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Abstract

In this paper, we study the problem of drawing a
graph in the plane so that edges appear as straight lines
and so that the minimum angle formed by any pair of
incident edges is maximised. We define the resolution of
a layout to be the sise of the minimum angle formed by
incident edges of the graph, and the resolution of a graph
to be the maximum resolution of any layout of the graph.
We characterise the resolution R of a graph in terms of
the maximum node degree d of the graph by proving
that ﬂ(-}g) <R<L 1} for any graph. Moreover, we
prove that R = 9(5) for many graphs including planar
graphs, complete graphs, hypercubes, multidimensional
meshes and tori, and other special networks. We also
show that the problem of deciding if R = 2 for a graph
is NP-hard for d = 4, and we use a counting argument
to show that R = O( !%i) for many graphs.
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1. Introduction

Graph layout problems have been extensively stud-
ied in a wide variety of contexts. Examples include both
linear [10,15] and planar [1,2,3,5,7,8,11,12,13,14] layout
problems. Typically, nodes are represented by distinct
points to be embedded in a line or plane, and they are
sometimes restricted to be grid points. (Alternatively,

des are times represented by line segments [11).)
Edges are often constrained to be drawn as straight
lines [3,4,7,8,11] or as a contiguous sct of line segments
[1,5,12,14] (¢.g., when bends are allowed). The objective
is to find a layout for a graph that minimises some cost
function, such as area [1,5], number of edge crossings [1],
maximum edge length [1,2], number of bends [1,5,12,14],
visual complexity [13), density[7,8] and so on.

In this paper, we consider straight line layouts of
graphs in the plane. Specifically, we introduce a new
cost function for such layouts, called resolution. We de-
fine the resolution of a layout of the graph to be the
sise of the minimum angle formed by any two edges in-
cident to a common node. We define the resolution of
a graph to be the maximum resolution of any (straight
line) layout for the graph in the plane. For example, the
resolution of K (the 3-node complete graph) is §. Our
objective in this paper is to find layouts for graphs with
the highest possible resolution.

An obvious upper bound on the resolution of a
graph with maximum degree d is 77' Of course, this
bound is not tight for many graphs. (For example, d = 2
for K3 but the resolution is §). Unfortunately, we will
show that the problem of determining whether or not
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a graph with maximum degree d has resolution 3‘- is
NP-hard, at least in the case d = 4. Whether or not the
resolution problem is in NP is still unknown. Determin-
ing the precise complexity of the problem is complicated
by the fact that there are simple 11-node graphs (such
as that shown in Figure 1) for which there is a layout
with resolution {- — ¢ for any € > 0, but for which there
is no layout with resolution §. These difficulties can be
overcome by restricting the problem so that the nodes
of the graph are required to be placed at distinct grid
points in a grid of a fixed sise (c.g., N x N), in which
case the resolution of any N-node graph becomes a well
defined NP-complete problem. We will consider both
grid-based and unrestricted layouts in this paper.

On the positive side, we can prove nearly tight
bounds on the for many natural classes of
graphs. For example, we prove that any planar graph
with maximum degree d has resolution ©(}). We also
prove similar bounds for special networks like the hyper-
cube, torus, complete graph and others. We construct
& layout for an arbitrary graph with maximum degree d
that has resolution £3( zl[) Hence, the resolution of any
bounded-degree graph is constant, independent of the
number of nodes in the graph. Whether or not there ex-
ists a family of graphs with maximum degree d and res-
olution 6(;‘3) is still unknown. Natural candidates for
graphs with low resolution such as the (d2 —d+1)-point
projective plane and the (% +1)x( -:- +1) mesh of cliques
(both of which are d-regular) have resolution 9(%) We
do not even know of any simply constructable family of
graphs with maximum degree d that has resolution o(%),
although, using a counting argument, we can prove the
existence of many graphs with maximum degree d and
resolution O(‘—"ﬁ-‘-) Hence, the 0(21,-) worst case lower
bound is not to far from reality for many graphs.

| Y]

Several of our constructions are based on the close
relationship between the chromatic number of the square
of a graph and its resolution. In particular, we will show
that the resolution of any graph G is at least qu)- —€
for any ¢ > 0, where x(G’) denotes the chromatic num-
ber of G2. ( The graph G? is formed from G by con-
necting pairs of nodes that are within distance 2 of each
other in G.) Moreover, we will show that the resolution
of any N-node graph G is ﬂ(;(la;;), even if we are re-
stricted to position the nodes of G at distinct grid points
of a square grid with area 0(x(G’)8N ). Hence, we can
produce linear area layouts (in the sense of [1,5,14]) that
have constant resolution for any bounded-degree graph.

