
Proc. ICCI’94, 124-143  1994 Int. Conf. on Computing and Information

Optimal Stable MergingAntonios SymvonisBasser Department of Computer ScienceUniversity of SydneySydney, N.S.W. 2006Australiasymvonis@cs.su.oz.auAbstractIn this paper we show how to stably merge two sequences A and B of sizesm and n, m � n, respectively, with O(m+n) assignments, O(m log(n=m +1))comparisons and using only a constant amount of additional space. This resultmatches all known lower bounds and closes an open problem posed by Dudzinskiand Dydek [2] in 1981. Our algorithm is based on the unstable algorithm ofMannila and Ukkonen. All techniques we use have appeared in the literature inmore complicated forms but were never combined together. They are powerfulenough to make stable all the existing linear in-place unstable algorithms weare aware of.

125

1 IntroductionIn this paper, we consider the problem of merging. We are given two sequences Aand B of m and n elements, respectively, such that A and B are sorted in increasingorder according to a key value of their elements. Without loss of generality, in therest of the paper we assume that m � n. The result of merging A and B will be asequence C of N = m+n elements, consisting of the elements of A and B, such thatC is sorted in increasing order according to the same key value of its elements. Anelement of sequence A is called an A-element. Similarly, we de�ne B-elements.We assume that initiallyA and B occupy segments L[0 : : :m�1] and L[m : : :N�1]of an array L, respectively, and that after the merging C occupies the entire arrayL[0 : : : N � 1].In addition, we may want our merging algorithm to be stable. We say that themerging is stable if the internal ordering of sequences A and B is maintained inthe resulting sequence C. (In the case that elements with the same key appear inboth sequences, the elements in sequence A are considered to be \smaller" than theelements with the same key in sequence B.)The performance of any merging algorithm is judged according to the number ofcomputation steps it needs to perform the merging as well as the amount of extraspace used. If the merging algorithm uses only a constant amount of extra space, wesay that the merging is performed in place.It is relatively easy to derive lower bounds on the time performance of everymerging algorithm. The number of assignments will be
(N) since there are instancesof the merging problem in which, after the merging, each element is in a location ofarray L that is di�erent than the one it occupied before the merging. The number ofcomparisons between keys of individual elements that a merging algorithm needs toperform is
(m log(n=m). (See [12, pages 198-206] for a detailed analysis.)

126

The obvious way of merging two sorted sequences A and B of m and n elements,respectively, into a sequence C of N = m + n elements (see [7, page 114]) requiresO(N) time, which is optimal, but also uses O(N) additional space. Kronrod [13]derived a method of merging two sorted sequences of a total of N elements in O(N)time using only a constant amount of additional space. In doing so, he introducedthe important notion of the internal bu�er which is used in almost all subsequentalgorithms for the merging problem. Unfortunately, Kronrod's merging algorithmwas not stable. Horvath [10] managed to derive a stable algorithm with the sameasymptotic complexity which, however, had the undesired characteristic of modifyingthe keys of the elements during the merging. Pardo [15] overcame this obstacle and�nally derived an asymptotically optimal algorithmwhich didn't use key modi�cation.Even though asymptotically optimal, because of their complex structure and thelarge constant of proportionality, both of the algorithms of Horvath and Pardo areconsidered impractical. Several non-optimal stable algorithms that compromise byusing either more time [2, 3, 5, 18] or more additional space [1, 3, 5, 4] were devel-oped. Dvorak and Durian [6], Mannila and Ukkonen [14] and Huang and Langston [8]derived linear time algorithms for unstable in-place merging. The algorithm of Man-nila and Ukkonen di�ers from previously developed algorithms in using an internalbu�er of length pm instead of pN . Huang and Langston presented a surprisinglystraightforward and practical method for unstable merging that uses (in a more cre-ative way than previously developed algorithms) an internal bu�er of size pN . In alater paper [9], they managed to make their algorithm stable.None of the known stable in-place merging algorithms succeeds to match the lowerbounds on both the number of comparisons (
(m log(n=m))) and the number of ele-ment assignments (
(N)). The algorithms of Horvath [10], Pardo [15] and Huang andLangston [9] performO(N) comparisons and element assignments. SPLITMERGE [1]matches the lower bounds but uses O(m) extra space. The algorithm of Mannila and

