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1 IntroductionA crucial component of any large scale parallel ma-chine is the algorithm that is used to route messages(also called packets) between nodes in the underlyingnetwork. For a parallel computer to be computation-ally e�ective, it must be able to route messages fromtheir origin processors to their destination processorsquickly and with small, preferably constant size, queues(queues are created while two packets are competing forthe same communication channel). This is the task ofthe packet routing algorithm.Obviously, during the course of the execution of aparallel algorithm, several communication patterns aregenerated. It is fair to assume that these patterns arenot known in advance, and thus, all the routing de-cisions have to be made during the execution of thealgorithm. In other words, routing is performed by anon-line algorithm.However, this is not always the case. In severalalgorithms the communication patterns are known inadvance. Algorithms that perform matrix operationsserve as an example. When this situation arises, wecan handle the communication part of the algorithmo�-line. Solving the routing problem in an o�-line fash-ion has great practical bene�ts. The router can becomepart of the compiler. Besides its usual and well knownfunctions, the compiler will also generate code that willroute packets of information through speci�c paths [?].This results in faster execution time. All of the over-head that would be required by the on-line routing al-84



gorithm is eliminated. We have to emphasize that thisamount of overhead is signi�cant. This is probably thereason that, in practice, despite the existence of opti-mal routing algorithms in terms of time and space, theparallel computing industry prefers to use very simpleand nonoptimal algorithms. (Parallel machines basedon the mesh interconnection network serve as an exam-ple.)Another reason for which we are keen to investigatethe o�-line packet routing problem is because we hopethat an o�-line solution can help us to design betteron-line algorithms. A lot of work has been done on on-line packet routing [?, ?, ?, ?, ?, ?, ?, ?, ?]. However,for all nontrivial networks, the question of whether itis possible to route a permutation in optimal time byusing no queues (or constant queues of small size, say 2-5 packets) is still open. One way to attack the problemis to obtain an o�-line solution and to learn from itsstructure.In this paper, we are going to study the o�-linepacket routing problem. Formally, in an o�-line packetrouting problem we are given a graph that representsthe underlying interconnection network of a parallelmachine and a set of routing requests. Each requestconsists of a tuple (origin; destination) where originand destination are vertices in the graph. We are re-quired to compute a path for each request. The com-puted paths have to be such that, when all requestsare routed together, the routing is e�cient. In otherwords, it is fast (near the lower bound) and requiressmall constant size queueing area in each node. Usu-ally lower bound are obtained based on distance andbisection-like arguments.The only previous work on o�-line packet routingis by Annexstein and Baumslag [?]. They presented amethod to solve the permutation o�-line packet routingproblem on product graphs. Their algorithm producesoptimal schedules that are within a constant factor ofthe worst case lower bound. During the routing queuesare never created. For the case of n�nmeshes, their al-gorithm produces paths that are of length 3n�3. Lateron, Krizanc and Narayanan [?] presented an algorithmthat, for n � n meshes, creates paths of length 2:25nand uses queues of size at most 14. Their algorithmcan be considered to be a �ne tuning of the algorithmof Annexstein and Baumslag.We propose a new method for the o�-line packet