Our 6(%) bound on the resolution of any planar
graph with maximum degree d, in particular, stems from
the fact that the square of any planar graph with max-
imum degree d has chromatic number O(d). In this
paper, we show an upper bound of “';ad+0(d2/ #), which
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is close to the best known existential lower bound of
-:-d. (The lower bound is provided by the graph shown
in Figure 2.) The exact worst-case bound remains an
unsolved problem.

Our interest in the problem of maximising resolu-
tion stems largely from the fact that resolution scems
to be a natural property of graphs that was previously
(to our knowledge) unexplored. In addition, the reso-
lution problem is related to problems that arise in net-
work communication via optic beams [6,9]. For example,
consider a network in which each node represents a pro-
cessor that can communicate via optical beams with its
neighbors in the graph. By maximising the resolution
of the layout, we simplify the task of designing the pro-
cessor and the task of recognising one’s neighbors. (It
is hard to send or receive at very tight angles for a unit
sise processor). Similar applications might arise in radio
networks that make use of directional antennas.

The remainder of the paper is divided into sections
as follows: In Section 2, we examine graphs of maxi-
mum degree 4 and prove that it is NP-hard to decide if
we can draw them with resolution 3. In Section 3, we
first present an algorithm for general graph layouts. We
then consider the case of planar graphs. Finally, because
of their importance, we consider layouts of special net-
works. In Section 4, we present an upper bound on the
resolution of random graphs. Section 5 contains some
remarks and additional topics for research.

2. NP-hardness

Given a graph with maximum degree d, we know
that its optimum embedding on the plane can have res-
olution at most l:_ In what follows, we show that the
problem of deciding whether a graph of maximum de-
gree d has an embedding on the plane with resolution
2% is NP-hard in the case d = 4.

Theorem 1. Given a graph G of mazimum degree 4,
the decision problem of whether or not G can be embed-
ded in the plane with resolution % is NP-hard.

Prooft The proof is done by a reduction from
3-SAT. Let S be a formula in 3-CNF, let U
{21, 23, 23, ..., Zn } be the variables occurring in S, and
let C = {c1,¢3,¢3,...,cx} be the clauses in S, such
that every clause ¢ € C consists of exactly 3 literals.
We construct a graph G of maximum degree 4 that is
embeddable with resolution % if and only if S is satisfi-
able.

The skeleton of G is given in Figure 3a. For each
variable z;,1 < i < m, there is a node in the skeleton.
The same holds for each clause ¢;,1 < j < k. Ob-
serve that up to reflections, rotations and stretchings,
the embedding of G with resolution ¥ (if there is any)
essentially has to look like the one in Figure 3a. Now



we append at each node 2; the tower of Figure 3b. For
each such tower, there are two possible embeddings (in
relation to the skeleton): The negated nodes to the left
and the nonnegated nodes to the right, or vice versa.
Finally, for each clause ¢; = {2, zx, 21}, we connect
the node c; to the nodes z; j, Zx,; and 2;; (or to the
corresponding negated nodes, if the literals are negated)
by a path consisting of three edges (Figure 3c).

We claim that if there is an embedding of G with
resolution % , then we can find a truth assignment for S.
We make the following observations:

Observation 1: All nodes ¢j,1 < j < &, have to be
embedded to the right of line L (see Figure 3a).
Observation 2: All nodes on the left side of a tower
have to be embedded to the left of kine L.
Observation 3: A path of length 3 that leaves ¢; in
the eastern direction can never reach any node on the
left side of any tower (Figure 3d).

