
Parallel h-v Drawings of Binary Trees*

PANAGIOTIS T. METAXAS 1, GRAMMATI E. PANTZIOU 2'3
and ANTONIS SYMVONIS 4

1 Department of Computer Science, Wellesley College, Wellesley MA 02181, USA
Department of Mathematics and Computer Science, Dartmouth College

3 Computer Technology Institute, P.O. Box 1122, 26110 Patras, Greece
4 Department of Computer Science, University of Sydney, N.S.W. 2006, Australia

A b s t r a c t . In this paper we present a method to obtain optimal h-v
and inclusion drawings in parallel. Based on parallel tree contraction,
our method computes optimal (with respect to a class of cost functions
of the enclosing rectangle) drawings in O(log ~ n) parallel time by using a
polynomial number of EREW processors. The method can be extended
to compute optimal inclusion layouts in the case where each leaf I of the
tree is represented by rectangle Ix x i~. Our method also yields an NC
algorithm for the slicing floorplanning problem. Whether this problem
was in NC was an open question [2].

1 I n t r o d u c t i o n
In this paper we examine drawings of rooted binary trees. We study the h-v
drawing convention studied by Crescenzi, Di Bat t is ta and Piperno [3] and Eades,
Lin and Lin [7]. Our results extend to the inclusion convention [6], and to slicing
floorplanning [10, 2].

The drawing of a rooted binary tree using the h-v drawing convention is a
planar grid drawing in which tree nodes are represented as points (of integer co-
ordinates) in the plane and tree edges as non-overlapping vertical or horizontal
line segments. Moreover, each node is placed immediately to the right or imme-
diately below its parent and the drawings of subtrees rooted at nodes with the
same parent are non-overlapping. Figure 1 shows three different h-v drawings of
the same tree. Different h-v drawings of the same tree can be of different quality.
The quality (or cost) is a function of the drawing. The most commonly used cost
function is the area of the enclosing rectangle of the drawing.

Eades et al. [7] showed how to compute in O(n 2) t ime an optimal h-v drawing
of a tree with n nodes with respect to a cost function r h) which is nonde-
creasing in both parameters w and h, where w and h are the width and the
height of the enclosing rectangle of the drawing, respectively. The same method
can be used to develop optimal drawings (with respect to some cost function r
when the inclusion convention is adopted. In the inclusion convention, a node is
represented by a rectangle and the parent-child relation by enclosing the rectan-
gle which represents the child within that of the parent. Moreover, rectangles of

* The work of the second author is partially supported by the EEC ESPRIT Basic Re-
search Action No. 7141 (ALCOM II) and by the NSF grant No. CDA-9211155. Emaih
pmetaxas@lucy.wellesley.edu, pantziou@cs.dartmouth.edu, symvonis~cs.su.oz.au

488

aq

e

i

Fig. 1. Examples of h-v drawings.

b e

nodes with the same parent are non-overlapping, next to each other (same X or
Y coordinate of the top left corner) and in at least distance ~ from each other.
The rectangles representing the leaves are assumed to have sidelengths which
are multiples of the "unit" of length.

A closely related problem is that of slicing floorplanning. In slicing floor-
planning we are given a regular binary tree (called slicing tree) in which leaves
represent rectangular modules that are to be placed in the plane. Each internal
node is an H or V node. In the final drawing, the modules are drawn as rectan-
gles of the corresponding size but with a choice on their orientation (i.e., x x y
or y x x) and internal nodes by horizontal or vertical line segments. The drawing
of the subtrees rooted at the children of a V-node (H-node) are drawn next to
(on top of) each other. Alternatively, the drawing of the subtree rooted at a
V-node (H-node) consists of two vertical (horizontal) slices, each next to (on top
of) each other and containing the drawings of the subtrees rooted at its chil-
dren. An O(n2)-time sequential algorithm for the slicing floorplaning problem
was given by Stockmeyer [10]. Chen and Tollis [2] derived a parallel algorithm
that needs O(n) time and O(n) processors, where n is the number of leaves of
the slicing tree.

In this paper, we present a method that derives optimal drawings of rooted
binary trees in parallel for both the h-v and the inclusion conventions. We choose
to present our method for the h-v drawing convention since the drawings are still
trees in their familiar "conventional" form. Our method determines an optimal
h-v drawing of a tree of n nodes in O(log 2 n) parallel time using O(n6/logn)
EREW processors. Even though the number of processors is too high for the
method to be of practical interest, our work places the problem in the class NC.
In the case that we want to minimize the area of the drawing, we can reduce the
number of processors to O(n a log n).

