A New Approach to Off-Line Packet Routing
Case Study: 2-Dimensional Meshes

Antonios Symvonis

Jonathon Tidswell

Basser Department of Computer Science
University of Sydney
Sydney, N.S.W. 2006
Australia
symvonis@cs.su.oz.au

jont@cs.su.oz.au

Abstract

In this paper we present the multistage off-line routing
model, a new and rather natural, way to model off-line
packet routing problems. With this model, the prob-
lem of off-line packet routing reduces to the problem of
finding edge disjoint paths on a multistage graph. The
multistage off-line routing model can model any kind
of routing pattern on any graph. Furthermore, it in-
corporates the size of the maximum queue that can be
created in any processor. The multistage off-line rout-
ing model accommodates all optimal solutions and can
be used to obtain lower bounds that are based not in
worst case situations but rather on the actual routing
problem under consideration. The paths of the pack-
ets are computed by a greedy heuristic method that is
based on the distance the packets have to travel. A lot
of freedom is left for the user of the model in order to
incorporate in the heuristic properties of the underly-
ing interconnection network. We used the multistage
off-line model to study the off-line permutation packet
routing problem on 2-dimensional meshes. We ran mil-
lions of experiments based on random generated data
and, for all of our experiments, we were able to compute
a solution of length equal to the maximum distance a
packet had to travel, and thus, match the actual lower

bound for each routing pattern.

Copyright 1992-DAGS

84

1 Introduction

A crucial component of any large scale parallel ma-
chine is the algorithm that is used to route messages
(also called packets) between nodes in the underlying
network. For a parallel computer to be computation-
ally effective, it must be able to route messages from
their origin processors to their destination processors
quickly and with small, preferably constant size, queues
(queues are created while two packets are competing for
the same communication channel). This is the task of

the packet routing algorithm.

Obviously, during the course of the execution of a
parallel algorithm, several communication patterns are
generated. It is fair to assume that these patterns are
not known in advance, and thus, all the routing de-
cisions have to be made during the execution of the
algorithm. In other words, routing is performed by an

on-line algorithm.

However, this is not always the case. In several
algorithms the communication patterns are known in
advance. Algorithms that perform matrix operations
serve as an example. When this situation arises, we
can handle the communication part of the algorithm
off-line. Solving the routing problem in an off-line fash-
ion has great practical benefits. The router can become
part of the compiler. Besides its usual and well known
functions, the compiler will also generate code that will
route packets of information through specific paths [?].
This results in faster execution time. All of the over-

head that would be required by the on-line routing al-

amount of overhead is significant. This is probably the
reason that, in practice, despite the existence of opti-
mal routing algorithms in terms of time and space, the
parallel computing industry prefers to use very simple
and nonoptimal algorithms. (Parallel machines based
on the mesh interconnection network serve as an exam-

ple.)

Another reason for which we are keen to investigate
the off-line packet routing problem is because we hope
that an off-line solution can help us to design better
on-line algorithms. A lot of work has been done on on-
line packet routing [?, 7, 7,7, 7. 7.7 7 7?]. However,
for all nontrivial networks, the question of whether it
is possible to route a permutation in optimal time by
using no queues (or constant queues of small size, say 2-
5 packets) is still open. One way to attack the problem
is to obtain an off-line solution and to learn from its

structure.

In this paper, we are going to study the off-line
packet routing problem. Formally, in an off-line packet
routing problem we are given a graph that represents
the underlying interconnection network of a parallel
machine and a set of routing requests. Each request
consists of a tuple (origin,destination) where origin
and destination are vertices in the graph. We are re-
quired to compute a path for each request. The com-
puted paths have to be such that, when all requests
are routed together, the routing is efficient. In other
words, it is fast (near the lower bound) and requires
small constant size queueing area in each node. Usu-
ally lower bound are obtained based on distance and

bisection-like arguments.