routing problem. Our method can treat any kind ofinterconnection network. Not just product graphs. Itcan also treat any type of routing pattern. Not just per-mutations. Furthermore, our model can incorporate aqueue of variable length that re
ects the bu�ering ca-pabilities of the processors in the parallel machine. Anadditional feature is that it tries to compute paths thatare of length close to the actual lower bound dictatedby the routing pattern under consideration and not ageneral worst case lower bound.The rest of the paper is organized as follows: In Sec-tion 2, we give de�nitions for terms we use in the pa-per. In Section 3, we present the multistage o�-linerouting model, our model for o�-line packet routing. InSection 4, we demonstrate the modeling power of themultistage o�-line routing. We explore its features andwe discuss its advantages. In Section 5, we presentthe general form of a routing algorithm that can ac-commodate the multistage o�-line routing model. InSection 6, we apply our model to examine o�-line per-mutation routing on 2-dimensionalmeshes. We presentan extended study of the permutation problem basedon simulations. For all the simulations we ran on ran-domly generated data, the number of routing steps thatis required by our algorithm is equal to the maximumdistance a packet has to travel, and thus, optimal. Weconclude in Section 7, with a discussion on the poten-tial of our model and we give some future directions forthis research.2 De�nitionsA �nite directed graph G = (V;E) is a structure whichconsists of a �nite set of vertices V and a �nite set ofedges E = fe1; e2; : : : ; ejEjg. Each edge is incident tothe elements of an ordered pair of vertices (u; v). u isthe start-vertex of the edge and v is its end-vertex.Edges with the same start and end-vertices are calledself-loops. We de�ne the directed self-loop augmentedgraph GSL = (V;E0) of G = (V;E) to be the graphwith E0 = E [ fev = (v; v)jv 2 V g (one self loop isadded for each vertex in G provided that it does notalready exist).A directed path is a sequence of edges e1; e2; : : : suchthat the end-vertex of ei�1 is the start-vertex of ei.Edges with the same start-vertex and the same end-vertex are called parallel. We say that a directed graph85



that contains parallel edges is a directed multigraph.The set Neighbors(v;G) is de�ned to be the set ofvertices inG that can be reached from v by crossing justone edge. Formally, Neighbors(v;G) = fwj (v;w) 2E of Gg.An o�-line packet routing problem R is de�ned by atriple (G;P; k) where G = (V;E) is the directed graphthat represents the network in which the routing willtake place (vertices in V represent processors and edgesin E represent unidirectional communication links).The elements in set P represent the m packets thatare to be routed. Formally, P = fp1; p2; : : : ; pmj pi =(origi; desti); origi; desti 2 V; 1 � i � mg. Finally, kis the maximum number of packets that are allowed tobe queued at any processor during the routing.Note that, in the literature, the maximum queuesizeallowed was not part of the de�nition. We decided toinclude it in the statement of the problem in order toget solutions that are closer to reality and also to utilizeresources to their maximum potential.There is no restriction on the number of packets thatoriginate from, or, are destined for, a certain proces-sor. Also, several packets may have identical originand destination processors. If at most h1 packets orig-inate from any processor, and, at most h2 packets aredestined for any processor, then we say that we havean (h1; h2) packet routing problem. If h1 = 1 we havea many-to-one routing problem, if h2 = 1 we have aone-to-many routing problem, and when h1 = h2 = 1we have the permutation routing problem.A solution of length L for the o�-line packet rout-ing problem R = (G;P; k) is a set of directed pathsSOLUTION(R) = fd1; d2; : : : ; dmg where di is the di-rected path corresponding to packet pi. The paths aretaken on graph GSL, the self-loop augmented graph ofG, instead of G. We do that in order to make it possibleto incorporate self loops in the directed paths. A selfloop from vertex v in the path of some packet indicatesthat that packet was queued in processor v at the cor-responding routing step. Each directed path containsat most L+ 1 vertices. For i = 1 : : :m we have thatdi = v0i v1i : : : vli; 0 � l � Lwhere, v0i = origi and vli = desti.In order to have a valid solution for our routing prob-lem, the directed paths must satisfy the following twoconditions:

1. At any routing step, each edge that corresponds toan unidirected communication link appears in atmost one directed path.2. At any routing step, each self loop appears in atmost k directed paths.3 A New Model for O�-LinePacket RoutingIn this section we present a new way to model the o�-line packet routing problem as a graph theoretic prob-lem. For reasons that will become evident in the restof the section, we call our model the multistage o�-linerouting model.Consider any routing problem R = (G;P; k) where,G = (V;E) is the directed graph (with no self-loops)that represents the interconnection network in whichthe routing takes place, P is the set of packets to berouted and, k is the maximum number of packets thatcan be queued at any processor. Our goal is to achieverouting time near the actual lower bound of the prob-lem. Assume a trivial upper bound of T routing stepsfor the problem under consideration.We construct a multistage directed multigraph G0 =(V 0; E0) as follows:V 0 = f(v; t)j v 2 V and 0 � t � Tgand E0 = f((v; t); (w; t+ 1)) j w 2 neighbors(v;G)and 0 � t < Tg [fe1v; e2v; : : : ; ekvj eiv = ((v; t); (v; t + 1));v 2 V; 0 � t < T; 1 � i � kg:The edges in the �rst term of E0 represent the com-munication that can take place between adjacent ver-tices of the interconnection network at any time. Theedges in the second term of E0 represent a queue thatresides in any vertex v and can grow up to k packets.Figure ?? shows the resulting graph when the inter-connection network is a chain of length 5 and no queuesare allowed during the routing. For permutations, anobvious lower bound of 4 routing steps that is based ona distance argument applies.86



