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Abs t rac t .  In this paper we examine the edge searching problem on 
pseudo 3-sided solid orthoconvex grids. We obtain a closed formula that 
expresses the minimum number of searchers required to search a pseudo 
3-sided solid orthoconvex grid. From that formula and a rather straight 
forward algorithm we show that the problem is in P. We obtain a parallel 
version of that algorithm that places the problem in NC. For the case 
of sequential algorithms, we derive an optimal algorithm that solves the 
problem in O(m) time where ra is the number of points necessary to 
describe the orthoconvex grid. Another important feature of our method 
is that it also suggests an optimal searching strategy that consists of 
O(n) steps, where n is the number of nodes of the grid. 

1 Introduct ion 

The edge-searching problem was introduced by Parson in [7]. An undirected 
graph was given and the objective was to clean its contaminated edges (or, in a 
different s tatement of the problem, to capture a fugitive hidden in them). Three 
kinds of actions were allowed in this cleaning operation: 

1. place(node): This action places a searcher at the node specified as parameter  
of the aetion. 

2. pick(node): This action picks up a searcher from the node specified as pa- 
rameter of the action. 

3. move(origin, destination): This action moves a searcher along the edge that  
connects the origin and the destination nodes. For the action to be legal, 
the two nodes must be connected by an edge and a searcher must be initially 
located at the origin node. 

The search number of a graph G, denoted by es(G), was defined in [6] as 
the minimum number of searchers that  are required in order to clean the graph 
(or capture the fugitive that  is hidden in its edges). In that  paper it was proven 
that  the decision problem ~ Given a graph G and an integer k, can G be cleared 
with k searchers?" is NP-Hard. The authors also pointed out that  the problem 
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would belong in the class NP if it was true that recontamination cannot help 
in searching a graph. We say that a clean edge is recontaminated if it becomes 
adjacent with a contaminated edge and no searcher is placed at their common 
node. Recontamination can start when a searcher that is positioned at a node 
adjacent to a clean edge and at least one contaminated edge, leaves the node 
(either by a pick or move action) and allows the clean edge to be contaminated 
again. We assume that recontamination propagates at an infinite speed, i.e., if 
recontamination occurs as a result of an action t of the searching, then, before 
action t + l ,  all edges that can become contaminated again will do so. LaPaugh [4] 
proved that recontamination does not help to search a graph and thus the edge 
searching problem was included in the class NP. Besides its theoretical impor- 
tance, this result is useful in the sense that Mlows us to assume that there exists 
a strategy that searches the graph using the minimum number of searchers and 
never allows recontamination. A consequence is that the graph can be searched 
in a finite number of actions. After LePaugh's work a great deal of effort was 
devoted to the searching problem. Most of the results related the searching prob- 
lem with other combinatorial optimization problems such as pebbling [2], cutwidth 
[5] and graph separators [1]. 

In this paper, we concentrate on the searching problem on a special kind of 
graphs, namely, the pseudo 3-sided solid orthoconvex grids (Section 3.1). We 
show how to determine the search number of such graphs in optimal time. We 
do that by defining a modified version of the edge searching problem which we 
call modified edge searching (Section 2). Then, for the modified edge search- 
ing problem, by proving that there are searching strategies that possess several 
properties regarding the way the grid is searched, we are able to obtain a closed 
formula that expresses the minimum number of searchers required to search a 
pseudo 3-sided solid orthoconvex grid (Section 3.2). From that formula we derive 
an algorithm that computes es 0 in polynomial time (Section 4). 

We can also obtain a parallel version of that algorithm that places the prob- 
lem in NC. For the case of sequential algorithms, we derive an optimal algorithm 
that solves the problem in O(m) time where m is the number of points necessary 
to describe the orthoconvex grid. Another important feature of our method is 
that it also suggests an optimal searching strategy that consists of O(n) steps, 
where n is the number of nodes of the grid. 

Previously, we were able to determine the searching number in optimal time 
only for the class of trees [6]. We were also able to solve the decision problem 
"Given a graph G of n nodes can we search G by using a constant number of k 
searchers ? " in O(n 2) [3]. We improve this result for the ease of pseudo 3-sided 
solid orthoconvex grids. Some work has already been done for search problem 
in rectangular grids [9]. However, in that work the searchers are more powerful 
than the ones we use (i.e., different actions are assumed) and contamination does 
not propagate in an infinite speed. Furthermore, the rectangular grid that was 
assumed as the underlying graph structure belongs in the class of the pseudo 
3-sided solid orthoconvex grids. 
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Because of space limitations, we omit all proofs of lemmata and theorems. 
Someone interested in them can refer to [8]. 