The only previous work on off-line packet routing
is by Annexstein and Baumslag [?]. They presented a
method to solve the permutation off-line packet routing
problem on product graphs. Their algorithm produces
optimal schedules that are within a constant factor of
the worst case lower bound. During the routing queues
are never created. For the case of n xn meshes, their al-
gorithm produces paths that are of length 3n—3. Later
on, Krizanc and Narayanan [?] presented an algorithm
that, for n x n meshes, creates paths of length 2.25n
and uses queues of size at most 14. Their algorithm
can be considered to be a fine tuning of the algorithin

of Annexstein and Baumslag.

We propose a new method for the off-line packet

interconnection network. Not just product graphs. Tt
can also treat any type of routing pattern. Not just per-
mutations. Furthermore, our model can incorporate a
queue of variable length that reflects the buffering ca-
pabilities of the processors in the parallel machine. An
additional feature is that it tries to compute paths that
are of length close to the actual lower bound dictated
by the routing pattern under consideration and not a

general worst case lower bound.

The rest of the paper is organized as follows: In Sec-
tion 2, we give definitions for terms we use in the pa-
per. In Section 3, we present the multistage off-line
routing model, our model for off-line packet routing. In
Section 4, we demonstrate the modeling power of the
multistage off-line routing. We explore its features and
we discuss its advantages. In Section 5, we present
the general form of a routing algorithm that can ac-
commodate the multistage off-line routing model. In
Section 6, we apply our model to examine off-line per-
mutation routing on 2-dimensional meshes. We present
an extended study of the permutation problem based
on simulations. For all the simulations we ran on ran-
domly generated data, the number of routing steps that
is required by our algorithm is equal to the maximum
distance a packet has to travel, and thus, optimal. We
conclude in Section 7, with a discussion on the poten-
tial of our model and we give some future directions for

this research.

2 Definitions

A finite directed graph G = (V, E) is a structure which
consists of a finite set of vertices V and a finite set of
edges E = {e1,ea,...,¢p}. Each edge is incident to
the elements of an ordered pair of vertices (u,v). u is

the start-vertex of the edge and v is its end-vertex.

Edges with the same start and end-vertices are called
self-loops. We define the directed self-loop augmented
graph G°F = (V. E'") of G = (V,E) to be the graph
with E' = EU{e” = (v,v)lv € V} (one self loop is
added for each vertex in G provided that it does not

already exist).

A directed path is a sequence of edges €1, €5,... such
that the end-vertex of e;_; is the start-vertex of e;.
Edges with the same start-vertex and the same end-

vertex are called parallel. We say that a directed graph

The set Neighbors(v,G) is defined to be the set of
vertices in G that can be reached from v by crossing just
one edge. Formally, Neighbors(v,G) = {w| (v,w) €
E of G}.

An off-line packet routing problem R is defined by a
triple (G, P, k) where G = (V, E) is the directed graph
that represents the network in which the routing will
take place (vertices in V represent processors and edges
in E represent unidirectional communication links).
The elements in set P represent the m packets that
are to be routed. Formally, P = {p1,p2,...,pm| i =
(orig;, dest;), orig;,dest; € V., 1 <i < m}. Finally, k
is the maximum number of packets that are allowed to

be queued at any processor during the routing.

Note that, in the literature, the maximum queuesize
allowed was not part of the definition. We decided to
include it in the statement of the problem in order to
get solutions that are closer to reality and also to utilize

resources to their maximum potential.

There is no restriction on the number of packets that
originate from, or, are destined for, a certain proces-
sor. Also, several packets may have identical origin
and destination processors. If at most hy packets orig-
inate from any processor, and, at most hy packets are
destined for any processor, then we say that we have
an (hy, ha) packet routing problem. If hy = 1 we have
a many-to-one routing problem, if hy = 1 we have a
one-to-many routing problem, and when hy = hy = 1

we have the permutation routing problem.

A solution of length L for the off-line packet rout-
ing problem R = (G, P,k) is a set of directed paths
SOLUTION(R) = {dy,da,...,dn} where d; is the di-
rected path corresponding to packet p;. The paths are
taken on graph G°, the self-loop augmented graph of
G, instead of G. We do that in order to make it possible
to incorporate self loops in the directed paths. A self
loop from vertex v in the path of some packet indicates
that that packet was queued in processor v at the cor-
responding routing step. Each directed path contains

at most L + 1 vertices. For i = 1...m we have that

di:v?v?...vg, 0<I<L

3
where, v? = orig; and v} = dest;.
In order to have a valid solution for our routing prob-

lem. the directed paths must satisfy the following two

conditions:

86

an unidirected communication link appears in at

most one directed path.

