Provided for non-commercial research and education use.
Not for reproduction, distribution or commercial use.

Volume 74 Number 7 1 April 2011 ISSN 0362-546X

ELSEVIER

Analysis

Theory, Methods & Applications

An International Multidisciplinary Journal

Series A: Theory and Methods

EDITORS
RAVI P. AGARWAL
SHAIR AHMAD
SIEGFRIED CARL
ENZO LUIGI MITIDIERI

Available onfine at www.sciencedirect.com

" ScienceDirect

This article appeared in a journal published by Elsevier. The attached

copy is furnished to the author for internal non-commercial research

and education use, including for instruction at the authors institution
and sharing with colleagues.

Other uses, including reproduction and distribution, or selling or
licensing copies, or posting to personal, institutional or third party
websites are prohibited.

In most cases authors are permitted to post their version of the
article (e.g. in Word or Tex form) to their personal website or
institutional repository. Authors requiring further information

regarding Elsevier’s archiving and manuscript policies are
encouraged to visit:

http://www.elsevier.com/copyright


http://www.elsevier.com/copyright

Nonlinear Analysis 74 (2011) 2548-2562

Contents lists available at ScienceDirect = i
Nonlinear
Analysis
Nonlinear Analysis =
journal homepage: www.elsevier.com/locate/na S

Global attractor for a system of Klein-Gordon-Schrédinger type in all R

Marilena N. Poulou, Nikolaos M. Stavrakakis *
Department of Mathematics, National Technical University Athens, Zografou Campus 157 80, Athens, Hellas, Greece

ARTICLE INFO ABSTRACT
Article history: In this paper we study the long time behavior of solutions for the following system of
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Accepted 5 December 2010 . )
We + kY + iy = ¢y +f,
13\/155];10 Pt — P+ ¢ + Ay = —Reyy + g,
35B45 Y(x,0 =Yox),  ¢(x,0) =¢o(x),  ¢(x,0) =pi1(x),
35B65 lim ¢ (x,t) = lim ¢x,t)=0, t>0,
35D05 Xx—+00 x— 00
35D10 wherex € R,k > 0, @ > 0, A > 0. First, the existence, uniqueness and continuity of the
ggﬁg solutions on the initial data are proved. Then the asymptotic compactness of the solutions

35P30 and the existence of a global compact attractor are shown.
© 2010 Elsevier Ltd. All rights reserved.
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1. Introduction

The aim of this paper is to prove the existence of a global compact attractor for the following system

i + k¥ +iay = ¢y +f, (1.1)
Gt — P+ @+ Ay = —Re Yy + &, (1.2)
V(X0 =vo®X), ¢ 0 =¢o(x),  ¢(x 0)=1(x), (1.3)
XEIBOOI//(X, t) = xgrfm¢(x’ t)y=0, t>0, (1.4)

wherex € R,t > 0,k > 0, > 0,1 > 0. Also f, g are complex and real valued functions, respectively. The complex
valued variable i stands for the dimensionless low frequency electron field, whereas the real valued variable ¢ denotes the
dimensionless low frequency density. The system (1.1)-(1.4) describes the nonlinear interaction between high frequency
electron waves and low frequency ion plasma waves in a homogeneous magnetic field, adapted to model the UHH plasma
heating scheme. The dissipative mechanism of the system is introduced by the terms iczyy and A¢;.

Systems of Klein—-Gordon-Schrédinger type have been studied for many years. To our knowledge, it seems that the first
problem of this type is the so-called Yukawa System, which goes back to 1935. Another model which is of the same type is the
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so-called Zakharov System, which is formed by V. E. Zakharov in early seventies. Guo and Li [ 1] proved the existence of a strong
global attractor in H?(R?) x H?(R?) attracting bounded sets of H>(R3) x H3(R?) for a Klein-Gordon-Schrédinger system
with Yukawa coupling. This was extended by Lu and Wang [2]. They established the existence of a strong global attractor in
H*@®RN) x HY(RN), N = 1, 2, 3, attracting bounded sets of H*(RY) x H*(RM), k > 1. For a dissipative system of Zakharov type
Flahaut [3] proved the existence of a weak global attractor in H} ((0, L)) x Hg((0, L)) (Y H?((0, L)) x H, ((0, L)) (Y H3((0, L))
and obtained upper bounds for its Hausdorff and Fractal dimensions.

The model under consideration (1.1)-(1.4) appeared first in the work [4] (see also [5]), where for the undriven(f =0, g =
0) and the bounded interval case, the global existence and uniqueness of the solutions were proved and necessary conditions
were established for the system to manifest exponential energy decay. These results were extended by the authors to the
more realistic driven case system (1.1)-(1.3) (see, [6]), where the driving terms f, g € L?(£2). The existence of a global
attractor was derived in the space (Hj (2)NH?(£2))? x Hy (£2), which attracts all bounded sets of (H, ($2)NH?(£2))? xH; (£2)
in the norm topology. Furthermore, in [7] the authors studied the finiteness of the dimension of the global attractor applying
a general method based on the uniform Lyapunov exponents and found upper bounds for both Hausdorff and Fractal
dimensions. Xanthopoulos and Zouraris [8] proposed a linearly implicit finite difference method to approximate the solution
of the system (1.1)-(1.4). The numerical implementation of the method recovers known theoretical results for the behavior
of the solution, while revealing additional nonlinear features.

The rest of the paper is divided into three parts. In Section 2, some useful estimates on the solutions of the system
(1.1)-(1.4) are derived in (H'(R) N H2(R))? x H'(R). Then, due to lack of compactness we approximate the whole space
R by a bounded domain £2,, = {x € R : |x|] < m} for each m > 0 and prove that all solutions on the complement of £2,,
are uniformly small for large times. In Section 3, using the energy equation the continuous dependence of the solutions on
the initial data in the space (H!(R) N H2(R))? x H'(R) is proved. Finally, in Section 4, the asymptotic compactness of the
dynamical system and the existence of a global attractor are established in the space (H'(R) N H2(R))? x H'(R).

