but were never combined together. They are powerful
enough to make stable all the existing linear in-place unstable algorithms we
are aware of.

Proc. ICCI’94, 124-143 0 1994 Int. Conf. on Computing and Information

1 Introduction

In this paper, we consider the problem of merging. We are given two sequences A
and B of m and n elements, respectively, such that A and B are sorted in increasing
order according to a key value of their elements. Without loss of generality, in the
rest of the paper we assume that m < n. The result of merging A and B will be a
sequence C' of N = m +n elements, consisting of the elements of A and B, such that
C' is sorted in increasing order according to the same key value of its elements. An
element of sequence A is called an A-element. Similarly, we define B-elements.

We assume that initially A and B occupy segments L[0...m—1] and Lm ... N—1]
of an array L, respectively, and that after the merging C' occupies the entire array
L0...N—1].

In addition, we may want our merging algorithm to be stable. We say that the
merging is stable if the internal ordering of sequences A and B is maintained in
the resulting sequence C. (In the case that elements with the same key appear in
both sequences, the elements in sequence A are considered to be “smaller” than the
elements with the same key in sequence B.)

The performance of any merging algorithm is judged according to the number of
computation steps it needs to perform the merging as well as the amount of extra
space used. If the merging algorithm uses only a constant amount of extra space, we
say that the merging is performed in place.

It is relatively easy to derive lower bounds on the time performance of every
merging algorithm. The number of assignments will be (V) since there are instances
of the merging problem in which, after the merging, each element is in a location of
array L that is different than the one it occupied before the merging. The number of
comparisons between keys of individual elements that a merging algorithm needs to
perform is Q(mlog(n/m). (See [12, pages 198-206] for a detailed analysis.)

125

The obvious way of merging two sorted sequences A and B of m and n elements,
respectively, into a sequence C' of N = m + n elements (see [7, page 114]) requires
O(N) time, which is optimal, but also uses O(N) additional space. Kronrod [13]
derived a method of merging two sorted sequences of a total of N elements in O(N)
time using only a constant amount of additional space. In doing so, he introduced
the important notion of the internal buffer which is used in almost all subsequent
algorithms for the merging problem. Unfortunately, Kronrod’s merging algorithm
was not stable. Horvath [10] managed to derive a stable algorithm with the same
asymptotic complexity which, however, had the undesired characteristic of modifying
the keys of the elements during the merging. Pardo [15] overcame this obstacle and
finally derived an asymptotically optimal algorithm which didn’t use key modification.

Even though asymptotically optimal, because of their complex structure and the
large constant of proportionality, both of the algorithms of Horvath and Pardo are
considered impractical. Several non-optimal stable algorithms that compromise by
using either more time [2, 3, 5, 18] or more additional space [1, 3, 5, 4] were devel-
oped. Dvorak and Durian [6], Mannila and Ukkonen [14] and Huang and Langston [§]
derived linear time algorithms for unstable in-place merging. The algorithm of Man-
nila and Ukkonen differs from previously developed algorithms in using an internal
buffer of length /m instead of v/N. Huang and Langston presented a surprisingly
straightforward and practical method for unstable merging that uses (in a more cre-
ative way than previously developed algorithms) an internal buffer of size v/N. In a
later paper [9], they managed to make their algorithm stable.

None of the known stable in-place merging algorithms succeeds to match the lower
bounds on both the number of comparisons (2(m log(n/m))) and the number of ele-
ment assignments (€(N)). The algorithms of Horvath [10], Pardo [15] and Huang and
Langston [9] perform O(N) comparisons and element assignments. SPLITMERGE [1]
matches the lower bounds but uses O(m) extra space. The algorithm of Mannila and

126

Ukkonen matches all the lower bounds (number of comparisons/assignments and ex-
tra space) but is unstable. To achieve that, it uses the binary merging algorithm of
Hwang and Lin [11].

