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Abstract 

In thb paper, we study the problem of drawing a 
graph in the plane so that edger appear aa straight lines 
and so that the "um angle formed by any pair of 
incident edges is " k e d .  We define the rerolution of 
a layout to be the s t e  of the minimum &e fonned by 
incident edges of the graph, and the resolution of a graph 
to be the d u m  raohtion of any layout of the graph. 
We characterise the resolution R of a graph in tumr of 
the maximom node degree d of the graph by proving 
that n($) < R < 9 for any graph. Moreover, we 
prove that R = e( f ) for many graphs including planar 
graphs, complete graphs, hypercubes, multidimensional 
meshes and tori, and other special networka. We also 
show that the problem of deciding if R = ?Lf for a graph 

to show that R = O( v) for many graphs. 
is NP-hard for d = 4, and wc usc a cowting argument 
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1. Introduction 

Graph layout problana have been extensively stud- 
ied in a wide variety of contexts. Examples include both 
linear [10,15] and planar [1,2,3,5,7,8,11,12,13,14] layout 
problems. Typikally, nodes are represented by distinct 
points to be embedded in a line or plane, and they are 
sometimu restricted to be grid points. (Alternatively, 
nodes are s o m e t k  represented by line segments [ll].) 
Edger are often constrained to be drawn aa straight 
lines [3,4,7,8,11] or M a contiguous set of line acgments 
[1,5,12,14] (e.g., when ben& are allowed). The objective 
is to find a layout tor a graph that " i r e s  some cost 
function, such M area [1,5], number of edge crossing5 [I], 
maximumedgelength [1,2], number of bends [1,5,12,14], 
visual complexity [13], density[7,8] and so on. 

In this paper, we conaidu straight line layouts of 
graphs in the plane. Specifically, we introduce a new 
cost function for such layouts, called rerolution. We de- 
fine the resolution of a layout of the graph to be the 
sise of the mini" angle formed by any two edger in- 
cident to a common node. We d&e the resolution of 
a graph to be the maximum resolution of any (straight 
line) layout for the graph in the plane. For example, the 
resolution of Ka (the %node complete graph) is t. Our 
objective in this papa  ia to find layouts for graphs with 
the highest possible resolution. 

An obvioua upper bound on the resolution of a 
graph with "um degree d is 9. Of course, thie 
bound t not tight for many graphs. (For example, d = 2 
for Ka but the resolution is 5) .  Unfortunately, we w i i i  
show that the problem of detcrminiq whether or not 
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a graph with "um degree d hu resolution % ia 
NP-hard, at leaat in the cue d = 4. Whether or not the 
rerolution problem ia in NP ia rtill unknown. Determin- 
ing the prcciae complexity of the problem ia complicated 
by the fact that there are rimple 11-node graph (ruch 
aa that shown in Figure 1) for which there ia a layout 
with resolution - c for any c > 0, but for which there 
ia no layout with resolution i. Thuc dii&dtiu can be 
overcow by restricting the problem ao that the noder 
of the graph u e  required to be placed at distinct grid 
pomta in a grid of a fixed h e  (e.g., N x N), in which 
c w  the resolution of any N-node graph becomer a well 

grid-baaed and unrutrkkd layouts in this paper. 
On the poritive side, we can prove nearly tight 

bounds on the resolution for many natura duer of 
graphs. For example, we prove that any planar graph 
with maximum degree d her resolution e(:). We also 
prove aimilar bounds for rpecial networkr like the hyper- 
cube, t om,  complete graph and otherr. We construct 
a layout for an arbitrary graph with maximum degree d 
that haa rerolution n( *). Hence, the resolution of any 
bounded-degree graph IS constant, independent of the 
number of nodes in the graph. Whether or not there ex- 
ists a f d y  of grapha with maximum degree d and res- 
olution e(&) ia rtill unknown. Natural candidates for 
graph. with low resolution such M the (# -d+ I)-point 
projective plane and the ( f + I )  x ( f + 1) mesh of cliques 
(both of which are d-regular) have resolution e( f ). We 
do not even know of any rimply constructable family of 
grapha with maximum degree d that has resolution o( i), 
although, wing a counting argument, we can prove the 
udrtence of many graph. with maximum degree d and 
resolution qy). Hence, the n(f) rorrt c w  lower 
bound ia not to kr from reality for many graph. 