Figure 1: A chain of 5 vertices and its correspondingmultistage graph.Let tower(G0 ; v) be the set of vertices of graph G0(the constructed multistage graph) that correspond tovertex v in G. Formally,tower(G0 ; v) = f(v; t)j v 2 V; (v; t) 2 V 0; 0 � t � Tg:Theorem 1 Let R = (G;P; k) be a routing problemon graph G. R has a solution of length L if and onlyif for each packet pi = (origi; desti) 2 P there exista path from a vertex (origi; t) in tower(G0 ; origi) tovertex (desti; t0) in tower(G0 ; desti); t � t0 � L and allsuch paths are mutually edge disjoint.Proof First assume a solution SOLUTION(R) =fd1; d2; : : : ; dmg where di is the directed path corre-sponding to packet pi = (origi; desti). We can map alldirected paths in SOLUTION(R) to directed pathsin the multistage graph G0. For any directed pathdi = v0i v1i : : : vli; 0 � l � L; 1 � i � m, we mapedge (vti ; vt+1i ) of di to edge ((vti ; t); (vt+1i ; t+1)) of G0.Since in SOLUTION(R), at any time step, eachedge that corresponds to transmission of a packet ap-pears in at most one directed path, these edges willnever map in the same edge of G0. Also, since in G0there are k edges from vertex ((v; t); (v; t+ 1)), we canmap the (at most) k identical self loops that appear atany routing step of SOLUTION(R) to di�erent edgesof G0.In a similar way, we can obtain from a set ofedge disjoint paths a solution SOLUTION(R) =fd1; d2; : : : ; dmg for the routing problem R = (G;P; k)of length L, where L is the maximum stage numberout of all stages that are entered by some path. Eachdisjoint path is of the form (origi; t) : : : (desti; t0), forpacket pi.

Theorem ?? states that the problem of obtainingan o�-line solution to a routing problem reduces to theproblem of �nding edge disjoint paths in the directedmultigraph G0. This allows us to approach the o�-linepacket routing problem from a di�erent point of view.4 The Modeling Power of theMultistage O�-Line RoutingIn this section we are going to demonstrate the power ofthe multistage o�-line routing model . The only knownmethod for o�-line packet routing is the method of An-nexstein and Baumslag [?] that solves the problem forproduct graphs. It provides us with solutions that arewithin a constant factor from the optimal for permu-tation problems. We will refer to this method as thestandard routing method. Since the standard routingmethod is the only known method, we will comparethe multistage o�-line routing with it.We are aware that the standard method was designedto solve a special form of the problem on a special typeof graphs. It is not our intention to underemphasize itsimportance by the comparison we attempt to do. Inour opinion, the standard method was a successful andvery important approach to the o�-line packet routingproblem. We perform our comparison only to demon-strate the power of our model.The model of the multistage o�-line routing has sev-eral advantages over the standard method. It modelsany routing patterns on any interconnection network.It allows for di�erent queue sizes. It can be used to�nd solutions near to the actual lower bound. We willdiscuss each of the above in detail.The standard o�-line method for packet routing cantreat only routing problems that are permutations andmoreover are routed in a network that is a productgraph. If G = H � F is the product graph, r(H)and r(F ) are the numbers of routing steps requiredto route a permutation on H and F respectively, andif r(H) < r(F ), then the standard method routes thepermutation on G by routing one permutation on H,then a permutation on F and, �nally, a permutationon H again. Thus, it produces a solution of length2r(H) + r(F ). H or F can be, in turn, product graphsand thus, the method is applied recursively.From the above, two limitations of the standard87