Notation: Denote by H*(§2) both the standard real and complex Sobolev spaces on (£2). For simplicity reasons sometimes we
use H®, [’ for H*(R), L*(R) and ||.||, (., .) for the norm and the inner product of L?(R) respectively as well as f dx denotes the
integration over the domain R. Finally, C is a general symbol for any positive constant.

2. Global existence

In this section we derive a priori estimates for the solutions of the Klein-Gordon-Schrodinger system (1.1)-(1.4). Let us
introduce the transformation 8 = ¢, + 8¢ where § is a small positive constant to be specified later. Then, system (1.1)-(1.2)
takes the form

e + kY iy = ¢y +f, (2.1)

¢t + 8¢ = 69 .

O+ (A —68)0 — e+ (1 =0(L —3))p = —Reyx + g. (2.3)
Also the new initial and boundary conditions related to (1.3)-(1.4) are

V(x,0) =Yox), &KX 0) =dpo(x), 0(x,0) =06 =do(x) +3¢p1(x), x€R, (2.4)

xgrinoo vx, t) = xljrirloo¢(x, t) = Xl)irinooe(x, t)y=0, t=>0. (2.5)

Lemma 2.1. Let ||y (t)|| < R, for some R > 0 and suppose that f belongs to L*(R). Every solution of (2.1)-(2.5) satisfies
YOI <R, t>=t,
where constant R* depends on «, ||f ||; constant t; depends on «, ||f|| and R.

Proof. The proof is analogue to the proof of Lemma 2.1in[2]. O

Lemma 2.2. Assume that f and g belong to L*(R), let ||(¥0, ¢, 60) |51 xp1x;2 < R, where R > 0. Then, there exists a constant
81 such that when § < 84, every solution (V, ¢, 6) of problem (2.1)-(2.5) satisfies

1Y @O llgr + @@y + 10O < My, t >t
where My dependsona, k, A, 8, |If ||, llgll; tzona, k, A, 8, |Ifl, llg]l and R.

Proof. Multiplying Eq. (2.1) by —, integrating and taking the real part gives

d _ k) _
%E(K||x/fx||2+/¢|x/f|2+zae /fw)+m||wx||2+(a+5)/¢|w|2 _ %/ewﬁwRe/m. (26)
R R R R R
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Next, multiplying Eq. (2.3) by 6 and substituting 6 from Eq. (2.2) implies

1d
EE(IIQII x> + (1 =8 = NNBI*) + G = HION® + 8l gull> +8(1 = 8Gh — ) l1II?

_ _Re / Oy + / g6, 27)
Adding relations 2x (2.11) and 2 x (2.8) gives
Fi(t) + 8F1(t) = Gi(0), (2.8)
where, to simplify the notation, the following quantities are introduced
Fy = il + /Raﬁlllflzdx + 1017 + llpull* + (1 = 8L = 8) 111> + 2 Re /fo/_f,
= (6 — 2ca)[I¥nll* — 20{/R¢|1ﬁ|2 + (38 =201 = 8(1 =8 — &)l
— 8llxll* + /R@Il/fl2 +2(5 —a)Re /Rflﬁ — 2Re /R@% + 2/g9-

R

Taking 8 small enough such that § — 2k < 0,35 — 21 < 0,1 —8(1 —§) > 0, one can render several terms of G; negative.
Let us proceed by majorizing the integrals of G; as follows

€1 €
/ 2L < 101G < Bl 2y 1P < EIIQII2 + Elllﬂxll2 +C,
R

20!/¢|t/f|2
R

2(5—06)/f1/_f‘ =CIfllllyIl =€, and ‘2/g9
R R

2, € 2 € 2 1 2
< es®ll +3”le| +C, and S||Wx||||9||§§||¢x|| +Z”0”’

O
R

€1 2
= 2[igllol < 5||9|| +C.

The next step is to estimate the arbitrary positive constants €1, €, €, such that the following two inequalities hold
simultaneously true €; —i—i <—(38-21),&+5 < —(8—2ka).Letv > 0,v # 3, & = —(3§ —21) and B = —(§ — 2k ).

. . e = 2 . - 2 . -
Setting e = -, €, = ’i we have the following necessary condition: &8 > @JT)Z Since ¢, 8 > 0 the inequality is always

true for sufficiently small v. Finally, taking €3 small enough, so that €3 < —§(1 — §(A — §)) implies
F{(t) + 8F1(t) < C.

The application of Gronwall’s inequality completes the proof. O

Lemma 2.3. Assume that f and g belong to H'(R), let ||(¥o, ¢o, O0) | (11 nm2)2 1
(¥, ¢, 0) of the problem (2.1)-(2.5) satisfies

1Y O llpanz + @O Nz + 10O lp < M2, > 13,

where M depends on o, «, A, 8, ||f ||y1, |g€|lg1 and t3 depends on o, k, A, 8, ||f |51, [1€]ly1 and R.