2. At any routing step, each self loop appears in at

most k directed paths.

3 A New Model for Off-Line
Packet Routing

In this section we present a new way to model the off-
line packet routing problem as a graph theoretic prob-
lem. For reasons that will become evident in the rest
of the section, we call our model the multistage off-line

routing model.

Consider any routing problem R = (G, P, k) where,
G = (V. E) is the directed graph (with no self-loops)
that represents the interconnection network in which
the routing takes place, P is the set of packets to be
routed and, k is the maximum number of packets that
can be queued at any processor. Qur goal is to achieve
routing time near the actual lower bound of the prob-
lem. Assume a trivial upper bound of T routing steps

for the problem under consideration.

We construct a multistage directed multigraph G' =
(V' E") as follows:

V'={(v,t)fveVand0<t<T}
and
E' = {((v,t),(w,t +1))| w € neighbors(v, G)
and 0 <t < T} U
{61,, 65, e 6’5‘ e,i) = ((v,1),(v,t+ 1)),
veV, 0<t< T, 1<i<k}.

The edges in the first term of E' represent the com-
munication that can take place between adjacent ver-
tices of the interconnection network at any time. The

edges in the second term of E' represent a queue that

resides in any vertex v and can grow up to k packets.

Figure 77 shows the resulting graph when the inter-
connection network is a chain of length 5 and no queues
are allowed during the routing. For permutations, an
obvious lower bound of 4 routing steps that is based on

a distance argument applies.

Figure 1: A chain of 5 vertices and its corresponding
multistage graph.

Let tower(G',v) be the set of vertices of graph G'
(the constructed multistage graph) that correspond to

vertex v in G. Formally,

tower(G',v) = {(v,t)| v € V. (v, 1) e V,0<t < T}.

Theorem 1 Let R = (G, P, k) be a routing problem
on graph G. R has a solution of length L if and only
if for each packet p; = (orig;,dest;) € P there exist
a path from a vertex (orig;,t) in tower(G', orig;) to
vertes (dest;, t') in tower(G', dest;), t <t' < L and all
such paths are mutually edge disjoint.

Proof First assume a solution SOLUTION(R) =
{dy,ds,...,d,,} where d; is the directed path corre-
sponding to packet p; = (orig;, dest;). We can map all
directed paths in SOLUTION(R) to directed paths
in the multistage graph G’. For any directed path
d; = 7)?7); ...7)1'1, 0<I<L,1 <7< m, we map
edge (v!,0!™") of d; to edge ((v!, 1), (viT! t+1)) of G'.

Since in SOLUTION(R), at any time step, each
edge that corresponds to transmission of a packet ap-
pears in at most one directed path. these edges will
never map in the same edge of G'. Also, since in G’
there are k edges from vertex ((v,t), (v, + 1)), we can
map the (at most) k identical self loops that appear at
any routing step of SOLUTION(R) to different edges

of G'.

In a similar way, we can obtain from a set of
edge disjoint paths a solution SOLUTION(R) =
{di,ds,...,dy} for the routing problem R = (G, P, k)
of length L, where L is the maximum stage number
out of all stages that are entered by some path. Each
disjoint path is of the form (orig;,t)...(dest;,t'), for
packet p;. 1

87

an off-line solution to a routing problem reduces to the
problem of finding edge disjoint paths in the directed
multigraph G'. This allows us to approach the off-line

packet routing problem from a different point of view.

4 The Modeling Power of the
Multistage Off-Line Routing

In this section we are going to demonstrate the power of
the multistage off-line routing model . The only known
method for off-line packet routing is the method of An-
nexstein and Baumslag [?] that solves the problem for
product graphs. It provides us with solutions that are
within a constant factor from the optimal for permu-
tation problems. We will refer to this method as the
standard routing method. Since the standard routing
method is the only known method, we will compare

the multistage off-line routing with it.