method are immediately revealed. The �rst one is thatwe have no way to model a routing problem de�ned ona general graph. Moreover, if G is a product graph,we can use the standard method only if we know howto solve the routing problem on both H and F . Thus,H and F must be relatively simple graphs. The sec-ond limitation of the standard method concerns therouting patterns. If the routing problem is not a per-mutation but an (h1; h2) routing problem the standardmethod will fail to solve it. One possible approachthat someone might take is to split the routing prob-lem into a sequence of permutation problems and thensolve them one after the other by using the standardmethod. However, the length of the solution may bemuch more than the optimal. The multistage o�-linerouting model does not su�er from any of the abovetwo limitations. It can successfully model any routingproblem on any interconnection network.One important factor that any packet routing schemetries to minimize is the queue size. If a routing prob-lem is to be routed on an interconnection network inwhich every processor can use an area of size of up tok packets for queueing purposes, it is a design limita-tion that the queues are never overloaded. Moreover, itis desirable that maximum utilization of the queues oc-curs, especially, if this utilization results in reduction ofthe routing time. The multistage o�-line routing modelhas a built-in mechanism to incorporate the availablequeuesize. On the contrary, the standard method as-sumes no queues and cannot be modi�ed, at least in astraight forward way, to incorporate them, while, themultistage o�-line routing model can model the casewhere queueing of packets in any processor is prohib-ited.When the standard method routes a permutation ona graphG = H�F , it will produce a solution the lengthof which depends on the worst case optimal solutionsfor the permutation problem on graphs H and F . Forexample, for an n � n mesh, it produces a solution oflength 3n�3 since, the n�nmesh can be considered asthe product of two n-node line graphs and, any permu-tation on an n-node line graph can be solved in n � 1steps. So, in the worst case, the standard method givesa solution that is n � 1 steps away from the optimal(for the n�n mesh there exist a trivial worst case lowerbound of 2n�2 routing steps obtained by a distance ar-gument). However, worst case scenarios do not appearin all routing problems. Several problems require the

Figure 2: An example of a permutation problem thathas a solution of length much less than the worst caselower bound and greater than the bound obtained byany distance argument.processors to exchange information with other proces-sors in a relatively small (compared with the diameterof the network) distance. In the extreme case that eachprocessor has to transmit a packet destined for itself,the standard method will produce a solution of lengththat depends not on the actual routing problem but inworst case situations (3n�3 for the n�nmesh) insteadof the trivial solution of length 0.On the other hand, the multistage o�-line routingmodel can accommodate any optimal solution for therouting problem under consideration. It is interest-ing here to examine how a lower bound is de�ned forany speci�c routing problem. When we try to estab-lish worst case lower bounds we usually use argumentsbased on the diameter and the bisection of the networkunder consideration. We will try to obtain a lowerbound for a speci�c permutation problem on the in-terconnection network of Figure ??. This interconnec-tion network is a connected graph that consists of twocliques of size 1000, two cliques of size 10, and one extranode through which the 4 cliques are connected. Obvi-ously, any two nodes of that graph are within distance4 of each other. This provides us with a trivial worstcase lower bound of 4 steps for any routing algorithm.A better worst case lower bound of 1000 steps is ob-tained if we consider the case where all packets in theone k1000 are destined for the other. So, based on theabove arguments, we claim that the worst case lowerbound for the graph under consideration is 1000 andwe say that any algorithm that routes all packets in1000 steps is optimal. But what if the routing problemis such that all packets in the one k10 are destined forthe other, and the packets in the k1000's are destined for88