Observation 4: A path of length 3 that leaves ¢; in the
southern or the northern direction can reach any node,
on the left or on the right, of any tower (Figure 3e).
Observation 5: A path of length 3 that leaves ¢; in
the eastern direction can reach any node on the right
side of any tower (Figure 3f).

With the above observations in mind, the rest of
the proof is obvious: If the negated nodes 2; ;,1 < j <
k, are embedded on the left side of the tower at 2;, then
2; is set to TRUE. If the nonnegated nodes 2;,;, 1 <
j <k, are embedded on the left side, then 2; is set to
FALSE. To see why the above assignment satisfies S,
consider any embedded node c;j. There are three paths
leaving cj, one in the eastern, one in the northern and
one in the southern direction. The eastern path can
never reach a false value. Hence, the clause will contain
at least one true literal.

Conversely if we are given a satisfying assignment
for the 3-SAT problem, from the above discussion it is
obvious how to embed the corresponding graph with res-
olution % This completes the proof. 1§

8. Drawings with High Resolution

In this section, we describe how to draw graphs in
the plane with high resolution. We start by establishing
the connection between resolution and x(G?) in Section
3.1. As a consequence, we show that any N-node graph
with maximum degree d has resolution at least f3(Jy),
even if we are restricted to embedding nodes in distinct
grid points of a square O(min{d?, N}’ N)-node grid.
In Section 3.2, we show that x(G?) < I—;'d + O(d?/?)
for any planar graph G with maximum degree d, thereby
obtaining a tight 6(%) bound on the resolution of any
planar graph with maximum degree d. We conclude in
Section 3.3 by constructing optimal-resolution layouts

for a variety of special networks such as arrays, hyper-
cubes, etc.

3.1 Drawings for General Graphs Based on x(G?)

Given a graph G = (V,E), the square of G
(denoted by G? (V3,E?) ) is defined as follows:
Vi=Vad E*=EU {(i,j)|4,j€VandI ke
V such that (i,k) € E and (k,j) € E }. A sim-
ple argument reveals that if G has maximum degree
d, then G*® has maximum degree d? and thus that
x(G?) < @ + 1. In what follows, we will show how
to draw G in the plane with resolution ;(557 — € for
any € > 0.

Algorithm DRAW

step 1 Given G, construct G2 and color the nodes of
G? with u colors where X(G?) < u < d* +
1. Adjacent nodes in G? should be assigned
different colors.
Draw a unit circle on the plane and 4 equidis-
tant points Pj, ..., P, on the circle.
Place the nodes of G that are assigned color ¢
in G? into a ball of radius ¢ around P; (1 <
i<u)
step 4 Draw the edges of G as straight line segments.

step 2

step 3

Theorem 2. Given a general graph G, a coloring of
G? with u colors, and any €, Algorithm DRAW embeds
the graph on the plane with resolution £ — O(e).

Proof: Let v; be an arbitrary node of G and
(v1,v3), (v1, vg) edges incident with v;. In G2, v;,v;
and vg are all adjacent and they are colored differently
(say with colors ci,¢3,cs, respectively). Hence, they
are placed within € distance of three different points
P, ,P,.,, P, respectively, on the unit circle. The an-
gles formed by edges connecting the 4 points P; on the
unit circle are all at least I. (In fact, they are all mul-
tiples of £.) Since dist(v;, P.;) < € and dist(P,;, P;)
=0(2), for 1 < 4,5 < 3, i # j, this means that the
angle formed by vy, v;, vs must be at least T — O(e),
where the constant implicit in the O(¢) is independent
of u and of the number of nodes in the graph. 1§

Corollary 1. For any graph G with maximum degzee d,
and any § > 0, we can draw G with resolution 75’75 -é.

In fact, the layout given by algorithm DRAW can
be modified so that the nodes of the graph G are placed
at distinct grid points of an O(vu%N)-side grid. This
can be done by first refining the coloring of G? so that
each color group contains at most ;‘! nodes. This step
introduces at most u — 1 new colors for a total of 2u —1
overall. We ne\x/t__glace the nodes of each color group ar-

N
-

bitrarily in a X \/g square, and then arrange the



24 — 1 squares at equidistant points around the perime-
ter of a circle of radius u¥+/N. This results in a layout
of area O(¥3N) and resolution Q(-:—) For graphs with
bounded-degree, u is constant and the layout has lin-
ear area, which is optimal. For graphs with larger u,
however, it seems likely that the bound on area can be
improved without dramatically affecting the bound on
resolution.