< R, where R > 0. Then, every solution

Proof. The proof is analogue to the proof of Lemma 3in [6]. O

Let By, B, denote the following balls of center zero and radius M, M, respectively

={(¥,9,0) e H' x H' x L* : [ llg1 + dllr + 1101 < My}, (2.9)
={(¥,9,0) € H' NH)? x H 1Y lliew2 + 191wz + 10141 < M), (2.10)

where M, M, are the constants introduced in Lemmas 2.2 and 2.3, respectively. Therefore By, B, are bounded absorbing
sets for (2.1)-(2.5). Since By is bounded, we see that there exists a constant T(B;) depending on B; such that

S(t)B; C By, forallt > T(By). (2.11)

Due to lack of compactness - because of the unboundedness of the domain - we approximate the whole space R by a
bounded domain £2,, = {x € R : |x] < m}, for eachm > 0. The following lemma states that all solutions on the complement
of £2,, are uniformly small for large times.
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Lemma 2.4. Let uy € By, the bounded absorbing set in (2.9). Then for every € > 0, there exist T(e) and M (€) such that every
solution (yr, ¢, 0) of problem (2.1)-(2.4)

/ (¥ OF + ¢ + pu(0)]* +10(0)|))dx < €, forall t > T(e), m > M(e) (2.12)
[x|>m

where T (¢) and M (¢) depend on €.
Proof. Let 8 be a smooth function such that 0 < B(s) < 1fors € R, and
B(s)=0, for0<p(s) <1, B()=1 fors=>2.
Then, there exists a constant C such that |8'(s)| < C, for s € R*. Taking the imaginary part of the inner product of Eq. (2.1)
with ﬂ( )W in 2 get

1d 1x|? X2 - LR
S Rﬁ( >|w| i Aﬁ(ﬁ>wwxx+a4ﬂ(ﬁ)|w|
ixP? ixP?
=lm/Rﬂ<W>¢|w|2+lm/Rﬂ< )wf (2.13)

Evaluating the integrals we obtain

X1 - x| (X2 - 2x
Im /}Rﬁ(ﬁﬁw — cIm Aﬁ<ﬁ)|wx|2+xlm /Rﬂ (E)&ﬁm

(NP - 2x
m<[x|<v2m m m

kC

C
<= WYl < = /h/fnw
m Jr

M Jm<ix|<v/2m
kC kC

< —I¥ilvxll < —, t=T(B1), (2.14)
m m

where C is independent of m and

A
() (o)

=<
1/2 5 1/2
(L) ()
x|=m R m
1 , |x|?
<5 )1 +5/R/3< >|vf| (2.15)
Substitution of the estimates (2.14)-(2.15) into Eq. (2.13) implies

1d x| 2y X2\, 2 kC 1 2
S ﬂ( >|w| fRﬁ( )hm e L (2.16)

Since f € L2, given € > 0, there exists a constant M; (¢) > 0 such that for m > M;(¢)

; <| |2) / (l |2)
— | B Wir+a [ B |w|*> <€, forallt>T(By).
dr Jo

The use of Gronwall’s inequality implies

) 2
(oo (oo
- R

€
e T 1y (T(B)|* + E < M?e TV 1y (T (B) 1 + "

| /\

IA
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Setting T1(¢) = 51 (aw) + T(B1) and T, (¢) = max{T;(¢), T(B,) + 1}, then fort > T,(¢) and m > M;(¢) we have

/ WO < / ﬂ(—'xlz)w <%
- m? - o
|x|>2m R

Next multiplying Eq. (2.3) with ("—2> 0 we obtain

1d [P X2\ P2
EE/R,B< >|9| +()»—5)/ ( )|9| —I—(]—(S()»—(S))/ ( )9(]5
T P P2
—/Rﬂ( )quxe Re /Rﬂ< )ewx /Rﬁ(m)Gg- (2.17)

Using Eq. (2.2) we have that

|X|2> (| |2) <| |2)
XX@ = xx Pt 8 XX
/Rﬂ< b /Rﬂ b+ /ﬂ Db
. 1d |x|? |x|? L Ix? 2x
=Ja Rﬂ( >|¢x| —5//3( >|¢x| —/R,B (W)Qﬁbxﬁ- (2.18)

Using again Eq. (2.2) we get

2 2
(1—5(?»—5))/ (l il )9¢ = 1—(1—5(?»—5))/ ( >|¢| +6(1 - 5()»—3))/ (l il )I¢| - (2.19)

Substitution of Eq. (2.18)-(2.19) into Eq. (2.17) implies

1d |x|? |x|2 2
Sd ﬁ( >((1—3(k—8))|¢l + ¢ul? + 16 )+5/ﬁ<—2)((1—5(k—5))|¢>l
t Jr m

2
+|¢x|2+|9|2)+()\_25)/,3<|m_|2>|9|2
R
2 2 2
:—Re/ﬂ(l | )9% /ﬁ(%)@g—/ﬂ ('X| ) by (2.20)
R R R

Estimating the integrals on the right-hand side of the above equation, we get

Ix* )
[ #(55 oomza| < Lo
R

2 1 0o2) [ (08
(5 Jos '—zu—z&) o & / (5 )er
e [ (20 am2b) [y
e [ (2 )ownar < cotun + E222 or,

R

where c;, c3 are independent of m. Therefore choosing § small enough such that A — 2§ > 0, form > M;(¢) and t > T(By)
we obtain

d

2 2
" ﬂ(' | )((1—5@ 5>>|¢|2+|¢x|2+|9|2>dx+za/ﬂ<' | )((1—8@ VIO + 16 + 101)dx < e.
R R

Gronwall’s inequality implies the existence of a constant T3(¢) > 0, such that
2e€
f (1 =80 = IBI* + 1¢xl* + 101*)dx < 5 form = Ms(e) and t > Ts(e),
|x|>2m

which completes the proof. O

Repeating a similar procedure to the one used in the above lemmas we obtain the following results on a finite time
interval.
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Lemma 2.5. Assume that f and g belong to L*(R), let ||, ¢o, 6o lly1 <1512 < R, where R > 0. Then, every solution (/, ¢, 0)
of the problem (2.1)-(2.5) satisfies

[V Ollgt + 1oOllg + 10 <L, 0<t=<T,
where Ly depends on («, «, A, 8, |Ifl, llgll and T).

Lemma 2.6. Assume that f and g belong to H' (R), let ||v/o, ¢, G| H1nH22 <yt < R, whereR > 0.Then, every solution (/, ¢, 6)
of the problem (2.1)-(2.5) satisfies

IV Ollnianz + 19Ollp1apz + 100y < Lo, 0<t <T,
where L, depends on (o, k, A, 8, || ||y1, ||y and T).