127

Ukkonen matches all the lower bounds (number of comparisons/assignments and ex-tra space) but is unstable. To achieve that, it uses the binary merging algorithm ofHwang and Lin [11].In this paper, we show how to make stable the algorithm of Mannila and Ukkonenwhile maintaining the same asymptotic complexity on the number of comparisons,assignments and the extra space. This yields the �rst optimal stable merging algo-rithm with respect to all known lower bounds. Surprisingly enough, the method weuse to make the algorithm stable is very simple. Actually, it can be used to makestable almost all of the existing unstable algorithms.The paper is organized as follows: In the next section we review several tech-niques that are used in merging. These include block exchange algorithms, binary-likesearching and the use of the internal bu�er. We present their performance analysisand for the case of operations related to the internal bu�er we employ the methodof binary-like searching to reduce the number of required comparisons. In Section3, we present the algorithm of Mannila and Ukkonen [14]. In Section 4, we presentour stable optimal merging algorithm. We present two methods that can be used formaking stable an unstable algorithm and then we show how to modify the algorithmof Mannila and Ukkonen so that it is stable and optimal. In Section 5, we show howto perform the merging optimally in the case that there are less than 2pm distinctelements. In this case, we are not able to build the necessary internal bu�ers andthus to apply our general merging algorithm. We conclude in Section 6.

128

2 Basic techniques2.1 Block exchangesA block exchange of two consecutive blocks U and V of sizes l1 and l2, respectively,that occupy segment L[c : : : c + l1 + l2 � 1] results to the movement of block U tosegment L[c + l2 : : : c + l1 + l2 � 1], and to the movement of block V to segmentL[c : : : c+ l2 � 1]. (The case where the two blocks are not consecutive can be treatedsimilarly.)There is a clever algorithm that is considered to be part of the folklore that per-forms the block exchange using about l1 + l2 swaps (3(l1 + l2) assignments).BLOCK EXCHANGE (c; l1; l2)INVERSE (c; c+ l1 � 1)INVERSE (c+ l1; c+ l1 + l2 � 1)INVERSE (c+; c+ l1 + l2 � 1)Procedure INVERSE (i; j); i < j; performs an inversion of the elements in segmentL[i : : : j] by executing exactly b(j � i+ 1)=2c swaps.A more complicated method developed by Dudzinski and Dydek [2] performs theblock exchange by using only l1+ l2+gcd(l1; l2) assignments, where gcd(l1; l2) denotesthe greatest common divisor of l1 and l2. It is based on the following theorem:Theorem 1 [Dudzinsky, Dydek, [2]] Given an array L[0 : : : s�1], a circular shiftto the right of sizem is decomposed to exactly gcd(m; s�m) cycles where gcd() denotesthe greatest common divisor function. Furthermore, locations 0 : : : gcd(m; s�m)� 1belong to di�erent cycles.

129

2.2 Binary-like searchingWe present the technique (which we call binary-like searching) that Hwang and Linused in their binary-merging algorithm [11][12, pages 204-206]. It is through thebinary-like searching technique that we succeed in reducing the number of compar-isons of the merging algorithm from O(N) to O(m log(n=m)).We are given a sorted sequence of N elements and element x to be inserted inthat sequence. Binary-like searching �nds the location in which x is to be inserted inO(m+ log(N=m)) comparisons for any m � N .The algorithm proceeds as follows: The sequence is split into blocks of size dN=me.By comparing the last element of the blocks, starting from left to right, we locate theblock in which x is to be inserted. Then, in that block, we perform a binary searchto locate the exact position for the insertion. We need O(log(N=m)) comparisons forthe binary search and O(m) comparisons to locate the block that x is to be inserted.Thus, the O(m+log(N=m)) bound on the number of comparisons. It is interesting toobserve that in the case whichm = 1 binary-like searching reduces to binary searchingwhile in the case which m = N it reduces to linear searching.2.3 The internal bu�erKronrod [13] introduced the notion of the internal bu�er in his e�ort to derive amerging algorithm that uses constant extra space. An internal bu�er is simply asegment of the input array which is used for bu�ering purposes. However, there is arestriction on how we use the internal bu�er. Whenever we want to store an elementinto a position of the bu�er we make sure that the element stored previously in thatposition is moved to another position of the array. We achieve that by allowing themodi�cation of the bu�er by either swaps or circular shifts of its elements.After merging the sequences with the use of the internal bu�er, the elements of