2 A N e w  Version of the Searching Problem 

In this section, we define a new version of the searching problem which we call 
modified edge searching. The difference between the two searching problems are 
in the possible actions that  can take place during the search. 

D e f i n i t i o n 1 .  We say that we have a modified edge searching problem on a graph 
G if we are allowed to search the graph using all 3 actions of the original edge 
searching problem as well as the additional 4 ta one: 

4. clean(nodel, node2): This action cleans edge (nodel,node2) or the path 
(node1, nodei), (nodei, nodez) where nodei is of degree 2. For the action 
to be legal searchers must be placed on both nodel and node2. 

Kirousis and Papadimitriou [2] defined a similar searching problem which 
they called node searching. In their version of the game only place, pick and 
clean actions were allowed and the clean action could clean only one edge. 

D e f i n i t i o n 2 .  A searching strategy S(G) is a sequence of actions < a l ; . . .  ; am > 
such that  when applied on a graph G which has aHof its edges contaminated has 
the effect to clean the edges of G. Action ai, 1 < i < m, is any action allowed in 
the searching problem. A searching strategy is said to be optimum when there 
is no other strategy that  uses a smaller number of searchers and also searches 
the graph. 

Two searching strategies are equivalent if they both search the same graph 
with the same number of searchers. 

We say that  a node is clean if all of its adjacent edges are clean. A node is 
dirty if all of its adjacent edges are contaminated. If it is neither clean nor dirty 
we say that  it is partially clean. 

A move(origin, destination) action is useless if it neither cleans an edge 
nor results into contamination. A useless move action occurs when the searcher 
moves from a clean node, or, from a partially clean node to a clean one and is 
not causing recontamination, or, from a dirty node that  has no other searcher. 

We say that  a searcher is useful for action at (or simply that  it is useful at 
time t) if its removal will cause recontamination, or it will prevent action at of 
happening. Otherwise, we say that  the searcher is useless. 

We can prove the following lemmata: 

Lemma 3. There is an optimum searching strategy for the (modified) edge search- 
ing problem on graph G that contains only useful move actions. [3 

L e m m a 4 .  There is an optimum searching strategy for the modified edge search- 
ing problem on graph G that has the property that no useless searcher is on G 
immediately before any place, move, or clean action. D 
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Coro l la ry5 .  There is an optimum searching strategy for the original edge search- 
ing problem on graph G that has the property that no useless searcher is on G 
immediately before any place, or move action. [3 

L e m m a  6. If  there is a searching strategy that solves the modified edge searching 
problem on graph G using k searchers then there is a searching strategy that solves 
the edge searching problem on graph G using either k or k + 1 searchers, t3 

8 Searching strategies for Pseudo 3-Sided Solid 
Orthoconvex Grids 

3.1 Definit ions 

Let G~ Eoo) be the infinite undirected graph whose node set Voo consists 
of all points of the plane with integer coordinates and in which two vertices are 
connected by an edge in Er if and only if the Euclidean distance between them 
is equal to one. Let Gi(V/, Ei) be a finite node-induced subgraph of G. 

A grid graph D(V, E) is a subgraph of Gi where, V = ~ and E C Ei. In 
the following discussion we will consider only graphs that are connected and all 
of their nodes have degree greater than 1. We say that a grid graph D(V, E) is 
solid if it has no holes. 

If we color black all unit squares in G ~176 that are subrounded by the edges 
of a solid grid graph D, we will divide the plane into two regions, one black 
and one white. A node v that belongs into a solid grid graph and is adjacent to 
both the black and the white region is said to be a boundary node. The set of all 
boundary nodes of a solid grid D is said to constitute the boundary of D. 

Assume a solid grid graph D and its corresponding black and white regions. 
D is said to be orthoconvex if and only if the intersection of any line parallel to 
any coordinate axis with the black region consists of at most one line segment. 

A node v at the boundary of a solid grid graph is said to be a convex boundary 
node if it is of degree 2 and a concave boundary node if it is of degree 4. A node 
v at the boundary of a solid grid graph is said to be a turning boundary node if 
it is either a convex or a concave boundary node. Otherwise, it is called a simple 
boundary node. 

From the above definitions it is obvious that a solid grid graph can be com- 
pletely defined by the coordinates of its turning boundary nodes. In the rest of 
the paper, we assume that the grid under consideration is represented by its 
turning boundary nodes given in the order they appear if we traverse its bound- 
ary in the clockwise direction. An arbitrary node is selected to be the start of 
the traversal. 