We are aware that the standard method was designed
to solve a special form of the problem on a special type
of graphs. It is not our intention to underemphasize its
importance by the comparison we attempt to do. In
our opinion, the standard method was a successful and
very important approach to the off-line packet routing
problem. We perform our comparison only to demon-

strate the power of our model.

The model of the multistage off-line routing has sev-
eral advantages over the standard method. It models
any routing patterns on any interconnection network.
It allows for different queue sizes. It can be used to
find solutions near to the actual lower bound. We will

discuss each of the above in detail.

The standard off-line method for packet routing can
treat only routing problems that are permutations and
moreover are routed in a network that is a product
If G = H x F is the product graph, r(H)

and r(F) are the numbers of routing steps required

graph.

to route a permutation on H and F respectively, and
if r(H) < r(F), then the standard method routes the
permutation on G by routing one permutation on H,
then a permutation on F' and, finally, a permutation
on H again. Thus, it produces a solution of length
2r(H) +r(F). H or F can be, in turn, product graphs

and thus, the method is applied recursively.

From the above, two limitations of the standard

we have no way to model a routing problem defined on
a general graph. Moreover, if G is a product graph,
we can use the standard method only if we know how
to solve the routing problem on both H and F. Thus,
H and F must be relatively simple graphs. The sec-
ond limitation of the standard method concerns the
routing patterns. If the routing problem is not a per-
mutation but an (hq, hy) routing problem the standard
method will fail to solve it. One possible approach
that someone might take is to split the routing prob-
lem into a sequence of permutation problems and then
solve them one after the other by using the standard
method. However, the length of the solution may be
much more than the optimal. The multistage off-line
routing model does not suffer from any of the above
two limitations. It can successfully model any routing

problem on any interconnection network.

One important factor that any packet routing scheme
tries to minimize is the queue size. If a routing prob-
lem is to be routed on an interconnection network in
which every processor can use an area of size of up to
k packets for queueing purposes, it is a design limita-
tion that the queues are never overloaded. Moreover, it
is desirable that maximum utilization of the queues oc-
curs, especially, if this utilization results in reduction of
the routing time. The multistage off-line routing model
has a built-in mechanism to incorporate the available
queuesize. On the contrary, the standard method as-
sumes no queues and cannot be modified, at least in a
straight forward way, to incorporate them, while, the
multistage off-line routing model can model the case
where queueing of packets in any processor is prohib-
ited.

When the standard method routes a permutation on
a graph G = H x F, it will produce a solution the length
of which depends on the worst case optimal solutions
for the permutation problem on graphs H and F. For
example, for an n x n mesh, it produces a solution of
length 3n — 3 since, the n x n mesh can be considered as
the product of two n-node line graphs and, any permu-
tation on an n-node line graph can be solved in n —1
steps. So, in the worst case, the standard method gives
a solution that is n — 1 steps away from the optimal
(for the n x n mesh there exist a trivial worst case lower
bound of 2n—2 routing steps obtained by a distance ar-
gument). However, worst case scenarios do not appear

in all routing problems. Several problems require the

88

Figure 2: An example of a permutation problem that
has a solution of length much less than the worst case
lower bound and greater than the bound obtained by
any distance argument.

processors to exchange information with other proces-
sors in a relatively small (compared with the diameter
of the network) distance. In the extreme case that each
processor has to transmit a packet destined for itself,
the standard method will produce a solution of length
that depends not on the actual routing problem but in
worst case situations (3n—3 for the n x n mesh) instead

of the trivial solution of length 0.

