
Proc. ICCI’94, 144-161  1994 Int. Conf. on Computing and Information

Optimal Algorithms for Packet Routing on Trees

Antonios Symvonis

Basser Department of Computer Science

University of Sydney

Sydney, N.S.W. 2006

Australia

symvonis@cs.su.oz.au

Abstract

In this paper, we study the permutation packet routing problem on trees.

We show that every permutation can be routed on a tree of n vertices in n�

1 routing steps. We provide an algorithm which produces in O(n2) time a

schedule that needs O(n2) bits for its description. Moreover, we describe an

on-line algorithm that completes the routing of any permutation in n�1 routing

steps by using at each vertex v bu�ering area of size at most 2d(v), where d(v)

is the degree of vertex v. Our results provide upper bounds on the number of

routing steps required to route a permutation on an arbitrary connected graph

G since the routing can be done by using only the edges of a spanning tree

of G.

145

1 Introduction

The permutation packet routing problem on a connected undirected graph is the fol-

lowing: We are given a graph G = (V;E) and a permutation � of the vertices of G.

Every vertex v of G contains a packet destined for �(v). Our task is to route all

packets to their destinations.

During the routing, the movement of the packets follows a set of rules. These rules

specify the routing model. Routing models might di�er on the way edges are treated

(unidirectional, bidirectional), the number of packets a vertex can receive or transmit

in a single step, the number of packets allowed to queue in a vertex (queuesize), etc.

Let rtM(G; �) be the number of steps required to route permutation � on graph

G using routing model M . The routing number of graph G with respect to routing

model M , rtM(G), is de�ned to be the

rtM(G) = max
�

rtM(G; �)

over all permutations � of the vertex set V of G.

The routing number of a graph was �rst de�ned by Alon, Chung and Graham

in [1]. In their routing model, the only operation allowed during the routing is the

exchange of the packets at the endpoints of an edge of graph G. The exchange of

the packets at the endpoints of a set of disjoint edges (a matching on G) can occur

in one routing step. We refer to this model as the matching routing model and, for a

graph G, we refer to the routing number of G with respect to the matching routing

model, simply as the routing number of G, denoted by rt(G). In [1], it was shown

that rt(T) < 3n for any tree T of n vertices. As a consequence, rt(G) < 3n for any

graph G of n vertices.

A lot of work has been devoted to the study of packet routing problems. As it is

natural, several routing models have been considered. However, most of the papers

146

in the literature [2, 5, 6, 7, 8, 9, 11, 12, 13, 15, 17] consider the model in which,

at any time step, all edges can carry a packet (bidirectional edges can carry one

packet for each direction). Upfal [16] considered the model in which, at each step,

each processor can either send or receive and only along one communication link.

Meyer auf der Heide, Oesterdiekho� and Wanka [10] considered the model in which

each processor can receive at most one packet per step. Note that, the above list of

references is in no way complete.

In this paper, we consider the commonly used routing model in which, at any time

step, all edges can carry at most one packet in each direction. Moreover, at each time

step, at most d(v) packets can be found in any vertex v of degree d(v) and no pair of

packets competes for the same communication link. A di�erent way to describe this

restriction is to say that with each communication link there is associated a bu�er

that can hold at most one packet. The routing schedule has to assure that this bu�er

is never overloaded. Since there is no chance that two packets will compete for the

same edge, it is fair to say that during the routing queues are not created. We will

refer to it as the simpli�ed routing model and we will denote the routing number of

graph G with respect to the simpli�ed routing model by rt0(G).

The rest of the paper is organized as follows: In Section 2, we give de�nitions

for terms we use in the paper. In Section 3, we show that rt0(T) < n for any tree

T = (V;E) of n vertices. We achieve this upper bound by demonstrating an algorithm

that computes a routing schedule of at most n � 1 steps for any permutation over

the vertex set of T . The routing schedule requires O(n2) bits for its description and

is computed in O(n2) time. In Section 4, an on-line algorithm that achieves the

same number of routing steps is derived. The on-line algorithm uses at each vertex v

bu�ering area of size at most 2d(v) where d(v) is the degree of vertex v. We conclude

in Section 5 with further research that has to be done in this area. Because of space

limitations we have omitted all proofs. These proofs can be found in [14].