130

the bu�er are not in their original order. Sorting the bu�er and then distributingit into the already merged sequence will produce the �nal merged sequence. Noticethat, in the case that the bu�er does not consist of distinct elements, the mergingis not stable. This is because the sorting of the bu�er is not enough to restore theinitial order of elements with the same key value. However, when all bu�er elementsare distinct the distribution of the bu�er in the already sorted sequence can be donein a stable fashion.In the rest of this paper, the bu�ers will always occupy the left part of the array.Realizing the importance of having a bu�er of distinct elements for stable merging,we will show how to extract a bu�er.Assuming that a bu�er of size b is needed, we will move b distinct elements in theleft part of the array. We call this operation bu�er extraction. The reverse operation,bu�er distribution, is also important.For simplicity, we assume that the input array contains only one sorted sequencewith at least b distinct elements. We will form an internal bu�er of b distinct elementsplaced in segment L[0 : : : b� 1].We build the bu�er by adding one element at time. Initially it consists of theelement L[0]. Assume that after adding j elements to the bu�er, 1 � j < b, thebu�er occupies the segment L[i : : : i + j � 1], i + j � 1 < N � 1, the elements of thebu�er are sorted in increasing order, and that L[i+ j� 1] was the last element addedto the bu�er. We add another element to the bu�er as follows: Let L[k]; k � i + j,be the element with the smallest index in segment L[i + j : : : N � 1] that satis�esthe relation L[i + j � 1] < L[k]. We add element L[k] into the bu�er by exchangingthe contents of segments L[i : : : i + j � 1] and L[i + j : : : k � 1]. This can be done inO(k � j) steps by a call to our BLOCK EXCHANGE routine. Observe that, afterthe expansion of the bu�er with a new element, the elements of the bu�er are stilldistinct and sorted in increasing order. We continue this process until a bu�er of b

131

elements is created. A �nal block exchange will move the bu�er to the beginning ofthe array. Note that, in the case that there do not exist b distinct elements, the abovealgorithm creates a bu�er of maximum possible size.The time complexity of the above procedure is O(b2 + N). To see that, simplyobserve that each element that does not belong to the bu�er is moved exactly onceto the left, while each bu�er element moves at most b times to the right.It is a simple task to modify the bu�er extraction algorithm to work when theinput array contains two sorted sequences A and B of m and n elements, respectively.The algorithm will essentially remain the same but some attention is needed whenextracting elements from sequence B. We have to make sure that an element withthe same key value was not extracted previously from sequence A. By recalling ourinitial goal, i.e., to obtain a linear time stable merging algorithm, we conclude thatthe maximum size of the bu�er that we can a�ord is O(pN).In the above described bu�er extraction algorithm, the next element to be addedto the bu�er is located by a linear scanning of the two sequences. As a result, O(N)comparisons are performed. By using the binary-like searching to locate the elementsto be added at the bu�er, we can prove the theorem:Theorem 2 A bu�er of pm distinct elements can be extracted from an array con-taining two sorted sequences A and B of m and n elements, m < n, respectively, inlinear time and with O(m+pm log(n=m)) element comparisons.Distributing a bu�er of size b within a sorted sequence of size N can be performedin time O(b2 + N) by exactly the reverse procedure of bu�er extraction. When weare concerned with the number of comparisons, we can prove the following theorem:Theorem 3 A bu�er of pm distinct elements can be distributed into an array of Nelements in linear time and with O(m+pm log(N=m)) element comparisons.