In this paper, we show how to make stable the algorithm of Mannila and Ukkonen
while maintaining the same asymptotic complexity on the number of comparisons,
assignments and the extra space. This yields the first optimal stable merging algo-
rithm with respect to all known lower bounds. Surprisingly enough, the method we
use to make the algorithm stable is very simple. Actually, it can be used to make
stable almost all of the existing unstable algorithms.

The paper is organized as follows: In the next section we review several tech-
niques that are used in merging. These include block exchange algorithms, binary-like
searching and the use of the internal buffer. We present their performance analysis
and for the case of operations related to the internal buffer we employ the method
of binary-like searching to reduce the number of required comparisons. In Section
3, we present the algorithm of Mannila and Ukkonen [14]. In Section 4, we present
our stable optimal merging algorithm. We present two methods that can be used for
making stable an unstable algorithm and then we show how to modify the algorithm
of Mannila and Ukkonen so that it is stable and optimal. In Section 5, we show how
to perform the merging optimally in the case that there are less than 2y/m distinct
elements. In this case, we are not able to build the necessary internal buffers and
thus to apply our general merging algorithm. We conclude in Section 6.

127

2 Basic techniques

2.1 Block exchanges

A block exchange of two consecutive blocks U and V' of sizes [; and [y, respectively,
that occupy segment L[c...c + 13 + I — 1] results to the movement of block U to
segment Llc + ly...c + I; + Iy — 1], and to the movement of block V' to segment
Lic...c+ 1y —1]. (The case where the two blocks are not consecutive can be treated
similarly.)

There is a clever algorithm that is considered to be part of the folklore that per-
forms the block exchange using about [y + Iy swaps (3(l; + o) assignments).

BLOCK_EXCHANGE (c, 1y, 1,)

INVERSE (¢,c+1; — 1)
INVERSE (C+ ll,C+ ll + ZQ — 1)
INVERSE (c+,c+ 1+ 1, — 1)

Procedure INVERSE (i, j), i < j, performs an inversion of the elements in segment
Lli...j] by executing exactly |[(j — i+ 1)/2] swaps.

A more complicated method developed by Dudzinski and Dydek [2] performs the
block exchange by using only l; + 1y +ged(ly, [2) assignments, where ged(ly, l5) denotes
the greatest common divisor of [; and ly. It is based on the following theorem:

Theorem 1 [Dudzinsky, Dydek, [2]] Given an array L[0...s—1], a circular shift
to the right of size m is decomposed to exactly ged(m, s—m) cycles where ged() denotes
the greatest common divisor function. Furthermore, locations 0. ..ged(m,s —m) —1
belong to different cycles.

128

2.2 Binary-like searching

We present the technique (which we call binary-like searching) that Hwang and Lin
used in their binary-merging algorithm [11][12, pages 204-206]. It is through the
binary-like searching technique that we succeed in reducing the number of compar-
isons of the merging algorithm from O(N) to O(mlog(n/m)).

We are given a sorted sequence of N elements and element = to be inserted in
that sequence. Binary-like searching finds the location in which z is to be inserted in
O(m + log(N/m)) comparisons for any m < N.

The algorithm proceeds as follows: The sequence is split into blocks of size [N/m].
By comparing the last element of the blocks, starting from left to right, we locate the
block in which z is to be inserted. Then, in that block, we perform a binary search
to locate the exact position for the insertion. We need O(log(N/m)) comparisons for
the binary search and O(m) comparisons to locate the block that x is to be inserted.
Thus, the O(m+log(N/m)) bound on the number of comparisons. It is interesting to
observe that in the case which m = 1 binary-like searching reduces to binary searching
while in the case which m = N it reduces to linear searching.