On the other hand, the multistage off-line routing
model can accommodate any optimal solution for the
routing problem under consideration. It is interest-
ing here to examine how a lower bound is defined for
any specific routing problem. When we try to estab-
lish worst case lower bounds we usually use arguments
based on the diameter and the bisection of the network
under consideration. We will try to obtain a lower
bound for a specific permutation problem on the in-
terconnection network of Figure ??. This interconnec-
tion network is a connected graph that consists of two
cliques of size 1000, two cliques of size 10, and one extra
node through which the 4 cliques are connected. Obvi-
ously, any two nodes of that graph are within distance
4 of each other. This provides us with a trivial worst
case lower bound of 4 steps for any routing algorithm.
A better worst case lower bound of 1000 steps is ob-
tained if we consider the case where all packets in the
one kipggg are destined for the other. So, based on the
above arguments, we claim that the worst case lower
bound for the graph under consideration is 1000 and
we say that any algorithm that routes all packets in
1000 steps is optimal. But what if the routing problem
is such that all packets in the one kg are destined for

the other, and the packets in the k1ggp’s are destined for

can be solved with exactly 12 routing steps (it is easy
to construct such a solution) and a solution of length

1000 is not satisfactory.

From the above discussion, it is obvious that the
lower bound for the actual routing problem might be
smaller than the worst case lower bound, and that the
actual lower bound may be formed by a combination
of distance bounds, wire utilization limitations, and of
other factors that we are not aware of. The multistage
off-line model will accommodate the optimal solution
of the actual problem. It is up to the algorithms which
will try to find the edge disjoint paths to locate it. On
the other hand, the standard method will always fail

to find the optimal solution.

5 Greedy Routing Algorithms

Up to know, we developed a model for studying the off-
line packet routing problem as a graph theoretic routing
problem. For each packet p; = (orig;, dest;) we want to
find a path in G’ from some node in tower(G', orig;) to
some node in tower(G', dest;) such that all the paths
are edge disjoint. The reader that is familiar with graph
theory and the theory of NP-completeness, will realize
that the problem of obtaining edge-disjoint paths in
a graph reduces to the multicommodity integral flow
problem. An immediate consequence is that it is un-
likely to find an efficient algorithm for our problem.
However, more research is required in order to take
into account the fact that the underlying graph is a
multistage network. Also more research is needed in
the area where the initial interconnection network is

some special graph.

Even though there is not an efficient way to ob-
tain edge-disjoint paths, the multistage off-line model
is suitable for the empirical study of the off-line packet
routing problem. For most of the routing problems it is
the only model available. Even for permutation prob-
lems on product graphs, it is worthwhile to spend at
least the same time with the standard method trying
to find better solutions. This becomes evident from the
discussion in the previous section regarding actual and

worst case lower bounds.

It is obvious, since G' can always be extended hy
adding new stages, that a solution to the off-line packet

routing problem always exists. However, we are inter-

89

lowing greedy algorithm to obtain such solutions.

Algorithm Find_Edge_Disjoint_Paths

1. Sort all packets in decreasing order according to

the distance they have to travel.

2. For each packet p = (orig,dest), according to its

position in the sorted list, do

e find a path from a node in tower(G', orig)
that is as close as possible to an earlier stage,

to some node in tower(G', dest)

e remove the edges that belong in the path from

G'.

The algorithm is greedy in the sense that the pack-
ets that have to travel a greater distance to reach their
destination are routed first. It is obvious that step 2
of the algorithm leaves a lot of freedom in the way we
route the paths. Several methods can be tried. The
interconnection network under consideration will be of
great influence. Also, the experience gained from the
performance of on-line algorithms can provide signifi-

cant feedback.

Algorithm Find_Edge_Disjoint_Paths is actually a
heuristic. Since the way we choose the paths is not
specified by step 2, it is not possible to give a precise
time complexity analysis. The analysis will be different

for each “path selection” algorithm.

The space requirements of the method are dictated
by two factors: the space required for the multistage

graph and the space needed to report the solution.

In Section 3, we presented our model in a static way.
A multistage graph was derived from the initial packet
routing problem. When the memory space required for
the storage of the multistage graph is of great consid-
eration, several approaches can be taken to reduce the
space to the minimum (equal to the space we need to
report the solution). The multistage graph can be con-
structed during the execution of the algorithm. If new
stages are needed we add them in run time. Also we
may choose to add only the part of a stage that is used

by some paths. In order to be able to do this we need

stage graph. This will have the effect of slowing down
the algorithm by a factor of O(n), n is the number of
vertices of the original interconnection network. This

is a trade off that any algorithm designer has to face.