147

2 Preliminaries

A �nite directed graph G = (V;E) is a structure which consists of a �nite set of

vertices V and a �nite set of edges E = fe1; e2; : : : ; ejEjg. Each edge is incident to the

elements of an ordered pair of vertices (u; v). u is the start-vertex of the edge and v

is its end-vertex. Occasionally, we refer to the vertex and the edge sets of graph G by

V (G) and E(G), respectively.

Edges with the same start and end-vertices are called self-loops. We de�ne the

directed self-loop augmented graph GSL = (V;E 0) of G = (V;E) to be the graph with

E 0 = E [fev = (v; v)jv 2 V g (one self loop is added for each vertex in G provided

that it does not already exist).

The setNeighbors(v;G) is de�ned to be the set of vertices inG that can be reached

from v by crossing just one edge. Formally, Neighbors(v;G) = fwj (v; w) 2 E of Gg.
If we ignore the direction of the edges of a �nite directed graph, we get a �nite

undirected graph. A tree is an undirected graph with no cycles and exactly jV j � 1

edges.

Given an undirected graphG, we can transform it to a directed one by substituting

each edge (u; v) in E(G) by the pair of anti-parallel edges (u; v) and (v; u). We denote

the graph produced by the above transformation by GD.

An permutation packet routing problem R is de�ned to be the pair (G; �) where

G = (V;E) is the directed graph that represents the network in which the routing will

take place (vertices in V represent processors and edges in E represent unidirectional

communication links) and � is the permutation to be routed. Formally, the set P of

jV j packets to be routed is de�ned by P = fp1; p2; : : : ; pjV jj pi = (i; �(i)); i; �(i) 2
V; 1 � i � jV jg. A more general de�nition that incorporates the maximum allowed

queuesize was given in [15]. Note that, even though the informal de�nition of most

routing models involves an undirected graph G with bidirectional communication

148

links, the corresponding directed graph GD can be used in the formal de�nition of

the routing problem.

An o�-line solution (or routing schedule) of length L for the o�-line packet routing

problem R = (G; �) is a set of directed paths SOLUTION(R) = fd1; d2; : : : ; djV jg
where di is the directed path corresponding to packet pi. The paths are taken on

graph GSL, the self-loop augmented graph of G, instead of G. We do that in order

to make it possible to incorporate self loops in the directed paths. A self loop from

vertex v in the path of some packet indicates that the packet was not advanced at

the corresponding routing step. Each directed path contains at most L + 1 vertices.

For i = 1 : : : jV j we have that

di = v0i v
1
i : : : v

l
i; 0 � l � L

where, v0i = i and vli = �(i).

In order to have a valid solution for our routing problem, the directed paths

must satisfy the condition: \At any routing step, each edge that corresponds to an

unidirected communication link appears in at most one directed path."

In order to describe the solution of a permutation routing problem we need to

specify for each packet the path it follows during the routing. At the worst case, a

solution of length L can be represented by a two dimensional matrix SOLUTION of

jV j rows (one for each packet) and L + 1 columns (one for each vertex in the path).

SOLUTION [p; t], 0;� t � L, is the vertex in which packet p is after t routing steps.

The space needed for reporting the solution is O(jV jL log jV j) bits. However, in cases

in which there is a unique path between any pair of vertices of the underlying graph

and derouting is not allowed, a path can be determined simply by knowing if at a given

step the packet is advanced towards its destination. In this case, each entry of matrix

SOLUTION consists of a single bit and thus, space of O(jV jL) bits is su�cient.

Furthermore, if it also holds that the movement of the packets is uninterupted, then

149

only the step in which each packet starts its routing needs to be stored. In that case,

O(jV j logL) bits are su�cient for reporting the routing schedule.

One important property that trees possess is that there is a unique simple path

between any pair of vertices in the tree. Given a tree T , we denote the unique path

in T from vertex u to vertex v by path(u; v). The number of edges in path(u; v) is

denoted by path size(u; v). We assume that, if w is a vertex in path(u; v), we can

determine the vertex that is immediately after w in the path from u to v in constant

time. It is easy to do so by using a jV j � jV j matrix N such that N [u; v] contains

the �rst vertex (not including u) of path(u; v). Of course, some preprocessing is

necessary to initialize matrix N and several algorithms for doing so are available.

Obvious choises include shortest path algorithms and tree traversal techniques [3]

which can optimally initialize matrix N in O(jV j2) time. In the rest of the paper, we

assume that the information of matrix N is available to us.