Therefore we are ready to state the main result of this section.

Theorem 2.7. Let f and g belong to L°(R™, H'(R)) and assume that
(Y. 0. 60) € (H'(R) NH*(R))* x H'(R).
Then, there exists a unique solution for the system (2.1)-(2.5) such that

Y € 1°(0, 00; H'(R) NH*(R)), ¢ € L®(0, o0; L*(R)),

¢ € L(0,00; H'(R) NH*(R)), ¢ € L®(0, 00; H'(R)),

¢ € L7(0, 00; [*(R)),

Y(x,0)=vYo(x), ¢Xx 0 =¢o(x), ¢(x,0)=¢(x), x€eR.

Proof. The proof follows the same basic steps as the one of Theorem 3.1 in [4] and is based on the result obtained in the
above lemmas. O

3. The solution semigroup properties
The solution semigroup is endowed with the following useful properties
Lemma 3.1. If (Y, ¢n, 6,) — (¥, ¢, 0) weakly in H'(R) x H'(R) x L?>(R), then for every T > 0, we have
SCY(Wny bns 60) — SO (W, ¢,0), weaklyin [*(0, T; H' x H' x I?), (3.1)
S(E) (W, Gy On) — SO, ¢,0), weaklyinH' x H' x [, 0<t<T. (32)
Proof. The proof is analogue to the proof of Lemma 3.1in[2]. O

Theorem 3.2. Assume that f and g belong to L?>(R). The solutions (1, ¢, 8) € C(R*; H' x H! x L?) of the problem (2.1)-(2.5)
depend continuously on the initial data in H! x H' x L?, and satisfy the energy equation

F'(t) 4+ 8F(t) = H(t). (3.3)

where
F:ZKIIwXII2+/R¢W|2dx+||9||2+II¢XII2+(1—6()»—8))||¢||2+2Re fﬂ{f&,
H = (8—ZKa)Ill/foIZ—Za/R¢I1/f|2+(38—2A)||9I|2—8(1 -5 —a)lel? (3.4)
—5||¢x||2+/9|w|2+2(5—a)Re /f&—zRefewarz/ge.
R R R R

Proof. Given (Y, ¢o, 6p) in H! x H! x [? we take a sequence (Y¥g.n, 0.1, fo.n) € (H' N H?)? x H! such that

(Vo.n, bo.ns Bo.n) — (Yo, do, 6p) € H' x H' x [*. (3.5)

We multiply Eq. (2.1) by —, and take the imaginary part

Ll + 20yl = 21 /f@
- n n = m n-
2dr * .
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Integration of the above equation implies

1)1 = e 4 (0)|1” + 21m / eI (f, Ya(s))ds. (3.6)
R

Following the same procedure we may obtain

1Y (O = e [y (0)|2 + 2Im / 209 (F i (5))ds. (3.7)
R

Because of convergence (3.5) the sequence (Yo n, ¢o.n, 6o.n) is bounded in H' x H! x I? and by Lemma 2.6 we obtain
| (Yns @ny O gt iz < C, forall0 <t <T,n=1,...,forsomeT > 0, (3.8)
where (Y, ¢n, 0n) = S(t)(Yo.n, Po.n, Bo.n). Taking into consideration Lemma 3.1 and the convergence (3.5) implies

(Y, @n, 60) — (U, $,60), weaklyin H' x H' x [%. (3.9)
Then using relation (3.5) and Eq. (3.7), the limit of Eq. (3.6) gives

[ = ¥ I, asn— oo. (3.10)
Let pp(t) = Y (t) — ¥ (t), gn(t) = Pn(t) — P(t), G,(t) = 6,(t) — O(t) then system (2.1)-(2.3) becomes

iDn,t + KDPnxx + 10Pn = qn¥n + Dn®n, (3.11)

qn.c +8qn = Gy, (3.12)

Gn,t + ()L - 3)6n — (n,xx + (1 - 5()L - 8))Qn = _Repn,x‘ (3-13)

Multiply Eq. (3.11) by —p,, in [? integrate and take the real part

1d 2 2 2 _
=—K||paxll” + kallpnxll” +a | @ulpal” + aRe qn¥nPn = —Re
R R

> dr an‘ﬁnﬁn,t_Re/CInwnﬁn,t‘ (3.14)

R

But p; = i(kpx + iap — p¢ — qi). Therefore substituting into (3.14) produces

1d _ _ _ - _ -
EEK”pn,XHZ + KO!”pn,x”2 =k Im /pn¢pn,xx —Im fpn¢nqn¢n 4+« Im / n¥nPnxx — Im / nVnPnn. (3.15)
R R R R

Analyzing integrals Im [, Pn@nPn ., Im [ Gn¥nDnx EQ. (3.14) becomes

1d _ _
__K”pn,x”z + K‘X”pn,x”2 = —«Im /pn¢n,xpn,x +Im /pn¢nQn¢’n
2dt R R

—«Im / C_In,xl,/_/npn,x —«Im / C_Inll_fn,xpn,x + Im / C_Inll_fnpn(pn- (3.16)
R R R
Next multiplying Eq. (3.13) by G,,, produces
1i(IIG 12 4 llgnxll® + (1= 8 — N lgnll®) + A — O IGall> + 8l gnll* + 81 — 81 — 8))llgnll?
2 dr n qn.x qn n qn,x qn
= —Re / Gnqn,x- (317)
R
Addition of the formulas 26 x (3.16) and 2x (3.17) implies

d
E(IIGnII2 + e ll® 4 (1= 8G- = 8)IIGnll + «81puel®)
+ 2608 [|Paxll? + 200 — ) IGall” + 281 qnxlI” +28(1 = 8 — 8))lIgall®

= —2«5Im /l_)n(pn,xpn,x + 25 Im /ﬁnquann — 2«8 1Im / C_In,xI/_/npn,x — 2«8 1Im / L_Zn‘zfn,xpn,x
R R R R