Several of OUT constructions are based on the d o e  
relationship between the chromatic number of the square 
of a graph and ita resolution. In particular, we will show 
that the resolution of any graph G M at least & - e 

for any > 0, where x(G') denoter the chromatic nuxm 
ber of G'. ( The graph G' ia formed from G by con- 
necting P;r of nodu that are within diatance 2 of each 
other in G.) Moreover, we will show that the resolution 

stricted to pasition the nodes of G at distinct grid points 
of a square grid with area O(x(G') N). Hence, we can 
produce lineu area layouts (in the HP.C of [1,5,14]) that 
have constant resolution for any bounded-degree graph. 

Our e(4) bound on the resolution of any planar 
graph with maximum degree d, in particular, stem from 
the fact that the square of any planar graph with max- 
imum degree d has chromatic number O(d).  In this 
paper, we rhow an upper bound of yd+O(d2/8),  which 

defined NP-compkk problem. We d conrider both 

of any N-node graph G is n ( h ) ,  even if we IC- 
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ia doac to the b u t  known existential bru bound of 
!d. (The lower bound U provided by the graph ahown 
in Figure 2.) The exact worrt-cue bound re& an 
unrolved problem. 

tion atema largely from the Eect that rerolution seem 
to be a natural property of graph that waa previously 
(to our knowledge) uncrpbrcd. In addition, the r- 
lution problem t related to problem that Uire in net- 
work communication via optic be- [6,9]. For example, 
consider a network in which each node representr a pro- 
cumr that can communicate via optical be- with its 
neighbors in the graph. By " i s i u g  the rerolution 
of the layout, we simplify the taak of duigning the pro- 
curor and the taak of recognisii one's neighborr. (It 
ia hard to d or receive at very tight an+ for a unit 
sise processor). Similar applications might arise in radio 
networkr that make use of directional antennas. 

The remainder of the paper ia divided into sections 
M follow: In Section 2, we examine graphs of maxi- 

mum degree 4 and prove that it is NP-hard to decide if 
we can draw them with resolution 5 .  In Section 3, we 
first present an algorithm for general graph layoutr. We 
then consider the case of planar grapha. Finally, becauae 
of their importance, we consider layouts of r p e a  net- 
work~. In Section 4, we present an upper bound on the 
resolution of random graphs. Section 5 contains rome 
remarks and additional topics for research. 

2. NP-hardness 

OUT interut in the problem of mlrimiling IUO~U- 

Given a graph with maximum degree d, we know 
that its optimum embedding on the plane can have rea- 
olution at mort %. In what follows, we show that the 
problem of deciding whether a graph of maximum de- 
gree d has an embedding on the plane with resolution 
9 ia NP-hard in the care d = 4. 

Theorem 1. Given a graph G of mazimum degree 4, 
the decirion problem of whether or not G can be embed- 
ded in the plane with rerolution 5 ir NP-hard. 
Prooff The proof ia done by a reduction from 
3-SAT. Let S be a formula in ICNF, let U = 
{ZI, Z ' , Z ~ ,  ..., z,} be the vatkbles occprring in S, and 
let C = { c I , c ~ , c ~  ,..., c*}  be the clauses in S, such 
that every dauae c E C conrttr of exactly 3 literals. 
We construct a graph G of maximum degree 4 that ia 
embeddable with reaolution f if and only if S M r a t s -  
able. 

The skeleton of G ia given in Figure 38. For each 
variable zi, 1 5 i 5 a, there M a node in the skeleton. 
The same holds for each d a w  cj, 1 5 j 5 k. Ob 
serve that up to reflections, rotationr and rtretchings, 
the embedding of G with resolution 5 (if there ia any) 
essentially haa to look like the one in Figure 3a. Now 
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we a p p d  at 4 node ai the tower of Figure 3b. For 
each such tower, there are two possible embeddings (in 
relation to the skeleton): The negated nodes to the left 
and the nonnegated nodes to the right, or vice VUM. 

the node cj to the noder Z i j ,  zbj and ~ i , j  (or to the 
corresponding negated nodes, if the literala are negated) 
by a path consisting of three edges (Figure 3c). 