processors in their own clique? This particular problemcan be solved with exactly 12 routing steps (it is easyto construct such a solution) and a solution of length1000 is not satisfactory.From the above discussion, it is obvious that thelower bound for the actual routing problem might besmaller than the worst case lower bound, and that theactual lower bound may be formed by a combinationof distance bounds, wire utilization limitations, and ofother factors that we are not aware of. The multistageo�-line model will accommodate the optimal solutionof the actual problem. It is up to the algorithms whichwill try to �nd the edge disjoint paths to locate it. Onthe other hand, the standard method will always failto �nd the optimal solution.5 Greedy Routing AlgorithmsUp to know, we developed a model for studying the o�-line packet routing problem as a graph theoretic routingproblem. For each packet pi = (origi; desti) we want to�nd a path in G0 from some node in tower(G0 ; origi) tosome node in tower(G0 ; desti) such that all the pathsare edge disjoint. The reader that is familiarwith graphtheory and the theory of NP-completeness, will realizethat the problem of obtaining edge-disjoint paths ina graph reduces to the multicommodity integral 
owproblem. An immediate consequence is that it is un-likely to �nd an e�cient algorithm for our problem.However, more research is required in order to takeinto account the fact that the underlying graph is amultistage network. Also more research is needed inthe area where the initial interconnection network issome special graph.Even though there is not an e�cient way to ob-tain edge-disjoint paths, the multistage o�-line modelis suitable for the empirical study of the o�-line packetrouting problem. For most of the routing problems it isthe only model available. Even for permutation prob-lems on product graphs, it is worthwhile to spend atleast the same time with the standard method tryingto �nd better solutions. This becomes evident from thediscussion in the previous section regarding actual andworst case lower bounds.It is obvious, since G0 can always be extended byadding new stages, that a solution to the o�-line packetrouting problem always exists. However, we are inter-

ested in solutions of minimum length. We use the fol-lowing greedy algorithm to obtain such solutions.Algorithm Find Edge Disjoint Paths1. Sort all packets in decreasing order according tothe distance they have to travel.2. For each packet p = (orig; dest), according to itsposition in the sorted list, do� �nd a path from a node in tower(G0 ; orig)that is as close as possible to an earlier stage,to some node in tower(G0 ; dest)� remove the edges that belong in the path fromG0 .The algorithm is greedy in the sense that the pack-ets that have to travel a greater distance to reach theirdestination are routed �rst. It is obvious that step 2of the algorithm leaves a lot of freedom in the way weroute the paths. Several methods can be tried. Theinterconnection network under consideration will be ofgreat in
uence. Also, the experience gained from theperformance of on-line algorithms can provide signi�-cant feedback.Algorithm Find Edge Disjoint Paths is actually aheuristic. Since the way we choose the paths is notspeci�ed by step 2, it is not possible to give a precisetime complexity analysis. The analysis will be di�erentfor each \path selection" algorithm.The space requirements of the method are dictatedby two factors: the space required for the multistagegraph and the space needed to report the solution.In Section 3, we presented our model in a static way.A multistage graph was derived from the initial packetrouting problem. When the memory space required forthe storage of the multistage graph is of great consid-eration, several approaches can be taken to reduce thespace to the minimum (equal to the space we need toreport the solution). The multistage graph can be con-structed during the execution of the algorithm. If newstages are needed we add them in run time. Also wemay choose to add only the part of a stage that is usedby some paths. In order to be able to do this we need89



to maintain a linked list representation of the multi-stage graph. This will have the e�ect of slowing downthe algorithm by a factor of O(n), n is the number ofvertices of the original interconnection network. Thisis a trade o� that any algorithm designer has to face.In the next section, we will use the multistage o�-linerouting model to study the permutation packet routingproblem on 2-dimensional meshes. The path selectionalgorithm that will be used in step 2 will be completelyde�ned. As the simulations show, the improvements onthe length of the solutions are signi�cant. As a matterof fact, we were not able to identify a routing patternfor which our method does not reveal an optimal solu-tion.6 Case Study: 2-DimensionalMeshesIn this section, we use the multistage o�-line routingmodel to study permutation routing on 2- dimensionalmeshes. Given an a�bmesh, a � b, in which we have toroute a permutation, we form a multistage network of2a+ b stages. We have chosen the number of stages tobe equal to 2a+b since the standard method guaranteesto give a solution of that exactly length. In order tomake a valid comparison with the results guarantteedby the standard method, we do not allow packets tobe queued at any intermediate processor during theirrouting. However, we assume that each packet can waitfor some time at its origin node. This is a reasonableassumption since at least so much space is needed inorder to store the packet. The same assumption wasmade in [?].The space needed to store the multistage graph isO((ab)(a+ b)). This is because the maximum degree ofany mode in a 2-dimensional mesh is 4.6.1 The Path Selection AlgorithmAlgorithm Find Edge Disjoint Paths presented in Sec-tion ??, forms the skeleton of the algorithm we use.After sorting the packets in decreasing order of the dis-tance they have to travel, we assign paths to them inthe order they appear in the sorted list. When a path isassigned, the edges that belong to the path are deletedfrom the multistage graph. Then, we proceed with theassignment of a path to the next packet.