During our traverse of the boundary of a solid grid graph and assuming that 
we always look towards the next boundary node, we have to make several turns. 
So, the traversal of a solid grid can be represented by a word which has length 
equal to the number of turning boundary nodes over an alphabet of two letters 
namely, L for left and R for right. We call that word the coding of the solid 
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orthoconvex grid. Since we can start our traversal of the boundary of the grid 
from any turning point, it is useful to think of the coding as a circular word 
where the first and the last characters wrap around. 

Since we can return to the point from which we started, it is obvious that  we 
have 4 more R's than L's. Also observe that  in an orthoconvex grid we never have 
two consecutive L's in its coding. By canceling each L and the R that  follows it in 
the coding of a solid orthoconvex grid, we are left with 4 R's. These correspond 
to 4 convex boundary nodes. These points define the sides of the grid. In that  
sense, all orthoconvex grids are 4-sided. 

However, we can relax that  definition for the special case of the solid ortho- 
convex grids that  contain the patterns RRRR or RRRRR. In these two cases, we 
can combine 2 sides together and thus, consider the orthoconvex to be composed 
by a base, a rising region that  is immediately after the base in the clockwise 
direction, and a falling region that  follows the rising region in the clockwise di- 
rection. For this reason, we call all the solid orthoconvex grids that  fall into that  
category pseudo 3-sided. In the following we will refer to the boundary nodes 
that  lie between any two sides (or pseudo sides) as corners. Figure 1 shows the 
two types of pseudo 3-sided solid orthoconvex grids along with their codings, 
corners and sides. 

Side 2 

Side 3 

L I J. 
Side 1 (Base) 

Type RRRRR 
Coding: RRLRLRLRLRLRRR 

Side 2 
Side 3 

Side 1 (Base) 

Type RRRR 

Coding R L R L R L R R L R L R L R L R R R  

Fig. 1. The two types of pseudo 3-sided solid orthoconvex grids and their codings. 

A cord is any path (possibly a closed one) internal to the grid that  consists 
of grid edges as well as line segments that  connect nodes that  are of distance 2 
and diagonally opposite of each other. If it is not a closed one it must have its 
endpoints on the boundary. 

A diagonal is a cord that  has its end-nodes on two different sides. We make 
the convention that  a convex boundary node that  separates two sides belongs in 
both of them and, in that  sense, it is considered to be a diagonal as well. It is 
obvious that  the nodes that  belong into a nontrivial diagonal that  touches each 
of its adjacent side at most once form a cut-set for the solid grid. 

During the course of the searching there are regions of the grid that  are clean 
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and others that are considered to be contaminated (or dirty). 

Defini t ion7.  Assume a searching strategy S(G) on a graph G. Let Dtc be the 
graph that is induced by removing all cleaned edges and all nodes that have no 
incident contaminated edges after t steps of S(G). Conn(D~) is the number of 
connected components of Dte and it denotes also the number of contaminated 
regions at time t. We say that a graph can be searched in such a way that we 
have at most p contaminated regions if and only if maxt>0 Conn(Dtc) < p. 

3.2 Searching strategies for Pseudo 3-Sided solid Orthoconvex 
Grids 

In this section we show that there exists an optimum searching strategy for the 
modified edge searching problem on a pseudo 3-sided solid orthoconvex grid D 
in which during the course of the searching there exists only one contaminated 
region. Based on that, we compute rues(D) and we show how from it to derive 
es(D). 

We can prove that[8]: 

L e m m a 8 .  Assume a solid orthoconvex grid and a cord that has its end-nodes 
on the same side of the grid. We can search the region that is bounded from that 
side and the cord using the modified edge searching with a number of searchers 
equal to the cord points and in such a way that one searcher ends up at every 
cord node. [] 

Corol la ry  9. Assume a solid orthoconvez grid and a cord that has its end-nodes 
on the same side of the grid. We can search the region that is bounded from that 
side and the cord using the modified edge searching with a number of searchers 
equal to the cord points and in such a way that one searcher starts from each 
cord node. [] 

Lemma 10. Assume a pseudo ,?-sided solid orthoconvez grid D and a diagonal. 
We can search the region of D that is bounded from the diagonal and the part 
of the boundary that contains ezactly 1 corner using the modified edge searching 
with a number of searchers equal to the diagonal points and in such a way that 
one searcher ends up at every diagonal node. [] 

Corol la ry11 .  Assume a pseudo 3-sided solid orthoconver grid D and a diago- 
nal. We can search the region olD that is bounded from the diagonal and the part 
of the boundary that contains exactly 1 corner using the modified edge searching 
with a number of searchers equal to the points of the diagonal and in such a way 
that one searcher starts from each point of the diagonal. [] 

Lemma 12. Any solid grid D that has b boundary nodes can be searched with 
b searchers in such a way that one searcher starts at every boundary node, or, 
one searcher ends at every boundary node. I"1 
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Using the above lemmas, we can prove [8] the following theorem that  will 
enable us to obtain a closed formula for rues O. 