2.3 The internal buffer

Kronrod [13] introduced the notion of the internal buffer in his effort to derive a
merging algorithm that uses constant extra space. An internal buffer is simply a
segment of the input array which is used for buffering purposes. However, there is a
restriction on how we use the internal buffer. Whenever we want to store an element
into a position of the buffer we make sure that the element stored previously in that
position is moved to another position of the array. We achieve that by allowing the
modification of the buffer by either swaps or circular shifts of its elements.

After merging the sequences with the use of the internal buffer, the elements of

129

the buffer are not in their original order. Sorting the buffer and then distributing
it into the already merged sequence will produce the final merged sequence. Notice
that, in the case that the buffer does not consist of distinct elements, the merging
is not stable. This is because the sorting of the buffer is not enough to restore the
initial order of elements with the same key value. However, when all buffer elements
are distinct the distribution of the buffer in the already sorted sequence can be done
in a stable fashion.

In the rest of this paper, the buffers will always occupy the left part of the array.
Realizing the importance of having a buffer of distinct elements for stable merging,
we will show how to extract a buffer.

Assuming that a buffer of size b is needed, we will move b distinct elements in the
left part of the array. We call this operation buffer extraction. The reverse operation,
buffer distribution, is also important.

For simplicity, we assume that the input array contains only one sorted sequence
with at least b distinct elements. We will form an internal buffer of b distinct elements
placed in segment L[0...b — 1].

We build the buffer by adding one element at time. Initially it consists of the
element L[0]. Assume that after adding j elements to the buffer, 1 < j < b, the
buffer occupies the segment L[i...i+j—1],i+j—1 < N — 1, the elements of the
buffer are sorted in increasing order, and that L[i + j — 1] was the last element added
to the buffer. We add another element to the buffer as follows: Let L[k], k > i+ j,
be the element with the smallest index in segment L[i + j... N — 1] that satisfies
the relation L[i + j — 1] < L[k]. We add element L[] into the buffer by exchanging
the contents of segments L[i...i+ j — 1] and L[i + j ...k — 1]. This can be done in
O(k — j) steps by a call to our BLOCK_EXCHANGE routine. Observe that, after
the expansion of the buffer with a new element, the elements of the buffer are still
distinct and sorted in increasing order. We continue this process until a buffer of b

130

elements is created. A final block exchange will move the buffer to the beginning of
the array. Note that, in the case that there do not exist b distinct elements, the above
algorithm creates a buffer of maximum possible size.

The time complexity of the above procedure is O(b?> + N). To see that, simply
observe that each element that does not belong to the buffer is moved exactly once
to the left, while each buffer element moves at most b times to the right.

It is a simple task to modify the buffer extraction algorithm to work when the
input array contains two sorted sequences A and B of m and n elements, respectively.
The algorithm will essentially remain the same but some attention is needed when
extracting elements from sequence B. We have to make sure that an element with
the same key value was not extracted previously from sequence A. By recalling our
initial goal, i.e., to obtain a linear time stable merging algorithm, we conclude that
the maximum size of the buffer that we can afford is O(v/N).

In the above described buffer extraction algorithm, the next element to be added
to the buffer is located by a linear scanning of the two sequences. As a result, O(N)
comparisons are performed. By using the binary-like searching to locate the elements
to be added at the buffer, we can prove the theorem:

Theorem 2 A buffer of \/m distinct elements can be extracted from an array con-
taining two sorted sequences A and B of m and n elements, m < n, respectively, in
linear time and with O(m + y/mlog(n/m)) element comparisons.

Distributing a buffer of size b within a sorted sequence of size N can be performed
in time O(b? + N) by exactly the reverse procedure of buffer extraction. When we
are concerned with the number of comparisons, we can prove the following theorem:

Theorem 3 A buffer of \/m distinct elements can be distributed into an array of N
elements in linear time and with O(m + /mlog(N/m)) element comparisons.

131

3 The merging algorithm of Mannila and Ukko-
nen

In this section we will review the in-place algorithm of Mannila and Ukkonen [14].
The algorithm performs O(N) assignments and O(m log(n/m)) comparisons. Its only
drawback is that it is unstable. In the next section we show how to make it stable.