+281m/(_1n"pnpn¢n_2Re/GHQn,x- (3.18)
R R
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Majorizing the right-hand side of the above equation obtain

d
E(IIGnII2 + 1 nll® + (1 =8 = ) 1gnll® + k8l1Paxll?)
+ 26a8[|paxll? + 200 — ) IGall” + 281 qnxlI” +25(1 = 8 — 8))lIgall®

=< 2«8 #nllIPnllsllPnxll 428l Pnlloo [ ¥nllooIPalllIgnll 4= 26 811%n lloo |gnxlllPnxll + 26 81[qn lloo [l ox

+ 28| ¥nllooll¢n lloo 1gnll IPnll + 211G [l 11 gxl-

Because of the embeddings H!(R) < L5(R), H/(R) < L®(R), ||pallz < C||p,1||1/2||pn||111/12 and Eq. (3.8), we get

d 2 2 2 2 2
E(IIGnII F lgnxll” + (1 =8 =) Ignll” + klIPnxl”) = Clipall®.
Gronwall’ inequality implies

1Ga (O 1 + lgn O 11 + (1 = 8C. = NN gn(©I* + x8lIpn (O
t
< 1Ga @17 + 1 xO)II* + (1 = 8k = $))11ga(0) 1> + 3 ]|Pax(0) |* + C/ Ipall*dz.
0

Taking into account the limit of the last inequality and the result (3.10) obtain
1Pa (), qn (), Gn(O) g1 xp1xn — 0, asn — oo.
Therefore
(Yn(1), $u(t), 6n(1)) = (Y (8), (1), 0(t)), asn— oo, inH' x H' x H.
Hence it follows that, forall0 <t < T,

S()(Won» Pons Oo.n) — SE) (Yo, do, o), asn— oo, inH' x H' x H,
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(3.19)

(3.20)

(321)

(3.22)

where (Vo.n, Po.n» Oo.n) — (Yo, o, Go) in H! x H' x H and (Yo.n, Po.n, Go.n) € (H' NH?)? x H'.In order to prove that the
equation above holds when (¥ 5, @01, f0.n) € H' x H! x H we follow similar argument as the one in [2, Theorem 3.1].
Since (Vo.n, Po.n» Go.n) € (H' N H?)? x H', by Lemma 2.6 we know that for fixedn = 1, ..., (Y, ¢n, 6n) € L%°(0, T;

H' N H?)? x (HY). Therefore from Lemma 2.6 we have that

li 2 2 r 2 é 2
5 qc \MVenll™ + | @alynl” +2Re | [ JHxcalYnl™+{ @+ 5 ) | dnltnl
R R R

1 , _
- _/9n|¢n| +aRe/fwn.
2 R R

d
aﬁ(d’n(t), @n(t), On(t)) + 20F1 (WYa(t), Pn(t), On(t)) = 2H1 (Yn (L), @n(t), On(1)).

Hence

Integration of the last formula implies

Fy(Ya(t), ¢n(t), On (1)) = €2 F1 (1 (0), $(0), 6,(0)) +/ T2 IH, (Y (5), hn(S), On(5))ds.

Evaluating the (nonlinear) integrals of (3.23) we have

/(Pnllﬁnl - /(¢n—¢)llﬂn|2—/¢(llﬁn|2—
R R

< li¢n —¢||||1ﬁn||H1 F 1l 1Y = Yl Aldnlly + N[5
< Clign — ol +Cliyn =¥l = 0, asn— oo

6’n|1ﬁn|2—/ = /(9,,—9)|1//n|2—/9(|1pn|2—
R R R R

162 = O ¥allfe + 1011 — Yl ¥ally + 19 11y
Cllon =01l +Clim = ¥lls = 0, asn— oo,

and

IATA

(3.23)

(3.24)
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where

1m — Wl < Clvm — VI — Wl < Cllym — ¥ 11* —> 0, asn— oc.

From the convergence (3.5) we have that

F1(¥(0), ¢n(0), 6,(0)) — F1(4(0), ¢(0),0(0)), asn — oo.

Taking into consideration the results above it also follows that

Hy(Yn(0), ¢n(t), On(8)) — Hi (¥ (1), ¢(0), 0(t)), forall0 <t <T. (3.25)

Finally, using (3.8), (3.25) and the Lebesgue dominated convergence theorem we get

/ ey, (¥n(S), Pn(S), On(s))ds — / [ e 2 CIH, (Y (), ¢(5), 6(5))ds, (3.26)
asn — Ooo.Taking the limit of Eq. (3.24) we get 0

el gll® + /R G1YI? 4 2Re /}R f = e F1 (¥, po, 60) + /0 eI (4 (5). B(6). 6()ds, (327)
that is

%mw), B (1), (1)) + 2aF1 (Y (1), p (1), 6(1)) = 2H (¥ (1), (1), 6(1)). (3.28)

On the other hand, since (Y, ¢n, 6,) € L*(0,T; (H' N H%)? x H'), foreveryn = 1,2, 3, ..., by Lemma 2.6 it can be
deduced that

d 2 2 2 2 2 2
g 101"+ lidnll” + (1 = 8k = ODlIall") 4 2(4 = O)16nll” + 28 dnllI” + 20(1 = 6( = 8)) |l

— —2Re /expn,x+2/g9n. (3.29)
R R

Then by the convergence (3.22), the formula 2x (3.28) + 2x (3.29) implies the energy equation (3.3). Now, since we have
proved that

S(®)(Yo.n> Pons Oo.n) = SE)(Wo, do,6p), asn— oo, inH' x H' x H, (3.30)

it remains to show that Eq. (3.29) holds when (¥, ¢o.n, f0.n) € H! x H! x H. In order to prove this argument we follow
similar steps with [2, Theorem 3.1]. O

Remark 3.3. To achieve the above results we had to overcome difficulties arising from the fact that our system has only one
nonlinearity (¢ ). Instead, Youkawa’s and Zakharov’s models are endowed with two nonlinearities, which “cancel” one
another from the beginning of the above procedure.