8.2 Drawing Planar and Outerplanar Graphs

We can substantially improve upon Corollary 1 in
the case of planar and outerplanar graphs. In particular,
we will prove that any planar graph of maximum degree
d can be drawn with resolution ﬂ(%), which matches
the naive upper bound to within a constant factor. The
proof is based on the fact that x(G?) = O(d) for any
planar graph G with maximum degree d. Showing that
x(G?) = O(d) is relatively straightforward. As the de-
termination of the worst-case value of X(G2) may be of
independent interest, we have included the details of the
more complicated -178-d+0(d2/ %) bound in what follows.

Lemma 1. Let U and W be disjoint node sets in a
planar graph and suppose that each node in U has at
least 3 neighbors in W. Then |U| < 2|W| — 4.

Proof: Remove all nodes not in U U W and all edges
except those with one endpoint in each of U and W. The
resulting graph G is planar and bipartite. Denote by m
and f the number of edges and faces of G, respectively.
It is easy to see that 4f < 2m and m > 3|U|. Hence,
by Euler’s formula,

Ul +IW|—2=m—f>m/2>3|U|/2

and |U|<2W|—4.

Definition: For k > 1, denote by ¢(k) the supremum,
over all planar graphs G, of the proportion of nodes in
G of degree > k.

Lemma 3.
1, for k < 6;
dk)={ 325 for6<k<1y
for k > 12.

h-8"°

Proof: We prove in detail only the assertion needed in
the following, namely ¢(k) < -,‘—35 for k > 12. For each
value of k, the lower bound is realised by the infinite
hexagonal grid, augmented by a suitable independent
set of nodes of degree 2 or 3.

Fix k > 12, let G = (V, E)) be a planar graph and
define W as the set of nodes in G of degree > kand U
as the set of nodes in V\W with at least 3 neighbors in
W. By Lemma 1, |U] < 2|W|.
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By planarity, the subgraph of G induced by U U
W has at most 3(|U| + |[W|) edges, at most 3|W| of
which have both endpoints in W. Hence at least k|W|—
3|U| — 6|W| edges in G join & node in W with a node
in V\(U U W). It follows that

[V\(U UW)| > 3(k|W| - 3|U| - 6|W})
and hence that
Vi= W[+ U]+ [V\(U uW)|

> [W| + U] + 3(k|W| - 3|U| — 6|W])
= §h|W| —2|W| - %IU]
> kW] - 2|W| — W] = (} -3)|W|.

Finally, the proportion of nodes in G of degree > k is

< a5t = e 0

Theorem 3. The square of any planar graph G with
maximum degree d can be colored using at most -I,Qd +
O(d?*/®) colors.

Proof: Let k, I, and d be any integers for which k >
1 > 12and d > k + l. We will prove by induction
on the number of nodes that the square of any planar
graph with maximum degree at most d can be colored
using at most A = d + (I — 3)(I — 1) + maz{ k,d —
LL[__L:"—;QJ + 1} colors. By setting k = [$d] and I =
9(d1/ 3), this will produce the desired asymptotic bound
as d becomes large. As can be casily seen, the constant
factors associated with the low order terms will not be
large.

Define W as the set of nodes in G of degree > k
and U as the set of nodes in G of degree < ! and with
at most 2 neighbors of degree > I. By Lemmas 1 and 2,
(W] < g25V] and

> v|-3-Z5lvi=E¢vio.

Case 1: Some node v in U has at most one neighbor in
W. Contract v into a neighbor w of v of minimal degree,
i.e., add an edge between w and each node other than w
that is a neighbor of v, but not of w, and subsequently
remove v. Since w & W unless v is of degree 1, the new
degree of w is bounded by maz{d, k + 1 — 3} = d, and
the inductive hypothesis implies that the square of the
resulting graph can be colored with at most A colors.
Furthermore, the colors assigned can be retained in a
valid coloring of G3, the only remaining problem being
to color v. Since the number of nodes in G at distance



1 or 2 from v is at most d+ (k — 1) + (I — 3)(I — 1), the
indicated number of colors suffices.