132

3 The merging algorithm of Mannila and Ukko-nenIn this section we will review the in-place algorithm of Mannila and Ukkonen [14].The algorithm performs O(N) assignments and O(m log(n=m)) comparisons. Its onlydrawback is that it is unstable. In the next section we show how to make it stable.We have to merge sequence A occupying L[0 : : :m�1], with sequence B occupyingL[n : : :m + n � 1], m < n. The �rst pm elements of sequence A will be used as aninternal bu�er. We assume that pm is an integer.The algorithm splits each of the sequences A and B into pm � 1 blocks. Theblocks of sequence A are of �xed length, i.e., length(Ai) = pm; 1 � i � pm � 1,while the blocks of sequence B are of variable length. Sequence B is partitioned insuch a way that the concatenation of the merged sequencesMERGE(A1; B1); : : : ;MERGE(Ai; Bi); : : : ;MERGE(Apm�1; Bpm�1)results in a sorted sequence. In order to achieve that, appropriate splitting points forsequence B must be located. Let FIRST (X) (LAST (X)) denote the position of the�rst (last) element of a sequence X. We need to specify the values FIRST (Bi) andLAST (Bi), 1 � i � pm� 1. An appropriate choice is the following:FIRST (B1) = m FIRST (Bi) = LAST (Bi�1 + 1); 1 < i � pm� 1LAST (Bi) = 8><>: m� 1 if LAST (Ai) < L[m]m+ n� 1 if LAST (Ai) > L[m + n� 1]j such that L[j] < LAST (Ai) � L[j + 1]Note that the boundaries of the blocks from sequence B can be located by aprocedure similar to that used in the bu�er extraction, and thus, O(log(n=m)) stepsare enough to locate each one of them. As we will see, it is not necessary to compute

133

1A B1 A2 B
2

Aj Bj

Left Section

......

Middle Section Right Section

Figure 1: During the block rearrangement in the merging algorithm of Mannila andUkkonen the array is divided into 3 sections.all of them at once and thus, we do not need any extra space to store them.Moving the blocks to positions suitable for the local merges is not an easy task.Finding a clever way to perform it was a key to the success of the algorithm of Mannilaand Ukkonen.We assume that at any time the array is divided into three sections (see Figure 1).The left section contains j; j < pm � 1; pairs of blocks in their �nal order (readyfor the local merges). The middle section consists of the remaining blocks of the Asequence. The blocks are permuted and it is possible that one of them is dividedinto two parts. Its left part occupies the right end of the middle section and therest occupies the left part of the middle section. We denote the blocks of the middlesection by Mi; 1 � i � pm � 1 � j. The right section of the array consists of theremaining blocks of the B sequence.The algorithm locates in the middle section the next block to be merged. Thiswill be the block with the smallest LAST () element, say Aj+1. By using LAST (Aj+1)we can identify from the right section the corresponding block Bj+1. Then we haveto transfer these two blocks in the left section of the array in such a way that themiddle section maintains its properties.There are two cases to consider depending on whether block Aj+1 is the dividedblock of the middle section or not.

134

In the case where Aj+1 is the divided block, we simply move the �rst part ofthe divided block and block Bj+1 (they are adjacent) immediately after the rest ofdivided block. To restore the divided block we exchange its two parts. Observe thatthe middle section retains its structure (Figure 2).The case where Aj+1 is not the divided block is easy to handle as well. By twoblock exchanges between the divided block and Aj+1 we can make Aj+1 be the dividedblock. Now, the block setting is the one described in the previous case (Figure 3).
Aj Bj A2

j+1
A j+1

1 B
j+1

A j+1
1 B

j+1andMove

A j+1
1

A2
j+1

Exchange and

Aj Bj A j+1
1

A2
j+1

B
j+1

......

Middle Section

2

k
1

k MM

Aj Bj A2
j+1

A j+1
1 B

j+1

......

Middle Section

k
1M2

k M

......

Middle Section

..........