Theorem 3.4. Assume that f and g belong to H'. The solutions (v, ¢, 8) € C(R*, (H NH?)? x H') of the problem (2.1)-(2.5)
depend continuously on the initial data in (H' N H?)? x H' and it satisfies the energy equation

Fy(t) + 8F;(t) = Hy(t) (3.31)
where

F = k|Ywl* — 2Re / ¢V ¥ + 2Re /fxx/?x + 16112 + Nldwll> + (1 = 8(X — 8) 1 |I%,

R R
Hy = (8 — 2ka)[[¥xell® + (38 — 2)[16kII* — 8llpuell> — 8(1 — 8(A — 8)) llhxll?
+ 4o Re / dY P — 2Re / Oxx — 2 Re / Oy Yrexdx — 21Im / O YV + 28 — @) /fx[px + Z/ngX-
R R R R R R

Proof. Consider two solutions (1, ¢1, 01) and (2, ¢, 6,) of the problem (2.1)-(2.5), then the differences v = v, —
V1, & = ¢y — P1, 0 = 0, — 0 satisfy the following system

W + k¥ + iy = ¢y + g, (3.32)
¢+ =10, (3.33)
O + (A —8)0 — pox + (1 = 8(A — 8))p = —Rey)y. (3.34)
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Multiplying Eq. (3.32) by ¥« r + a¥x, taking the real parts, and evaluating the terms get

d
1V e = CUY B + 19 10). (3.35)

Next, multiplication of Eq. (3.34) by —6,, and integration gives

d 2 2 2 2 2 2
ot 18125+ 1017y + (1= 8= D191 ) < CUBN + 191102 + (1 = 8G. = DI (3.36)

By adding (3.35) and (3.36) we obtain

d 2 2 2 2
e U812+ 101+ (1= 80 = D IG I + 1V [y

< CUIO1Z + 112310 + (1= 8G. = SDISIZ1 + (Y1121 pp2)-
Gronwall’s lemma implies the continuity of the solutions in the space (H! N H?)? x H! and therefore the energy equation

(3.31)holds. O

4. Existence of a global attractor

The aim of this section is to prove the existence of a global attractor for the dynamical system S(t) in the space
(H' N H?)? x H'.First, it is necessary to prove the asymptotic compactness of the solutions.

Theorem 4.1. Let f, g belong to L2. Then the dynamical system S(t) is asymptotically compact in H' x H' x L2, That is, if
(Vns Pn, Bn) is bounded in H' x H! x L2 and t, — oo, then S(t) (Y, ¢n, 6,) is precompact in the same space.

Proof. Ideas developed in [9] will be used. Since the sequence (V, ¢,, 0,) is bounded, there exists R such that
| (¥ns @ns O Iyt w12 < R. Therefore Lemma 2.2 implies the existence of a constant T (R) such that

S(&)(Wn, ¢n, 6y) € By, forallt > T(R), (4.1)

where By is the absorbing set given by relation (2.11). Taking t, — oo, there exists N;(R) such that if n > N;(R), then
t, > T(R), and thereby

S(tn)(Yn, ¢n, On) € By, foralln > Ny(R). (4.2)
Hence there exists (v, ¢, 6) € By such that
S(tn) (Wn, ¢, ) — (¥, ¢,0), asn — oo, weaklyin H! x H! x [%. (4.3)

Since t, — oo, for every T > 0, there exists N, (R, T) such that, whenn > N,(R, T) one has t, — T > T(R). Therefore by
relation (4.1)

S(th — T)(Yn, ¢n, 6n) € By foralln > Ny(R, T). (44)
This implies that there exists (Y, ¢7, 07) € By such that

S(ty — T)(Wn, Gy O0) = (Yr, dr,0r), asn — oo, weaklyin H' x H' x 2. (4.5)
By relation (3.2) it follows that

S(T)(S(ty — T)(Wny Gy 60)) — S(T) (Y7, ¢r, 0r), asn — oo, weaklyin H' x H' x [?, (4.6)

and from the uniqueness of the solution we get that

Y, ¢,0) =S (Yr, ¢r, Or). (4.7)
Now from relation (4.3) we have
lim inf |IS()(Wn, &, O) itz = 10F, @ Ol (4.8)

Every solution satisfies Eq. (3.3), therefore for every t > s > 0, we find that

T

F1(S(6) (Yo, o, 00)) = e > F(S(s) (Yo, do, 60)) + / e "G (S(T) (Yo, Bo, 6o))dr. (4.9)
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On the other hand from Eq. (4.7)

T
Fi(Y, ¢,0) = Fi(S(T)(Yr, ¢r, 0r)) = e *T-TOF (S(To) (Yr, ¢r, 61)) + f e TG (S(r)(Yr, ¢r, Or))dT.  (4.10)

To

Let To(€) be a constant such that To(e) > max{T(e), T(Bq1)}. Let S(t)(S(t, — T)(Yn, ¢n, 65)) be a solution of the system
(2.1)-(2.5), then taking T > Ty(¢) we know that every solution satisfies (2.9) hence relations (4.9) will give forn > N,(R, T)

F1(S(ta) Wn, bny On)) = e PTTOF (S(To) (S(tw — T) (Wny Pns 0n)))
T
+ / e TG (S(T)(S(ty — T)(Yn, $ns O)))dT (4.11)
T

0

where s = Tp and t = T. Next we treat each term. Since Ty > T(B)
e XTTOF (S(To) (S(tw — T) (Y, ¢, ) < Ce* 77T, forall n > No(R, T),
where C is independent of T. Analyzing the last term of (4.11) and taking into consideration Eq. (3.3) we have that

T T
/ e T7DG(S(T) (S (tn — T) W, ¢, O)))AT = (8 — 2k) | e * T [S(D)(S(tn — TP I
T

0 To

T
- 20!/ e 070 / S(T)((S(ta = TN IS (S(tn — T)P)I?