The following algorithm is used to assign a path topacket pi = (origi; desti) in the multistage graph G0i.G0i is the graph obtained from the initial multistagegraph G0 of our model, after the deletion of the edgesthat belong to the paths of the �rst i � 1 packets.Algorithm Path Selection(Pi; G0i)1. stage = 02. While (a path is not yet assigned to pi andstage < 2a+ b � distance(origi; desti)) doIf it is possible to route the path from node(origi; stage) horizontally to the correct col-umn and then vertically to the destination,then assign that path to pielse if it is possible to route the path from node(origi; stage) vertically to the correct row andthen horizontally to the destinationthen assign that path to pielse stage = stage+ 13. If a path is not yet assigned to packet pithen signal the failure of the algorithm.If the algorithm terminates because it failed to routesome packet, this means that for the speci�c routingproblem at hand and for the given path selection al-gorithm, the standard method does better. However,as we will see in the next subsection, after performingmillions of experiments, we were not able to identifysuch a routing problem.The time spent in the routing of any path, in theworst case, is O((a + b)2). This is because, we mightfail O(a+b) times to assign a path to some packet and,at each try, we have to check O(a + b) edges.If we succeed in routing all paths, we will need O(ab)space to report the solution. This is because each pathproduced by our routing algorithm can be describedjust by specifying the stage in which the routing of thepacket starts and the initial direction (horizontally orvertically) of the path. Note that, in general, reportinga solution requires 
(abL) space, where L is the lengthof the optimal solution.6.2 PerformanceIn this section, we present experimental results of thealgorithm based on random permutation routing prob-90



lems. We ran our algorithm using random input dataon square and rectangular meshes. The data were gen-erated with the help of the random number genera-tor function random() on a MIPS computer system.random() uses a non-linear additive feedback randomnumber generator employing a default table of size 31long integers to return successive pseudo-random num-bers in the range from 0 to 231 � 1. The period of thisrandom number generator is very large, approximately16(231 � 1).When we started our experimental study, we hopedthat we would be able to compute for each randompermutation a solution of length less than the diame-ter of the mesh. Surprisingly, our algorithm surpassedour expectations. For all the random input problems,it revealed a solution of length equal to the maximumdistance some packet had to travel. This is the best wecan expect since the length of that solution matches thedistance lower bound for the speci�c routing pattern.Table ?? contains the number of experiments we ranfor each square mesh. The number of experiments de-crease as the sidelength of the meshes increases. This isbecause we spent a �xed amount of time on the studyof each individual mesh and the fact that for largermeshes the algorithm requires more time to compute asolution. The numbers of experiments are not in exactproportion with the sidelengths since we performed ourexperiments in a multiuser system of variable load. Foreach of the di�erent random problems we produced anoptimal solution.Obviously, checking all possible permutations is outof question since for an n-node mesh there are n! per-mutations. For a 4�4 mesh there are 16!(� 2:092�1013)permutations. However, we were able to check all9!(= 362880) possible permutations on a 3 � 3 mesh.For every permutation our algorithm found the optimalsolution, and thus, we can state the theorem:Theorem 2 The multistage o�-line model togetherwith Algorithm Path Selection() produce optimal so-lutions for any permutation problem on a 3� 3 mesh.We also performed experiments on rectangularmeshes. For each 2k-node rectangular mesh, 7 � k �14, we studied rectangular 2m � 2k�m meshes. Themumber of experiments we performed in each case aregiven in Tables ??, ??, ??, ??, ??, ??, ??, ??. Again,we were not able to identify a routing pattern for which