M1

Figure 2: The case where Aj+1 is the divided block.Locating the blocks from the middle section requires a total of O(m) compar-

135

isons. Each local merge can be performed with O(m + pm log(n=m)) comparisonsand O(m log(n=m + 1)) comparisons are enough for all local merges. The task ofdistributing the bu�er into the merged sequence is o� the same complexity.
Aj Bj A

j+1 B
j+1k

1
MkM

2

......

Middle Section

..........

Aj
Bj A2

j+1
A j+1

1 B
j+1kM

2
k
1

M

......

Middle Section

....................Figure 3: The case where Aj+1 is not the divided block.4 An optimal stable merging algorithmTo the best of our knowledge, all the known in-place unstable merging algorithmsfail to be stable because of two common problems. The �rst of them concerns theircapability to extract bu�ers composed of distinct elements. We will show how to dothe merging for this case in Section 5. The second problem is caused from the factthat almost all of them are based on local merges of blocks from the two sequences.During the merging, the next block that will participate in the local merge must be

136

located. This is usually done by searching for the block with the minimum �rst (orlast) element. In the case that in a sequence there are more elements with the samekey value than the size of the block, there might be more than one block with thesame �rst (or last) element. Since during the merging the blocks are permuted, itis possible to pick the blocks in the wrong order. (The error in the algorithm ofKonrod [13] was similar to the above problem.)A surprisingly easy method that can be used to overcome this problem is to numberthe blocks. This will ensure that we use the blocks in the correct order. However,since we are allowed to use only a constant amount of extra memory, we must recordthe block number in a di�erent way. We will show two methods to do it.4.1 Method-I: creating a \peak"Assume that there are k blocks that we want to number. In this method we markthe ith block, 1 � i � k, by substituting the ith element of the block by an elementwith key value larger that all block elements. To make the marking possible, wecreate a sorted sequence of at least k elements by partially merging the right endsof the two sequences. The length of the new sorted sequence is su�ciently large toguarantee that its smallest element is larger that all the elements in the blocks wehave to mark. Having created that sequence, we exchange the ith element of the ithblock, 1 � i � k, with the ith element of the sequence. During the merging, when welocate a block, we swap back the elements to restore it and then to proceed with themerging. Notice that the ordering of the sequence with the \large" elements is notdestroyed. Salowe and Steiger [16] used a similar but much more complicated methodin their stable in-place linear time merging method. In their paper they also treat theproblem that might occur when during the creation of the sequence with the \large"elements, one of the original sequences is exhausted. (Actually, this is not a problem.

137

It is something that we must hope to occur.)4.2 Method-II: movement imitationThe second method we present uses an additional bu�er of size equal to the numberof blocks we need to mark. The elements of the bu�er must be distinct and thebu�er sorted. We put the bu�er elements into a one-to-one correspondence with theblocks. The ith smallest bu�er element corresponds to the ith block. Then, during themerging, we maintain this correspondence by imitating the movement of the blocksby the elements of the bu�er. So, when we want to locate the ith block, we computethe position of the ith smallest element of the bu�er. The ith block will be in the samerelative position with respect to the other blocks. The above method is a simpli�edversion of the method used by Pardo [15].4.3 The optimal algorithmHaving available all the techniques developed in the previous sections, it is easy todescribe an optimal in-place and stable merging algorithm.We start by extracting two bu�ers, each of pm distinct elements. We assumethere are enough distinct elements to create the bu�ers. We will see in the nextsection how to treat the case in which we are not able to form the bu�ers. We use the�rst bu�er to perform the local merges and the second one to ensure that the blocksof sequence A are merged in the correct order. We do that by using the movementimitation method. After splitting the remaining elements of sequence A into blocksof size pm the array looks like:< bu�er 1 > < bu�er 2 > AsmallA1A2 : : : < remaining elements of sequence B >