We claim that if there is an embedding of G with 
resolution 5 , then r e  can find a truth assignment for s. 
We d e  the following observationa: 
Observation 1: All nodes C j ,  1 j 5 k, have to be 
embedded to the right of line L (m Figure 38). 
Obeervation 2: All nodes on the left side of a tower 
have to be embedded to the left of line L. 
Obeervation S: A path of length 3 that leaves C j  in 
the eastern direction can never reach any node on the 
left side of any tower (Figure 3d). 
Observation 4: A path of length 3 that leaves c j  in the 
southern or the northern direction can reach any node, 
on the lefk or on the right, of any tower (Figure 3e). 
Observation 6: A path of length 3 that leaves C j  in 
the eastern direction can reach any node on the right 
side of any tower (Figure 3f). 

With the above observations in mind, the rest of 
the proof is obvious: If the negated nodes Z i j ,  1 5 j 5 
k, are embedded on the left side of the tower at zi, then 
zi is set to TRUE. If the nonnegated nodes z i , j ,  1 
j 5 k, are embedded on the left side, then zi is Kt to 
FALSE. To m why the above assignment satisfies s, 
consider any embedded node c j .  There are three paths 
leaving c j ,  one in the eastern, one in the northem and 
one in the southern direction. The eastern path can 
never reach a faLe value. Hence, the clause w i l l  contain 
at least one true literal. 

Conversely if we are given a satisfying assignment 
for the %SAT problem, from the above d k w i o n  it in 
obvious how to embed the corresponding graph with res- 
olution %. "his completes the proof. 

S. Drawings with High Resolution 

F h d y ,  for each &me C j  = {Zj, 21, Zl}, We connect 

I 

In this section, we describe how to draw graph in 
the plane with high resolution. We start by establishiug 
the connection between resolution and x(G') in Section 
3.1. As a consequence, we show that any N-node graph 
with maximum degree d has resolution at least n(f), 
even if r e  are restricted to embedding nodes in distinct 
grid points of a square O(min{d', N}'N)-node grid. 
h Section 3.2, ne show that x(G') < y d  + O(d'/') 
for any planar graph G with maximum degree d ,  thereby 
obtaining a tight e( i) bound on the resolution of any 
planar graph with d u m  degree d. We conclude in 
Section 3.3 by constructing optimal-resolution layouts 

for a variety of special networka such as arrays, hyper- 
cubes, etc. 

3.1 Drawings for General G r a p h  Based on x(G') 

Given a graph G = (V, E), the square of G 
(denoted by G' = (V', E') ) is defined M follows: 
V' = V urd E' = E U { ( i , j )  I i,j E V and 3 k E 
Vruchthat ( i , k )  E E and(k,j) E E }. A aim- 
ple argument reveala that if G har maximum degree 
d, then G' has degree d' and thus that 
x(G') 5 d' + 1. In what follows, we will show how 
to draw G in the plane with resolution - E for 
any c > 0. 

Algorithm DRAW 
step 1 Given G, construct G' urd color the nodes of 

G' with U color# where x(G*) 5 U 5 d' + 
1. Adjacent nodes in G' should be assigned 
different colors. 

step 2 Draw a unit circle on the p h e  and U equidb- 
tant points PI, ..., P, on the circle. 

step 3 Place the nodes of G that are assigned color i 
in G' into a ball of radius around Pi (1 5 

step 4 Draw the edges of G straight line segments. 
i 5 U). 

Theorem 2. Given a general graph G, a coloring of 
G' with U colora, and any E ,  Algorithm DRAW mrbeda 
the graph on the plane with rerolution z - O(E). 
Proofi Let 01 be an arbitrary node of G and 
( U ~ , U ~ ) , ( U ~ , U S )  edges incident with 01. In G', ~ 1 , -  

and vs are .U adjacent and they are colored differently 
(say with colors c 1 , c 2 ,  ca, respectively). Hence, they 
are placed within E distance of three different points 
Pel, P,,, P,,, respectively, on the unit circle. The M- 

gles formed by edges connecting the u points Pi on the 
unit circle are all at least 5 .  (h fact, they are dl md- 
tiples of 5.)  Since dist(ui, Ped) 5 E and dbt(Pei,Pej) 
=n(i), for 1 5 i , j  5 3, i # j ,  this means that the 
angle formed by u l  , U', us must be at least - O(E), 
where the constant implicit in the O(E) ir independent 
of U and of the number of nodes in the graph. I 

Corollary 1. For any graph G with maximumdegree d ,  
and any 6 > 0,  we can draw G with resolution &-i -6. 