Case 2: Every node in U has exactly 2 neighbors in
W. By planarity, at most 3|W| pairs of nodes in W
can have a common neighbor in U. Hence some pair of
nodes in W has at least

U 1-12 k-6
iJIWL'[>ﬁ'T

common neighbors in U. Choose v as one of these com-
mon neighbors and contract v into a neighbor of mini-
mal degree as above. Again, this does not increase the
maximum degree, and the inductive assumption applies
to the resulting graph. Finally note that the number of
nodes in G at distance 1 or 2 from v is less than

2d -2 A28 (1-3)1-1),

and we can find an acceptable color for v. |

Theorem 4. Any planar graph with maximum node
degree d has resolution 9(%)

Proof: The upper bound is trivial. The lower bound
follows from Theorems 2 and 3. 1§

For outerplanar graphs, the bounds on x(G?) are
much tighter, as we show in what follows.

Lemma 3. Every biconnected outerplanar graph on
at least three nodes contains a node of degree 2 with a
neighbor of degree 2 or with adjacent neighbors, one of
which is of degree at most 4.

Proof: Let T be the dual of an outerplanar embedding
€ of the given graph, with (the node representing) the
outer face removed. As is well-known, 7" is a free tree,
i.e., it is connected and acyclic. A face of £ is a leaf,
i.e., of degree 1, in T if and only if exactly one of its
boundary edges does not bound the outer face. Let F,
and F, be faces of £ whose distance from each other
in T is maximal. Root T at F,, let v be any node of
degree 2 on the boundary of F,, and let v, and vg be
the neighbors of v (Figure 4). If v, or vg is of degree
< 3, we are done. Otherwise define F', F, and Fg as
shown in the figure. At least one of Fy and Fg, say Fo,
is a child of F in T and hence, by the choice of F, and
F,, aleafin T. But then v, is of degree 4. 1

Theorem 5. The square of any outerplanar graph G of
maximum degree d can be colored using at most d + 3
colors.

Proof: We can assume that G is biconnected and con-
tains at least 3 nodes. Let V be the set of nodes in G
of degree 2 with at least one neighbor of degree 2. If
V # 0, remove all nodes in V and, if any nodes are left,
color the remaining graph inductively, using d+3 colors.

Then obtain a coloring of the original graph by adding
back the nodes in V and coloring them in an arbitrary
order. Since at most d + 2 nodes have distance 1 or 2
from each fixed node in V, this can be done using d + 3
colors.

If V = @, remove a node v of degree 2 with adjacent
neighbors, one of which is of degree < 4, and color the
remaining graph inductively. Since there are at most
d + 2 nodes at distance 1 or 2 from v, the proof again is
easily completed. 1

It is worth noting that the bound in Theorem 5
is nearly tight since the (d + 1)-node star graph is an
outerplanar graph G with maximum node degree d for
which x(G?) =d + 1.

3.3 Special Networks

In this section, we examine the resolution of some
special networks. We present optimal or nearly optimal
layouts for the complete graph, the hypercube, multi-
dimensional arrays and tori, the mesh of cliques, and
the projective plane. The first four of these networks
are important because of their uses as processor inter-
connection networks. The last two networks are inter-
esting because they would seem to be good candidates
for graphs with resolution 9(:1,) since the chromatic
number of the square of a d-regular mesh of cliques and
projective plane is G(dz). Somewhat surprisingly, how-
ever, we show that the resolution of all of the special
networks mentioned is 6(%)

3.3.1 The Complete Graph

Theorem 8. The complete graph of N nodes has reso-
lution ﬁ

Proof: For the lower bound, draw the N nodes of the
graph at equidistant points on a circle. Then the angles
formed by incident edges will have sise at least & .