In the next section, we will use the multistage off-line
routing model to study the permutation packet routing
problem on 2-dimensional meshes. The path selection
algorithm that will be used in step 2 will be completely
defined. As the simulations show, the improvements on
the length of the solutions are significant. As a matter
of fact, we were not able to identify a routing pattern
for which our method does not reveal an optimal solu-

tion.

6 Case Study: 2-Dimensional

Meshes

In this section, we use the multistage off-line routing
model to study permutation routing on 2- dimensional
meshes. Given an axbmesh, a < b, in which we have to
route a permutation, we form a multistage network of
2a + b stages. We have chosen the number of stages to
be equal to 2a+0 since the standard method guarantees
to give a solution of that exactly length. In order to
make a valid comparison with the results guarantteed
by the standard method, we do not allow packets to
be queued at any intermediate processor during their
routing. However, we assume that each packet can wait
for some time at its origin node. This is a reasonable
assumption since at least so much space is needed in
order to store the packet. The same assumption was

made in [?].

The space needed to store the multistage graph is
O((ab)(a+1b)). This is because the maximum degree of

any mode in a 2-dimensional mesh is 4.

6.1 The Path Selection Algorithm

Algorithm Find_FEdge_Disjoini_Paths presented in Sec-
tion 77, forms the skeleton of the algorithm we use.
After sorting the packets in decreasing order of the dis-
tance they have to travel, we assign paths to them in
the order they appear in the sorted list. When a path is
assigned, the edges that belong to the path are deleted
from the multistage graph. Then, we proceed with the

assignment of a path to the next packet.

90

packet p; = (orig;,dest;) in the multistage graph GI.
G! is the graph obtained from the initial multistage
graph G' of our model, after the deletion of the edges

that belong to the paths of the first + — 1 packets.

Algorithm Path_Selection(P;, G})

1. stage=10

2. While (a path is not yet assigned to p; and
stage < 2a + b — distance(orig;, dest;)) do

If it is possible to route the path from node
(orig;, stage) horizontally to the correct col-
umn and then vertically to the destination,

then assign that path to p;

else if it is possible to route the path from node
(orig;, stage) vertically to the correct row and
then horizontally to the destination

then assign that path to p;
else stage = stage + 1

3. If a path is not yet assigned to packet p;
then signal the failure of the algorithm.

If the algorithm terminates because it failed to route
some packet, this means that for the specific routing
problem at hand and for the given path selection al-
gorithm, the standard method does better. However,
as we will see in the next subsection, after performing
millions of experiments, we were not able to identify

such a routing problem.

The time spent in the routing of any path, in the
worst case, is O((a + b)?). This is because, we might
fail O(a+b) times to assign a path to some packet and,

at each try, we have to check O(a + b) edges.

If we succeed in routing all paths, we will need O(ab)
space to report the solution. This is because each path
produced by our routing algorithm can be described
just by specifying the stage in which the routing of the
packet starts and the initial direction (horizontally or
vertically) of the path. Note that, in general, reporting
a solution requires (abL) space, where L is the length

of the optimal solution.

6.2 Performance

In this section, we present experimental results of the

algorithm based on random permutation routing prob-

on square and rectangular meshes. The data were gen-
erated with the help of the random number genera-
tor function rendom() on a MIPS computer system.
random() uses a non-linear additive feedback random
number generator employing a default table of size 31
long integers to return successive pseudo-random num-
bers in the range from 0 to 2*' — 1. The period of this
random number generator is very large, approximately

16(2%1 —1).

When we started our experimental study, we hoped
that we would be able to compute for each random
permutation a solution of length less than the diame-
ter of the mesh. Surprisingly, our algorithm surpassed
our expectations. For all the random input problems,
it revealed a solution of length equal to the maximum
distance some packet had to travel. This is the best we
can expect since the length of that solution matches the
distance lower bound for the specific routing pattern.
Table 77 contains the number of experiments we ran
for each square mesh. The number of experiments de-
crease as the sidelength of the meshes increases. This is
because we spent a fixed amount of time on the study
of each individual mesh and the fact that for larger
meshes the algorithm requires more time to compute a
solution. The numbers of experiments are not in exact
proportion with the sidelengths since we performed our
experiments in a multiuser system of variable load. For
each of the different random problems we produced an

optimal solution.