In fect, the layout given by algorithm DRAW can 
be modified so that the nodes of the aph G are placed 
at diatinct grid points of an O(&)-side grid. This 
can be done by fmt refining the coloring of G' so that 
each color group contains at moat 5 nodes. "his step 
introducer at most U - 1 new colors for a total of 2~ - 1 
overall. We n u t  lace the nodes of each color group ar- 
bitrarily in a 8 x f i  square, and then arrange the 
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2~ - 1 S-U at equidttant poinb around the perimc- 
t u  of a circle of radius U$ a. Thin remlts in a layout 
of area O(uaN) and resolution n($). For graphs with 

ear area, which i s  optimal. For grapha with larger U, 

however, it "r likely that the bound on area can be 
improved without dramatically affecting the bound on 
resolution. 

8.2 Drawing Planar and Outerplanar G r a p h  

bounded-degre, U is C0mt-t and the layout has lin- 

We can substantieilly improve upon Corollary 1 in 
the case of planar and outerplanar graphs. In particular, 
we will prove that any planar graph of maximum degree 
d can be drawn with resolution n(q), which matches 
the ndve upper bound to within a constant factor. The 
proof is bued on the fact that x(G2) = O(d) far any 
planar graph G with maximum degree d.  Showing that 
x(G') = O(d) is relatively straightforward. As the de- 
termination of the worst-case value of x(G') may be of 
independent iutuest, we have included the detaib of the 
more complicated F d  + O(d'/') bound in what follows. 

Lemma 1. Let U and W be disjoint node retr in a 
planar graph and suppose that each node in U has at 
least 3 neighbors in W. Then IuI 5 2 l W l -  4. 

Proof: Runove all nodes not in U U W and all edges 
except those with one endpoint in each of U and W. The 
resulting graph G is planar and bipartite. Denote by m 
and f the number of edger and faces of G, respectively. 
It ia CMY to see that 4f 5 2 m  and m 2 3lUl. Hence, 
by Euler's formula, 

and IUl5 2 l W l - 4 .  I 

Definition: For k 2 1, denote by &(k)  the supremum, 
over dl planar gapha G, of the proportion of nodes in 
G of degree 2 k .  

Lemma 2. 

1, for k 5 6; 

A, f o r k 2 1 2 .  
&, f o r 6 5 k 5 1 2 ;  

Proof: We prove in detail only the assertion needed in 
the following,namcly &(k)  5 for k 2 12. For each 
vdue of k ,  the lower bound ia reali.ed by the infinite 
hexagonal grid, augmented by a suitable independent 
ret of noder of degree 2 or 3. 

Fix k 2 12, let G = (V, E) be a planar graph and 
define W as the u t  of nodes in G of degree 2 k and U 
as the ret of noder in V\W with at least 3 neighbors in 
W. By L a "  1, IVl < 2lWl.  

By planarity, the rubgraph of G induced by U U 
W han at mort 3(lul + IWl) edges, at most 3lWl of 
which have both endpoint. in W. Hence at leant k IWl- 
3lUl- 6 ( W l  edger in G join a node in W with a node 
in V\(U U W). It follows that 

and hence that 

Finally, the proportion of nodes in G of degree 2 k is 

Theorem 8.  The square of any planar graph G with 
maximum degree d can be colored wing at mort y d  + 

Proof: Let k ,  1, and d be any integers for which k 2 
1 1 12 and d 2 k + 1. We will prove by induction 
on the number of nodes that the square of any planar 
graph with maximum degree at most d can be colored 

LHVJ + 1) colors. By setting k = [;dl and 1 = 
O(dl/'), thin will produce the desired asymptotic bound 
M d becomer large. Aa can be e ~ i l y  neen, the constant 
factors associated with the low order term will not be 

Define W as the set of nodes in G of degree 2 k 
and U an the ret of noder in G of degree < 1 and with 
at most 2 neighbors of degree 2 1. By Le- 1 and 2, 

O ( d q  colors. 

uring at mort A = d + (1 - 3)(1 - 1) + m ~ r ~ {  k ,  d - 

large. 