To R

T T
+38 =20 [ T US@ St = DOIP =81 =8t = 8) | e T VIS@)(S(tn — T I
To To

T T
-3 / e TS (T) (S (tn — T)en) II* + / e 1) / S(T)(S(tn — T)O)IS(T) (S (ta — T))Yral?

To To R

T
126 — ) / e-3T-0Re f SOGG =D
TO R

T T
-2 / e *T""Re / S(T)(S(ta — T)O)S(T)(S(tn — T)Yrn) + 2 / e =0 / 8S(T)(S(tn — T)By). (4.12)
T R

0 To R
By convergence relations (3.2) and (4.5) we have, as n — oo
e TIS(T)((S(ty — T)¥m)) — e *T"IS(1)yr,  weakly in L*(To, T; HY),
e T=0S(T)(S(ty — T)0p)) — e °T=95(1)6;, weakly in L*(Ty, T; H),
e TS ((S(ty — Tpn)) — e °T=IS(1)pr, weakly in L*(To, T; H).

Therefore
lim inf [le™""0S(2)(S(tn — DY) 2y, oty = e 7SOVe izt 101 (4.13)
lim inf [le™"T0S(2)(S(tn — 1O 2y, romy = ™SO0 iz 1.1 (4.14)
lim inf [le™"""0S(2)(S(t — D) 2ty oty = N~ 7SOe 2ty 101 (4.15)

Then, taking § small enough and taking into consideration that the following inequalities hold § — 2k < 0,36 — 21 <
0,1—6(Ar — &) > 0 produces

T
lim sup (8§ — 2ca) | e *T=DS(x)((S(ty — ) V) |1

n—o00 To

T
+ lim sup (38 — 21) / e T DYS(T)(S(ta — T)O) |12
To

n—oo
T
+ lim sup —8(1 =8 —8)) [ e T PYS()(S(tn — T)pn) |12
n— o0 To

T
+ lim sup —5/ e T DYS(@)(S(tw — T n) 17

n— 00 To
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T
< lim sup / e 17D ((8 = 2 IS ()Y rlI* + (38 — 21) IS (D)6r |12

n—oo TO
—8(1 =80 = NIS@¢rll* = 8IS@dx 1) (4.16)

Following the same arguments we also have

T T
28 — @) / e *T""Re / FS@)(S(ty — T)Yrn) + 2 / e T / gS(T)(S(tn — T)6y)
To R

To R

T T
20 —a) | e?T Re / fS(@)yr +2 / e 0= / g5(1)br. (4.17)
R

To To R

The next step is to evaluate the nonlinear terms of Eq. (4.12). In order to overcome the difficulty of the noncompactness of
Sobolev embedding in R we will approach the whole space by bounded intervals. That is

T
/ e300 / SO ((S(tr — Tg)ISD) (St — T)n)) [Pdrdx

To R

T
= / e 0T / S(T)((S(tn — T)Pu)IS(T)((S(ta — T))Yry)[*drdx

To [%|>m
T
- / e 200 / S@((S(tn = N)IS@ (S (ta — )| drdx. (4.18)
To [x|<m

For a given € > 0, it follows from estimate (2.12) that, foralln > N,(R, T) and m > M(¢),

T
/ e / ST (S(tn — T)Pn))IS(T) (S (tn — T)¥n))[Pdrdx

To [x|>m

T
< f e5<“>dr( / |S(r)<5(tn—T>¢n>|3dx)
To |x|>m

1/6 1/2
x ( / IS(T)((S(tn — T)%))de) ( / IS(T)((S(ty — T)xpn))lzdx)
|x|>m |x|>m

T 1/3
=< Ef eI "dr (/ 1S(2)(S(tn — T)¢n)|3dx> (/ IS(@)((S(tn — T))‘Pn)|6dx)
To R R

T
= 6/ eI de||S(2) (St — T 1 IS (St — TV )l
T

1/3

1/6

foralln > N»(R,T), m > M(¢).

Next, we deal with the second term of the right-hand side of Eq. (4.18). By convergence Egs. (3.2) and (4.5) we have, for
every fixed t € [Ty, T],

S(T)(S(tn — DY), S(T)(S(ty — T)dn), S(T)(S(ta — T)6)
— S(0)(Yr, ¢r, 07), weaklyin H! x H! x H. (4.19)
Let 2, = {x € R: |x|] < m}.Then
S@)(S(tn — DY), S(T)(S(tn — T)n), S(T)(S(tn — T)0)
— S(v)(Yr, ¢r, 6r) strongly in [2(2) x L*(2p). (4.20)

Eq. (2.7), relation (4.4) and the Lebesgue dominated convergence theorem imply

T
/ e f S(T((S(tn = Tpn))IS(T) (S (tn — T) ) [*drdx

To [x|<m

T
—>/ emf)/ S(T)r|S(t)Yr|*drdx. (4.21)
To |x]<m
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Following similar arguments we get

T
/ e~ / S()(S(tn — T)0)IS(T) (S (tw — T)) s *drdx
TO R

T
= / e T f S(T)((S(tn — T)O))IS(T)((S(tn — T)¥))|*dTdx

To [x|>m

T
+ / e 1) / S(T)((S(ta = TI0)IS(T)((S(tn — T)) ) [Pdrdx. (4.22)
To [X|<m
Hence

T
/ —HT—") / SISty — TIONIS@) (St — T) ) [2drdx
To [x|>m

r 1/2
<c / e—w—ﬂdf( f IS() (S (6 — T>9n>|2dx>
To [X|>=m

2
X </| IS(@)((S(tn — T)\/fx,n))lde> </| IS(@)((S(tn — T)\/fn))lde>

T 1/2 2
< Ce / e ?T="dr ( f IS(z)(S(ta — T)9n>|2dx) ( / | IS(T)((S(tn — T>¢x,n>)|2dx>
To x|>m x|>m