For the upper bound, consider three consecutive
nodes u,v, and w on the convex hull of some layout.
If the angle formed by edges (u,v) and (v, w) has sise
greater than '—}’I. then one of the other angles in the
triangle formed by u, v, and w will have sise less than
> and we are done. Hence, we can assume that the
angle formed by edges (u, v) and (v, w) has sise at most
'}". Since u, v, and w are consecutive nodes on the
convex hull of the layout, all the other N — 3 nodes are
contained within the angle formed by (u, v) and (v, w).
Hence, there is an angle of sise at most Ty’ = & at
nodev. 1

Corollary 2. The resolution of any d-regular graph is
at most 7.



3.3.2 Hypercubes and Multidimensional Meshes

In this section, we consider hypercubes and multi-
dimensional meshes. The k-hypercube has 2* nodes,
each one represented by a k-tuple (i;,13,...,44) for
0 < i1,42,...,8% < 1. Edges occur between nodes that
differ in precisely one bit. By Corollary 2, we know
that any layout of a k-hypercube has resolution at most
1:—1. In what follows, we present an algorithm that
draws the k-hypercube with resolution . We then ex-
tend this algorithm to derive an optimal layout for the
k-dimensional mesh.

ALGORITHM HYPERCUBE(k)
step 1 Design on the plane an angle ¢ of size x — T
Divide ¢ into k-1 equal angles which define a
k-axes system.
step 2 Initialisation: Create a 1-hypercube on the 1**
axis.
for j=2tok—1do
Create a copy of the (j — 1)-hypercube.
Translate the copy parallel to the j** axis.
Create connections between the corresponding
nodes of the two (7 — 1)-hypercubes.

Since each line segment drawn by algorithm HY-
PERCUBE(k) is parallel to one of the k axes, we have
the following theorem:

step 3
3.1
3.2
3.3

Theorem 7. Algorithm HYPERCUBE draws the k-
hypercube in the plane with resolution .

Remark. It can be shown that Algorithm Hypercube
produces an optimal layout for the 3-hypercube.

An algorithm to embed a k-dimensional mesh with
resolution I can be obtained by extending algorithm
HYPERCUBE. Note that a k-hypercube is the basic
unit component of a k-dimensional mesh. The maxi-
mum degree for any internal node of the mesh is 2k.
Since 3"- is an obvious upper bound for the resolution
of any graph of maximum degree d, the extended algo-
rithm will produce an optimal embedding.

3.3.3 Tori

The m-dimensional torus network T'(m) is actually
an m-dimensional mesh with wrap-around connections.

Theorem 8. The m-dimensional torus can be embed-
ded on the plane with resolution %"—, provided that all

dimensions have size greater than §.

Prooft Consider the embedding of the 4 x 4 torus (Fig-
ure 5). Observe that it replicates the embedding of the
4-hypercube. We use this embedding as a base layout
of any two-dimensional torus. We can extend the em-
bedding of the 4 X 4 torus to any @ X b torus by insert-
ing extra nodes in regular intervals of the edges of the
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respective dimensions. By a similar argument, the em-
bedding of an m-dimensional 4 X 4 X ... X 4 torus can be
used as a base layout of any m-dimensional torus, since
it is isomorphic to the 2m-hypercube. From Theorem
7 we know that the k-hypercube can be embedded with
resolution f Therefore, the proof follows. &

8.3.4 Mesh of Cliques

The m-regular Mesh of Cligues is defined to be the
regular graph with m? nodes arranged as an m X m
mesh. All nodes on the same row of the mesh are con-
nected in a clique. The same holds for nodes in the same
column. Obviously, the m-regular Mesh of Cliques has
degree 2m—2. It also has the property that between any
two of its nodes there exists a path of length 2. Thus,
its square graph is a clique of sise m32. In the following
we present a layout of the m-regular Mesh of Cliques
which has resolution O(%)

Theorem 9. The m-regular Mesh of Cliques can be
embedded on the plane with resolution 0(& )-

Proof (by construction): We group the cliques that cor-
respond to rows into m canonical m-gons. Then we
place these m-gons on the plane such that their centers
are located on the boundary of a circle and, also form
a canonical m-gon. Observe that the angles formed by
any two edges that belong to the same “row (column)
clique” have resolution at least —;;. degrees. Thus, we
only need to consider the angles formed by an edge that
belongs to a “column clique” with an edge that belongs
to a “row clique”. Notice that for any canonical m-gon
the slopes of the lines in the m-gon all differ from each
other by a multiple of % Hence, if we rotate the m-
gons that correspond to “row cliques” by % relative to
m-gons that corresponds to “column cliques”, then the
embedding has resolution 3=-.