IWl L &VI and 

Cme 1: Some node v iu U has at mort one neighbor in 
W. Contract v into a neighbor w of v of minimal degree, 
i.e., add an edge between w and each node other than w 
that is a neighbor of U ,  but not of w ,  and subsequently 
remove U .  Since w 4 W unless v is of degree 1, the new 
degree of w is bounded by m z { d ,  k + 1 - 3 )  = d, and 
the inductive hypothesis implies that the square of the 
resulting graph can be colored with at mort A colorr. 
Furthermore, the colors amiped can be retained in a 
valid coloring of G', the only remaining problem being 
to color U .  Since the number of nodes in G at distance 
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1 or 2 from U is at most d + (k - 1) + ( I  - 3 ) ( I -  I), the 
indicated number of colors suffices. 

Cue 2: Every node in U has exactly 2 neighbors in 
W. By planarity, at most 3lWl pairs of nodes in W 
can have a common neighbor in U. Hence some pair of 
nodes in W has at kart 

common neighbors in U. Choose U M one of these com- 
mon neighbors and contract U into a neighbor of mini- 
mal degree M above. Again, this does not increase the 
maximum degree, and the inductive assumption applies 
to the resulting graph. Finally note that the number of 
nodes in G at distance 1 or 2 from v is lur than 

and we can find an acceptable color for U. 

Theorem 4. Any planar graph with node 
degree d har resolution e( f ). 
Proof: The upper bound is trivial. The lower bound 
follows from Theorems 2 and 3 .  I 

I 

For outerplanar graphs, the bounds on x(G’) are 
much tighter, M we show in what follows. 

Lemma S. Every biconnected outerplanar graph on 
at least three nodes contains a node of degree 2 with a 
neighbor of degree 2 or with adjacent neighbors, one of 
which is of degree at most 4. 

Proof: Let T be the dual of an outerplanar embedding 
E of the given graph, with (the node representing) the 
outer face removed. Aa is well-known, T is a &e tree, 
i.e., it is connected and acyclic. A face of E is a leaf, 
i.e., of degree 1, in T if and only if exactly one of its 
boundary edger does not bound the outer face. Let F, 
and F’ be faces of E whose distance from each other 
in T is ‘ 1. Root T at F,, let U be any node of 
degree 2 on the boundary of F,, and let U, and up be 
the neighbors of v (Figure 4). If U, or up is of degree 
5 3 ,  we are done. Otherwise define F, Fa and Fp as 
shown in the figure. At leu t  one of Fa and Fp , aay Fa, 
M a child of F in T and hence, by the choice of F, and 
F,, a leaf in T. But then U, is of degree 4. I 

Theorem 6. The square of any outerplanar graph G of 
maximum degree d can be colored using at most d + 3 
colors. 

Proof: We can assume that G is biconnected and con- 
tains at least 3 nodes. Let V be the set of nodes in G 
of degree 2 with at least one neighbor of degree 2. If 
V # 8, remove all noder in V and, if any nodes are left, 
color the remaining graph inductively, using d+3 colors. 

Then obtain a coloring of the original graph by adding 
back the nodes in V and coloring them in an arbitrary 
order. Since at most d + 2 nodes have distance 1 or 2 
from each fixed node in V, this can be done using d + 3 
colors. 

If V = 8, remove a node v of degree 2 with adjacent 
neighbors, one of which is of degree 5 4, and color the 
rcmaidng graph inductively. Since there are at mort 
d + 2 nodes at distance 1 or 2 from U, the proof again M 
easily completed. I 

It is worth noting that the bound in Theorem 5 
is nearly tight since the (d  + l)-node star graph is an 
outerplanar graph G with maximum node degree d for 
which x(G’) = d + 1. 

S.S Special Network. 

In this section, we examine the resolution of some 
special networks. We present optimal or nearly optimal 
layouts for the complete graph, the hypercube, multi- 
dimensional mays and tori, the mesh of cliques, and 
the projective plane. The first four of these networks 
are important because of their uses OS processor inter- 
connection networks. The last two networks are inter- 
esting because they would seem to be good candidates 
for graphs with resolution e(+) aince the chromatic 
number of the square of a &regular mesh of cliques and 
projective plane is O(d’) .  Somewhat surprisingly, how- 
ever, we show that the resolution of all of the special 
networks mentioned is Q( i). 
S.S.1 The Complete Graph 

Theorem 6. The complete graph of N noder har rero- 
lution 5 .  
Proofi For the lower bound, draw the N nodes of the 
graph at equidistant points on a circle. Then the angles 
formed by incident edges will have sire at least 5.  