Obviously, checking all possible permutations is out
of question since for an n-node mesh there are n! per-
mutations. For a 4 x4 mesh there are 16!(~ 2.092x10'3)
permutations. However, we were able to check all
9!(= 362880) possible permutations on a 3 X 3 mesh.
For every permutation our algorithm found the optimal

solution, and thus, we can state the theorem:

Theorem 2 The multistage off-line model together
with Algorithm Path_Selection() produce optimal so-

lutions for any permutation problem on a 3 X 3 mesh.

We also performed experiments on rectangular
meshes. For each 2¥-node rectangular mesh, 7 < k <
x 2k-—m The

mumber of experiments we performed in each case are

14, we studied rectangular 2™ meshes.

we were not able to identify a routing pattern for which

91

10 x 10 2075360
20 x 20 322190
30 x 30 103840
40 x 40 46700
50 x 50 36380
60 x 60 35130
70 x 70 34640
80 x 80 17420
90 x 90 15600
100 x 100 11420
110 x 110 9000
120 x 120 3690
130 x 130 2330
140 x 140 2290
150 x 150 2200
160 x 160 2120
170 x 170 1680
180 x 180 1410

Table 1: Number of experiments performed for each
mesh. All experiments succeed in producing an optimal
solution.

our algorithm fails to produce an optimal solution.

For rectangular meshes with less than 12 nodes, we
checked exhaustively all permutations. For all of them,
we were able to construct the optimal solution. So we

can state the theorem:

Theorem 3 The multistage off-line model together
with Algorithm Path_Selection() produce optimal solu-
tions for any permutation problem on any rectangular

mesh of 12 or less nodes.

7 Conclusions

In this paper we presented the multistage off-line
model, a new and rather natural, way to model off-line
packet routing problems. Then, the problem of off-line
packet routing reduces to the problem of finding edges
disjoint paths on a multistage graph. The multistage
off-line nodel can model any kind of routing pattern on
any graph. It also accommodates the optimal solutions
and can be use to obtain lower bounds that are not
based in worst case situations but rather on the actual
routing problem under consideration. Several interest-
ing problems are raised from our model and deserve
further investigation. The general problem of finding

edge disjoint paths reduces to the multicommodity flow

23 x 211 1280
21 x 210 2840
25 x 29 3540
26 x 28 3980
27 x 27 5120

Table 2: Number of experiments performed each 2'-
node mesh. All experiments succeed in producing an
optimal solution.

| Mesh || # of Experiments |
22 x 21 900
23 x 210 1180
24 x 29 2500
25 x 28 2880
26 % 27 3360

Table 3: Number of experiments performed each 2!3-
node mesh. All experiments succeed in producing an
optimal solution.

which, in turn is NP-Complete. However, we do not
know how the complexity of the problem is affected by
the fact that we have to deal with a multistage graph
that is constructed in a special way. Also, the kind of
the graph the routing takes place might affect the com-
plexity. Another area that deserves further research is
that of the path selection algorithms. We provided a
general framework for the algorithm that can accom-
modate several heuristic methods depending on the un-
derlying interconnection network. However, our study
for the mesh was so successful that, for any random
permutation problem we studied we produced the op-
timal algorithm. This makes us investigate the partic-
ular algorithm and try to prove that it always produces
an optimal solution, or to produce a counter-example.
The fact that it turns to be an optimal algorithm for
all the small meshes we exhaustively investigated, is
very encouraging. Nevertheless, given the fact that in
a real parallel system a small portion of the available
processors will be allocated to a particular application
(a small submesh in a mesh connected computer), hav-
ing an optimal routing schedule it is something very
important. It can easily lead to speed-ups of impor-
tant magnitudes (especially when the routing pattern

presents some locality).