We have to merge sequence A occupying L[0...m— 1], with sequence B occupying
Lin...m+n—1], m < n. The first y/m elements of sequence A will be used as an
internal buffer. We assume that /m is an integer.

The algorithm splits each of the sequences A and B into y/m — 1 blocks. The
blocks of sequence A are of fixed length, i.e., length(A4;) = vVm, 1 < i < {/m — 1,
while the blocks of sequence B are of variable length. Sequence B is partitioned in
such a way that the concatenation of the merged sequences

MERGE(Ay, By),..., MERGE(A;, B;),..., MERGE(A /i1, B jm—1)
results in a sorted sequence. In order to achieve that, appropriate splitting points for
sequence B must be located. Let FIRST(X) (LAST(X)) denote the position of the
first (last) element of a sequence X. We need to specify the values FIRST(B;) and
LAST(B;), 1 <i<,/m— 1. An appropriate choice is the following:

FIRST(B;) =m FIRST(B;) = LAST(Bi_1 +1), 1 <i < /m — 1

’

m—1 if LAST(A;) < L[m]
LAST(B)={ m+n—1 if LAST(A) > Lim +n — 1]
J such that L[j] < LAST(A;) < L[j + 1]

Note that the boundaries of the blocks from sequence B can be located by a
procedure similar to that used in the buffer extraction, and thus, O(log(n/m)) steps
are enough to locate each one of them. As we will see, it is not necessary to compute

132

Left Section Middle Section Right Section

Figure 1: During the block rearrangement in the merging algorithm of Mannila and
Ukkonen the array is divided into 3 sections.

all of them at once and thus, we do not need any extra space to store them.

Moving the blocks to positions suitable for the local merges is not an easy task.
Finding a clever way to perform it was a key to the success of the algorithm of Mannila
and Ukkonen.

We assume that at any time the array is divided into three sections (see Figure 1).
The left section contains j, j < y/m — 1, pairs of blocks in their final order (ready
for the local merges). The middle section consists of the remaining blocks of the A
sequence. The blocks are permuted and it is possible that one of them is divided
into two parts. Its left part occupies the right end of the middle section and the
rest occupies the left part of the middle section. We denote the blocks of the middle
section by M;, 1 < i < y/m —1— j. The right section of the array consists of the
remaining blocks of the B sequence.

The algorithm locates in the middle section the next block to be merged. This
will be the block with the smallest LAST() element, say A;1,. By using LAST(A,41)
we can identify from the right section the corresponding block Bj;. Then we have
to transfer these two blocks in the left section of the array in such a way that the
middle section maintains its properties.

There are two cases to consider depending on whether block A, is the divided
block of the middle section or not.

133

In the case where A;;; is the divided block, we simply move the first part of
the divided block and block B;.; (they are adjacent) immediately after the rest of
divided block. To restore the divided block we exchange its two parts. Observe that
the middle section retains its structure (Figure 2).

The case where A, is not the divided block is easy to handle as well. By two
block exchanges between the divided block and A, we can make A;;; be the divided
block. Now, the block setting is the one described in the previous case (Figure 3).

Middle Section

1 j+1 i+l
|| Move Aj,; and B,
Middle Section
M
1 2
\H/ Exchange A;,; and A].+1
Middle Section
2
Al B oA, A B My M}

i1 e
Figure 2: The case where A; ; is the divided block.
Locating the blocks from the middle section requires a total of O(m) compar-

134

isons. Each local merge can be performed with O(m + /mlog(n/m)) comparisons
and O(mlog(n/m + 1)) comparisons are enough for all local merges. The task of
distributing the buffer into the merged sequence is off the same complexity.

Middle Section
) A
Al B w2 j+1 | mM: B
Middle Section
1 B.

A B R

j+1 A j*1

j+1

Figure 3: The case where A;; is not the divided block.