For the upper bound, consider three consecutive 
nodes u,u, and w on the convex hull of some layout. 
If the angle formed by edges (U, U) and (U, w )  has sise 
greater than q, then one of the other angles in the 
triangle formed by u,u ,  and w wi l l  have sire lesa than 
5,  and we are done. Hence, we can assume that the 
angle formed by edges (U, U) and (U, w )  has sire at most 
* - 2 r  

convex hull of the layout, all the other N - 3 nodes are 
contained within the angle formed by (U, U) and (U, w) .  

Hence, there is an angle of sire at most Hl = 5 at 
node U. I 

Corollary 2. The tcr0lUtiOn of any d-regular graph U 

at mort &. 

- . Since U, U, and w are consecutive noder on the 



8.8.2 Hypercubea and Multidimendond Mesh- 

In thia rection, we consider hypercubes and multi- 
dimensional d e s .  The k-hypercube has 2h nodes, 
each one represented by a k-tuple ( i l ,  iz, ..., i h )  for 
0 5 i l ,  i 2 ,  ..., i h  5 1. Edges occur between nodes that 
Mer  in precisely one bit. By Corollary 2, we know 
that any layout of a k-hypercube haa resolution at most 
&. In what fobws, we present an algorithm that 
dram the A-hypucube with resolution f .  W e  then U- 
tend this algorithm to derive an optimal layout for the 
k-dimenuond mesh. 

ALGORITHM HYPERCUBE&) 
step 1 

step 2 

step 3 
3.1 
3.2 
3.3 

D ~ o n t h e p l . n e a n . n g l e ~ o f s ~ e r - f .  
Divide 4 ipto k-1 equal angles which define a 
h - u u  system. 
Initialisation: Create a I-hypercube on the 1" 
axis. 

for j = 2 to k - 1 do 
Create a copy of the (j - 1)-hypercube. 
Translate the copy parallel to the j t h  axis. 
Create connections between the corresponding 
nodes of the two (j - I)-hypercubes. 

Since each line segment drawn by algorithm HY- 
PERCUBE(k) is parallel to one of the k ares, we have 
the following theorem: 

Theorem 7. Algorithm HYPERCUBE draw8 the k- 
hypercube in the plane with  rerolution f .  
Remark. It can be shown that Algorithm Hypercube 
producer an optimal layout for the 3-hypercube. 

An algorithm to embed a k-dimensional mesh with 
resolution f can be obtained by extending algorithm 
HYPERCUBE. Note that a k-hypercube is the basic 
unit component of a k-dimensional mesh. The maxi- 
mum degree for any internal node of the mesh is 2k. 
Since 9 is an obvioua upper bound for the resolution 
of any graph of maximum degree d, the extended algo- 
rithm wil l  produce an optimal embedding. 

3.8.8 Tori 

The "nrional tonu network T(m) is actually 
an m-dimensional mesh with wraparound connections. 

Theorem 8. The m-dimcnriond tonu can be embed- 
ded on the plane with  rerolution &, provided that all 
dimcnrwru have &e greater than 8. 

Proofi C o d e r  the embedding of the 4 x 4 torus (Fig- 
ure 5). Observe that it replicates the embedding of the 
4-hypercube. W e  uae this embedding as a base layout 
of any twodimcmional torus. We can extend the em- 
bedding of the 4 x 4 torus to any a x b t o m  by insert- 
ing extra nodes in regular interval. of the edges of the 

respective ~ ~ C I U ~ O I U .  By a dmilar argument, the em- 
bedding of an m-dimenrional4 x 4 x ... x 4 tonu can be 
w d  U a bue layout of any m-dimensional torus, since 
it is  iromorphic to the 2m-hypercube. h o m  Theorem 
7 we know that the k-hypercube can be embedded with 
resolution f . Therefore, the proof follows. 

8.8.4 Meeh of Cliquer 

The m-regular Merh of Cliqucr is defined to be the 
re& graph with m2 nodes arranged M an m X m 
mesh. All nodes on the same row of the mesh are con- 
nected in a clique. The same holda for nodes in the .ame 
column. Obviously, the m-regular Mesh of cliques has 
degree am- 2. It lrlro haa the property that between any 
two of its nodes there d t s  a path of length 2. Thus, 
its rQuare graph is a clique of aisc m2. In the following 
we present a layout of the m-regular Mesh of Cliques 
which haa resolution o($). 
Theorem 9. 
embedded on the plane with  rerolution O(&). 