92

22 x 210 2180
23 x 29 2700
2% x 28 3520
25 x 27 4320
26 % 26 7760

Table 4: Number of experiments performed each 212-
node mesh. All experiments succeed in producing an
optimal solution.

| Mesh || # of Experiments |
22 x 29 4060
23 % 28 4300
2% x 27 5580
25 % 26 8220

Table 5: Number of experiments performed each 2!!-
node mesh. All experiments succeed in producing an
optimal solution.

| Mesh || # of Experiments |
2% x 28 3040
23 x 2T 3200
21 % 2¢ 5300
25 x 2° 7000

Table 6: Number of experiments performed each 2'°-
node mesh. All experiments succeed in producing an
optimal solution.

| Mesh || # of Experiments |
22 x 27 14320
23 x 26 11520
24 x 25 16400

Table 7:

node mesh. All experiments succeed in producing an

Number of experiments performed each 2°-

optimal solution.

| Mesh || # of Experiments |
2?2 x 26 44500
23 x 2° 71340
2% x 24 108320

Table 8:
node mesh. All experiments succeed in producing an
optimal solution.

Number of experiments performed each 28-

| Mesh || # of Experiments |
2% x 25 160120
23 x 24 205860

Table 9: Number of experiments performed each 27-
node mesh. All experiments succeed in producing an
optimal solution.

References

[1]

F. Annexstein, M. Baumslag, “A unified approach
to Off-Line Permutation Routing on Parallel Net-
works”, Proceedings of 1990 ACM Symposium on
Parallel Algorithms and Architectures, SPAA’90,
Crete, Greece, July 1990, pp. 398-406..

E. Dahl, “Mapping and Compiled Communication
on the Connection Machine”, Proceedings of the
5" distributed Memory Computing Conference,
Charleston, South Carolina, April 1990, pp.756-
766.

D. Krizanc, L. Narayanan, “Off-Line Routing with
small queues on a Mesh-Connected Processor Ar-
ray”. Proceedings of the 3" Symposium on Paral-
lel and Distributed Processing, Dallas, Texas, De-
cember 1991.

D. Krizane, S. Rajasekaran, Th. Tsantilas, “Opti-
mal Routing Algorithms for Mesh-Connected Pro-
VLSI Algorithms and Architec-
tures (AWOC’88), J. Reif, editor, Lecture Notes
in Computer Science 319, 1988, pp. 411-422.

cessor Arrays”,

M. Kunde, “Routing and Sorting on Mesh-
Connected Arrays”, VLSI Algorithms and Archi-
tectures (AWOC’88), J. Reif, editor, Lecture
Notes in Computer Science 319, 1988, pp. 423-433.

F.T. Leighton, B. Maggs, S. Rao, “ Universal
Packet Routing Algorithms”, Proccedings of the
29" Annual Symposium on the Foundations of
Computer Science, 1988, pp. 256-269.

F.T. Leighton, “Average Case Analysis of Greedy
Routing Algorithms on Arrays”, Proceedings of
the 2" Annual ACM Symposium on Parallel Al-
gorithins and Architectures, SPAA ’90, July 2-6,
1990, Crete, Greece.

F.T. Leighton, F. Makedon, 1.G. Tollis, “A 2n-
2 Algorithm for Routing in an n x n Array With
Constant Size Queues”, Proceedings of ACM Sym-
posium on Parallel Algorithins and Architectures,

SPAA’89, June 1989, pp. 328 335.

F. Makedon, A. Simvonis, “An Efficient Heuristic

for Permutation Packet Routing on Meshes with

93

Transactions on Parallel and Distributed Systems.

S. Rajasekaran, R. Overholt, “Constant Queue
Routing on a Mesh”, to appear in the Journal of

Parallel and Distributed Computing.

A.G. Ranade, “How to Emulate Shared Mem-
ory”, Proceedings of the 28" IEEE Symposium on
Foundation of Computer Science, 1987, pp. 185-

194.

L.G. Valiant, G.J. Brebner, “Universal Schemes
for Parallel Communication”, Proceedings of the
13** Annual ACM Symposium on the Theory of
Computing, May 1981, pp. 263-277.