Applying our method to the slicing floorplanning problem yields an O(log 2 n)
PRAM algorithm which uses O(L6/log n) processors, where L is the sidelength
of the floorplan of maximum enclosing rectangle. This proves that when L =
O(nC), for some constant c > 1, the slicing floorplanning problem is in NC. The
assumption L = O(n c) is a reasonable one since, otherwise, the layout would be
of superpolynomial size.

Because of space limitations, all proofs are omitted and can be found in the
full paper [9].

489

2 P r e l i m i n a r i e s

For definitions related to drawings (or layouts) the reader is referred to [5]. In
this paper, we will study orthogonal straight-line planar grid drawings of rooted
binary trees. Unless otherwise specified we will refer to them simply as drawings.

Given a graph G = (V, E) and a drawing A of G on the plane, the draw-
ing of any subgraph H of G resulting from A is called a partial drawing of
H (with respect to A). The enclosing rectangle of a drawing is the smallest
rectangle with sides parallel to the axes which contains all points of the draw-
ing. Let Xma x = maxvev{xv}, Xmin ----" minvev{xv}, Ymax = maxvev{y,} ,
Ymin = minvev{yv}. Xmax, Xmin, Ymax and Ymin completely define the enclos-
ing rectangle of a drawing. Two rectangles are overlapping if they share at least
a point of the plane. Otherwise, they are non-overlapping or disjoint. The width
of a drawing is equal to Xmax - Xmin while its height is equal to Ymax - Ymin. A
drawing is reduced if (1) for all integers i such that Xmi n < i _< X m a x theres ex-
ists node v E V with xv = i; and (2) for all integers i such that Ymin --< i _< Ymax
theres exists node v E V with y. = i. In the rest of the paper we will assume
only reduced drawings.

A rooted tree T = (V, E) is a weakly connected directed graph in which all
nodes but the root are of indegree 1. We will use the notation]T I to denote the
number of nodes of tree T. The subtree rooted at v, denoted T~, consists of v,
all of v's descendants and the edges between them. A partial tree is a weakly
connected subgraph of a rooted tree.

The enclosing rectangle of a drawing can be completely described by its
width, height and the coordinates of one of its corners, say the left-top one.
Most times, during the description of our algorithm, we will assume that the
left-top corner of the enclosing rectangle has coordinates (0, 0). By fixing a point
of reference, it is sufficient to describe a rectangle R by a pair of two integers,
its width and height, i.e., R = (w, h), w > 0, h > 0. Two rectangles are called
equal if they have identical width and height.

Given two rectangles R I ---~ (Wl, h i) and R2 = (w2, h2) we say that rectangle
R1 dominates (or fits in) R2 if wl _< w2 and hi _< h2. Given a set S of rectangles,
an atom is an element of S which dominates no other rectangle in S. Any set of
atoms that are sorted in increasing order with respect to their widths, are also
sorted in decrea.~ing ardor with ~o~po~ *" their u~:.l.,~

With each drawing we associate a cost. Our objective is to derive draw-
ings of minimum cost. In this paper, the cost function will be a function of
the enclosing rectangle of the drawing, i.e., a function r : ~2) ~. Our r e -
suits will hold for any function that is nondecreasing in both parameters, i.e.,
r _> r Xl > x2 and yl _> Y2. Let R = (width, height).
The following are commonly used cost functions that are non-decreasing in
both parameters: area(R) = width, height, minimum_enclosing_square(R) =
max(width, height), perimeter(R) = 2(width + height).

The problem of minimum size h-v drawing of a binary rooted tree T is the
problem of determining an h-v drawing of T of minimum cost with respect to
some cost function r