3.3.5 Projective Plane

The Projective Plane consists of a set of objects
called points, a second set of objects called kines, and a
notion of when a point lies on a line, so that the following
three conditions are satisfied:

(C1) Two distinct points lie on one and only one com-
mon line.
(C2) Two distinct lines pass through one and only one
point.
(C3) There are four distinct points, no three of which
lie on the same line.

In a Projective Plane of order d-1, every point lies
on exactly d lines and every line passes through exactly
d points. A projective plane of order d — 1 exists if d— 1
is a prime power. It has exactly d*> — d + 1 points and
d® — d + 1 lines. The projective plane of order d — 1
can be represented as a bipartite graph G = (A4, B, F)



where the set of nodes A corresponds to points, the set of
nodes B corresponds to lines, and an edge (u,v),u € A
and v € B, belongs to E if and only if point u lies on
line v. Note that in the square graph of G the nodes of
A and B form two cliques, and thus x(G?) = 6(d?).

As in the case of the mesh of cliques, however, the
projective plane can be drawn with resolution 9(%) The
embedding is roughly described as follows. Arrange the
nodes of A into a square grid so that most of the lines
consist of one node in each column (a few of the lines will
consist of an entire colurnn). Then arrange the nodes
of B in a square grid so that most of the nodes in A
are linked to at most one node in each column of B.
(Again, a few nodes in A will be linked to every node
in some column of B.) This can be accomplished by
the properties of the projective plane. Next embed one
square above the other in the plane. The few nodes
that are connected to every node in a column (of A or
B) are embedded to the side of the appropriate square.
The bound on the resolution then follows from the fact
that every angle connects nodes in different columns (or
rows, for the nodes embedded on the side). Thus, we
have:

Theorem 10. The Projective Plane of order d — 1 can
be embedded on the plane with resolution 0(%)

4. An Upper Bound on the Resolution of a Ran-
dom Graph

In this section, we prove that many graphs with
maximum degree d have resolution at most O(%ﬂ!), for
any d. We will prove this result with a counting argu-
ment. For simplicity we will consider directed graphs
with outdegree d and we will restrict our attention to
the angles formed by the outgoing edges at each node.
(Angles with incoming edges are ignored.) We will show
that almost all such graphs with N nodes (N > d?)
have resolution 0(%9!). Since almost all graphs with
outdegree d have indegree O(d+log N), this means that
many undirected graphs with degree O(d) have resolu-
tion 0(‘—"‘&1). It is probably also true that almost all
d-regular graphs have resolution 0(1—:&!) but the proof
appears to be more complicated.

The proof will make use of the following combina-
torial facts.

Fact 1. Forall a,b, (§) < (-‘:f-;;:)‘
Proof: Standard asymptotic analysis.

> a'et
IV ) L—
= 378 e to(3/e?)
Proof: Standard asymptotic analysis. 1

Fact 2. For a > 2b, (:)

Fact 8. Given m boxes containing 7y, n3, ..., n,, la-
belled balls (respectively), the number of ways of choos-
ing j balls from the boxes so that at most one ball is
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chosen from each box is at most

()

where n =0y + 13+ ... + Ny

Proof sketch: The worst case is when each box has
the same number of balls. 1

Fact 4. Given m + 1 boxes containing ng, 2y, ..., By
labelled balls, respectively, the number of ways of choos-
ing d balls from the boxes so that at most one ball is
chosen from boxes 1, 2,..., m (any number can be taken
from box 0) is at most

ne
(d+ 1)(W)

wherez:-'i‘-andn:no+‘n1+...+n,,,.