T h e o r e m  13. There is an optimal searching strategy for the modified edge search- 
ing problem on a pseudo 3-sided solid orthoconvez grid which has the property 
that during the search there is only one contaminated area. [] 

Let d(nl, s) be the length of a shortest diagonal from the boundary node nx 
to side s. d(nl, s) = 0 if n] is on side s. If node nx is a corner then let s(nl) 
denote the side which is opposite of it. Let e denote a boundary edge (nl ,  n~) or 
a path (nl ,  ni), (ni, h~) where ni is of degree 2. Let Sa(e) to denote the side that  
is following the one that  e lies on if we move from nl to n2, and Sb(e) to denote 
the side that  is following that  e lies on if we move from n2 to nl .  In order for 
saO and Sb0 to be well defined, e must not be a path of length 2 that  contains 
a corner. In that  case (e lies on two sides) we define Sa(e) ( -  Sb(e)) to be the 
third side of the pseudo 3-sided solid orthoconvex grid. 

Based on Theorem 13 we prove: 

T h e o r e m  14. The minimum number of searchers that are required in order to 
solve a modified edge searching problem on a pseudo 3.sided solid orthoconvez 
grid O is given by: 

mes( D ) = rain(corner_distance, diagonal_pair_distance) 

where, corner.distance = min{d(c, s(c))} over any corner e (out of 3 possible) 
and diagonal_pair_distance = min{d(nl,  Sb(e) ) + d(n2, Sa(e))} over any bound- 
ary edge e = (n], n2) or any path e = <  (nl, ni), (ni, n2) > where ni is of degree 
2. [] 

Up to now, we have determined mes(D), the minimum number of searchers 
that  are required in order to solve the modified edge searching problem on 
a pseudo 3-sided solid orthoconvex grid. By Lemma 6 we know that  at most 
rues(D) + 1 searchers can solve the original edge searching problem. So, we 
have a way to approximate es(D) within 1 from the optimum. Unfortunately, as 
Figure 2 demonstrates, there are grids that  can be searched optimally with the 
same number of searchers on both problems. So, in order to get an algorithm 
that  computes es(D) we have to identify these grids. 

Dirty 

! 

Fig. 2. A grid D for which rr, es(D) = es(D) = 5. 

Clean 
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L e m m a  15. I f  there is a searching strategy that solves the edge searching prob- 
lem on grid D that contains no path of the form (nl, ni), (ni, nj), (nj, n2) where 
degrec(nl) = dcgree(nj) = 2 using k searchers, k > 2, then there is a searching 
strategy that solves the modified edge searching problem on grid D using at most 
k - 1 searchers, r] 

L e m m a  16. Assume a pseudo 3-sided solid orthoconvex grid D that contains a 
path of the form (n l , . i ) ,  (n,, where degree(hi) = d gre (nj) = 2 
and nj is a corner, and the diagonal from nj to the opposite side has rues(D) 
points. Then, rues(D) = es(D) if and only if there are two points in the diagonal 
with the same X or Y-coordinate. n 

T h e o r e m  17. Assume that the minimum number of searchers that are required 
to solve the modified edge searching problem on a pseudo 3-sided solid ortho- 
convex grid D is rues(D). Then, in the case where there is a diagonal from a 
corner c of D to the opposite side of length mes(D) such that c is next to a de- 
gree 2 node and that diagonal has two points with the same X or Y-coordinate, 
es(D) = rues(D). Otherwise, es(D) = mes(D) + 1. U 

4 A l g o r i t h m s  f o r  d e t e r m i n i n g  e s ( D )  

In this section we present algorithms to determine es(D). The algorithms are 
based on Theorems 14 and 17. Through their proofs [8], these theorems also 
suggest an opt imum searching strategy that  consists of O(n) actions where n is 
the number of nodes of the grid D. 

It is customary to express the complexity of an algorithm that  determines the 
minimum number of searchers that  are required to search a graph as a function of 
n. However, for a grid we can define two new quantities: the number of boundary 
nodes b and the number of turning points m. Obviously m turning nodes can 
completely define the grid and thus it is desired to express the t ime complexity 
of the algorithm that  determines es(D) as a function of m. Observe that  there 
are grids with m = o(b) and b = o(n). 