490

3 T h e P a r a l l e l A l g o r i t h m f o r h - v D r a w i n g s

The algorithm for finding a minimum size h-v drawing of a binary tree T -- (V, E)
is based on the parallel tree contraction technique [1]. Within a logarithmic
number of phases, the parallel tree-contraction algorithm contracts a tree T
to its root by processing a logarithmic number of intermediate binary trees
T(i) = (V(i), E(i)), i = O, 1, . . . k, with k -- O(log [TI). Note that the algorithm
starts off with T(0) = T, and proceeds by contracting tree T(i - 1) to tree T(i)
of]T(i)[< ~[T(i- 1)1 nodes, 0 < r < 1. At the end, T(k) contains only one node.
During the ith phase of the algorithm, the tree T(i) is obtained from T(i - 1) by
applying a local operation, called shunt, to a subset of the leaves of T(i - 1). The
shunt operation is composed of two steps: In the first step, a subset of the tree
leaves are removed (an operation called pruning) and their parent (or sibling)
nodes are updated to reflect this fact. In the second step, each of these parents
is removed (by an operation called shortcutting), and its child is updated. The
shunt operation removes roughly half of the tree nodes, so e is roughly 1/2. To
use the tree contraction technique, one has to describe the updates that take
place during the shunt operation. Before we do that, we give some notation and
describe the information associated with each node of the tree.

3.1 Data Structures and Useful Operat ions

If v E V(i) then let T c~ be the partial tree (of T) contracted to v after applying
the shunt operation to siblings of v during the first i phases of the parallel
tree-contraction algorithm.

With each node u in V(i) we associate a tuple Lu containing the follow-
ing information: The root ru of the partial tree T~ c' that has been contracted
to u, and a set R~ that keeps information for all useful drawings of Tu c' (the
notion of a useful drawing will be defined shortly). Each element of Ru cor-
responds to a specific reduced partial drawing 7r and consists of 3 tuples, i.e.,
7r = ((Wu, Hu), (Au, Bu), (xu, Yu)). The first tuple, i.e., (Wu, H~), describes
the width and the height of the enclosing rectangle of ~. The second tuple,
i.e., (Au, Bu) describes the width Au and the height Bu of the largest rectangle
(having u at its top left corner) that can be included in the partial drawing 7r
such that the enclosing rectangle (Wu, Hu) of 7r remains unchanged and 7r is still
a valid h-v drawing of Tu c'. We shall refer to (Au, Bu) as the empty rectangle
corresponding to Ru. Finally, the third tuple, i.e., (xu, yu), is the location of u
in ~, where (0, 0) is the coordinate of the top left corner of any partial draw-
ing. Note that, u is a leaf in the partial tree T~'. For each u E V = V0, we
initialize Lu = (u; ((0, 0), (0, 0), (0, 0))).

Suppose that at some phase of the parallel tree-contraction algorithm we
want to include the partial drawing ~ of a partial tree rooted at a node v in a
partial drawing 7d of another partial tree whose v is a leaf. Then, we need to
know the position of v in ~ as well as how much the inclusion of ~ in ~ will
change the rectangle corresponding to ~ . Thus, all the parameters associated
above with each node of each T(i), i = 0 , . . . , loglT[, are necessary for the

491

parallel tree-contraction approach to work. In Section 3.3, we shall show that
the information kept by those parameters is all that is needed for the algorithm
to work.

Let 71-1 1 1 1 1 71.2 2 2 = ((W~, H~), (A~,Bu), (x~, y~)) and = ((W~, H~), (A2u, B2), (x~, y~))
be two partial drawings of TC~ ' .

Def in i t i on 1. We say that (partial) drawing 7r 1 dominates (or fits in) (partial)
drawing lr 2 if the enclosing rectangle of 7r 1 fits in the enclosing rectangle of 7r 2.

De f in i t i on 2. Partial drawing ~r 1 prevails partial drawing 7r 2 with respect to
integer A > 0 if 7r 1 fits in 7r 2 and at least one of the following conditions is
satisfied: a) 2 2 1 1 . 2 1 1 2 (Au ,Bu) fits in(A~,Bu) ,b) A u < A u and B 2 > B u > A ; c) A u >
A I > A and B ~ < B ~ ; d) A ~ > A l u > A and B 2 > B ~ > A .

In this paper, when using the notion of "prevail",)~ will usually be the size (i.e.,
the number of nodes) of a partial tree.

De f in i t i on 3. Let u E V(i), T~' be the partial tree (of T) contracted to u during
the first i phases of the parallel tree contraction algorithm, Tu be the subtree of
T rooted at u and R a set of partial drawings of T c'. A partial drawing 7r in R
is called useful if 7r is prevailed, with respect to the size ITul of tree T~, by no
other partial drawing in R.