Proof (by construction): W e  group the cliques that cor- 
respond to rows into m canonical m-gons. Then we 

place these m-go- on the plane such that their centers 
are located on the boundary of a circle and, aL0 form 
a canonical m-gon. Observe that the angles formed by 
any two edges that belong to the same "row (column) 
clique" have resolution at least C degrees. Thua, we 

only need to consider the angles formed by an edge that 
belongn to a "column clique" with an edge that belongs 
to a 'row clique". Notice that for any canonical m-gon 
the slopes of the lines in the m-gon all Mer  from each 
other by a multiple of 5.  Hence, if we rotate the tk 
gonr that correspond to "row cliques" by & relative to 
m-gons that correspond# to 'column cliques", then the 
embedding har resolution e. I 
3.3.6 Projective Plane 

I 

The m-regular Merh of Cliqucr can be 

The Projeetive Plane consists of a set of objects 
called pointr, a recond set of objects called linu, and a 
notion of when a point lies on a line, so that the following 
three conditions are  aatiafied: 
(C1) Two distinct points lie on one and only one com- 

mon line. 
(C2) Two distinct lines PMI through one and only one 

point. 
(C3) There are four distinct points, no three of which 

lie on the line. 
In a Prqective Plane of order &I, every point lier 

on exactly d lines and every line pcwea through exactly 
d points. A projective plane of order d - 1 exists if d - 1 
ia a prime power. It haa exactly dz - d + 1 points and 
d2 - d + 1 lines. T h e  projective plane of order d - 1 
can be represented M a bipartite graph G = (A, B ,  E )  
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where the ret of nodes A corresponds to points, the set of 
noder B corresponb to liner, and an edge (U ,  U ) ,  U E A 
and U E B, belongs to E if and only if point U lies on 
line V .  Nok that in the square graph of G the nodes of 
A and B form two cliques, and thus x(G2) = e(@). 

As in the clue of the mesh of cliques, however, the 
projective phne can be drawn with resolution e( 4). The 
embedding U roughly described am follows. Arrange the 
nodes of A into a square grid so that most of the lines 
consist of one node in each column (a few of the lines will 
consist of an entire column). Then arrange the nodes 
of B in a square grid so that most of the nodes in A 
are linked to at mwt one node in each column of B.  
(Again, a few nodu in A d be linked to every node 
in some column of B.) Thb can be accomplished by 
the propertien of the projective plane. Next embed one 
square above the other in the plane. The few nodes 
that are connected to every node in a column (of A or 
B )  are embedded to the side of the appropriate square. 
The bound on the resolution then follows from the fact 
that every angle connects nodes in different columna (or 
rows, for the nodes embedded on the side). Thus, we 
have: 

Theorem 10. The Projective Plane of order d - 1 can 
be embedded on the plane with rerolution O( 4). 
4. An Upper Bound on the Rerolution of a Ban- 
dom Graph 

In thb section, we prove that many graphs with 
maximum degree d have resolution at most O ( y ) ,  for 
any d. We will prove thb result with a counting argu- 
ment. For simplicity we will consider directed graphs 
with outdegree d and we will restrict our attention to 
the angles formed by the outgoing edges at each node. 
(Angles with incoming edges are ignored.) We will show 
that almost all such graphs with N nodes (N 1 d') 
have resolution O ( y ) .  Since almost all graphs with 
outdegree d have indegree O(d+bg N), this means that 
many undirected graphs with degree O(d) have resolu- 
tion O ( y ) .  It U probably ab0 true that almost all 

d-regular graph have resolution O ( v )  but the proof 
apptan to be more complicated. 

The proof rill make w of the following combina- 
torial hcts. 

Fact 1. For all a, b, (i) 5 ( f i ) b  
Proof: Standard asymptotic analysis. I 

Fact 2. For a > 2b, (r) 2 

Proof: Standard asymptotic analysis. I 

abcb 
bbe#+o(b'/-')  

Fact S. Given m boxes containing n1, n2, ..., n,,, la- 
belled balls (respectively), the number of ways of choos- 
ing j b& from the boxes so that at most one ball in 

chosen from each box ia at most 

where n = n1+ n2 + ... + n,,, . 
Proof sketch: The worst clue is when each box has 
the same number of bab. 