3 The routing number of trees with respect to

the simpli�ed routing model

In this section, we show that the routing number of a tree T of n vertices with respect

to the simpli�ed routing model is bounded from above by n, i.e., rt0(T) < n. We

prove this bound by excibiting an algorithm that, given a tree T of n vertices and

a permutation � on T 's vertex set, produces a routing schedule for the permutation

problem (TD; �) of length at most n� 1. The routing schedule is produced in O(n2)

time and requires O(n2) bits for its description.

150

3.1 The routing graph

Before we proceed with the description of the algorithm, we need to de�ne some

notation. Let T = (V;E) be the tree in which the routing will take place. V is the

vertex set of T and E its edge set. It holds that jEj = jV j � 1.

For each vertex v 2 V we construct the set

Sv = fvu j u 2 Neighbors(v; T)g [vcon

(\con" stands for \consume"). The set V R =
S
v2V Sv will be the vertex set of an

auxiliary directed graph TR = (V R; ER) which we will use in the algorithm. We call

TR the routing graph. The edge set of the routing graph will be di�erent at each stage

of the o�-line routing algorithm. We denote by TR
i = (V R; ER

i) the routing graph at

stage i. ER
i is the edge set of TR

i .

During the course of the routing, we denote by current(p) the current position of

packet p while, by orig(p) we denote its origin and by dest(p) we denote its destina-

tion. Since the routing is happening on a tree, for each packet p, there is a unique

simple (with no repeating vertices) path path(current(p); dest(p)) from current(p) to

dest(p). We denote by f(p) the �rst vertex on this path (not including current(p))

and by s(p) the second one. In the case that s(p) and/or f(p) are not well de�ned

(path(current(p); dest(p)) is too short for s(p) and/or f(p) to have meaning), we

assume that they return the special value \con" (for \consumed").

To de�ne graph TR
i = (V R; ER

i) we simply have to specify ER
i since V R is �xed. ER

i

contains at most jV j edges, one for each packet that hasn't reached its destination

after i routing steps (stages). The edge that corresponds to packet p, denoted by

edge(p), is de�ned as follows:

edge(p) =

(
(current(p)f(p); f(p)s(p)) if f(p) 6= dest(p)

(current(p)f(p); f(p)con) otherwise

151

What we want to represent with each edge is the information that, if in this routing

step packet p travels through edge (current(p); f(p)) of T , then in the next step it

will compete for edge (f(p); s(p)) of T . An example of a routing graph is given in

Figure 1.

2

7

3

5

63
7

2

1
4 1

2

21 24

42 4
3

4
5

6
5

7
5

1con

2con 3con

4con

5con

6con 7con

5
4

5
6 5

7

T:

3
4

T :R

4

5

1

6

Figure 1: The numbers next to the vertices of the tree T represent the destination of

the packet located in that vertex. Graph TR is the routing graph which corresponds

to tree T and the permutation to be routed.

The following lemmata regarding the routing graph are useful for the design and

the time analysis of the o�-line routing algorithm.

Lemma 1 Let V R be the vertex set of the routing graph constructed from tree T =

(V;E). Then, jV Rj = 3jV j � 2. 2

152

Lemma 2 Assume a distribution of jV j packets at the vertices of a tree T = (V;E)

which satis�es the requirement that no two packets compete for the same edge in a

given direction i.e., there doesn't exist a pair of packets p and q such that current(p) =

current(q) and f(p) = f(q). Then, the corresponding routing graph TR consists of a

collection of directed (toward the root) trees and a set of isolated vertices. 2

3.2 An O(n2)-time o�-line routing algorithm for trees

Consider any rooted at vertex v tree Tv which is a (not strongly connected) component

of a routing graph TR (see for example the tree rooted at vertex 56 in Figure 1). If

at the �rst routing step we advance all the packets that correspond to the edges of

the tree, then, at the second step, the edges of the original tree T that correspond

to vertices of in-degree greater than 1, will be requested by more than one packet.

To avoid this situation, we will not advance all packets. We will advance the packets

that corresponds to only one path (arbitrary chosen) connecting v (the root of Tv)

with one of the leaves of Tv. We can choose the packets which will move during the

next step (and also notify the one that will not) by a simple traversal of the tree (in

the opposite direction from that indicated by the edges) in O(jV (Tv)j) time. We are

now ready to present a high level description of the o�-line routing algorithm.