L e m m a 4 . Let u C V(i) , T c~ be the partial tree (of T) contracted to u during
the first i phases of the parallel tree contraction algorithm and Tu be the subtree
of T rooted at u. Then the number of useful partial drawings in Lu is at most
O(min(ITul, ITC' l) �9 IT•' I2).

3.2 The Shunt Updates

Let 1 be a leaf in tree T(i - 1), s be l's sibling, f b e / ' s parent and p be f ' s
parent. Let also L f = (r f ; R f) , where R f = {((W},H}), 1 1 (A f , B f) , (x}, y})), �9 �9 �9

i i " t k k 8 ' 8] ' ((W}, Hi) , (A~, B~), (x}, y~))}, ns = (rs; Rs), where R8 = I ((W 1 g 1~ (d~, B~),
(x~,yls)), . . . ((WJ,HsJ), (dJ BJ~ (xJ,yJ))} and Lt = (rl 'Rt) , where Rl ' k 8 ' 8] ' '

{((Wt 1, Htl), (-, .), (-, .)) , . . . , ((W k, Hk), (., .), (.,-))}, be the information associ-
ated with f , s and l respectively 5.

Recall that Rt, Rf and Rs keep information for all useful partial drawings of
T~'- ' , T c ' - ' , and ~r; '-1 respectively. Note that since l is a leaf of T, Tr, = Tt c'-~ �9
Note also that rl and r8 are the children of f in the tree T -- T(0).

During the i th phase of the tree contraction algorithm, we apply the shunt
operation to a set of leaves of V(i - 1). The shunt operation to a leaf 1 of V(i - 1)
consists of two stages, namely, a pruning and a shortcutting stage.

5 Because we deal with the drawing of subtree Tr, rather than a partial tree, we do
not have to record any information about an empty rectangle. Thus, the notation
((Hit, Ht), (', '), (', ')).

492

The Pruning Stage . In the pruning stage, we use the tuples Ll and Ls to
construct the tuple L I, = i f ; RI ') containing information about all useful (with
respect to the size ITs] of Ts) partial drawings of the partial tree rooted at f and
including the subtree Tr~ and the partial tree T~ '-1.

Let ~s = ((Ws, Hs), (As, Bs), (xs, Ys)) be an element of the set Rs and ~rl =
((W~,H~), (-, .), (-, .)) be an element of the set Rt. There are essentially 4 ways
to arrange Tr, and T c~-1 . For each one we compute the new drawing. In what

t i , follows, the superscripts in (xs / ,Ys) are used to avoid confusion with (xs,ys).
f f ' ixs , Ys) are the coordinates of s in the drawing of the partial tree rooted at f

and including the subtree Trt and Ts c~-~ while, (xs,ys) are the coordinates of s
in the partial drawing of Ts c~-~.

f ~A I
(a)

f

SQ

(b)

SQ

(c) (d)

Fig. 2. The cases which occur when combining the subtree Tr~ together with the partial
tree T~ ~-1 during the pruning phase of the shunt operation.

Case 1: The situation in case 1 is described in Figure 2(a). The produced partial
I' I' drawing ((Wf, , Hi,) , (Af, , Bf ,) , (Xs , ys)) is defined by:

f, Wf, = W~ + W, + I Af, = As x, = x , + W t + l
I'

Hi, = max(Hz + l, Hs) B I, = Bs + max(O, Hz + l - Hs) Ys --Y,
f~ The correctness of the computed values for WI, , HI, , A I, , xIs , Ys is obvious

from Figure 2(a). For Bf , , note that we simply extent the height of the empty
rectangle up to the bounds of the enclosing rectangle.
Case 2: The situation in case 2 is described in Figure 2(b). The produced partial

f r drawing ((WI, , HI,), (AI, , S l ,) , (x s , y{)) is defined by:
I '

W I , = W t + W s + l A f , = A s xs = x s
I' H I , = m a x (H s + l , H t) B l , = B s + m a x (O , H t - H s - 1) Ys = Y s + l

Case 3: The situation in case 3 is described in Figure 2(c). The produced partial
f' f drawing ((WI,, HI,), (AI,, BI,) , (x s , Ys)) is defined by:

I' W l , = m a x (W s + l , Wt) A l , = A s + m a x (O , W t - W s - 1) x s = x s + l
I' H I , = H s + H t + l B l ,=Bs Ys =Ys

493

Case 4: The situation in case 4 is described in Figure 2(d). The produced partial
f, f, drawing ((Wf,, Hf,), (A f,, Bf,), (x, , y,)) is defined by:

f'
W l , = m a x (W t + l , W ,) A l , = A , + m a x (O , W l + l - W ,) x, = x ,

f'
Hf, = Ht + Hs + l Bf, = B8 y, = ys + Ht + l

Note that in all of the above cases the size of the empty rectangle is extended
up to the bounds of the enclosing rectangle.