T
< Ce f e T=0drS(T)(S(tn — TS (St — T

To
5 foralln > N,(R,T), m > M(¢),
and

T
/ e / SISt — TI6)IS@) (St — T)¥n))Pdrdx
To [x|<m

T

- e 0T—o / S(1)0r|S(v)yYr|*drdx.
To |x|<m

Also

T
/ e %T—")Re / S(T)(S(ty — T)0)S(T)(S(tn — T)WYy.n)drdx
To R
T
= / e 0 / S(T)((S(tn — T)O))IS(T)((S(tn — T)Yx.n))|*drdx
To |x|>m

T
" / e / _, SO G = DENIS@ S T)yn))*dzdx. (4.23)
To x| <m

Similarly, for the last nonlinear term, we obtain

T
/ e 1 f S(((S(ta — TS (St — T)Yen))*drdx

To [x|>m

T 1/2 1/2
< / emf)dr( / |5(r>(s<tn—T)9n)|2dx> ( / |S(r>((5(tn—T)x/fx,n)>|2dx)
To [x|>m |x|>m

T
< f e T=Idr|IS(T)(S(ty — T)OD NS (T) (S (tn — T) W)l 1
T

0
C
< %, foralln > Ny(R, T), m > M(¢).

Therefore

T
lim sup / e 0 </ S ((S(tn — Tu))IS(T)((S(ta — T)) )| *drdx
To R

n—oo
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+ /S(T)((S(tn —T)0))IS(T) (S (ty — T)¥))|*dzdx
R
+ /S(r)((S(tn —D)O))IS(T)((S(tn — T))wx,n)lzdde)
R

T
56C+/ e—w—”(/ S(0)¢r|S()YrAdrdx
To [x|<m

- / S(T)0r|S(t)yrr|*drdx + /
|x|<m

[X|<m

S(r)@ﬂS(t)wX,ledrdx). (4.24)

Hence

T
lim sup / e””( / S()((S(tn — TI$NIS@)(S(ty — T Pdrdx
TO R

n—oo

+ /S(T)((S(tn — )0))IS(@)(S(tn — T)¥n)*drdx
R

+ /S(T)(S(tn —DO)IS(D)((S(tn — T)wx,n))lzdfdx>
R

T
5ec+/ e—sa—z)(/ S()rlS (1) Pdrdx
R

To
+ /5(z)9T|5(r)¢T|2dzdx+/5(r)9r|5(r)wx,r|2drdx), as m — oo.
R R

Therefore Eq. (4.12) becomes

T
lim sup / e T=IG, (S(T)(S(ty — T)(Yn. dn. 6)))dT

n—00 JT,

T T
<@ —=2ca) [ e?TOUS@)Yrrl? — 2a / e 2D f S(T)¢rIS(T)Yrl?
To R

To

T T
+(35 - 2?»)/ e TS0 |IP — 8(1 = 8(x — 5))/ R NC A&
To To

T T
s / T IS(D)er | + / e~ / SIS ()P 2

To To R

T T
+2(8 — ) / e 3T="Re f fS(T)yr —2 / e 3T="Re / S(T)0rS(T) Yt
TO R TO R

T T
+2/ e—5<T—f>/g5(r)9T +eC :f e TG, (S(v)(Yr, ¢r, Or))dT + €C. (4.25)
To R To
We finally obtain
T
lim sup Fy(S(ta) (Wn, ¢n, 6)) < Ce 7710 4 / e 179G (S(T)(Yr, ¢r, Or))dT + €C. (4.26)
n—oo To
But using Eq. (4.10) and the above results we get
lim sup Fy(S(tn) (Wn, $n: 6n)) < Fi(¥r, ¢, 0) + Ce>T~T0) — e=2T=T0IG, (S(To) (Yr, pr, 1)) + €C. (4.27)
n—oo

Hence, since (Y1, ¢r, 0r) € Band Tp > T(B) we have

lim sup F;(S(ty) (Y, @n, 60)) < F1(yr, ¢, 0) + Ce*T~T0) 4 ¢C. (4.28)

n—-oo

Taking the limit as T — oo and € — 0 we obtain

F1(S(tn) (Yns @n, On)) < F1(r, ¢, 0). (4.29)

Finally, in order to give an estimate of the norm of the solutions in H! x H! x H we need to evaluate the nonlinear terms of
F of Eq. (3.4). The rest of the proof follows similar steps as those in Theorem 4.1 of [2]. O
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Remark 4.2. Remark 3.3 applies also in the proof of the above Theorem 4.1.

Theorem 4.3. Assume that f and g belong to H'(£2). Then, the dynamical system S(t) is asymptotically compact in (H' NH?)? x
H' that is, if (s, ¢n, 6n) is bounded in (H' N H?)? x H' and t, — oo, then S(t)(Yn, ¢, O,) is precompact in the same space.

Proof. The proof is omitted as it follows the ideas of Theorem 3.4. O

For the completion of the work it is necessary to state the following result [see [10]].

Proposition 4.4. Assume that X is a metric space and {S(t)};>o is a semigroup of continuous operators in X. If {S(t)}¢>o has a
bounded absorbing set and is asymptotically compact, then {S(t)};>o possesses a global attractor which is a compact invariant
set and attracts every bounded set in X.

Theorem 4.5. Assume that f and g belong to H'(£2). Then the problem (2.1)-(2.5) possesses a strong compact global attractor
in (H' NH?)? x H', which is a compact invariant subset and attracts every bounded set of (H' N H?)? x H', with respect to the
norm topology.

Proof. Taking into consideration the asymptotic compactness of S(t) in the space (H' N H?)? x H!, Theorem 4.3 and
Proposition 4.4, the proof is completed. O
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