Algorithm O� line tree routing(T; �)

/* � is the permutation to be routed on tree T */

1. i = 0 /* i denotes the number of routing steps (stages) completed so far */

2. While there are still packets that haven't reach their destination do

(a) Based on the current position of the packets (after i steps of routing)

construct the routing graph TR
i .

153

(b) Choose, based on the trees that form TR
i , the packets that will move in

step i+ 1.

(c) Move the packets, i.e., update the data structure that keeps track of the

current position and the journey of each packet.

(d) i = i+ 1

Since at each iteration of the while-loop of Algorithm O� line tree routing(T; �)

at least one packet is advanced towards its destination and no packet is routed away

from its destination, the total distance that all packet have to travel always reduces.

This implies that after at most O(n2) steps the routing is completed. In the following

lemma, we provide a better upper bound on the number of times the while-loop in

algorithm O� line tree routing(T; �) is executed.

Lemma 3 Assume a tree T of n vertices and a permutation � on its vertex set that

has to be routed. Then, Algorithm O� line tree routing(T; �) produces an o�-line

routing solution of at most n� 1 routing steps. 2

Corollary 1 For any tree T of n vertices, rt0(T) < n. 2

When we have to solve a routing problem on an arbitrary graph G instead of a

tree, we can ignore all edges of G but those that form a spanning tree of G. We

conclude that:

Corollary 2 For any graph G of n vertices, rt0(G) < n. 2

From Lemma 1 we know that the number of vertices of the routing graph TR that

corresponds to a tree of n vertices is 3n�2. Based on this, it is not di�cult to imple-

ment each iteration of the while-loop in O(n) time. Since Lemma 3 ensures that there

154

will be at most n�1 iterations we conclude that AlgorithmO� line tree routing(T; �)

produces an o�-line solution in O(n2) time.

At each routing step, each packet either advances towards its destination or waits

at some vertex. So, the journey of each packet can be described by an array of 0/1

entries where, \0" denotes that the packet waits in a vertex while, \1" denotes that it

moves. So, to report the solution of the routing problem we need space of size O(n2)

bits.

The following theorem summarizes the results of this section.

Theorem 1 Assume a tree T of n vertices and a permutation � on its vertex set

that has to be routed. Then, Algorithm O� line tree routing(T; �) produces an o�-

line routing solution of at most n� 1 steps which can be described with O(n2) bits, in

O(n2) time. 2

3.3 A more compact routing schedule

It is possible to produce a more compact routing schedule, i.e., one that requires

n logn bits for its description. The algorithm that is used in deriving this compact

solution is based on the multistage o�-line routing method introduced by Symvonis

and Tidswell in [15]. A detailed description of the algorithm can be found in [14].

The result is sumarized in the following theorem:

Theorem 2 Assume a tree T of n vertices and a permutation � on its vertex set that

has to be routed. Then, it is possible to produce an o�-line routing solution of at most

n � 1 steps which can be described with O(n logn) bits, in O(n3) time. The routing

model used assumes that each processor can store the packet that originates at it at

no extra cost.

155

4 An on-line routing algorithm

In this section, we present an on-line algorithm that completes the routing of a per-

mutation on a tree of n vertices in at most n� 1 steps. Denote by d(v) the degree of

vertex v. The algorithm requires a bu�ering area of size 2d(v) packets in each vertex

v of the tree.

Consider �rst the trivial greedy on-line algorithm in which, at each time step,

each processor tries to advance as many packets as possible towards their destination

while the remaining packets are queued in the processor. It is not di�cult to see that

this simple algorithm will complete the routing in n� 1 steps. At the same time, the

queue at some processor might become as large as (n=2)� 2. This can happen in the

tree of Figure 2 when all the packets initially in the set (of processors) A are destined

for the set (of processors) B and vice versa.

We �rst modify the above greedy algorithm and make it use queues of size at most

d2(v) packets in any vertex v. For trees of maximum degree bounded by a constant,

this yields an algorithm that uses constant size queues. A similar method was used

by Symvonis and Makedon in [9] where an asymptotically optimal routing algorithm

was developed for the many-to-one packet routing problem on 2-dimensional meshes.

In each vertex v, we associate with each of the d(v) outgoing communication links

(edges) a queue of size d(v). Consider any edge (v; u). At most d(v)�1 neighbors of v

can send packets that want to cross edge (v; u). So, in order to avoid overloading the

queue associated with edge (v; u) we allow the neighbors of v to send packets that want

to cross that edge only when the associated queue contains at most 1 packet. We must

inform the neighbors of v when the queue associated with (v; u) can receive packets.