4 An optimal stable merging algorithm

To the best of our knowledge, all the known in-place unstable merging algorithms
fail to be stable because of two common problems. The first of them concerns their
capability to extract buffers composed of distinct elements. We will show how to do
the merging for this case in Section 5. The second problem is caused from the fact
that almost all of them are based on local merges of blocks from the two sequences.
During the merging, the next block that will participate in the local merge must be

135

located. This is usually done by searching for the block with the minimum first (or
last) element. In the case that in a sequence there are more elements with the same
key value than the size of the block, there might be more than one block with the
same first (or last) element. Since during the merging the blocks are permuted, it
is possible to pick the blocks in the wrong order. (The error in the algorithm of
Konrod [13] was similar to the above problem.)

A surprisingly easy method that can be used to overcome this problem is to number
the blocks. This will ensure that we use the blocks in the correct order. However,
since we are allowed to use only a constant amount of extra memory, we must record
the block number in a different way. We will show two methods to do it.

4.1 Method-I: creating a “peak”

Assume that there are k blocks that we want to number. In this method we mark
the i’* block, 1 < i < k, by substituting the 7" element of the block by an element
with key value larger that all block elements. To make the marking possible, we
create a sorted sequence of at least k£ elements by partially merging the right ends
of the two sequences. The length of the new sorted sequence is sufficiently large to
guarantee that its smallest element is larger that all the elements in the blocks we
have to mark. Having created that sequence, we exchange the i’* element of the 7%
block, 1 < i < k, with the i"* element of the sequence. During the merging, when we
locate a block, we swap back the elements to restore it and then to proceed with the
merging. Notice that the ordering of the sequence with the “large” elements is not
destroyed. Salowe and Steiger [16] used a similar but much more complicated method
in their stable in-place linear time merging method. In their paper they also treat the
problem that might occur when during the creation of the sequence with the “large”
elements, one of the original sequences is exhausted. (Actually, this is not a problem.

136

It is something that we must hope to occur.)

4.2 Method-II: movement imitation

The second method we present uses an additional buffer of size equal to the number
of blocks we need to mark. The elements of the buffer must be distinct and the
buffer sorted. We put the buffer elements into a one-to-one correspondence with the
blocks. The it smallest buffer element corresponds to the i block. Then, during the
merging, we maintain this correspondence by imitating the movement of the blocks
by the elements of the buffer. So, when we want to locate the i block, we compute
the position of the ¥ smallest element of the buffer. The i*" block will be in the same
relative position with respect to the other blocks. The above method is a simplified
version of the method used by Pardo [15].

4.3 The optimal algorithm

Having available all the techniques developed in the previous sections, it is easy to
describe an optimal in-place and stable merging algorithm.

We start by extracting two buffers, each of /m distinct elements. We assume
there are enough distinct elements to create the buffers. We will see in the next
section how to treat the case in which we are not able to form the buffers. We use the
first buffer to perform the local merges and the second one to ensure that the blocks
of sequence A are merged in the correct order. We do that by using the movement
imitation method. After splitting the remaining elements of sequence A into blocks
of size \/m the array looks like:

< buffer_1 > < buffer 2 > A,,,,u1A1As ... < remaining elements of sequence B >

137

where Agnqu is a non-full block that we ignore in the next step.
We proceed by executing a stable version of the algorithm of Mannila and Ukko-
nen. After it, the array looks like:

< buffer_1 > < buffer 2 > A,,,.; < stably sorted sequence of elements >

We complete the stable merging by distributing from the left and in a stable fashion
i) Agmau, ii) buffer_2, and iii) buffer_1.

Based on the analysis in earlier sections, it it easy to see that the above algorithm
is stable and that it performs O(mlog(n/m +1)) comparisons and O(N) assignments,
and thus, it is optimal.