It is possible that the sibling s of leaf I does not exist. This can happen when
tree T is not a regular binary tree. This leads to the following additional cases:
Case 5: The produced drawing ((Wf, ,HI,) , (., .), (., .)) of Trt is defined by:

Wr = wl g r = H ~ + I
Case 6: The produced drawing ((Wf,, Hf,), (.,-), (-, .)) of Trf is defined by:

Wf, = W, + I g I, = H,
After computing all the possible partial drawings, the prevail operation (with

respect to the size ITs[of T,) is applied to them and the set R I, is obtained.
I.e., all the drawings that are prevailed by other drawings are eliminated. (For
details regarding the parallel implementation of the prevail operation see the full
paper [9].)

The Shor t cu t t i ng Stage. In the shortcutting stage, the tuples L f, and Lf
are used to construct the new tuple for L,. The root of the new L8 will be
rf. To determine an element 7r of the new set R8 we combine drawings 7r f' --
((WI, , Hf,), (Af,, Bf,) , (x{', y{')) of R I, with drawing lr I = ((Wf , Hf), (Af , BI) ,
(xf ,yf)) of Rf . In simple words, we embed 7rf' into 7r f. The new element
7r = ((Ws, H~), (A~, Bs), (xs, y~)) of R8 produced by embedding ~rf' into 7r f is
computed as follows:

f, W s = W f + m a x (O , W f , - A f) A ~ = A f , + m a x (0 , A f - W f ,) x s = z f + x ~
H s = H f + m a x (O , H f , - B f) B ~ = B f , + m a x (O , B f - H f ,) y s = y f + y { '
The correctness of the computed values for W~ and H~ is obvious. For A~ and B~,
note that in the case that Af > W I, and/or Bf > Hf, , A8 equals Af, + A I - W I ,
and/or Bs = Bf, + B f - Hf, . I.e., the empty rectangle of zr is extended to be
as large as the difference between the sizes of the enclosing rectangle of zrf' and
the empty rectangle of zr f allow.

Finally, the prevail operation (with respect to the size ITs[of T~) is applied
to the computing drawings and the new set Rs is obtained.

3.3 Correctness and Analysis

To prove the correctness of the algorithm we have to establish that during the
course of the algorithm we keep all the necessary information. To do that we
have to prove two things: firstly, that it is enough to keep only one drawing
out of those that differ only in the coordinates of the "interface to bellow", i.e.,
they have the same enclosing and "empty" rectangles and, secondly, that we can
safely use the prevail operation to shorten our R-sets after each stage.

494

L e m m a 5. Consider two partial drawings 7r1~ -1 = ((Ws, Hs), (As, Bs), (xls, yls))
and 7r2/-1 = ((His, Hs), (As, Bs), (x2s, y2s)) of Rs that differ only in the coor-
dinates of s in the drawing. Also assume a drawing ~r~ -x = ((W~, H~), (., .), (..))
of Rt and a partial drawing 7r~ -1 = ((Wf, HI), (Af, BS), (x I , yf)) of R f . Let

i-1 i-1 and i-1 during 7rlis be the partial drawing obtained by combining 7rl s , r I 7r I
i-1 i-1 and phase i. Let 7r2~s be the partial drawing obtained by combining 7r2 s , 7r t

7r~ -1 during phase i. Then, rrlis and 7r2is have the same enclosing and empty
rectangles.

L e m m a 6 . We can "safely" eliminate prevailed elements from Rs after the end
of each shortcutting stage as well as after the end of each pruning stage.

T h e o r e m 7. A minimum size h-v drawing of a binary tree with n nodes can be
correctly found in O(log 2 n) parallel time using O(n6/ logn) E R E W processors.

3.4 M i n i m u m Area h-v Drawings

When we are after minimum area h-v drawings, the number of processors re-
quired by the parallel algorithm can be substantially reduced. To achieve that,
we used the following result due to Crescenzi, Di Batt is ta and Piperno: For
any binary tree T of n nodes, there exists an h-v drawing of T with at most
n(logn + 1) area. Moreover, the width of the layout is at most logn + 1 while its
height is at most n. Based on this result we can show:

T h e o r e m 8. A minimum area h-v drawing of a binary tree with n nodes can be
correctly found in O(log 2 n) parallel time using O(n a log n) E R E W processors.