Proof sketch: Derived from Facts 1, 2 and 3 using
asymptotic analysis. §

Fact 5. Given any placement of N points on the plane,
it is possible to find concentric circles with radii 1 and
73 so that at least % points are inside or on the bound-
ary of the inner circle, and so that at least % points are
outside or on the boundary of the outer circle, where
2> V2.

Proof: Find a smallest circle that contains at least %
points. This will be the inner circle; it has radius r;. Let
72 be the radius of the largest concentric outer circle that
leaves % points outside. Since the concentric circle with
radius v/2 7 can be covered with four circles of radius
7, (Figure 6), there are at least % points outside of the
concentric circle with radius \/E 71. Hence, 72 > \/5 1.
1

We can now bound the resolution of a random graph
with outdegree d.

Theorem 11. Given a random N -node directed graph
G in which every node has outdegree d, with high prob-
ability, every embedding of G has resolution O(° l—oﬁi )-

Prooft We will count all graphs with N labelled nodes
and outdegree d that can be constructed so that there is
an embedding in which every angle formed by outgoing
edges is at least ‘—:‘15!, where c is a sufficiently small
constnw. We will show that this number is far less than
(N;l) , which is the number of N-node outdegree d
graphs, thereby implying the theorem.

Given any embedding of any graph, we know by
Fact 4 that there are concentric circles with radii #y and
73 so that % points are contained in the inner circle,
%r- points are outside the outer circle, and 7; > V2.
Partition the region outside the outer circle into m equal



slices, as shown in Figure 7. Notice that if any node
within the inner circle is connected by outgoing edges
to two or more nodes in the same slice, then there must
be an angle of sise O(L).

In what follows, we will show that if m =

cd?
ogd’

then there are far less than (N 7 1) ¥ ways of constructing
such a graph. The counting proceeds as follows:
a) The number of ways to pick _1;_[ nodes to be inside
the inner circle is:

(5

The number of ways to pick %'- nodes to be outside
the outer circle is:
4N /5 ¥
< (4e
(i) s

The number of ways to assign the %’- selected nodes
outside to slices is:

b)

m4

The number of ways to connect %
the inner circle to other nodes is:

N
N-1\¥
d
The number of ways to connect %’- nodes inside the
inner circle to other nodes (Fact 4) is:

d) nodes outside

°)

(N—-1)e ¢ ¥
< (("“)(de(x-us)’d/m) )

Thus, the total number of graphs that do not have res-
olution 0(;%) divided by the total number of graphs

overall is: ¥
- s Fuag¥m¥ oy ((d+1)(“75'—.','732—,ﬁ)l

™)

_ (20e’m(d + 1)(}:—!7‘1-}2‘:)‘)

GF)
<

N—1)%et ¥
ZOe’m(d + ])-‘“757)"%
< (30\/2_' ‘Md_“l)s/:GJ’/:(N-x)-po(a‘/N’)) ¥

¥

(N—1)%ed
V3xd d4ed3/3(N-1)+0(43/N7)
ed?/100m

By choosing N > d? and m < ,% for some small
constant ¢, the value in the brackets can be made smaller
than % Hence, the probability of getting a graph with

resolution O('—e‘%-!) is at least 1 — I”V 1
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5. Remarks

There are several questions left open in this paper.
We list some of them below.

1. Is the problem of determining the resolution of a
graph in NP ?

2. Are there interesting tradeoffs between the resolu-
tion of a layout and its area for graphs with large
maximum d ? Can the area bound in Section 3 be
improved ?

3. What is the worst case value of x(G?) if G is a
planar graph with maximum degree d ?

4. What happens to the resolution of planar graphs if
we restrict the layout to be planar ? Does every de-
gree 3 planar graph have a planar embedding with
constant (independent of the number of nodes) res-
olution ?

5. Is there a meaningful relationship between the res-
olution of a graph and its density (see {7,8] for def-
initions)? (In the case of planar graphs, the two
quantities appear to be very similar.)
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3.0 \ 3.2
3.3

Figure 4. The faces of the planar graph used in the Figure 5. The embedding of the 4 X 4 Torus.
proof of Lemma 3.

Figure 6. Covering a circle of radius r1v2 with Figure 7. The partition of the plane used in the proof
4 circles of radius ry. of Theorem 11.
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