5 Merging in the presence of at most)\ distinct
keys.

The optimal stable merging algorithm presented in this paper assumes that there exist
enough distinct elements for the extraction of two buffers each of size \/m. In this
section we present a way to do the merging when there are A < 2,/m distinct elements.
The algorithm is based on Kronrod’s algorithm [13] and the ideas of Pardo [15] and
it was also presented in [16]. Our presentation is on the lines of [16] with appropriate
modifications of the block sizes in order to achieve the desired performance.

Assume that we have already extracted a buffer of maximum possible size A <
2/m elements which are sorted. We divide the remaining elements of each of the two
sequences into blocks of size [(m + n)/A]. Now, the array looks like:

< buffer > AgpanAi1As - B1By -+ Bgna

138

where Agpay and Bgpay are blocks with less than [(m + n)/A] elements. (We call
them non-full blocks. All other blocks are full blocks.) We ignore these blocks for the
moment. We will distribute them into the sorted sequence at the end.

We put each full block into a 1-to-1 (from left to right) correspondence with the
buffer elements. Let k be the key value of the buffer element that corresponds to
the last A block. Then, all B blocks correspond to buffer elements with key values
greater than k. This provides us with an easy method to determine the sequence in
which a block belongs.

Then, we stably sort the blocks based on the key value of their first element.
While doing that, the movement of each block is imitated by the buffer elements.
The stable sorting of the blocks can be done in place by a variant of selection sort.
The method of the movement imitation, together with the fact that all buffer elements
that correspond to blocks of sequence A (B) are smaller or equal to (larger than) £,
allows us to perform the stable sorting of the blocks. It requires O(N) assignments
and O(A?) = O(m) comparisons.

After the stable block sorting all block elements possess an important property. If
the final position of an element in the sorted sequence of all blocks is location 7, then
after the block sorting that element is located in segment L[1...7 + [(m + n)/)\]].
This follows from the fact that the blocks are stably sorted based on the key value of
their first element.

We proceed with the merging of the blocks from left to right. Suppose that we
have merged all block elements up to location [— 1 and that the element at location
[belongs to sequence X (X is either A or B). Let x = L[g| be the first element of
type X (the opposite of type X) that follows L[l] (Figure 4). If Ljq — 1] < L|q] (< if
Llg] belongs to sequence B) then the elements up to location ¢ are merged. In this
case we update set [to be position ¢+ 1. In the case where L[g — 1] > L[q] (> if L[q]
belongs to sequence A), we locate the first element in segment L[l + 1...¢q — 1] that

139

must be placed after x in the sorted sequence. Let it be element y at location p. We
also compute the location r that contains the last element, say z, that belongs before
Y.

We expand the merged sequence of the array by exchanging of segments L[q. .. 7]
and L[p...q — 1]. Now, the segment L[1...p+ r — ¢| is merged. We update [to be
position p + r — ¢ and we continue until all block elements are exhausted.

merged Type X Type X
...... y X Z ST
I p q r

Figure 4: Merging in the case where it is not possible to form the required buffers.

Note that in each block exchange there are involved at least two distinct elements.
Since there are A distinct elements, we will perform at most A/2 block exchanges. Also
note that each exchange moves at most [(m+n)/A] elements to a position which is not
their final. So, the algorithm will perform O(m+n) = O(N) assignments. We perform
a comparison only when we need to locate elements x, y and z. It is easy to see that
by using the “binary-like searching” we will need a total of O(m + Alog(N/m)) =
O(mlog(n/m + 1)) comparisons.

Now the array looks like:

< buffer > Ay, < merged full blocks > Byau

We complete the stable merging by i) distributing in a stable fashion A,y from
the left, ii) distributing in a stable fashion By, from the right, and iii) sorting the
buffer and distributing it in a stable fashion from the left. The number of comparisons
performed by the sorting of the buffer and the distribution of the non-full blocks and
the buffer will not change the asymptotic performance of the algorithm.