T h e o r e m 9. A h-v drawing of area at most n(log n + 1) of a binary tree with
n nodes can be correctly found in O(log 2 n) time using O(n 2 log 3 n) EREWpro-
c e s s o r s .

4 Related Prob lems

Inclus ion Drawings of Binary Trees . The method used to compute minimum
size h-v drawings can be also used to compute inclusion drawings.

T h e o r e m 10. A minimum size inclusion drawing of a binary tree with n nodes
can be found in O(log 2 n) parallel time using O(((6+max(a, b))n)6 / log n) E R E W
processors.

In the case that the rectangle associated with leaf 1 is of dimensions ix x
l~ rather than a x b, the number of required processors increases 6. Let L =
~leaves t max(l=, l~). Then, as a corollary of Theorem 10 we get:

6 Again, l= and lu are supposed to be multiples of the "unit" of length.

495

C o r o l l a r y 11. A minimum size inclusion drawing of a binary tree with n nodes
in which each leaf 1 is associated with a rectangle of size 4 • ly can be found
in O(log 2 n) parallel time using O(6n + L)6 / logn) E R E W processors, where

L = ~leaves I max(4 , ly)

Sl ic ing F l o o r p l a n n i n g . We can apply our method to get a parallel solution
for the slicing floorplanning problem. We set $ to 0 while, for the pruning stage,
we compute partial floorplans based on whether the parent of the leaf is an H
or V node. Initially, the list of partial floorplans of each leaf of the slicing tree
contains two partial floorplans, one for each orientation of the leaf's module.

Let the module associated with leaf l of the slicing tree have dimensions
Ix • l~, 4 _< ly. Let L = ~ leaves tly. From Corollary 11 we get:

T h e o r e m 12, A minimum size slicing floorplan of a slicing tree with n leaves
can be found in O(log 2 n) parallel time using O(L 6 /logn) E R E W processors.

Thus, for slicing floorplans which can be drawn in polynomial area, the prob-
lem of determining an optimal area slicing floorplan is placed in the class NC.

References

1. Abrahamson, K., Dadoun, N., Kirkpatrick, D. and Przytycka, T. A Simple
Parallel Tree Contraction Algorithm. J. of Algorithms, 10(1989), pp. 287-302.

2. Chen, C-H and Tollis, I. Parallel Algorithms for Slicing Floorplan Designs. In
Proc. of SPDP '90, Dec. 1990, pp. 279-282.

3. Crescenzi, P., Di Battista, G. and Piperno, A. A Note on Optimal Area Al-
gorithms for Upward Drawings of Binary Trees. Computational Geometry:
Theory and Applications, Vol. 2, pp. 187~200, 1992.

4. Di Battista, G. and Tamassia, R. Algorithms for Plane Representation of
Acyclic Digraphs. Theoretical Computer Science, Vol. 61, pp. 175-198, 1988.

5. Di Battista, G., Eades, P., Tamassia, R. and Tollis, I.G. Algorithms for Drawing
Graphs: an Annotated Bibliography. Tech. Report, Brown Univ., June 1993.

6. Eades, P., Lin, T., and Lin, X. Two Tree Drawing Conventions. TR 174, Key
Centre for Software Technology, Dept. of Computer Science, The University of
Queensland, 1990. (To appear in Computational Geometry and Applications)

7. Eades, P., Lin, T., and Lin, X. Minimum Size h-v Drawings, Advanced Visual
Interfaces (Proceedings of AVI 92), World Series in Computer Science Vol. 36,
pp. 386-394, 1992.

8. Garg, A., Goodrich, M.T., and Tamassia, R. Area-Efficient Upward Tree Draw-
ings, 9th Annual Symposium on Computational Geometry, pp. 359-368, 1992.

9. Metaxas, P., Pantziou, G., Symvonis A. Parallel h-v Drawings of Binary Trees.
Technical Report 480, Basser Dept. of Computer Science, Uninversity of Syd-
ney, March 1994.

10. Stockmeyer, L. Optimal Orientations of Cells in Slicing Floorplan Designs.
Information and Control 57, pp. 91-101, 1983.