We do this by having, at each step, neighboring vertices exchanging information

about the status of their queues. Vertex v has to transmit d(v) bits of information to

each of its neighbors. A \0" (\1") bit disables (enables) the transmission of packets

156

(n/2)-1 vertices

A B

(n/2)-1 vertices

Figure 2: An example in which the queues created during the execution of the trivial

greedy on-line routing algorithm can grow as large as (n=2)� 2 packets.

that want to cross a speci�c edge. This information has to be transmitted even

when no packet has to cross the edge that connects two neighbors. In general, the

messages exchanged between vertices consist of two �elds; the original packet and the

information regarding the status of the queues.

We now give a high level description of the on-line algorithm which uses queues

of size d2(v).

Algorithm On line tree routing(T; �)

/* � is the permutation to be routed on tree T */

For each processor, repeat until the routing of all packets is completed

1. From the information received in the previous step regarding the queues of its

157

neighbors, the processor decides which packets to transmit.

2. By checking the number of the remaining packets in each of its queues, the

processor determines which of its queues can receive packets during the next

step. Based on that information, a string of d bits is created1.

3. The processor transmits the packets it selected in Step 1 concatenated with the

binary string created in Step 2.

Lemma 4 Assume a tree T of n vertices and a permutation � on its vertex set that

has to be routed. Then, Algorithm On line tree routing(T; �) completes the routing

in at most n� 1 steps and by using queues of size d2(v) at each vertex v. 2

Another possible method we can use for routing on trees is that of hot-potato

routing. Assume that, at some time step, vertex v contains l � d(v) packets. Then,

using the hot-potato method, at the next routing step it sends as many as possi-

ble packets towards their destination while the rest of the packets are derouted (in

an arbitrary manner) through the remaining communication links (since l � d(v)

there are enough communication links). The hot-potato method can be simply de-

scribed with the phrase \any packet entering a processor must get out or be con-

summed". Implementing the hot-potato method is easy. In contrast with Algorithm

On line tree routing(T; �) no additional information needs to be attached to trans-

mitted packets. It is also easy to see that there exists a class of problems which

require about 2n steps for their routing when the hot-potato method is used. The

1
d is the maximum degree of the tree. Since the processor might have less than d neighbors, some

of the bits might carry useless information.

158

routing problem of Figure 2 belongs in this class. On the other hand, one can show,

in a similar way to that in Section 3.2, that 2n steps are enough for the routing.

The disturbing fact in Algorithm On line tree routing(T; �) is that queues of size

d2(v) are too large while, in the hot-potato method, we would like to reduce the

number of routing steps. The idea of the hot-potato routing method, i.e., allowing

derouting of packets, can be incorporated into Algorithm On line tree routing(T; �)

to reduce the queuesize to 2d(v) packets per processor. Now, in the bad event that

all the packets which entered a processor want to exit from the same communication

link, one packet will do so, one will be queued and the rest will be derouted. One

packet is queued to ensure that derouting does not prolong the routing time. Thus,

we have:

Theorem 3 Assume a tree T of n vertices and a permutation � on its vertex set that

has to be routed. Then, a modi�cation of Algorithm On line tree routing(T; �) (based

on the idea of the hot-potato routing method) completes the routing in at most n� 1

steps and by using queues of size 2d(v) at each vertex v.

By performing the routing along the edges of a spanning tree of a graph G, we

prove that:

Corollary 3 Assume a graph G of n vertices and maximum degree d, and a permu-

tation � on its vertex set that has to be routed. Then, � can be on-line routed in at

most n� 1 steps and by using queue of size at most 2d packets.

The fact that any spanning tree of graph G can be used for the routing of a

permutation on G, suggests the problem of �nding a spanning tree in which the

maximum degree is minimized. Unfortunately, this problem is NP-complete as it can

be shown by an elementary reduction from the hamiltonian path problem [4].

159

5 Conclusions - further work

In this paper, motivated by the work of Alon, Chung and Graham [1], we considered

the routing nuber of a tree T of n vertices with respect to the simpli�ed routing

model, denoted by rt0(T). We proved that rt0(T) � n � 1 by developing algorithms

that compute routing schedules of di�erent quality (with respect to the space required

for the description of the routing schedule). This result is asymptotically optimal since

for a chain of n vertices there exist a class of permutations that require n � 1 steps

for their routing.