140

6 Conclusions

In this paper we considered stable in-place merging. We presented a merging al-
gorithm based on the method of Mannila and Ukkonen that performs an optimal
number of comparisons and assignments. This closes an open problem mentioned
by Dudzinski and Dydek [2] in 1981. It is amazing that all techniques presented
in this paper, have already appeared in the literature, usually in more complicated
forms, but they have not been put together to achieve the required result. Salowe
and Steiger [16] made an effort to present simple stable algorithms, but even though
the unstable versions of their algorithms were simple, the modifications required to
make them stable were very complex. However, the methods presented in Section 4
are powerful enough to make stable all of the unstable in-place merging algorithms
that we are aware of. We were able to use them to make stable the algorithms of
Kronrod [13], Dvorak and Durian [6], and Huang and Langston [§], as well as to
simplify the algorithms presented by Salowe and Steiger [16]. Note that, any of the
two methods presented in Section 4 can be used in making these merging algorithms
stable. In the algorithms of this paper, we used the method of movement imitation
because we think it is more elegant.

Given the result of this paper, no further improvement in the asymptotic com-
plexity of in-place stable merging can be expected. However, it is interesting to note
that internal buffers are used in almost all algorithms that followed their introduction
by Kronrod in [13]. Tt would be nice to know if linear in-place merging is possible
without the use of an internal buffer.

141

References

1]

2]

S. Carlsson, “SPLITMERGE-A Fast Stable Merging Algorithm”, Information
Processing Letters 22 (1986), 189-192.

3

K. Dudzinski and A. Dydek, “On a Stable Storage Merging Algorithm”, Infor-
mation Processing Letters 12 (1981), 5-8.

S. Dvorak and B. Durian, Towards an Efficient Merging”, Lecture Notes in Com-
puter Science 133 (1986), 290-298, Springer-Verlag.

S. Dvorak and B. Durian, “Stable Linear Time Sublinear Space Merging”, The
Computer Journal 30 (1987), 372-375.

S. Dvorak and B. Durian, “Merging by Decomposition Revisited”, The Computer
Journal 31 (1988), 553-556.

S. Dvorak and B. Durian, “Unstable Linear Time O(1) Space Merging”, The
Computer Journal 31 (1988), 279-282.

E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, Computer
Science Press, Maryland, 1978.

B-C Huang and M.A. Langston, “Practical In-Place Merging”, Communications
of the ACM 31 (1988), 348-352.

3

B-C Huang and M.A. Langston, “Fast Stable Merging and Sorting in Constant
Extra Space”, The Computer Journal 35 (1992), 643-650.

E. C. Horvath, “Stable Sorting in Asymptotically Optimal Time and Extra
Space”, Journal of the ACM 25 (1978), 177-199.

142

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

F.K.Hwang and S. Lin, “A Simple Algorithm for Merging Two Disjoint Linearly
Ordered Sets”, STAM Journal on Computing 1 (1972), 31-39.

D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching,
Addison-Wesley, 1973.

M. A. Kronrod, “An Optimal Ordering Algorithm without a Field Operation”,
Dokladi Akad. Nauk SSSR 186 (1969), 1256-1258.

’

H. Mannila and E. Ukkonen, “A simple Linear-Time Algorithm for In Situ Merg-
ing”, Information Processing Letters 18 (1984), 203-208.

L. T. Pardo, “Stable Sorting and Merging with Optimal Space and Time
Bounds”, SIAM Journal on Computing 6 (1977), 351-372.

3

J. Salowe and W. Steiger, “Simplified Stable Merging Tasks”, Journal of Algo-
rithms 8 (1987), 557-571.

A. Symvonis, “Optimal stable Merging”, Technical Report 466, Basser Depart-
ment of Computer Science, University of Sydney, Australia, May 1993.

J. K. Wong, “Some Simple In-Place Merging Algorithms”, Bit 21 (1982), 157-166.

143