Fact 4. Given m + 1 boxer containing no, n1, ..., n,,, 
labelled balL, respectively, the number of ways of choos- 
ing d balb &om the boxer so that at most one ball is 
chosen from boxer 1, it,.,., m (any number can be taken 
from box 0 )  U at most 

I 

where z = 2 and n = no + n1 + ... + n,,,. 
Proof sketch: Derived from Facts 1, 2 and 3 using 
asymptotic analysis. I 

Fact 6. Given any placement of N points on the plane, 
it is poasible to find concentric circler with radii r1 and 
rz so that at least 6 pointa are inaide or on the bound- 
ary of the b e r  circle, and so that at least ; pointa are 
outside or on the boundary of the outer circle, where 

Proof: Find a smallest circle that contains at least ; 
pointr. Thb nill be the inner circle; it haa radius tl .  Let 
r2 be the radius of the largest concentric outer circle that 
leaves pointa outside. Since the concentric circle with 
radius fi  r1 can be covered with four circles of radius 
t l  (Figure 6), there are at least 4 points outside of the 
concentric circle with radius 6 tl .  Hence, t 2  1 6 tl .  
I 
We can now bound the resolution of a random graph 
with outdegree d.  

Theorem 11. Given a random N-no& directed graph 
G in which every node h a  outdegree d ,  with high prob- 
ability, every embedding of G h a  rerolution O ( y ) .  

Prooft We will count all graphs with N labelled noder 
and outdegree d that can be constructed so that there ia 
an embedding in which every angle formed by outgoing 
edges M at leaat s, where c M a sufliuently amall 
constaft). we d show that thb number far leu than 
("i') , which is the number of N-node outdegree d 
graph, thereby implying the theorem. 

Given any embedding of any graph, we know by 
Fact 4 that there are concentric circler with radii t l  and 
t z  so that 9 points are contained in the inner circle, 
$ pointa are outside the outer circle, and rz 2 4 tl .  
Partition the region outside the outer circle into m equal 

+z 2 J z t l .  
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&er, aa ahown in Figure 7. Notice that if MY node 
within the inner circle t connected by outgoing edger 
to two or more noder in the same slice, then there muat 
be an angle of &e O(&). 

In what follows, we wiU ahow that if m = 6, 
wayr of constructing 

N 
then there are far lua than 
such a graph. The counting proceeda aa followr: 

The numbu of ways to pick f noder to be inside 
the inner &de ia: 

The number of wayr to pick 9 nodes to be outside 
the outer circle ia: 

The number of wayr to assign the 
outride to alicu ia: 

selected nodes 

m 4  
The number of wayr to connect 
the inner circle to other noder is: 

nodes outside 

("i" 
The number of ways to connect f nodes inside the 
inner circle to other nodes (Fact 4) is: 

Thua, the total number of graphs that do not have rea- 
olution O(&) divided by the total number of graphs 
overall ia: 

By chooaing N 2 d2 and n 5 & for some s m a l l  

constant C, the value in the brackets can be made smaller 
than f .  Hence, the probability of getting a graph with 

resolution o(?) ia at least 1 - -&. I 

6. Remark. 

There are several quertiona left open in this paper. 
We liat some of them below. 

1. 

2. 

3. 

4. 

5. 

Ia the problem of determining the rcaolution of a 
graph in NF' ? 
Are there interesting tradeoffa between the rerolu- 
tion of a layout and ita area for grapha with large 
maximum d ? Can the area bound in Section 3 be 
improved ? 
What ia the worst caae value of x(G') if G t a 
planar graph with maximum degree d ? 
What happena to the rwolution of planar grapha if 
we restrict the layout to be planar ? Does every d e  
gree 3 planar graph have a planu embedding with 
conatant (independent of the number of noder) rea- 
olution ? 
L there a meaningful relationship between the rea- 
olution of a graph and its denaity (see [7,8] for def- 
initionr)? (In the clue of planar graphr, the two 
quantities appear to be very similar.) 
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Figure 2. Example of a planar graph with maximum 
degree d for which x(G') 2 $. 
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Figure 3. T h e  components used in the NP-hardness proof. 
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Figure 4. The k e a  of the planar graph used in the 
proof of Lemma 3. 

Figure 6. Covcriug a circle of radius t l f i  with 
4 circler of radius +1. 

Figure 5. The embedding of the 4 x 4 Toms. 

Figure 7. The partition of the plane used in the proof 
of Theorem 11. 
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