An interesting problem we are currently working on is to design algorithms with

performance close to the actual lower bound for the permutation on hands. Such lower

bounds can be obtained based on combinations of distance and bisection arguments

or, by using the multistage routing method introduced in [15] and the relation between

the routing problem and the multicommodity
ow problem.

Acknowledgement We thank Jop Sibeyen for suggesting the use of the hot-potato

routing method to reduce the queuesize of the on-line routing algorithm.

References

[1] A. Alon, F.R.K. Chung and R.L. Graham, \Routing Permutations on Graphs

via Matchings", in the Proceedings of the 25th Annual ACM Symposium on the

Theory of Computing, San Diego, California, May 1993, pp. 583-591. To appear

in the SIAM Journal on Discrete Mathematics.

[2] A. Borodin and J.E. Hopcroft, \Routing, Merging , and Sorting on Parallel

Models of Computation", Journal of Computer and System Sciences, Vol. 30,

1985, pp. 130-145.

160

[3] T.H Cormen, C.E. Leiserson and R.L Rivest, Introduction to Algorithms, The

MIT Press, Cambridge, Massachusetts, 1990.

[4] M.R. Garey and D.S. Johnson, Computers and Intractability. A Guide to the

Theory of NP-Completeness, W.H Freeman and Company, San Francisco, 1979.

[5] C. Kaklamanis, Danny Krinzanc and Satish Rao, \Simple Path Selection for

Optimal Routing on Processor Arrays", in the proceedings of the 4th Annual

ACM Symposium on Parallel Algorithms and Architectures (SPAA), San Diego,

California, June 1992, pp. 23-30.

[6] M. Kaufmann, S. Rajasekaran and J.F. Sibeyn, \Matching the Bisection Bound

for Routing and Sorting on the Mesh", in the proceedings of the 4th Annual

ACM Symposium on Parallel Algorithms and Architectures (SPAA), San Diego,

California, June 1992, pp. 31-40.

[7] F.T. Leithon, B. Maggs and S. Rao, \Universal Packet Routing Algorithms",

in the proceedings of the 29th Annual Symposium of Foundations of Computer

Science, October 1988, pp. 256-271.

[8] F.T. Leighton, F. Makedon and I.G. Tollis, \A 2n� 2 Algorithm for Routing in

an n�n Array With Constant Size Queues", in the proceedings of the 1st Annual

ACM Symposium on Parallel Algorithms and Architectures (SPAA), June 1989,

pp. 328-335.

[9] F. Makedon and A. Symvonis, \Optimal Algorithms for the Many-to-One Rout-

ing Problem on 2-Dimensional Meshes", to appear in the Journal of Micropro-

cessors and Microsystems. An extended abstract appeared in the Proceedings of

the 19th Annual ACM Computer Science Conference, San Antonio, Texas, March

1991, pp. 280-288.

161

[10] F. Meyer auf de Heide, B. Oesterdiekho� and R. Wanka, \Strongly Adaptive

Token Distribution" in the proceedings of ICALP93, LNCS 700, pp. 398-409.

[11] I. Parberry, \An Optimal Time Bound for Oblivious Routing", Algorithmica,

1990, 5, pp. 243-250.

[12] D. Peleg and E. Upfal, \The Generalized Packet Routing Problem", Theoretical

Computer Science, 53, 1987, pp. 281-293.

[13] D. Peleg and E. Upfal, \The Token Distribution Problem", SIAM Journal on

Computing, Vol. 18, No. 2, 1989, pp. 229-243.

[14] A. Symvonis, \Routing on Trees", Technical Report 471, Basser Dept. of Com-

puter Science, University of Sydney, January 1994. Available by anonymous ftp

from ftp.cs.su.oz.au (directory pub/tr).

[15] A. Symvonis and J. Tidswell, \A New approach to O�-Line Packet Routing. Case

Study: 2-Dimensional Meshes", Proceedings of the 1992 DAGS/PC Symposium,

Dartmouth Institute for Advanced Graduate Studies in Parallel Computation,

June 1992, Hanover, NH, USA, pp. 84-93.

[16] E. Upfal, \E�cient Schemes for Parallel Communication", in ACM SIGACT-

SIGOPS Symposium on Principles of Distributed Computing, August 1982, pp.

55-59.

[17] L.G. Valiant, \A Scheme for Fast Parallel Communication", SIAM Journal on

Computing, Vol. 11, No. 2, 1982, pp. 350-361.