Mesh # of Experiments10� 10 207536020� 20 32219030� 30 10384040� 40 4670050� 50 3638060� 60 3513070� 70 3464080� 80 1742090� 90 15600100� 100 11420110� 110 9000120� 120 3690130� 130 2330140� 140 2290150� 150 2200160� 160 2120170� 170 1680180� 180 1410Table 1: Number of experiments performed for eachmesh. All experiments succeed in producing an optimalsolution.our algorithm fails to produce an optimal solution.For rectangular meshes with less than 12 nodes, wechecked exhaustively all permutations. For all of them,we were able to construct the optimal solution. So wecan state the theorem:Theorem 3 The multistage o�-line model togetherwith Algorithm Path Selection() produce optimal solu-tions for any permutation problem on any rectangularmesh of 12 or less nodes.7 ConclusionsIn this paper we presented the multistage o�-linemodel, a new and rather natural, way to model o�-linepacket routing problems. Then, the problem of o�-linepacket routing reduces to the problem of �nding edgesdisjoint paths on a multistage graph. The multistageo�-line nodel can model any kind of routing pattern onany graph. It also accommodates the optimal solutionsand can be use to obtain lower bounds that are notbased in worst case situations but rather on the actualrouting problem under consideration. Several interest-ing problems are raised from our model and deservefurther investigation. The general problem of �ndingedge disjoint paths reduces to the multicommodity 
ow91



Mesh # of Experiments23 � 211 128024 � 210 284025 � 29 354026 � 28 398027 � 27 5120Table 2: Number of experiments performed each 214-node mesh. All experiments succeed in producing anoptimal solution.Mesh # of Experiments22 � 211 90023 � 210 118024 � 29 250025 � 28 288026 � 27 3360Table 3: Number of experiments performed each 213-node mesh. All experiments succeed in producing anoptimal solution.which, in turn is NP-Complete. However, we do notknow how the complexity of the problem is a�ected bythe fact that we have to deal with a multistage graphthat is constructed in a special way. Also, the kind ofthe graph the routing takes place might a�ect the com-plexity. Another area that deserves further research isthat of the path selection algorithms. We provided ageneral framework for the algorithm that can accom-modate several heuristic methods depending on the un-derlying interconnection network. However, our studyfor the mesh was so successful that, for any randompermutation problem we studied we produced the op-timal algorithm. This makes us investigate the partic-ular algorithm and try to prove that it always producesan optimal solution, or to produce a counter-example.The fact that it turns to be an optimal algorithm forall the small meshes we exhaustively investigated, isvery encouraging. Nevertheless, given the fact that ina real parallel system a small portion of the availableprocessors will be allocated to a particular application(a small submesh in a mesh connected computer), hav-ing an optimal routing schedule it is something veryimportant. It can easily lead to speed-ups of impor-tant magnitudes (especially when the routing patternpresents some locality).

Mesh # of Experiments22 � 210 218023 � 29 270024 � 28 352025 � 27 432026 � 26 7760Table 4: Number of experiments performed each 212-node mesh. All experiments succeed in producing anoptimal solution.Mesh # of Experiments22 � 29 406023 � 28 430024 � 27 558025 � 26 8220Table 5: Number of experiments performed each 211-node mesh. All experiments succeed in producing anoptimal solution.Mesh # of Experiments22 � 28 304023 � 27 320024 � 26 530025 � 25 7000Table 6: Number of experiments performed each 210-node mesh. All experiments succeed in producing anoptimal solution.Mesh # of Experiments22 � 27 1432023 � 26 1152024 � 25 16400Table 7: Number of experiments performed each 29-node mesh. All experiments succeed in producing anoptimal solution.Mesh # of Experiments22 � 26 4450023 � 25 7134024 � 24 108320Table 8: Number of experiments performed each 28-node mesh. All experiments succeed in producing anoptimal solution.Mesh # of Experiments22 � 25 16012023 � 24 205860Table 9: Number of experiments performed each 27-node mesh. All experiments succeed in producing anoptimal solution.92
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