138

where Asmall is a non-full block that we ignore in the next step.We proceed by executing a stable version of the algorithm of Mannila and Ukko-nen. After it, the array looks like:< bu�er 1 > < bu�er 2 > Asmall < stably sorted sequence of elements >We complete the stable merging by distributing from the left and in a stable fashioni) Asmall, ii) bu�er 2, and iii) bu�er 1.Based on the analysis in earlier sections, it it easy to see that the above algorithmis stable and that it performs O(m log(n=m +1)) comparisons and O(N) assignments,and thus, it is optimal.5 Merging in the presence of at most � distinctkeys.The optimal stable merging algorithm presented in this paper assumes that there existenough distinct elements for the extraction of two bu�ers each of size pm. In thissection we present a way to do the merging when there are � < 2pm distinct elements.The algorithm is based on Kronrod's algorithm [13] and the ideas of Pardo [15] andit was also presented in [16]. Our presentation is on the lines of [16] with appropriatemodi�cations of the block sizes in order to achieve the desired performance.Assume that we have already extracted a bu�er of maximum possible size � <2pm elements which are sorted. We divide the remaining elements of each of the twosequences into blocks of size d(m + n)=�e. Now, the array looks like:< bu�er > AsmallA1A2 � � �B1B2 � � �Bsmall

139

where Asmall and Bsmall are blocks with less than d(m + n)=�e elements. (We callthem non-full blocks. All other blocks are full blocks.) We ignore these blocks for themoment. We will distribute them into the sorted sequence at the end.We put each full block into a 1-to-1 (from left to right) correspondence with thebu�er elements. Let k be the key value of the bu�er element that corresponds tothe last A block. Then, all B blocks correspond to bu�er elements with key valuesgreater than k. This provides us with an easy method to determine the sequence inwhich a block belongs.Then, we stably sort the blocks based on the key value of their �rst element.While doing that, the movement of each block is imitated by the bu�er elements.The stable sorting of the blocks can be done in place by a variant of selection sort.The method of the movement imitation, together with the fact that all bu�er elementsthat correspond to blocks of sequence A (B) are smaller or equal to (larger than) k,allows us to perform the stable sorting of the blocks. It requires O(N) assignmentsand O(�2) = O(m) comparisons.After the stable block sorting all block elements possess an important property. Ifthe �nal position of an element in the sorted sequence of all blocks is location i, thenafter the block sorting that element is located in segment L[1 : : : i + d(m + n)=�e].This follows from the fact that the blocks are stably sorted based on the key value oftheir �rst element.We proceed with the merging of the blocks from left to right. Suppose that wehave merged all block elements up to location l � 1 and that the element at locationl belongs to sequence X (X is either A or B). Let x = L[q] be the �rst element oftype X (the opposite of type X) that follows L[l] (Figure 4). If L[q � 1] < L[q] (� ifL[q] belongs to sequence B) then the elements up to location q are merged. In thiscase we update set l to be position q+1. In the case where L[q� 1] > L[q] (� if L[q]belongs to sequence A), we locate the �rst element in segment L[l + 1 : : : q � 1] that

140

must be placed after x in the sorted sequence. Let it be element y at location p. Wealso compute the location r that contains the last element, say z, that belongs beforey. We expand the merged sequence of the array by exchanging of segments L[q : : : r]and L[p : : : q � 1]. Now, the segment L[1 : : : p+ r � q] is merged. We update l to beposition p+ r � q and we continue until all block elements are exhausted.
Type X

......

merged

y

Type X

l p q r

zxFigure 4: Merging in the case where it is not possible to form the required bu�ers.Note that in each block exchange there are involved at least two distinct elements.Since there are � distinct elements, we will perform at most �=2 block exchanges. Alsonote that each exchange moves at most d(m+n)=�e elements to a position which is nottheir �nal. So, the algorithmwill performO(m+n) = O(N) assignments. We performa comparison only when we need to locate elements x; y and z. It is easy to see thatby using the \binary-like searching" we will need a total of O(m + � log(N=m)) =O(m log(n=m + 1)) comparisons.Now the array looks like:< bu�er > Asmall < merged full blocks > BsmallWe complete the stable merging by i) distributing in a stable fashion Asmall fromthe left, ii) distributing in a stable fashion Bsmall from the right, and iii) sorting thebu�er and distributing it in a stable fashion from the left. The number of comparisonsperformed by the sorting of the bu�er and the distribution of the non-full blocks andthe bu�er will not change the asymptotic performance of the algorithm.