A quanti ty that  we have to compute is the distance from a boundary node v 
to some side of the grid. In the rest of the paper we assume that  the base of the 
grid is parallel to the X axis. Informally, we describe how this can be done when 
the boundary node is on the rising side and we want to compute is distance to 
the falling side. All other cases are handled in a similar way. We move from node 
v diagonally up (on a line parallel with l : x = y) until we hit the boundary. 
If we hit the wanted side we are done. If not, we move to the right at the next 
concave turning point. We then move diagonally up, and so on. From the above 
discussion, it becomes obvious that  we need to compute the distance from any 
concave turning point to any side. 

The following lemma is important  for deriving efficient algorithms: 

L e m m a 1 8 .  Assume a pseudo 3-sided solid grid D that has its base parallel 
to the X axis. In order to determine mes(D) as Theorem 14 indicates, it is 
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sufficient to examine diagonals that start from i) turning nodes, ii) boundary 
nodes that are adjacent to turning nodes, and iii) the nodes that are at the 
intersection of the base and all lines that pass from concave turning nodes on the 
rising side and are parallel with l : y = - z .  

It is trivial to compute the minimum diagonal between any boundary node 
and the base of the grid since one minimum diagonal will be parallel to the Y 
axis. The nontrivial part is to compute the the minimum diagonal from a concave 
turning node that  lies on the the rising (falling) side to the falling (rising) side. 
Algorithm_l [8] supports the following lemma: 

L e m m a  19. Given the side s of a pseudo 3-sided solid orthoconvex grid D that 
contains m turning nodes, we can compute the length of the minimum diagonals 
between all turning nodes x and s in O(m 2) steps. [3 

We now proceed to construct Algorithm_2 that  computes es(D) based on 
rues(D) as defined in Theorem 14. 

From Lemma 18, we know that  we can concentrate only at O(m) nodes of 
the grid. Recall the definitions from Section 3.2 (following Theorem 13). 

Algorithm_2 

1. Compute the length of the minimum diagonals between all nodes v indicated 
in Lemma 18, and any side s. 

2. corner_distance = min{d(e, s(c))} over any corner (out of the 3 possible) c. 
3. diagonal_pair_distance = min{d(nl, Sa(e)) + d(n2, Sb(e))} over any bound- 

ary edge e = (nl ,  n2) adjacent to a node specified in Lemma 18, or any path 
e = <  (hi,  hi), (hi, n2) > where ni is of degree 2 and thus, a convex turning 
node). 

4. mes( D ) = min( corner_distance, diagonal_pair_distance). 
5. Determine es(D) from mes(D) based on Theorem 17. 

L e m m a 2 0 .  Given a pseudo 3.sided solid orthoconvex grid D, es(D) can be 
determined in O(m2). [] 

Algorithm_2 can be parallelized to yield a parallel algorithm that  runs in 
polylog time using a polynomial number of processors. So we can state: 

T h e o r e m 2 1 .  Given a pseudo 3-sided solid orthocnvex grid D, the problem of 
determining es(D) is in NC. [3 

We can modify Algorithm_l to compute the length of the minimum diagonals 
between all turning points v and any side s in O(m) time by a more complicated 
method that  is not easy (if possible) to be parallelized [8]. This improvement 
leads to an optimum algorithm and together with the fact that  Theorem 14 
suggests a searching strategy, our final result can be stated as: 
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T h e o r e m  22. Given a pseudo 8-sided solid orthocnvex 9rid D, an optimum edge 
searching strategy S( D) that consists of O(n) actions can be constructed. It uses 

,~ es(D) searchers where, es(D) can be computed optimally in O(m) time. 

5 Conclus ion  

We have shown how to compute the searching number for the class of the pseudo 
3-sided solid orthoconvex grids. Our algorithms also suggest an optimal search- 
ing strategy. It is not clear how to search any orthoconvex grid. Especially, the 
property that  allowed us to design our algorithms does not hold for every ortho- 
convex grid. We are able to create orthoconyex grids that  canno tbe  searched by 
maintaining only one clean area during the searching. However, our conjecture is 
that  there are opt imum searching strategies that  create at most two dirty areas. 
This can lead to algorithms for computing the searching number of any solid 
orthoconvex grid. Other interesting problems are i) how to search general solid 
grids(non orthoconvexes), and it) how the existence of holes in the grid can effect 
the complexity of the problem. 
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