141

6 ConclusionsIn this paper we considered stable in-place merging. We presented a merging al-gorithm based on the method of Mannila and Ukkonen that performs an optimalnumber of comparisons and assignments. This closes an open problem mentionedby Dudzinski and Dydek [2] in 1981. It is amazing that all techniques presentedin this paper, have already appeared in the literature, usually in more complicatedforms, but they have not been put together to achieve the required result. Saloweand Steiger [16] made an e�ort to present simple stable algorithms, but even thoughthe unstable versions of their algorithms were simple, the modi�cations required tomake them stable were very complex. However, the methods presented in Section 4are powerful enough to make stable all of the unstable in-place merging algorithmsthat we are aware of. We were able to use them to make stable the algorithms ofKronrod [13], Dvorak and Durian [6], and Huang and Langston [8], as well as tosimplify the algorithms presented by Salowe and Steiger [16]. Note that, any of thetwo methods presented in Section 4 can be used in making these merging algorithmsstable. In the algorithms of this paper, we used the method of movement imitationbecause we think it is more elegant.Given the result of this paper, no further improvement in the asymptotic com-plexity of in-place stable merging can be expected. However, it is interesting to notethat internal bu�ers are used in almost all algorithms that followed their introductionby Kronrod in [13]. It would be nice to know if linear in-place merging is possiblewithout the use of an internal bu�er.

142

References[1] S. Carlsson, \SPLITMERGE-A Fast Stable Merging Algorithm", InformationProcessing Letters 22 (1986), 189-192.[2] K. Dudzinski and A. Dydek, \On a Stable Storage Merging Algorithm", Infor-mation Processing Letters 12 (1981), 5-8.[3] S. Dvorak and B. Durian, Towards an E�cient Merging", Lecture Notes in Com-puter Science 133 (1986), 290-298, Springer-Verlag.[4] S. Dvorak and B. Durian, \Stable Linear Time Sublinear Space Merging", TheComputer Journal 30 (1987), 372-375.[5] S. Dvorak and B. Durian, \Merging by Decomposition Revisited", The ComputerJournal 31 (1988), 553-556.[6] S. Dvorak and B. Durian, \Unstable Linear Time O(1) Space Merging", TheComputer Journal 31 (1988), 279-282.[7] E. Horowitz and S. Sahni, Fundamentals of Computer Algorithms, ComputerScience Press, Maryland, 1978.[8] B-C Huang and M.A. Langston, \Practical In-Place Merging", Communicationsof the ACM 31 (1988), 348-352.[9] B-C Huang and M.A. Langston, \Fast Stable Merging and Sorting in ConstantExtra Space", The Computer Journal 35 (1992), 643-650.[10] E. C. Horvath, \Stable Sorting in Asymptotically Optimal Time and ExtraSpace", Journal of the ACM 25 (1978), 177-199.

143

[11] F.K.Hwang and S. Lin, \A Simple Algorithm for Merging Two Disjoint LinearlyOrdered Sets", SIAM Journal on Computing 1 (1972), 31-39.[12] D. E. Knuth, The Art of Computer Programming, Vol. 3: Sorting and Searching,Addison-Wesley, 1973.[13] M. A. Kronrod, \An Optimal Ordering Algorithm without a Field Operation",Dokladi Akad. Nauk SSSR 186 (1969), 1256-1258.[14] H. Mannila and E. Ukkonen, \A simple Linear-Time Algorithm for In Situ Merg-ing", Information Processing Letters 18 (1984), 203-208.[15] L. T. Pardo, \Stable Sorting and Merging with Optimal Space and TimeBounds", SIAM Journal on Computing 6 (1977), 351-372.[16] J. Salowe and W. Steiger, \Simpli�ed Stable Merging Tasks", Journal of Algo-rithms 8 (1987), 557-571.[17] A. Symvonis, \Optimal stable Merging", Technical Report 466, Basser Depart-ment of Computer Science, University of Sydney, Australia, May 1993.[18] J. K. Wong, \Some Simple In-Place Merging Algorithms", Bit 21 (1982), 157-166.

